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Abstract

A tensegrity structure is prestressed pin-jointed structure consisting of discontinuous struts
and continuous cables. For exploring new configurations of tensegrity structures, this paper
addresses a topology optimization problem of tensegrity structures under the compliance con-
straint and the stress constraints. It is assumed that a cable loosens and loses the elongation
stiffness when its tensile prestress vanishes due to the applied external load. It is shown that
the topology optimization problem can be formulated as a mixed integer linear programming
(MILP) problem. The proposed method does not require any connectivity information of
cables and struts to be known in advance. Numerical experiments illustrate that various

configurations of tensegrity structures can be found as the optimal solutions.
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1 Introduction

The terminology tensegrity was coined by Fuller [11] to represent a particular class of tension
structures. A tensegrity structure is a prestressed pin-jointed structure consisting of continuous
tensile members (cables) and discontinuous compressive members (struts). Many variants of
the concept of tensegrity, including so-called tensegrity-like structures, have been presented; see
Motro [22] and the references therein.

Tensegrity structures receive remarkable attention from various fields of engineering and sci-
ence. Light-weight properties and impressive configurations of tensegrity structures are recog-
nized as distinguished advantages in civil engineering structures [2, 5]. Applications of tensegrity
structures include deployable structures [33, 35|, antenna-mast structures [9], and smart sen-
sors [34]. They are also studied as cell cytoskeleton models [4, 30, 38, 39] and from a view point
of discrete mathematics [14].

This paper discusses a topology optimization of tensegrity structures. The topology of a

tensegrity structure is characterized by the connectivity of members and the labels indicating
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whether each member is a cable or a strut. A combinatorial feature, stemming from the discon-
tinuity condition of strut, makes finding a new topology of a tensegrity structure an intrinsically
difficult problem. To deal with the discontinuity condition of struts rigorously, we develop a mized
integer linear programming (MILP) formulation. This approach does not require any information
of labels in advance, although the locations of candidate nodes are specified as the input data.
Therefore, it is expected that various new topologies can be found as results of optimization.

Since the configuration of a tensegrity structure depends upon the prestresses and any two
struts are not allowed to share a common node, an arbitrarily given geometrical configuration is
not necessarily realized as a tensegrity structure. Therefore, the determination of the geometrical
configuration, called the form-finding process, is a key in the design of a tensegrity structure.
Various form-finding methods for tensegrity structures have been proposed by many authors,
including [12, 18, 19, 21, 24, 26, 37, 40, 41]; for surveys, see Juan and Mirats Tur [15] and
Tibert and Pellegrino [36]. In these methods, it is required to specify the topology of a tensegrity
structure as input data.

Based on the group representation theory, it is possible to enumerate topologies of tensegrity
structures sharing a common group-symmetry property as shown by Connelly and Back [6] and
Connelly and Terrell [7]. Masic et al. [19] and Sultan et al. [32] proposed form-finding methods for
tensegrity structures with a rotational symmetry property,. However, these methods are restricted
to finding symmetry tensegrity structures. In contrast, by using the graph representation of the
topology and the map L-system, Rieffel et al. [29] proposed a form-finding method with a genetic
algorithm, which can find asymmetric tensegrity structures. Ehara and Kanno [10] proposed
a method based on the ground structure method with MILP, where the topology of tensegrity
structures is not required to be specified in advance. However, the mechanical performance of
tensegrity structures, e.g., the stiffness or the stability, was not addressed in [10]. Thus form-
finding of tensegrity structures without fixing the topology still remains as a challenging problem.

In continuation of the previous work [10], this paper explores the topology optimization of
tensegrity structures based on the ground structure method. In addition to the self-equilibrium
condition and the discontinuity condition of struts, performance requirements of a tensegrity
structure, which were not dealt with in [10], are taken into account. Specifically, we consider the
stress constraints and the compliance constraint under the given external load. The minimization
problem of the number of cables under these constraints is formulated as an MILP problem, which
is solved globally. Note that we assume small deformations and do not consider any stability
constraints of tensegrity structures in this paper.

A key idea to formulate our MILP problem for optimization of tensegrity structures is based on
the MILP formulations for topology optimization of trusses with discrete member cross-sectional
areas [17, 28]. These formulations for trusses are motivated by an MILP formulation for topology
optimization of continua presented by Stolpe and Svanberg [31]. Concerning the truss topology
optimization with continuous member cross-sectional areas, Ohsaki and Katoh [25] proposed
a mized integer nonlinear programming (MINLP) approach. However, as clearly mentioned in
Remark 4 of [25], it is not guaranteed that their method finds the global optimal solution. An
MINLP approach with the guaranteed global optimality was proposed by Achtziger and Stolpe

[1].



A major difference of the static analysis of a tensegrity structure from that of a truss is that
some cables may possibly be in slack states at the equilibrium state under the given external
load. If we assume the linear elastic material, the constitutive law of a truss element is linear,
whereas the axial force of a cable is a nonsmooth function of the elongation. The difficulty of
analysis of tensegrity structures stems from the fact that we do not know in advance whether
each cable member becomes slack or not at the unknown equilibrium state; see, e.g., [3, 16, 27] for
this nonsmoothness property of cables in static equilibrium analysis. Furthermore, in topology
optimization of tensegrity structures, it is not determined whether each member is a cable or not in
advance. In this paper, we deal with the slack behaviors of cables within the framework of MILP.
There are only few literature addressing form-finding or shape-finding problems of cable—strut
structures that possibly include slack cables. Deng et al. [8] studied the shape-finding problem
of cable-strut structures, where some cables become slack during the construction process.

This paper is organized as follows. In section 2, the definition of tensegrity structure is
formally stated with a focus on the discontinuity condition of struts. This condition is then
reduced to a system of linear inequalities with some 0—1 constraints in section 3. In section 4, the
compliance constraint and the stress constraints are formulated as a system of linear inequalities
by introducing additional 0-1 variables. Section 5 presents an MILP formulation for topology
optimization of tensegrity structures. Numerical examples are demonstrated in section 6 to
illustrate that various topologies of tensegrity structures are obtained by the proposed method.
Finally, conclusions are drawn in section 7.

A few words regarding our notation: All vectors are assumed to be column vectors. The
(m + n)-dimensional column vector (uT,v™)T consisting of u € R™ and v € R" is often written
as (u,v) for simplicity. We write p > 0 for p = (p;) e R"if p; >0 (i =1,...,n). For aset E, we
use |E| to denote its cardinality. For example, if £ = {1,...,m}, then |E| = m.

2 Definition of tensegrity structure

Consider a pin-jointed structure without any support as an initial structure for optimization. The
members can transmit only axial forces. We assume the small deformation throughout the paper.
The members are supposed to consist of a linear elastic material. Each cable is assumed to lose
the elongation stiffness when its length becomes shorter than the initial length. This property of
a cable is discussed in section 4.

Suppose that the locations of nodes of the structure in the reference configuration are specified
in the three-dimensional space. Let V and E denote the set of nodes and the set of members,
respectively, where |V| = n and |E| = m. For simplicity, we assume E = {1,...,m} without
loss of generality. We use ¢ = (¢;) € R™ to denote the vector of axial forces introduced to
the members as prestresses. Each member is classified whether a cable or a strut according to
prestress q;; ¢; > 0 for a cable and ¢; < 0 for a strut.

We say that the structure with ¢ # 0 is at the state of self-equilibrium if it satisfies the static
equilibrium condition when no external load is applied. The static equilibrium condition, or the

force-balance equation, is written as



where H € R3*™ ig the equilibrium matrix.

Among diverse definitions of tensegrity and tensegrity-like structures [22], in this paper at-
tention is focused on the classical one consisting of the self-equilibrium condition and the dis-
continuity condition of struts. In other words, by a tensegrity structure we mean a pin-jointed
prestressed structure, any two struts of which do not share a common node. Let E(n;) C E
denote the set of indices of the members that are connected to the node n; € V. The definition

above is formally stated as follows.

Definition 2.1. A structure is said to be a tensegrity structure if there exists ¢ € R™ \ {0}

satisfying
Hq=0, (1)
Hie E(nj)| ¢ <0} <1, Vn;eV. (2)
|

3 Constraints on self-equilibrium axial forces

The discontinuity condition of struts, i.e., (2), is reduced to a system of linear inequalities with

some 0—1 constraints. The lower and upper bound constraints for prestresses are also introduced.

3.1 Labels of members

Within the framework of the conventional ground structure method, we consider a pin-jointed
initial structure consisting of sufficiently many candidate members. To realize a tensegrity struc-
ture, some members will be removed from this initial structure, while each of the remaining
members is determined as either a strut or a cable. More precisely, we attempt to find the par-
tition {S,C, N} of E, where S, C, and N are the sets of struts, cables, and removed members,
respectively. In other words, S, C', and N are disjoint subsets of E satisfying

SUCUN =EFE,
and member 7 is labeled as follows:

e The ith member is a strut if 7 € S.
e The ith member is a cable if 1 € C.

e The ith member is removed from the structure if 7 € N.

In accordance with these labels, we next formulate the inequalities which the member axial forces
should satisfy. The key idea to do this was first presented by Ehara and Kanno [10], but the
formulation is modified to adjust to our present problem in question.

For member 7, we introduce two 0—1 variables, x; and y;, to represent the label of the member.
Specifically, we link z; € {0,1} and y; € {0,1} to S, C, and N as

(xi,y:) = (1,0) < €S, (3a)
(zi,y:) =(0,1) & i€eC, (3b)
(xi,y;) = (0,0) < ieN. (3c)



The case which is not considered in (3) is excluded, i.e.,

(ziyyi) # (1,1). (4)

From the definitions of a strut and a cable, the prestress g; satisfies

|—o00,0[ ifiels,
g €1 10,400] ifieC, (5)
{0} ifi € N.

Let M and € be positive constants, where M is sufficiently large and e is sufficiently small, i.e.,
0 < e < M. Then constraint (5) together with (3) and (4) is rewritten as

—Mz; < q < M(1—ux;) — ¢, (6a)
—M(1—y;)+e<q< My, (6b)
z; € {0,1}, (6¢)
yi €{0,1}. (6d)

We can see that (6) represents conditions (3)—(5) as follows. If (z;,3;) = (1,0), then the

second inequality of (6a) reads
4% < —¢€,

which means i € S. Similarly, if (x;,y;) = (0, 1), then the first inequality of (6b) reads
€< ¢,

which means i € C. In the case of (x;,y;) = (0,0), from the first inequality of (6a) and the second
inequality of (6b) we obtain

OSQ’H q’LSOa

which means i € N. Finally, if we put (z;,y;) = (1, 1), then the second inequality of (6a) and the
first inequality of (6b) are reduced to

¢ < —€, €=<gq,

which lead the contradiction; thus (6) implies (4).

In this section, we have seen in (6) that the member labels expressed by (z;,v;) € {0,1}? are
linked to the constraints of the member axial forces. This is a fundamental idea to distinguish
whether each member belongs to S, C, or N. Note again that in (6) we assume that M is suffi-
ciently large and e is sufficiently small. These crude assumptions will be sharpened in section 3.4

by introducing the practical constraints of the prestresses.



3.2 Discrete cross-sectional areas

Let a; denote the cross-sectional area of the ith member. It is often that a real-world tensegrity
structure consists of struts (and cables, respectively) with unified cross section, where the cross-
sectional area of a strut is usually larger than that of a cable; see, e.g., the examples discussed in
[2, 23, 35]. Hence, we suppose that the cross-sectional areas for a strut and a cable are specified

as & and &, respectively, where & and & (& > &) are positive constants. In other words, a; is

given by
& ifie S,
a; =1<& ified, (7)
0 ifzeN.

Recall that x; and y; serve as the label of the ith member in the sense of (3) when z;, y;, and

g; satisfy (6). Therefore, under constraint (6), (7) is equivalently rewritten as
ai = &xi + &cyi- (8)

3.3 Initial member lengths

As stated in section 3.1, we adopt the ground structure method for topology optimization of
tensegrity structures. As input data of the optimization problem, we specify the locations of the
nodes of the ground structure, i.e., the configuration of the structure. It should be clear that this
configuration is supposed to be the self-equilibrium configuration compatible with ¢. In other
words, the initial configuration before the prestresses ¢ are introduced is unknown. This is a
difference of our approach from the conventional ground structure method for trusses.

Since the nodal locations of the ground structure are specified, the length of member ¢, denoted
l;, is also specified. Note that [; corresponds to the deformed member length corresponding to the
prestress g;. The initial length, i.e., the undeformed length, is unknown and depends on ¢;. In
[20], both of the initial member lengths and the self-equilibrium configuration are considered as
design variables, while the labels of members are supposed to be specified in advance. In contrast,
in our approach, the locations of the nodes in the self-equilibrium configuration are supposed to
be given, while the labels of members are considered as design variables.

Let l? denote the initial length of member i. Since the member length in the deformed state

is [;, the axial force g; is written as

Ya;
q; = 10 (lz - l?): (9)

%

where Y is Young’s modulus. Once the optimization problem of a tensegrity structure is solved,
the prestress ¢; and the member cross-sectional area a; are determined. Then we can compute l?

from (9) as

Ya;l;
00—~ ™ 10
? ql + Yai ( )
Note that the unstressed configuration of the structure defined by I = (I | i = 1,...,m)

in (10) is not necessarily connected, although by introducing the prestresses ¢ we can certainly



construct a connected tensegrity structure. This is because we do not consider the compatibility
relations between the member elongations and the nodal displacements from the initial unstressed
configuration to the prestressed self-equilibrium configuration. In other words, the vector of

member elongations, i.e., [ —[Y, does not necessarily satisfy (I —1°) € ImHT.

3.4 Stress constraints

Let o; denote the stress of the :th member. The lower and upper bound constraints for the stress

are given by

[—Ts, —0g] ifie S,
0i € X oo, 7] ifi € C, (11)

{0} ifi e N,
where o5, 0, 0., and 7. are positive constants. Since the strut is in compression, we consider
the lower bound —&s < 0 and the upper bound —g, < 0. Similarly, since the cable is in tension,

we consider the lower bound ¢, > 0 and the upper bound . > 0.

For simplicity, define 4, Ts» 4. and q. by
9, = stsa Gs = 0ss,
QC = QC£C7 qc - EC{Cv

which are the lower and upper bounds for the axial forces. Then (11) can be rewritten in terms
of q; as
[, —q) ifies,
g € < lq,.7) ifieC, (12)
{0} ifi € N.

Condition (13) in the following proposition is obtained as a tightened version of (6) in sec-

tion 3.1 by replacing the constants M and e with specific values related to constraint (12).

Proposition 3.1. Suppose that (3) holds. Then ¢; satisfies (12) if and only if q;, x;, and y;

satisfy
—qs% < ¢; < (@ + )1 — ) — g, (13a)
—(@s+9q)1—y) +4q. < ¢ < qeyi (13Db)
T; € {07 1}7 (13C)
yi € {0,1}. (13d)

Proof. If (z;,y;) = (1,0), i.e., i € S, then (13a) and (13b) are reduced to

_ESSQ’LS_Q7

=S

—(@s+q)+q <@ <0



These inequalities read (12) for i € S. If (x;,v;) = (0,1), i.e., i € C, then (13a) and (13b) are
reduced to
0<¢<(@+gq)—q,
—q, = qi = Qe
These inequalities read (12) for i € C.
In the case of (z;,y;) = (0,0), i.e., i € N, the first inequality of (13a) and the second inequality
of (13b) are reduced to 0 < ¢; and ¢; < 0, respectively. These two inequalities implies ¢; = 0,

which is identical to (12) for ¢ € N. Finally, if we put (z;,v;) = (1, 1), then the second inequality
of (13a) and the first inequality of (13b) are reduced to

Thus a contradiction is led, and hence (x;,y;) # (1,1) under constraint (13). O

Besides the stress constraints given by (13), ¢ should satisfy (1) and (2) in Definition 2.1.
Among them, (1) is tractable, because it is a system of linear equations. An intractable one, (2),

is discussed in section 3.5.

3.5 Discontinuity condition of struts

The discontinuity condition of struts, which is defined as (2) in Definition 2.1, is an intrinsi-
cally difficult condition when we attempt to design a new tensegrity structure. The following

proposition shows that this condition is written by using the 0-1 variables x1, ..., Tx,.

Proposition 3.2. Suppose that ¢ = (¢;) € R™ and x = (z;) € R™ satisfy (13a) and (13c). Then
q satisfies (2) if and only if x satisfies

Y i<l Vn;eV. (14)
iEE(TLj)

Proof. Condition (13a) is reduced to
—GsTi < Gi < —q,
if ; = 1, while it is reduced to
0<¢<7q.
if ; = 0. Therefore, (13a) and (13c) imply

=1 & €85,
;=0 & i€ CUN,

because S, C, and N are related to ¢; as (5). From this observation, we obtain

S wm=I{icEny)|ic sy,

iEE(nj)

which concludes the proof. O



A key point of this proof is that ZieE(nj) x; is equal to the number of struts connected to the
node n;. It is worth of noting that the total number of cables of the structure becomes equivalent
to > ;cp¥i, when ¢ and y satisfy (13a) and (13c). In section 5.4, we consider the optimization

problem to find a tensegrity structure with the minimal number of cables.

3.6 Tensegrity condition under stress constraints

In section 3.2 through section 3.5, we have investigated the conditions which the prestresses ¢
should satisfy so that the structure meets the requirement of the definition of tensegrity, i.e.,
Definition 2.1, and the upper and lower bound constraints for prestresses. The upshot of this
investigation is that (1), (13), and (14) should be satisfied, where (xz;, ;) € {0,1}? playing a role
of the label of member i. Under these conditions, the member cross-sectional area is given by
(8).

Thus the constraints concerning the self-equilibrium state, i.e., the equilibrium state without
external load but with the internal prestresses, have been described completely. In the following
section, we will explore the constraints concerning the equilibrium state subjected to the external
load.

4 Constraints on compliance

In this section, we explore the compliance constraint, as well as the stress constraints, at the
equilibrium state of a tensegrity structure subjected to a static external load. A distinctive feature
of a tensegrity structure compared with a conventional truss is that cable members included in
a tensegrity structure may possibly become slack at the equilibrium state corresponding to the
given external load. Since the internal member forces certainly depend upon the topology, we do
not know in advance which members become slack at the (unknown) equilibrium state.

This difficulty is attacked within the framework of MILP. For simplicity of presentation, we
begin with the case without prestresses; in section 4.1, we focus on the constitutive laws and the
compatibility relations of struts, cables, and removed members. Then section 4.2 shows that the
equilibrium conditions and the stress constraints in the presence of the specified prestresses can
be formulated as linear inequalities together with some 0—1 constraints. Finally, the compliance
constraint is investigated in section 4.3, where the no-compression property of cables is fully
addressed.

4.1 Constitutive laws and compatibility relations without prestresses

In this section, we study the constitutive laws and the compatibility relations for the members
of a tensegrity structure. For simplicity, we suppose that no prestress is introduced, i.e., ¢ = 0.
The obtained result is then extended to the case with prestresses in section 4.2.

Let u € R? denote the vector of nodal displacements, where the number of degrees of freedom
is d = 3|V|. We use ¢; to denote the elongation of member i. Then the compatibility relation,

whcih associates ¢; with u, is writen as

ci =hlu, Vi€E. (15)



Here, h; € R? is the ith column vector of the equilibrium matrix H in (1), i.e.,
H=[hy | ho | | -

For member i, we denote by s; the axial force compatible with the elongation ¢;. The elon-
gation stiffness is given by Fa;/l;, where a; is the member cross-sectional area defined by (7),
and [; is the initial member length. When we construct a real-life tensegrity structure, it is often
that struts are realized as elastic bars. In such a case, a strut sustains not only compressive
forces but also tensile forces. Therefore, we assume for ¢ € S that the elongation stiffness is
Ea;/l; (= E&/l;) regardless whether it is under compression or tension. In contrast, a cable can
sustain only tensile forces, and suddenly loses the elongation stiffness when we attempt to apply
a compressive force. We say that a cable is in the taut state if it is stretched with a tensile force,
while a cable is in the slack state if it is shrunk without transmitting any forces. Since in this
section we assume that there exists no prestress, the transition between the taut state and the
slack state occurs when the elongation becomes equal to 0. Therefore, for i € C' the elongation

stiffness vanishes if ¢; < 0, i.e.,

Y¢ .
¢ if¢; >0,

0 if ¢; <0,

where (7) is used.
By summing up the discussion above, the constitutive law and the compatibility relation for

each member ¢ € E are given as

ksic; ifi € S,

s; = ¢ max{kec;,0} ifieC, (17a)
0 ifi € N,

¢i = hiu, (17b)

where kg; and k¢; are the positive constants defined by

Y Y
ksi = —&s, kei = —&e-
l; l;
It is not effective to handle (17a) in an optimization algorithm directly, because (17a) involves
“if-clauses”. We attempt to deal with (17a) within the framework of MILP. To this end, we

reformulate (17) as

8i = ksiCsi + KeiCeiy (18a)
Mz; > |eil, (18b)
M1 —z;) > |esi — hlul, (18c¢)
My; > |ceil, (18d)
—M(1—y;) <cei—hfu< M1 —y)+ M1 - z), (18¢)
—Max; <s; < Mz, (18f)
zi € {0,1}, (18g)

10



where M is a sufficiently large constant. Note that (18) consists of linear equality constraint (18a),
linear inequality constraints (18b)—(18f), and integer constraint (18g). This is a key feature with
which we reduce the topology optimization problem of tensegrity structures to an MILP problem

in section 5. The equivalence of (17) and (18) is formally stated as follows.
Proposition 4.1. Suppose that (3) holds. Then (17) is equivalent to (18) in the following sense:

(i) Suppose that (u,c;, s;) satisfies (17). Define cs;, cci and z; by

¢ ifies,

Csi = (19)
0 otherwise,
¢ ifie{ieC|¢ >0},

Ci =14 ' (20)
0 otherwise,
0 ifie{ieC]|c¢ <0},
1 otherwise.

Then (u, csi, Ceiy Siy Tiy Yiy 2i) Satisfies (18).
(ii) Suppose that (u, csi, Ceiy Siy Tiy Yiy 2;) Satisfies (18). Define ¢; by (17b). Then (u,c;i, S;) satis-
fies (17a).

Proof. We show the assertion by considering each of the three disjoint cases in (3).
(Case 1): i € S, i.e., (x;,y;) = (1,0). Then (18b)—(18f) are reduced to

M = esil, (22)

Csi = hiTu, (23)

Cei = 07 (24)

—M < cei—hifu< M+ M- 2z), (25)

-M S S; S MZZ'. ( )

Note that (24) is identical to (20) for i € S. It follows from (17b) and (23) that we obtain ¢y = ¢;

and thence (19) for ¢ € S is satisfied. Then (18a) and (24) read s; = ks;csi = ksic;, which means

that (17a) for i € S is satisfied. By putting z; = 1 and using (24), (25) and (26) are reduced to

—M < —hlu <2M, (27)

With a sufficiently large M, (22), (27), and (28) hold for any wu, c;, and s. Therefore, z; defined

by (21) is always feasible for (18).

(Case 2): i € C, i.e., (x;,y;) = (0,1). Then (18b)—(18f) are reduced to

Csi = 07 ( )

M > |Csi - hZTu|’ ( )

M > el (31)

Ogcci—h?ugM(l—zi), (32)

0<s <Mz (33)

11



Note that (29) is identical to (19) for ¢ € C. Moreover, by using (29), (18a) and (30) are reduced
to
i = KeiCei, (34)
M > |hlul. (35)
Since M is sufficiently large, (35) (and hence (30) also) is satisfied for any u, while (31) is satisfied
for any c;.

The proof proceeds by considering the two cases, “c; > 0” and “c; < 0”. First, suppose ¢; > 0.
Then (17a) reads

i = keici > 0, (36)
because k¢; > 0. From (34) and (40), we obtain
Cei = C;. (37)
In accordance with (21), suppose z; = 1. Then (32) and (33) are further reduced to

Coi = hiTu, (38)
0<s <M. (39)
(17b) and (37) imply (38), while (36) implies (39). Thus, assertion (i) holds. Conversely, suppose
that (32) and (33) are satisfied, and define ¢; by (17b). If s; > 0, then (33) is feasible if and only
if z; = 1. Accordingly, (32) is reduced to c¢¢; = h;fu. Moreover, s; > 0 and (34) implies ¢¢; > 0.
Therefore, from (17b) we obtain s; = keic; and ¢; > 0, i.e., (17a) fori € {1 € C | ¢; > 0}. If
s; = 0, then (34) implies ¢; = 0. Since we assume ¢; = hlu > 0, (32) is feasible if and only
if ¢; = hlu = 0. This means that (17a) for i € {i € C | ¢; = 0} is satisfied. Consequently,
assertion (ii) is obtained.
Alternatively, suppose ¢; < 0. Then (17a) implies s; = 0. From (34), we obtain

Ces = 0. (40)

Accordingly, (32) is reduced to
0 S —C; S M(l - Zi), (41)

which is feasible if and only if z; = 0. Thus assertion (i) is obtained. Conversely, suppose that
(32) and (33) are satisfied, and define ¢; by (17b). If ¢c; > 0, then (32) and ¢; < 0 imply z; = 0.
From this and (33), we obtain s; = 0, which contradicts (34) and c¢.; > 0. Therefore, c¢; < 0.
Then (34) and the first inequality of (33) imply s; = 0, which shows assertion (ii).

(Case 3): i € N, i.e., (z;,¥;) = (0,0). Then (18b)—(18f) are reduced to
csi = 0, (42)

M > |csi — hilul, (43)

cei =0, (44)

—M < cei —hifu< M+ M(1-2z), (45)

(46)

OSSZ'SMZI'.
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From (18a), (42), and (44), we obtain s; = 0. Thus, (17a) for i € N is satisfied. Moreover, (46)
is satisfied for any z; € {0,1}. Since M is sufficiently large, (43) and (45) are satisfied for any
u. O

Remark 4.2. Besides z; and y; which serve as the label of the member type, condition (18) in
Proposition 4.1 includes z; as an additional 0-1 variable. When ¢ € C, z; serves as an indicator
representing whether member 4 is taut or slack; z; = 1 if cable member i is taut (i.e., ¢; > 0),
while z; = 0 if it is slack (i.e., ¢; < 0). The formulations (18e)—(18g) involving z; is derived
from the complementarity condition stemming from the constitutive law of the cable member as
follows.

For i € C, (17a) reads

keici if ¢; >0,
S; = (47)

0 otherwise.

This means that member ¢ becomes slack if the elongation ¢; is negative, while it is taut if ¢; > 0.
In other words, the elongation stiffness of a cable is regarded as a nonsmooth function of the

elongation. It is known that (47) is equivalently rewritten as

i = KeiCeis (48)

5i >0, c;i—c¢; >0, si(ci—c)=0. (49)

More precisely, s; and ¢; satisfy (47) if and only if there exists c.; satisfying (48) and (49); see
[16, Chap. 4] for details.

As a key feature, (49) includes the complementarity condition, i.e., s;(cc; — ¢;) = 0, that
implies that at least one of s; and (c; — ¢;) is equal to 0. We rewrite this condition as linear

inequalities by introducing z; € {0, 1}. Specifically, (49) is equivalent to

0<c— h;ru < M(1— z), (50a)
0 S S; S Mzi, (50b)
z; € {0,1}. (50¢)

This condition is involved in (18¢)—(18g). Indeed, if i € C, i.e., (z;,y;) = (0,1), then (18e)—(18g)
are reduced to (50). [ ]
Remark 4.3. Proposition 4.1 does not assert that every solution (u, cg;, e, Si, T4, Yi, 2i) to (18)
satisfies (21). Indeed, z; = 0 is also feasible for (18) if i € C' and ¢; = 0. Moreover, if i € SUN,
then z; = 0 is feasible. In section 5.3, we introduce a valid inequality to exclude z; = 0 (i € SUN)
from the solution set of (18). [ |

4.2 Stress constraints at equilibrium state subjected to external load

Under the assumption of nonexistence of prestresses, section 4.1 have shown that the constitutive
laws and the compatibility relations of a tensegrity structure can be formulated as a system of
linear inequalities with some integer constraints. In this section, we explore the equilibrium
condition and the stress constraints in the presence of the prestresses and the external nodal

forces. Note that the prestresses ¢ are supposed to satisfy the constraints in section 3.6.
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Recall that we have studied the self-equilibrium condition in section 3 for a free-standing
tensegrity structure, i.e., a tensegrity structure without supports. To introduce the compliance
constraint as a performance requirement, we suppose that some degrees of freedom of the dis-
placements are fixed by pin-supports so that the tensegrity structure can be in equilibrium under
an arbitrarily given external load. Consider a partition Jx U Jp = {1,...,d} of the set of indices
of the degrees of freedom of displacements. Then the external force for each j € Jy is supposed
to be specified as f;, while the displacement for each j € Jp is prescribed to be equal to 0.

As mentioned in section 3.3, the given configuration of the ground structure corresponds to
the self-equilibrium state in the presence of the prestresses ¢. Then we apply the specified external
forces f; (j € Jx), while the displacements of the supports are restricted as u; =0 (j € Jp). To
be in equilibrium, the tensegrity structure is deformed from the self-equilibrium configuration.
The attained equilibrium state is simply called the equilibrium state in what follows. We denote
by s the vector of axial forces equilibrate with the external load f; (j € Jx), while the vector
of nodal displacements from the self-equilibrium configuration is denoted by u. Accordingly, s;
is compatible with the elongation ¢; = h;ru. We use §; to denote the total axial force at the

equilibrium state, i.e.,
5i = q; + s;. (51)

For i € C, the cable member i is taut if 5; > 0, while § = 0 if the member is slack. If ¢ € 5,
then member ¢ can transmit both compressive and tensile forces, as discussed in section 4.1. For
1 € N, we have §; = 0. Therefore, the constitutive law and the compatibility relation for each

member ¢ € F are given by

ksici ifies,

s; = ¢ max{keici, —q;} ifieC, (52a)
0 ifieN,

¢ = hlu. (52b)

The force-balance equation and the kinematic constraints of the prescribed displacements are

written as

(Hs)j = fj, Vj€Jn, (53)

u; =0, Vj € Jp. (54)

From a practical point of view, we shall impose the lower and upper bound constraints on §;’s.
This issue is postponed to (61). We begin by rewriting (52) as a system of linear inequalities with

some integer constraints. This is performed in the following proposition, which can be obtained

as a slight extension of Proposition 4.1.
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Proposition 4.4. Suppose that (3) holds. Then (52) is equivalent to

8; = ksiCsi + keiCeis (55a)
—Mx; <cy < Mz, (55b)
M1 —z;) > |esi — hlul, (55¢)
—My; < cei < My;, (55d)
M1 —y;) §cci—h;rugM(l—yi)jLM(l—zi), (55€)
—Mz; < q; + keicei < Mz, (55f)
zi €4{0,1} (55g)
i the following sense:
(i) Suppose that (u,c;, s;) satisfies (52). Define cs;, ce; and z; by
{ci ifies,
Csi = (56)
0 otherwise,
s — {c- ifie{ieC|ca>—qi/k}, (57)

(]
0 otherwise,
0

ific{icC|c < —qi/ket,
Z:{ { | qi/ke} (58)

1 otherwise.
Then (u, csi, Ceis Siy Tiy Yiy 2;) Satisfies (55).

(ii) Suppose that (u, csi, Ceiy Siy iy Yiy 2i) satisfies (55). Define ¢; by (52b). Then (u,c;, s;) satis-
fies (52a).

Proof. The proof is analogous to Proposition 4.1 and hence is omitted. O

In (55) of Proposition 4.4, ¢ corresponds to the elongation of a strut, while ¢.; represents
the elastic elongation of a cable, i.e., c¢¢; = 8;/ke; if © € C. The following result is obtained as an

immediate consequence of Proposition 4.4.

Corollary 4.5. Suppose that (u, Cs;, Cei, Sis iy Yi, zi) satisfies (52). Then,

s; ifie s,

ksicsi = (59)
0 ifte CUN,
s; ifiedC,

kcicei = (60)
0 ifie SUN.

Proof. This assertion follows from (52a), (56), and (57). O

We next introduce the lower and upper bound constraints on the member stresses at the equi-
librium state subjected to the external load. Specifically, the following constraints are imposed
on §; defined by (51):

[—5P 5% ifie S, (61)
q; + s; €
0, 3] ifieC,

rcC
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Ib zub

P zub + aati 3
where 5;°, 51°, and 5" are constants satisfying

s >0, sP>7g, >0 (62)

C

Note that s; in (61) is defined by (52a). By using z; and y;, constraint (61) in terms of ¢; and §;

can be reduced to the constraints in terms of ¢;, ¢y, and c¢; as follows.

Proposition 4.6. Suppose that (x;,y;) satisfies (3), that q; satisfies (12), and that (cs;, Ce;)

satisfies (59) and (60). Then (g, si) satisfies (61) if and only if (¢, csi, cei) satisfies
—5 < qi + ksicsi < 527, (63)
—Gsi < i+ keicei < 5. (64)

Proof. By using (59), (63) is reduced to

—P < g5 <FP ifies, (65a)
—5P < g < 5ub ific CUN. (65b)
Observe that (65b) is redundant for i € C' U N when ¢; satisfies (12) and 52" satisfies (62).

Moreover, (61) for i € S ins identical to (65a).
By using (3) and (60), (64) is reduced to

—g, < q; < E® if i € 8, (66a)
0<qi+s <3% ifieC, (66b)
0<gq<3w ifi € N. (66¢)

Here, (66a) is redundant, because (12) for i € S reads —g; < ¢; < —¢_, where —¢_ < 0 < 5ub,
Similarly, (66¢) is redundant, because (12) for i € N reads ¢; = 0. Moreover, (66b) is identical
to (61) for ¢ € C. O

Remark 4.7. Among the inequalities investigated in Proposition 4.6, we focus on (64) that has a
form similar to (55f). Observe that (55f) is reduced to

—M < g + keicei <M

if z; =1 and z; = 1. We have assumed that M is sufficiently large so that g; + kcjce; can take
any value, because in (55f) the the lower and upper bound constraints for §;, i.e., (61), was
not considered there. When we impose (61) together with (55), the bound M in (55f) can be
tightened by using (64) as

—qsxi < i+ keicei < 5202 (67)

Instead of (55f) and (64), we consider the constraint (67) to formulate the optimization problem

of tensegrity structures in section 5.4. |

Remark 4.8. In (52) and (61), the constraints on the stress (or the axial force) are not considered
for i« € N. Indeed, for i € N, the elongation hiTu can take any value. Thus the stress constraints

are considered only for the existing members. [ |
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Corollary 4.5 implies that (52) implies (59) and (60). Hence, Proposition 4.6 guarantees that
(61) is equivalent to (63) and (64) when the variables are subjected to (12) and (52).
We next investigate M in (55b) and (55d). By using the bounds in (12) and (61) for ¢; and

S;, the value M for ¢g; and c¢g; can be tightened based upon the following fact.

Proposition 4.9. Suppose that (x;,y;) satisfies (3), that q; satisfies (12), and that (cs;, Ce;)
satisfies (59), (60), (63), and (64). Then (csi,cei) satisfies

—5 + q, < kics < 5P+, (68)

—G < keicei <5 —q. (69)
Proof. For i € S, (12) is explicitly written as
—qs < ¢ <—q, ifies, (70)
while, by using (59), (63) is reduced to
—5P < g+ kgicy; <3 ifie S (71)

It is easy to see that (68) is a necessary condition for (70) and (71). Alternatively, for i € CUN,
we obtain ¢g; = 0 from (59) and thence (68) is always satisfied.

For i € C, (12) is explicitly written as
<¢ <g. ifieC, (72)
while, by using (3) and (60), (64) is reduced to

0 < g; + keice; <3 ifieC. (73)

It is immediate to see that (69) is a necessary condition for (72) and (73). Alternatively, for
i € SUN, we obtain c¢.; = 0 from (60), and hence (69) is always satisfied. O

Proposition 4.9 asserts that (55b) can be tightened as
(=8 + g )2 < ksicss < (3" + )i, (74)
while (55d) can be tightened as

—eti < keices < (52 — q )i (75)

4.3 Compliance constraint under external load

In section 4.1 and section 4.2, we have investigated the equilibrium conditions as well as the
performance constraints of a tensegrity structure, when the external load exists together with
the prestresses.

The governing equations of the equilibrium subjected to the external load f; (j € Jx) are
given by (52), (53), and (54). Note again that u satisfying these governing equations represents
the nodal displacements from the self-equilibrium configuration. We consider the constraint of

the compliance corresponding to u. In other words, we introduce the upper bound constraint on
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the external work done only by f; (j € Jx). The internal work due to the prestresses ¢ is not

constrained in the compliance constraint. Then the compliance, denoted by w, is written as

w = Z fiuj.

JEIN

We use w to denote the upper bound on w, and hence the compliance constraint is written as

> fu <. (76)

JjeJIN
We are now in position to sum up all the constraints for optimization of tensegrity structures.
From the definition of tensegrity, the prestresses ¢ should satisfy (1), (2), and (5), when no
external load is applied. The lower and upper bound constraints on g are given by (12). Under
the external load f; (j € Jx), the governing equations of equilibrium are written as (52), (53),
and (54). At this equilibrium state, the lower and upper bound constraints on the member axial
forces are given as (61), while the compliance constraint is given as (76). Thus the constraints

which we consider are listed as

> fu <w, (772)
J€IN
(Hs)j = [ Vj € Jn, (77b)
Uj = 0, v] € JD) (770)
ksici ifie S,
S; = max{k:cici, —qi} ifi € C, Vi e F, (77d)
ifie N,
ci = hlu, VieFE, (77e)
[—3P, 55 ifie S, ,
7+ 8 € Vie E, (771)
[0, 51P] ifieC,
q, S, C, and N satisfy (1), (2), and (12). (77g)

Among these conditions, (77g) have been explored in section 3. Moreover, (77a), (77b), and
(77c) are tractable, because they are linear constraints. The subject of section 4.1 and section 4.2
is to reformulate (77d), (77e), and (77f) by making use of discrete variables z, y, z € {0, 1}™.
The fundamental idea to reformulate (77d) is presented in Proposition 4.4. Proposition 4.6 and
Remark 4.7 deal with (77¢). Some inequalities in Proposition 4.4 are tightened using Propo-
sition 4.9 as (74) and (75). The upshot is that (77) is equivalent to the following condition:
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> fju <w, (78a)

JjeJIN

(Hs);j = fj, Vj € Jx, (78b)
u; =0, Vi € Jp, (78¢)
8i = ksiCsi + KeiCei, Vi € E, (78d)
(=5 + g )i < ksicsi < (32 + )i, Vi€ E, (78¢)
M(1— ;) > |esi — hlul, VieE, (78f)
—Geyi < keicei < (52° — q )y, Vi€ E, (78¢)
M1 —y) <co—hifu<MQA—y)+M(1-2), VickE, (78h)
—50 < g + hsic < B, Vi€ E, (781)
—Gri < i+ Keicei < 880z, Vi€ E, (78j)
x, y, and ¢ satisfy (1), (13), and (14). (78k)

5 Mixed integer linear programming formulation of tensegrity

optimization

This section presents an MILP problem for optimization of tensegrity structures based on the
results of section 3 and section 4. It has been shown that the constraints concerning mechanical
behaviors of a tensegrity structure are formulated as (78). As constraints required in a practical
situation, the constraint excluding intersecting members is discussed in section 5.1, while the
constraint avoiding nodes connected only to cables is considered in section 5.2. Section 5.3
discusses valid inequalities in terms of the 0—1 variables. As a consequence, section 5.4 presents

an MILP problem for topology optimization of tensegrity structures.

5.1 Practical constraints (1): avoiding intersecting members

In the ground structure method, it is often that an initial structure includes many intersecting
candidate members; see for instance Figure 1 in section 6.1. This is because we need to prepare
sufficiently large number of candidate members for seeking the optimal topology. For constructing
a real-life structure, however, intersecting of existing members, that are chosen from the candidate
members, is not accepted. This section discusses the constraints for excluding such intersecting
members.

In the problem of optimization of tensegrity structures, existing members are chosen from F,
where each existing member is whether a strut or a cable. Therefore, any existing member is
included in S U C, and any two existing members should not intersect. Let P05 denote the set
of pairs of intersecting members; we write (i,i') € Poss if member i and member i’ intersect.

Then the constraint excluding intersecting members is formally written as

{i,i'} Z SUC, V(i,i') € Peross- (79)
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Remark 5.1. Rigorously speaking, two members intersect if the distance of these members is
equal to zero. From a practical point of view, existence of too close members is also unacceptable.
Therefore, we specify a threshold § > 0 and let (i,i") € Peyoss if the distance of two line segments

representing member ¢ and member ¢’ is not less than 4. |
Suppose that i € SUC and (i,i') € Peross- Then (79) requires i’ € N. From (3), this relation
is written in terms of x and y as

Z'Z':].Ol'yz‘:]_ = a}‘i/:yilzo.

On the other hand, if 7/ € SUC, then x; = y; = 0 should be satisfied. Since z; and y; cannot be
equal to one simultaneously, at most one of x;, y;, z;, and y;; can be equal to one. Thus, (79) is

equivalently rewritten as

T +xy +y Fyp < 1, V(Z, ’i/) € Piross- (80)

5.2 Practical constraints (2): avoiding nodes connected to cables only

It is usual that an actually-constructed tensegrity structure does not have a node connected only
to cables, although such a node is not forbidden by Definition 2.1. In this section, we formulate
a system of linear inequalities to avoid existence of such nodes.

For node n; (n; € V'), this constraint is formally stated as follows: if there exists at least one
member connecting to n;, then there should exist a strut connecting to n;. The contraposition

of this statement is written as
SNE(Mm;)=0 = CNE([n;) =0
for each n; € V. By using (3), this relation is written in terms of z; and y; as

Y wi=0 =y =0 (Vi€ Eny)).
iGE(nj)

This condition can be rewritten as

i’EE(nj)

5.3 Valid inequalities

When we solve an MILP problem with a branch-and-bound or a branch-and-cut algorithm, it
is often that adding valid inequalities to the constraints of the MILP problem improves the
computational efficiency. This section concerns some valid inequalities in terms of the integer
variables x;, y;, and z;.

The first one stems from (3) and (4). Since (4, v;) € {0,1}2, (3) is rewritten as
xi+y; <L (82)

On the other hand, we have seen in the proof of Proposition 3.1 that (13) (and hence (78) also)
implies (4). Therefore, (82) works as a valid inequality.
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The second valid inequality stems from Proposition 4.4 (i); see Remark 4.3 also. It follows
from (58) that we can fix z; = 1 if i € C, i.e., if y; = 0. Therefore, we can add

Yi+zi =1 (83)

to (78) as a valid inequality.

5.4 MILP formulation

We are now in position to formulate the optimization problem of tensegrity structures. Recall
that the constraints for mechanical responses of tensegrity structures are formulated as (78) in
section 4.3. We also consider (80) in section 5.1 and (81) in section 5.2 as constraints of practical
requirements. Furthermore, the valid inequalities, (82) and (83) in section 5.3, are incorporated.

We may consider some different objective functions; see Remark 5.2. Among them, we focus
on the minimization problem of the number of cables, i.e., |C| = Y, y; for the following
reasons. Suppose that the number of struts is fixed for simplicity. Then, roughly speaking, the
lager the number of cables, the larger the degree of static indeterminacy. Hence, the number of
self-equilibrium modes of the axial forces also increases if the number of cables increases. Among
these self-equilibrium modes, if at least one mode satisfies the discontinuity condition of struts,
then the structure is regarded as a tensegrity structure according to Definition 2.1. Therefore,
finding a tensegrity structure with the smallest number of cables, called the minimal tensegrity
structure in [10], is a challenging problem, compared with finding a tensegrity structure with
many cables. Moreover, the minimal tensegrity structure is certainly the simplest structure in
the sense that we cannot remove any cables without removing some struts. Many of existing
tensegrity structures give somehow fragile impression, that seem to attract the interest of people.
Such a tensegrity structure consists of relatively few cables compared with the number of struts.
These reasons motivate us to attempt to find the tensegrity structure with the minimum number
of cables.

Consequently, the optimization problem of tensegrity structures is formulated as the following
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MILP problem:

s. t. Hq =0,

—s%i < ¢ < (3 +q)(1 — i) — g, Vi,
—(@+q)1 —vi)+q, <6 < Qi Vi,

Z z; <1, an eV,
i€E(n;)
i +xy +yi +yr <1, V(i, i/) € Peross,
Y < Z xy, Vi€ E(nj), Vn; €V,

'€ E(nj)

> fju <w,
JEJIN
(Hs)j = [j, Vj € Jx, (84)
U; = 0, V_] € Jp,
8i = ksicsi + keiCei, Vi,
(3> + q.)%i < ksicsi < (5% + G,)s, Vi,
M(1—z;) > |esi — hiul, Vi,
—Geyi < keice < (52" — q_)ui, Vi,
~M(1—y) <cei —hifu< M2—y —z), Vi
5 < g + ki < 2P, Vi,
—Gsi < G + keicei < 302, Vi,
r; +y; <1, Vi,
yi+zi > 1, Vi,
x; € {0, 1}, Y; € {0, 1}, Zi € {0, 1}, V.

In this problem, continuous variables are g, s, cg, ¢¢, and u, while binary variables are x, y, and z.
All the constraints other than the integer constraints are linear constraints. Thus, problem (84)
is a 0—1 mixed integer linear programming problem, and hence it can be solved globally by using,
e.g., a branch-and-cut algorithm. Several software packages, e.g., CPLEX [13], are available for
this purpose.

Remark 5.2. In problem (84), we attempt to minimize the number of cables. Several different
objective functions can be considered. For example, the minimization problem of the structural
volume, which is usually considered in optimization of trusses, can also be formulated as an MILP
problem. Since the member cross-sectional area is given by (7), the structural volume, denoted

v, can be written as

v=Y Glimi+ > &eliyi.
i=1 i=1

By replacing the objective function of problem (84) with v, we obtain an MILP formulation of

the minimization problem of the structural volume. |
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Figure 1: An initial structure with three layers.

6 Numerical experiments

The optimal topologies of various tensegrity structures are computed by solving problem (84).
Computation was carried out on Quad-Core Xeon E5450 (3 GHz) with 16 GB RAM. The MILP
problems were solved by using CPLEX Ver. 11.2 [13] with the default settings.

6.1 Three-layer tensegrity structures

Consider an initial structure illustrated in Figure 1. The structure consists of |[V| = 10 nodes
and |E| = 45 members, where any two nodes are connected by a member. The nodes form three
horizontal layers. In Figure 1, the top and bottom layers are shaded, X; and X5 are taken to be
two horizontal axes, and the vertical axis is denoted by X3. The top and bottom layers are in
equilateral triangular shapes, while the middle one is in a square shape. The length of an edge
of the equilateral triangle is v/3m, while that of the square is 1.4y/2m. An edge of each triangle
and two edges of the square are parallel with the Xs-axis. The centers of these three layers are
located at (0,0,0), (0,0,1), and (0,0,2), and hence the distance between the square and each

triangle is 1.0 m.

6.1.1 Setting of parameters

The Young modulus of each member is ¥ = 1.0 GPa. The member cross-sectional areas of
a strut and a cable are & = 1000.0mm? and & = 100.0mm?, respectively. The lower and
upper bounds for member stresses in (11) are g, = 0.1 MPa, a5 = 2.0 MPa, . = 0.5 MPa, and

. = 10.0 MPa. Therefore, the bounds for ¢; in (12) are g, = 0.1kN, g, = 2.0kN, ¢_= 0.05kN,

b _

and g, = 1.0kN. The bounds for §; = ¢; + s; in (61) are chosen as 3 G, 3 = q., and

5P = g.. As Jp, six degrees of displacements of the bottom nodes are fixed to avoid the rigid
body motion. Specifically, we fix the displacements in all directions of the node at (1/2,+/3/2,0),
the displacements in the X; and X3 directions of the node at (—1,0,0), and the displacement
in the X3 direction of the node at (1/2,—v/3/2,0). As stated in Remark 5.1, the threshold § is

used to define P.yoss. We choose § = 5.0 x 10?2 m, which results in |Peoss| = 14; i.e., there are 14
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(a) (b) (c)

Figure 2: Optimal solutions obtained from the three-layer initial structure in Figure 1. An
external force is applied at one of the top nodes. (a) the node at (—1/2,—+/3/2,2) is loaded by
a force f = 10N and w = 10J; (b) the node at (—1/2, —v/3/2,2) is loaded by f = 200N and
w = 10J; (c) the node at (1,0,2) is loaded by f = 100N and w = 10J.

Table 1: Members of the solutions in Figure 2.
solution |S| |C| ds dx

(a) 310 1 0
(b) 3 11 2 0
(c) 4 15 1 0

pairs of intersecting members.

6.1.2 Solutions with single loaded node

We first examine cases in which only one of the top nodes of the structure is loaded.

Suppose that the node at (—1/2,—/3/2,2) is loaded by an external force f = 10N in the
negative direction of the Xs-axis. The upper bound for the compliance is w = 10J. As the
optimal solution of the MILP problem (84), the structure depicted in Figure 2(a) is obtained.
Here, the thick lines represent struts, while the thin lines represent cables. This tensegrity
structure consists of 3 struts and 10 cables, as listed in Table 1. For a larger external load,
f = 200N, we obtain the tensegrity structure shown in Figure 2(b). In Table 1, ds and dy
represent the degrees of static indeterminacy and kinematic indeterminacy (after removing the
degrees of rigid body motion), respectively. Thus, the solution in Figure 2(a) is kinematically
determinate and has only one self-equilibrium mode of the axial forces. In contrast, the structure
in Figure 2(b) has two self-equilibrium modes, one of which satisfies the definition of tensegrity
in Definition 2.1.

Next, suppose that the node at (1,0, 2) is loaded by an external force f =100N. Figure 2(c)
shows the obtained solution, which includes 4 struts. Thus the optimal topology highly depends
upon the loading condition. Note that all cables are in tension under the external forces in all

the solutions obtained in this section.

24



Figure 3: Optimal solutions obtained from the three-layer initial structure in Figure 1. External

forces are applied at the three top nodes.

6.1.3 Solutions with three loaded node

We next examine the cases in which external forces are applied to all the nodes of the top
triangular layer in Figure 1. The same force, denoted f , is applied to every top node in the
negative direction of the Xjs-axis.

We consider four cases: (a) w = 20J and f = 100N; (b) @ = 20J and f = 200N; (¢) w = 10J
and f = 10N; and (d) w = 10J and f = 200 N. The obtained tensegrity structures are shown
in Figure 3. The computational results, as well as the numbers of struts and cables, are listed in
Table 2. Here, w is the compliance of the optimal solution, “CPU” represents the computational
time spent to solve the MILP problem (84) with CPLEX [13], and “Nodes” represents the number
of visited nodes of the branch-and-bound tree. It is observed in Table 2 that as f increases, the
number of cables becomes larger. Accordingly, the number of self-equilibrium modes also becomes
larger.

Among these four solutions, attention is focused on the structures in Figure 3(b) for (w, f) =
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(a) (w, f) = (20, 200) (b) (w, f) = (10,200)

Figure 4: Equilibrium configurations of the solutions of the three-layer example. Cables in slack

states are depicted with the dotted lines.

Table 2: Computational results of the solutions in Figure 3.

@, f) |S] |C| ds d¢ w(J) CPU(s) Nodes

(20, 100) 4 15 1 0 19.929 124 2,871
(20,200) 4 17 3 0 20.000 104 1,828

(10,10) 4 15 1 0 0.822 271 4,463
(10,200) 5 24 5 0 10.000 127.1 23,977

Table 3: Computational results of the five-layer example.
w(J) |S] |C] ds dx w (J) CPU (s) Nodes

80 7 29 1 1 7313 63.0x10% 3,121,218
50 7 31 2 0 47.82 242.1x10% 9,604,988

(20,200) and Figure 3(d) for (w, f) = (10,200). Some cables of these structures are in slack
states at the equilibrium states under the external loads. The equilibrium configurations are as
shown in Figure 4(a) (for the structure in Figure 3(b)) and in Figure 4(b) (for the structure
in Figure 3(d)). The slack cables are depicted with dotted lines, where 3 cables are slack in
Figure 4(a) and 4 cables are slack in Figure 4(b).

6.2 Inclined tensegrity structures

Two larger examples are presented, where the parameters such as the lower and upper bounds

for axial forces are defined in a similar manner to section 6.1.1.
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Figure 5: An initial structure with five layers.

Table 4: Maximal and minimal axial forces (in N) of the optimal solutions of the five-layer

example.

w(J) @(@es) a@eC) s(iel) §(iel)

min 80  —1474.3 66.3  —1528.7 10.7
max 80 —567.4 931.8 —539.5 1000.0
min 50  —14354 60.4  —1516.4 0.0
max 50 —709.1 1000.0 —717.6 902.9

6.2.1 Five-layer tensegrity structures

Consider an initial structure illustrated in Figure 5. The structure consists of |V| = 16 nodes
|E| = 93 members. The number of pairs of intersecting members is | Peross| = 32.

The locations of the nodes of this initial structure are defined as follows. The nodes form
five horizontal (but slightly inclined) layers, one of which is square and the others are equilateral
triangles. We call these layers L1, Lo, ..., Ls; the bottom layer is L1, while the top layer is Ls.
The lengths of edges of L1, ..., Ls are 3v/3/4m, v/3m, 64/2/5m, v/3m, and v/3/2 m, respectively.
One of edges of L; is parallel with the Xs-axis. First the layers are put horizontally, and their
centers are on the Xs-axis. The distance between the neighboring two layers is 2m. The upper
layer is rotated from the closest lower layer counter-clockwise around the X3-axis with the angle

m/4. Accordingly, one of the edges of Lj is parallel with the Xs-axis. The diagonals of L3 are
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(a) (@, f) = (80,50) (b) (w, f) = (50,50)

Figure 6: Optimal solutions of the five-layer example.

parallel with the X;- and the Xs-axes. Then Lo, ..., L5 are rotated counter-clockwise around the
Xo-axis with the angles 57/180, 107 /180, 157 /180, and 207 /180, respectively. Consequently, the
locations of the nodes in Figure 5 are obtained. Any two nodes are connected by a member, but
we remove members connecting the pairs {Li, L4}, {L1, L5}, and {Lg, L5}.

Suppose that an external force f = 50N in the negative direction of the X3-axis is applied to
each node on the top triangular layer. Displacements of the three bottom nodes are prescribed
in the same manner as section 6.1.1. The optimal solutions obtained for w = 80J and w = 50J
are shown in Figure 6. The numbers of struts and cables of these tensegrity structures, as well
as the computational results, are listed in Table 3.

The locations of the struts, as well as the cables, are different between the two tensegrity
structures in Figure 5. Two nodes of the initial structure in Figure 5 are not used in each of these
tensegrity structures. The maximal and minimal member axial forces of struts and cables are
listed in Table 4, where ¢; is the prestress and 5; is the axial force at the equilibrium state in the
presence of the external load. It is worth of noting that one cable of the structure in Figure 6(b)

is in a slack state under the external load. The equilibrium configuration is shown in Figure 7.
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Figure 7: Equilibrium configurations of the solution of the three-layer example with (w, f) =
(50,50). Cables in slack states are depicted with the dotted lines.

Table 5: Computational results of the six-layer example.
w(J) w(J) CPU(s) Nodes

30 28.93 67.0x10% 1,940,065
20 19.66 46.6 x 10% 1,577,438

6.2.2 Six-layer tensegrity structures

We next consider an initial structure illustrated in Figure 8. This structure consists of |V| = 18
nodes |E| = 99 members. The number of pairs of intersecting members is |Peyoss| = 18.

The locations of the nodes are defined in a manner similar to section 6.2.1. The nodes form
six equilateral triangles as shown in Figure 8. These triangles are called Ly, Lo,..., Lg, where
the bottom one is L; and the top one is Lg. The lengths of edges of L, ..., Lg are v/3m, v/3m,
6v/2/5m, v/3m, 4¢/3/5m, and v/3/2m, respectively. One of edges of L; is parallel with the
Xo-axis. We first arrange the triangles horizontally. Their centers are on the Xj3-axis, and the
distance between each pair of neighboring triangles is 1.5 m. The upper layer is rotated from the
closest lower layer counter-clockwise around the X3-axis with the angle 7/4. Accordingly, one of

the edges of Ls is parallel with the Xs-axis. Then Lo, ..., Lg are rotated counter-clockwise around
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Figure 8: An initial structure with six layers.

Table 6: Maximal and minimal axial forces (in N) of the optimal solutions of the six-layer example.

w(J) ¢@el) ¢ (ielC) § (i€l 8 (ieC)

min 30 —1735.2 53.6  —1709.6 32.5
max 30 —722.6 1000.0 —706.8 971.9
max 20 —1861.3 50.6  —1875.5 24.2
min 20 —592.3 994.2 —617.8 1000.0

the Xo-axis with the angles 107/180, 207 /180, 307 /180, 407 /180, and 507 /180, respectively. To
avoid existence of too long members, members connecting the pairs {L1, L4}, {L1, L5}, {L1, Ls},
{La, L5}, {La, L¢}, and {L3, L¢} are not considered. All the other members connecting two nodes
are considered as candidate members.

An external force f = 10N in the negative direction of the Xj3-axis is applied to each of the
top three nodes. To avoid the rigid body motion, the displacements of the three bottom nodes
are fixed in the same manner as section 6.1.1. Regarding the upper bound for the compliance,
we consider two cases, say, w = 30J and w = 20J. As the optimal solutions, we obtain the
tensegrity structures illustrated in Figure 9. The computational results are listed in Table 5. The
maximal and minimal axial forces of cables and struts are listed in Table 6, from which we can
see that no cable is in a slack state. Note that the locations of cables are different between these
tensegrity structures, while the locations of struts are same. Both the tensegrity structures have
|S| = 9 struts and |C| = 40 cables, have only one self-equilibrium mode, and are kinematically
determinate. Thus, compared with Figure 9(a), the compliance is improved (i.e., decreased) in

Figure 9(b) by changing the locations of cables.
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7 Conclusions

In finding new topologies of tensegrity structures, the difficulty primarily stems from the discon-
tinuity condition of struts. In this paper, this difficulty is dealt with in the framework of mixed
integer liner programming (MILP). It has been shown that the topology optimization of tenseg-
rity structures under the stress constraints and the compliance constraint can be formulated as
an MILP problem. As the global optimal solutions of this problem, various configurations of
tensegrity structures have been obtained throughout the numerical experiments.

This paper has developed a method for optimizing topology of tensegrity structures without
requiring any connectivity information of cables and struts as input data. Much remains to be
explored. Other optimization problems for tensegrity structures can be formulated to find real-life
functionable tensegrity structures. For instance, in the presented approach, the member cross-
sectional areas and the locations of nodes have not been considered as design variables. Also,
the geometrical nonlinearity has not been addressed. Furthermore, the proposed formulation
results in a large MILP problem, which might be a potential disadvantage for finding tensegrity

structures consisting of a large number of members from a view point of computational efforts.
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