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Robust Independence Systems∗

Naonori KAKIMURA†‡ Kazuhisa MAKINO‡§

April, 2011

Abstract

An independence system F is one of the most fundamental combinatorial concepts, which
includes a variety of objects in graphs and hypergraphs such as matchings, stable sets, and
matroids. We discuss the robustness for independence systems, which is a natural general-
ization of the greedy property of matroids. For a real number α > 0, a set X ∈ F is said to
be α-robust if for any k, it includes an α-approximation of the maximum k-independent set,
where a set Y in F is called k-independent if the size |Y | is at most k. In this paper, we
show that every independence system has a 1/

√
µ(F)-robust independent set, where µ(F)

denotes the exchangeability of F . Our result contains a classical result for matroids and
the ones of Hassin and Rubinstein [15] for matchings and Fujita, Kobayashi, and Makino [9]
for matroid 2-intersections, and provides better bounds for the robustness for many inde-
pendence systems such as b-matchings, hypergraph matchings, matroid p-intersections, and
unions of vertex disjoint paths. Furthermore, we provide bounds of the robustness for non-
linear weight functions such as submodular and convex quadratic functions. We also extend
our results to independence systems in the integral lattice with separable concave weight
functions.

Key words: independence systems, matroids, exchangeability, robustness

1 Introduction

Let E be a finite set. A family F of subsets in E is an independence system if ∅ ∈ F , and
I ⊆ J ∈ F implies I ∈ F . A set F in F is called independent, and k-independent if |F | ≤ k
holds in addition. For an independence system F with a nonnegative weight w ∈ RE

+ and a
positive integer k, we consider the problem of finding a maximum weighted k-independent set,
called the maximum k-independent set problem.

Problem Pk(F) : maximize w(X)
subject to |X| ≤ k,

X ∈ F ,

where for X ⊆ E, we define w(X) =
∑

i∈X w(i). If k is sufficiently large, e.g., k ≥ |E|,
then it is called the maximum independent set problem, and denoted by P(F). The maxi-
mum (k-)independent set problem is one of the most fundamental and important combinatorial
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optimization problems, which includes a variety of graph and hypergraph problems such as
matching, stable set, and matroid problems. See e.g., [21, 24, 31] for the details. The problem
is NP-hard in general, while it is polynomially solvable if F belongs to some special classes.
For example, it is well-known that, for a matroid F , a greedy algorithm computes a maximum
independent set [4, 30]. Note that this greedy solution X has a good property, called robustness,
in the sense that it contains a maximum k-independent set for each k. More precisely, for each
k, the heaviest k elements in X is an optimal solution for the maximum k-independent set
problem. Thus the greedy solution X is adaptable to all the sizes k. This paper investigates
this kind of structural properties for the independence systems.

For an independence system, a robust independent set does not always exist. Let Xk denote
an optimal solution for Problem Pk(F), and for X = {x1, . . . , xp} ⊆ E with w(xi) ≥ w(xj) if
i < j, we define

w≤k(X) =
∑
i≤k

w(xi), k = 1, 2, . . . , |E|.

For a real number α > 0, an independent set X is called α-robust (with respect to w) if
w≤k(X) ≥ α · w(Xk) for all k’s. By definition, a robust independent set is exactly 1-robust.
We also say that an independence system F is α-robust if it has an α-robust solution for any
nonnegative weight w.

Previous and Our Main Results for the Robustness

The α-robustness for independence systems was first introduced by Hassin and Rubinstein [15].
They proved that the greedy solution is ν-robust, where ν is the rank quotient defined in Sec-
tion 2.2. Moreover, they showed that the maximum matching problem admits a 1/

√
2-robust

solution, and that 1/
√
2-robustness is the best possible for the maximum matching problem.

Fujita, Kobayashi, and Makino [9] extend their matching result to the matroid intersection
problem, and show that computing an α-robust matching is NP-hard for any α (> 1/

√
2). The

robustness was also studied for several combinatorial optimization problems such as trees and
paths [10, 16]. Another concept similar to the robustness, called the incremental problems, has
been investigated for covering-type problems in connection with the online algorithms [26, 29].

In this paper, we analyze the robustness for an independence system F by using param-
eter µ(F), called the exchangeability of F . For a nonnegative integer µ, we say that F is
µ-exchangeable if

∀X,Y ∈ F , ∀i ∈ Y \X, ∃Z ⊆ X \ Y s.t. |Z| ≤ µ, X ∪ {i} \ Z ∈ F .

We denote by µ(F) the minimum µ satisfying the condition above. The exchangeability was
introduced by Mestre [28]1 to measure the performance of the greedy algorithm. It is known
[28] that F is a matroid if and only if µ(F) ≤ 1, and that a number of independence systems
arising from natural combinatorial optimization such as (hypergraph) matchings, stable sets,
acyclic subgraphs, union of vertex disjoint paths, and matroid intersections, have bounded µ
(see Section 2.1).

In this paper we obtain the following theorem.

Theorem 1. Let F be an independence system on a finite set E. Then it is min{1, 1/
√

µ(F)}-
robust. In particular, for any weight w ∈ RE

+, a w2-optimal independent set is min{1, 1/
√

µ(F)}-
robust with respect to w.

Here, for a weight u ∈ RE
+, an independent set X of maximum weight u(X) is called u-optimal.

The vector ub for u ∈ RE
+ is defined to be (ub)(i) = u(i)b for i ∈ E.

1In fact, he introduced “µ-extendibility,” which is equivalent to µ-exchangeability.
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To obtain our robustness, we show a maximum weight independent set with respect to
the b-th power weight wb is min{1, µ(F)−1/b, 1/µ(F)−1+(1/b)}-robust, where our main result is
obtained by fixing b = 2. The statement is similar to Hassin and Rubinstein [15] and Fujita
et al. [9], but different from their proofs, ours, described in Section 3, exploits a polyhedral
description of the b-th power weight wb such that a given set X is maximum with respect to
wb. Note that such constraints can be represented as (an exponential number of) inequalities
which are linear in terms of wb. We show that X is min{1, µ(F)−1/b, 1/µ(F)−1+(1/b)}-robust
with respect to any weight w satisfying the constraints, by considering the minimization of the
total weight of the heaviest k elements in X subject to these inequalities.

We also show that the ratio min{1, 1/
√

µ(F)} in Theorem 1 is tight.

Theorem 2. For any positive integer µ, there exists an independence system F with µ(F) = µ
and a weight w ∈ RE

+ such that for any α > 1/
√
µ, F has no α-robust independent set with

respect to w.

Since F is a matroid if and only if µ(F) ≤ 1, Theorem 1 includes a classical result for the
greediness of matroids [4, 30] (see Corollary 1 (i)), and it can be regarded as a generalization
of Hassin and Rubinstein [15] and Fujita et al. [9] (see Corollary 1 (ii) with b ≡ 1 and (v) with
p = 2, respectively), since independence systems from matchings and matroid 2-intersections are
both 2-exchangeable. Moreover, our result implies the existence of highly robust independent
sets for a variety of combinatorial optimization problems.

Corollary 1. (i) Let F be a matroid. Then it is 1-robust.

(ii) For a graph G = (V,E) with b ∈ ZV
+, let F ⊆ 2E be the family of b-matchings in G. Then

it is 1/
√
2-robust.

(iii) For a complete directed graph G = (V,E), we define F ⊆ 2E to be the family of unions of
vertex disjoint paths, i.e., F = {P (=

∪
i Pi) ⊆ E | Pi are pairwise vertex disjoint paths}.

Then it is 1/
√
3-robust.

(iv) For a hypergraph E ⊆ 2V on a finite set V , let F be the family of matchings in E, i.e., the
family of disjoint hyperedges in E. Let r denote the maximum number of disjoint neighbors
of hyperedges. Then it is 1/

√
r-robust. In particular, for any k-hypergraph E (i.e., |E| ≤ k

for E ∈ E), it is 1/
√
k-robust.

(v) Let F be the intersection of p (≥ 2) matroids. Then it is 1/
√
p-robust.

(vi) For a d-dimensional knapsack problem, i.e., maximizing wTx subject to Ax ≤ b and x ∈
{0, 1}n, where A ∈ Rd×n

+ , b ∈ Rd
+ and w ∈ Rn

+, let F denote the independence system
corresponding to the set of the feasible vectors. Define

µ(A) =
d∑

i=1

⌈ max{aij | 1 ≤ j ≤ n}
min{aij | aij ̸= 0, 1 ≤ j ≤ n}

⌉
.

Then it is 1/
√

µ(A)-robust.

(vii) For a graph G = (V,E), let F ⊆ 2V denote the family of stable sets in G. Then it is
1/

√
dmax-robust, where dmax denotes the maximum degree of G.

(viii) For a directed graph G = (V,E), let F ⊆ 2E denote the family of acyclic subgraphs in
G. Then it is 1/

√
λ-robust, where λ denotes the maximum edge connectivity between two

vertices.
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We remark that Theorem 1 improves upon the existing bounds for the robustness. For exam-
ple, we have a stronger bound for the robustness of F if it is obtained from hypergraph matchings
or unions of vertex disjoint paths in a complete directed graph (Corollary 1 (ii)(iii)(iv)). See
Lemma 4 in Section 2. We also note that the bounds in the corollary are all tight as Theorem
2.

From a viewpoint of complexity, a robust solution stated above can be computed in polyno-
mial time if the maximum independent set problem P(F) is polynomially solvable. For example,
a 1/

√
2-robust b-matching can be found in polynomial time, since the maximum b-matching

problem can be computed in polynomial time [11]. If a given graph is perfect, we can find a
1/

√
dmax-robust stable set [14], and if a directed graph is planar, we can find a 1/

√
λ-robust

acyclic subgraph in polynomial time [7, 27]. However, it is often NP-hard to solve P(F). You

might expect that a γ-approximation solution with respect to w2 provides a
√

γ
µ -robust set with

respect to w. However, we show in Section 3.3 that a γ-approximation solution with respect to
w2 does not help to find a highly robust solution.

We further generalize Theorem 1 in the following two ways. First, we consider a non-linear
weight w : 2E → R+. Let h : R+ → R+ be a one-dimensional function, and q ∈ RE

+ be a vector.
We say that a weight set function w : 2E → R+ is ρ-approximated by h and q if

h(
∑
i∈X

q(i)) ≤ w(X) ≤ ρ · h(
∑
i∈X

q(i)) for all X ∈ 2E .

If h is monotone (i.e., h(x) ≤ h(y) for any x, y ∈ R+ with x ≤ y) and submultiplicative (i.e.,
h(xy) ≤ h(x)h(y) for any x, y ∈ R+), then we have the following result.

Theorem 3. If a weight w : 2E → R+ is ρ-approximated by a monotone submultiplicative func-
tion h and q ∈ RE

+, then any independence system F ⊆ 2E has a 1

ρ·h(
√

µ(F))
-robust independent

set with respect to w.

As corollaries, we have the robustness results for submodular and convex quadratic weight
functions.

The second generalization is to independence systems in integral lattice ZE
+. We say that

a function w : ZE → R+ is separable concave if w can be written as w(x) =
∑

i∈E wi(xi) for
some one-dimensional concave functions wi : R → R+ for i ∈ E. In this paper, we assume that
wi(0) = 0 and monotonicity.

Theorem 4. Let F be a bounded independence system in ZE
+ and w be a separable concave

function. Then F has a min{1, 1/
√

µ(F)}-robust independent vector with respect to w.

This result leads to robustness for polymatroids, polymatroid intersections, and packing
systems.

The rest of the paper is organized as follows. In Section 2, we define the exchangeability for
independence systems and discuss its basic properties. In Section 3, we consider the robustness
for independence systems in the Boolean lattice. In particular, we show Theorems 1 and 2 and
Corollary 1. Section 4 is devoted to a nonlinear generalization of Theorem 1. Finally, Section 5
discusses extending Theorem 1 to separable concave maximization in integral lattice.

2 Exchangeable Independence Systems

For a nonnegative integer µ, we say that an independence system F is µ-exchangeable if

∀X,Y ∈ F , ∀i ∈ Y \X, ∃Z ⊆ X \ Y with |Z| ≤ µ and X ∪ {i} \ Z ∈ F . (1)
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We denote by µ(F) the minimum µ satisfying (1). Note that F is 0-exchangeable if and only
if F = 2J for some J ⊆ E. Thus a 0-exchangeable independence system consists of the unique
maximal independent set.

After providing a variety of examples of µ-exchangeable independence systems, in this sec-
tion, we show further properties on µ-exchangeable independence systems. In particular, we
prove that the exchangeability is at least the inverse of the rank quotient, and it is NP-hard to
approximate µ(F) for a given F .

2.1 Examples of Exchangeable Independence Systems

This subsection describes some basic independence systems with small µ.

Matroids: An independence system M is called a matroid if M1,M2 ∈ M and |M1| < |M2|
implies M1 ∪ {e} ∈ M for some e ∈ M2 \M1. It is known in [28] that F is 1-exchangeable if
and only if it is a matroid.

Matchings and b-Matchings of a Graph: For a graph G = (V,E), let F ⊆ 2E denote the
family of matchings F in G, i.e., e ∩ e′ = ∅ holds for any distinct e, e′ ∈ F . Note that for any
edge e ∈ E and any matching F , at most two edges in F intersect e. Thus F turns out to be
2-exchangeable. More generally, for a vector b ∈ ZV

+, we say that a subset F ⊆ E is a b-matching
if for all v ∈ V the number of edges in F incident to v is at most bv. Then the b-matchings also
form a 2-exchangeable independence system.

Unions of Vertex Disjoint Paths and Asymmetric Traveling Salesman Systems: For
a complete directed graph G = (V,E), let F be the family of unions of vertex disjoint paths
P ⊆ E, i.e., F = {P (=

∪
i Pi) ⊆ E | Pi are pairwise vertex disjoint paths}, and let H be the

family of sets H ⊆ E such that H is either unions of vertex disjoint paths or a Hamilton cycle.
The family H is well studied to solve the maximum asymmetric traveling salesman problem,
and it is known [20] that H is 3-exchangeable. Similarly to H, we have µ(F) ≤ 3.

Matchings in Hypergraphs: For a hypergraph E ⊆ 2V on a finite set V , let F be the family
of matchings in E , i.e., the family of disjoint hyperedges in E . Let r denote the maximum number
of disjoint neighbors of hyperedges, i.e., r = maxJ∈E{|M| | M ∈ F , I ∩ J ̸= ∅ for all I ∈ M}.
Then it is not difficult to see that F is r-exchangeable. In particular, for any k-hypergraph E
(i.e., |E| ≤ k for E ∈ E), F is k-exchangeable. This problem is also known as k-set packing [3].

Mestre [28] provides a maximum profit scheduling problem as an example of the maximum
independent set problem for F with r = 2. We also remark that the family of the triangles in
a graph, i.e., complete subgraphs with size three, is an example with r = 3.

Intersections of p Matroids: For matroids Mi ⊆ 2E (i = 1, . . . , p), define F =
∩p

i=1Mi.
Then we can see that F is p-exchangeable [28].

Multidimensional Knapsack Systems: For a positive integer d, we consider the following
d-dimensional knapsack problem with n items:

maximize wTx
subject to Ax ≤ b,

x ∈ {0, 1}n,
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where A ∈ Rd×n
+ , b ∈ Rd

+ and w ∈ Rn
+. Let F denote the independence system corresponding

to the set of the feasible vectors. Define

µ(A) =

d∑
i=1

⌈ max{aij | 1 ≤ j ≤ n}
min{aij | aij ̸= 0, 1 ≤ j ≤ n}

⌉
.

Then we have
µ(F) ≤ µ(A) ≤ d

⌈amax

amin

⌉
,

where amin and amax denote the minimum and maximum values of nonzero entries in A, respec-
tively.

Stable Sets of a Graph: For a graph G = (V,E), let F ⊆ 2V denote the family of stable
sets (also called independent sets) in G, i.e., the set of vertices not directly connected by edges.
Then it is dmax-exchangeable, where dmax denotes the maximum degree of G. Note that if a
graph G is claw-free, that is, a graph such that no vertex has a stable set of size three in its
neighborhood, then it is not difficult to see that F is 2-exchangeable. The weighted stable set
problem for claw-free graphs can be solved in polynomial time [5].

Acyclic Subgraphs: For a directed graph G = (V,E), let F ⊆ 2E denote the family of acyclic
subgraphs in G. Let λ denote the maximum edge connectivity between two vertices. Then F
is λ-exchangeable.

2.2 Exchangeability and Rank Quotient

Let F be an independence system. For X,Y ∈ F , a pair (ZX , ZY ), where ZX ⊆ X \ Y and
ZY ⊆ Y \X, is said to be (X,Y )-admissible if X \ZX ∪ZY ∈ F . For X,Y ∈ F with Y \X ̸= ∅,
we denote

µF (X,Y ) = max
i∈Y \X

min{|Z| | (Z, {i}) is (X,Y )-admissible}.

If Y \X = ∅, we define µF (X,Y ) = 0. Then we have

µ(F) = max
X,Y ∈F

µF (X,Y ).

If there is no ambiguity, we simply use µ(X,Y ) and µ instead of µF (X,Y ) and µ(F), respectively.
We first observe the following lemma. For an independence system F , let BF be the family

of maximal independent sets in F .

Lemma 1. It holds that µ(F) = maxX,Y ∈BF µF (X,Y ).

Proof. Let µ′ = maxX,Y ∈BF µF (X,Y ). It is obvious that µ(F) ≥ µ′ by BF ⊆ F . Let X,Y ∈ F
and i ∈ Y \ X. We arbitrarily take X ′, Y ′ ∈ BF with X ⊆ X ′ and Y ⊆ Y ′. If i ∈ X ′, then
we have X ∪ {i} ∈ F . On the other hand, if i ̸∈ X ′, then we have an (X ′, Y ′)-admissible pair
(Z, {i}) with |Z| ≤ µ′. By X ′ \Z ∪{i} ∈ F , the pair (X ∩Z, {i}) is an (X,Y )-admissible. Since
|X ∩ Z| ≤ |Z| ≤ µ′, we obtain µF (X,Y ) ≤ µ′, which implies µ(F) ≤ µ′.

We next consider the exchangeability of independence systems obtained by contraction and
deletion. For Z ⊆ E, we define the contraction F/Z and deletion F \ Z of F by F/Z = {X ⊆
E \ Z | X ∪ Z ∈ F} and F \ Z = {X ∈ F | X ⊆ E \ Z}.

Lemma 2. Let F ⊆ 2E be an independence system on E. Then for any Z ⊆ E, it holds that
µ(F \ Z), µ(F/Z) ≤ µ(F).
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Proof. It is not difficult to see µ(F \ Z) ≤ µ(F). We denote F ′ = F/Z. Let X ′, Y ′ be two
independent sets in F ′, and i ∈ Y ′ \X ′. Then F has an (X ′∪Z, Y ′∪Z)-admissible pair (Z ′, {i})
with |Z ′| ≤ µ(F). Hence (Z ′, {i}) is (X ′, Y ′)-admissible with respect to F ′. Thus µ(F ′) ≤ µ(F)
holds.

For an independence system F ⊆ 2E , we define two parameters ν(F) and κ(F).
It is known [23] that F can be represented as F =

∩k
i=1Mi for some k matroids Mi. We

denote by κ(F) the minimum number of matroids to describe F as the matroid intersection.
For J ⊆ E, let ρ(J) and γ(J) be the minimum and maximum sizes of maximal independent
sets in F contained in J , respectively. Define the rank quotient ν(F) to be

ν(F) = min
J⊆E

ρ(J)

γ(J)
.

Jenkyns [19] and Korte and Hausmann [23] showed the greedy algorithm finds a ν(F)-approximation
solution for P(F). Hassin and Rubinstein [15] proved that the greedy solution is in fact ν(F)-
robust.

The three parameters µ(F), ν(F), and κ(F) have the following relations, which was also
mentioned in [1].

Lemma 3. For an independence system F ⊆ 2E with µ(F) ≥ 1, we have

1

ν(F)
≤ µ(F) ≤ κ(F).

Proof. Let J ⊆ E, and X,Y with |X| ≥ |Y | be two maximal independent sets in J . Then
µ(F) · |Y \X| ≥ |X \Y | holds, since otherwise there exists an independent set Z with Y ⊊ Z ⊆
X ∪ Y , which contradicts the maximality of Y . Hence we have

|Y |
|X|

=
|Y \X|+ |X ∩ Y |
|X \ Y |+ |X ∩ Y |

≥ min

{
1,

|Y \X|
|X \ Y |

}
≥ 1

µ(F)
,

which implies the first inequality in this statement.

To prove the second inequality of Lemma 3, let X,Y be two maximal independent sets in F
such that µ(X,Y ) = µ(F). That is, there exist Z ⊆ X \ Y and i ∈ Y \X with X \Z ∪ {i} ∈ F
and |Z| = µ(F). Let W = X \ Z ∪ {i}. We denote by Mj (j = 1, . . . , κ) matroids whose
intersection forms F , where κ = κ(F). Let Wj be an independent set of Mj such that (i)
W ⊆ Wj ⊆ X ∪ {i} and (ii) it is maximal in X ∪ {i}. Since Mj is a matroid and X ∈ Mj , we
have |Wj | ≥ |X|, and hence |Wj \W | ≥ |Z| − 1 holds. This implies

κ∑
j=1

|Wj \W | ≥
κ∑

j=1

(|Z| − 1) = κ(µ(F)− 1).

Since each element in Z can be an element of at most κ− 1 Wj ’s, we obtain

κ∑
j=1

|Wj \W | ≤ (κ− 1)|Z| ≤ (κ− 1)µ(F).

Combining these two inequalities, we have µ(F) ≤ κ(F).

We remark that Lemma 3, together with Korte and Hausmann [23], implies that the greedy
algorithm provides a 1/µ(F)-approximation solution for P(F), which was also shown in [28].

We note that in many cases the first inequality in Lemma 3 attains the equality.
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Lemma 4. If an independence system F with µ(F) ≥ 1 satisfies one of the following conditions,
then we have 1

ν(F) = µ(F).

(i) it is a matroid,

(ii) for a graph G = (V,E), it is the family of matchings in G,

(iii) for a complete directed graph G = (V,E) with |V | ≥ 4, it is the family of unions of vertex
disjoint paths P ⊆ E,

(iv) for a hypergraph E ⊆ 2V , it is the family of matchings in E.

Proof. (i): This follows from [23, 28].
(ii) and (iv): By Lemma 3, it suffices to show that 1

ν(F) ≥ µ(F). Let X,Y be two matchings

such that µF (X,Y ) = µ(F), i.e., for some i ∈ Y \X, a minimum Z ⊆ X \Y with X \Z∪{i} ∈ F
satisfies |Z| = µ. Note that i intersects all the elements in Z. By letting J = Z ∪ {i}, we have
γ(J) = |Z| and ρ(J) = 1. This proves 1

µ(F) ≥ ν(F).

(iii): Let G = (V,E) be a complete directed graph with V = {1, . . . , n}, where n ≥ 4. Define
J = {(1, 2), (2, 3), (3, 2), (3, 4)}. Then we have γ(J) = 3 and ρ(J) = 1, implying ν(F) ≤ 1/3.
Since 1

ν(F) ≤ µ(F) ≤ 3, we have 1
ν(F) = µ(F) = 3.

By this lemma, we can see that the bound for the robustness by Theorem 1 is stronger than the
one obtained by using rank quotient ν(F) in [15].

We finally remark that the gaps in the inequalities in Lemma 3 might be large in general.
The first example demonstrates that the gap between 1/ν(F) and µ(F) becomes large with

respect to |E|. Let G = (V,E) be the directed graph with V = {1, 2, . . . , n, a, b} and E =
{(a, j) | j = 1, 2, . . . , n} ∪ {(j, b) | j = 1, 2, . . . , n} ∪ {(b, a)}. We note that |E| = 2n + 1. Let
F ⊆ 2E be the independence system defined by F = {F ⊆ E | the subgraph (V, F ) is acyclic}.
Then we have µ(F) = n, because µ(E \ {(b, a)}, {(b, a)}) = n and µ(X,Y ) ≤ n for any X and

Y in F . However, we have ν(F) = 1
2 +

1
2n . Indeed, it holds that

ρ(E)
γ(E) =

n+1
2n and ρ(J)

γ(J) ≥
n+1
2n for

any J ⊆ E. This shows µ(F)ν(F) = Ω(n).
The next example shows that the gap between µ(F) and κ(F) becomes Ω(|E|). Again,

let G = (V,E) and F ⊆ 2E be the directed graph and independence system defined in the
above paragraph, respectively. We denote E1 = {(a, j) | j = 1, 2, . . . , n} and E2 = {(j, b) |
j = 1, 2, . . . , n}. Define H ⊆ 2E to be the independence system H = {H ∈ F | |H ∩ Ei| ≤
2, ∀i ∈ {1, 2}}. Then it is not difficult to see µ(H) = 2. On the other hand, we claim that
κ(H) = n + 1. Let Cj = {(b, a), (a, j), (j, b)} for j = 1, . . . , n. Note that they are all circuits
(i.e., minimal dependent sets) of H. Since F is the intersection of n matroids each of which
has exactly one circuit Cj , we know κ(F) ≤ n. Moreover, since the cardinality constraints for
E1 and E2 form one matroid, we have κ(H) ≤ n + 1. Conversely, let Mp (p = 1, . . . , κ(H))

be matroids such that H =
∩κ(H)

p=1 Mp. Since Cj is a circuit of H for j = 1, . . . , n, it must be
a circuit of some matroid, say Mp. If Mp has two distinct Ci and Cj as circuits, then the
circuit axiom of matroids implies that C = {(a, i), (i, b), (a, j), (j, b)} contains a circuit of Mp.
However, C is independent in H, which is a contradiction. Hence each matroid Mp has at most
one Cj as a circuit. Similarly, Cj and a circuit {(a, i), (a, j), (a, k)} of H for distinct i, j, and k
cannot be represented as one matroid. Thus at least n+ 1 matroids are necessary to represent
H.

Before concluding this section, we show that computing µ(F) which is useful for the robust-
ness by Theorem 1 is intractable. More precisely, we prove that it is NP-hard to approximate
µ(F) by reducing the maximum stable set problem [17].
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Theorem 5. For an independence system F on E with n = |E|, µ(F) is not approximable
within n1/2−ε for any ε > 0, unless P = NP .

Proof. We reduce the maximum stable set problem to computing µ(F). Let G = (V,E) be
an undirected graph. We add a new vertex v and an edge connecting v and u for all u ∈ V .
Let F denote the family of the stable sets in the resulting graph. Then µ(X, {v}) = |X| holds
for any X ∈ F with X ̸= {v}. Moreover, for any X,Y ∈ F , we have µ(X,Y ) ≤ |X|. Hence
µ(F) = maxX∈F |X|, and thus the problem of computing µ(F) is equivalent to the maximum
stable set problem for G.

3 Robust Independence Systems in Boolean Lattice

In this section, we investigate the robustness for independence systems in Boolean lattice. Es-
pecially, we show Theorems 1, 2 and Corollary 1. Let us first consider Theorem 1.

Theorem 6. Let F be an independence system on a finite set E and w ∈ RE
+ be a weight vector

on E. Then, for b ≥ 1, a wb-optimal independent set is min{1, 1/µ(F)1/b, 1/µ(F)1−1/b}-robust
with respect to w.

When b is sufficiently large, a wb-optimal independent set can be obtained by a greedy
algorithm for the original weight w. Thus the theorem implies that a greedy solution is 1/µ-
robust. Theorem 1 is obtained by maximizing the formula in the theorem, i.e., when b = 2.

It should be noted that the ratio 1/
√

µ(F) cannot be improved to
√

ν(F) in Theorem 1.
Consider the same example F as in Section 2.2, that is, F = {F ⊆ E | the subgraph (V, F ) is acyclic},
where G = (V,E) is the directed graph with V = {1, 2, . . . , n, a, b} and E = {(a, j) | j =
1, 2, . . . , n} ∪ {(j, b) | j = 1, 2, . . . , n} ∪ {(b, a)}. Define a weight w ∈ RE

+ as w(b, a) = 2 and
w(e) = 1 for e ̸= (b, a). Then, for any X ∈ F , if (b, a) ̸∈ X the set X has robustness ≤ 1/2.
Otherwise (i.e., if (b, a) ∈ X), X has robustness ≤ n+1

2n , since E \ {(b, a)} is a unique w-optimal

independent set. By µ(F) = n and ν(F) = n+1
2n , F has a 1/

√
µ(F)-robust independent set, but

no one with at least
√

ν(F)-robustness.
We remark that it is natural to ask whether or not a given µ-exchangeable independence

system has an α-robust independent set for a given α > 1/
√
µ. It is, however, NP-hard even

when an independence system is the family of matchings in a bipartite graph [9].

3.1 The Proof of Theorem 6

In order to prove Theorem 6, we show Lemma 5 below. For two subsets X,Y ∈ F , we denote
FX,Y = {Z ∈ F | X ∩ Y ⊆ Z ⊆ X ∪ Y }. We say that a weight vector w ∈ RE

+ is (X,Y )-optimal
if w satisfies

w(X) ≥ w(Z) for any Z ∈ FX,Y . (2)

Lemma 5. Let F be an independence system on E, and X,Y be two sets in F with X ∩Y = ∅
and |Y | = k. If a weight vector w ∈ RE

+ is (X,Y )-optimal, then for any β with 0 ≤ β ≤ 1,

(wβ)≤k(X) ≥ min

{
1,

1

µβ
,

1

µ1−β

}
wβ(Y ).

Here we show that Lemma 5 immediately implies Theorem 6. We henceforth denote α(F) =
min{1, 1

µβ ,
1

µ1−β }.
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Proof of [Lemma 5 =⇒ Theorem 6]. Let k be a positive integer with k ≤ |E|. Let X∗ be a
wb-optimal independent set and Xk be a w-optimal k-independent set. We contract X∗ ∩Xk,
denoted by Z, as follows. Define H = F/Z and u(Y ) = w(Y ∪ Z) for Y ∈ H. We denote Y ∗ =
X∗ \ Z and Yk = Xk \ Z. Then ub is a (Y ∗, Yk)-optimal weight vector with respect to H. This
follows from that for any J ∈ H with J ⊆ Y ∗ ∪ Yk, we have u(J) = w(J ∪Z) ≤ w(X∗) = u(Y ∗)
by (2). Since Y ∗ ∩ Yk = ∅, it follows from Lemma 5 with β = 1/b that

u≤ℓ(Y
∗) ≥ α(H)u(Yk),

where ℓ = |Yk|. Hence, we obtain, together with Lemma 2,

w≤k(X
∗) ≥ w≤ℓ(Y

∗) + w(Z)

= u≤ℓ(Y
∗)

≥ α(H)u(Yk) = α(H)w(Xk)

≥ α(F)w(Xk).

This means that X∗ is α(F)-robust.

The Proof of Lemma 5

The rest of this subsection is devoted to the proof of Lemma 5. For that purpose, we first
observe the following lemma about the sizes of two independent sets X and Y . For a weight
vector w, we denote Γ(w) = {i ∈ E | w(i) ̸= 0}.

Lemma 6. Let X,Y be two independent sets in F with X ∩ Y = ∅. If a weight vector w ∈ RE
+

is (X,Y )-optimal, then we have µ(F) |X| ≥ |Γ(w) ∩ Y |.

Proof. By the definition of µ(F), there exists a (Y,X)-admissible pair (Z,X) such that Y \Z ∪
X ∈ F and |Z| ≤ µ(F) |X|. Since |X| ≤ |Y \Z ∪X| and w(X) ≥ w(Y \Z ∪X) by (2), we have
w(Y \ Z) = 0. This means (Y \ Z) ∩ Γ(w) = ∅, and hence we have µ(F) |X| ≥ |Γ(w) ∩ Y |.

We will show Lemma 5 by induction on |X|. The following lemma asserts that it is true
when |X| = 1.

Lemma 7. Let X ∈ F with |X| = 1, and Y ∈ F with X ∩ Y = ∅. Then wβ(X) ≥ α(F)wβ(Y )
for any (X,Y )-optimal w.

Proof. Let i be the index with X = {i}. The (X,Y )-optimality implies that w(i) ≥ w(Y ). If
w(Y ) = 0, i.e., q = |Γ(w) ∩ Y | = 0, then the lemma is clearly true. Otherwise, by maximizing
wβ(Y ) subject to w(Y ) ≤ w(i) and q = |Γ(w)∩Y |, we have wβ(Y ) ≤ w(i)βq1−β. Since q ≤ µ(F)
by Lemma 6, we obtain

wβ(i)

wβ(Y )
≥ w(i)β

w(i)βq1−β
≥ 1

µ1−β(F)
≥ α(F).

We assume that Lemma 5 is true when |X| ≤ p − 1 and consider the case in which |X| =
p (≥ 2). By induction hypothesis, the following two lemmas hold for any (X,Y )-optimal w.

Lemma 8. If w(i) = 0 for some i ∈ X, then we have (wβ)≤k(X) ≥ α(F)wβ(Y ).
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Proof. For i ∈ X with w(i) = 0, let X ′ = X \ {i}. Then we claim that w is (X ′, Y )-optimal.
Indeed, for Z ∈ FX′,Y , the set Z is contained in FX,Y . Hence w(X) ≥ w(Z) by (2), which
implies that w(X ′) ≥ w(Z) holds by w(i) = 0. Therefore, w is (X ′, Y )-optimal, and hence by
the induction hypothesis, we have

(wβ)≤k(X) = (wβ)≤k(X
′) ≥ α(F)wβ(Y ).

This proves Lemma 8.

Lemma 9. If there exists a set Z ∈ FX,Y with w(X) = w(Z), X ∩ Z ̸= ∅, and X ∩ Z ⊊ X.

Then we have wβ
≤k(X) ≥ α(F)wβ(Y ).

Proof. We denote X1 = X ∩Z and Y1 = Y \ (Y ∩Z). Let X2 = X \X1 and Y2 = Y \Y1. Define
the two independence systems F1 = F/Y2 and F2 = F/X1.

We claim that w is (X1, Y1)-optimal with respect to F1. Let Z1 ∈ (F1)X1,Y1 . By Z1 ∪ Y2 ∈
FX,Y , we have w(X) ≥ w(Z1 ∪ Y2). Since w(X) = w(Z), it holds that w(Z) ≥ w(Z1 ∪ Y2), and
hence w(X1) ≥ w(Z1). Thus this claim holds. Moreover, since X2 ̸= ∅, it holds that |X1| < |X|.

We next show that w is (X2, Y2)-optimal with respect to F2. Let Z2 ∈ (F2)X2,Y2 . By
Z2 ∪ X1 ∈ FX,Y , we have w(X) ≥ w(Z2 ∪ X1), and hence w(X2) ≥ w(Z2). Thus this claim
holds. Moreover, since X \X2 ̸= ∅, it holds that |X2| < |X|.

Therefore, by applying the induction hypothesis to F1 and F2, together with Lemma 2, we
obtain

(wβ)≤k−ℓ(X1) ≥ α(F1)w
β(Y1) ≥ α(F)wβ(Y1),

(wβ)≤ℓ(X2) ≥ α(F2)w
β(Y2) ≥ α(F)wβ(Y2),

where ℓ = |Y2|. Hence we have

(wβ)≤k(X) ≥ (wβ)≤k−ℓ(X1) + (wβ)≤ℓ(X2)

≥ α(F)wβ(Y1) + α(F)wβ(Y2)

≥ α(F)wβ(Y ).

Thus the statement holds.

For a vector u ∈ RE
+, we define a function fX : RE

+ → R+ to be fX(u) = (uβ)≤k(X). Given
an (X,Y )-optimal vector w ∈ RE

+, let w∗ be an (X,Y )-optimal vector such that fX(w∗) is
minimum over w∗(i) = w(i) for i ∈ E \ X. Note that such a w∗ exists, because the feasible
region represented by linear inequalities is nonempty, and fX(u) is continuous and nonnegative.
We call such w∗ a minimizer of fX .

By Lemmas 8 and 9, we may assume that w∗ satisfies

w∗(X) > w∗(Z) for any Z ∈ FX,Y with X ∩ Z ̸= ∅ and X ∩ Z ⊊ X,

w∗(X) ≥ w∗(Z) for any Z ∈ FX,Y with X ⊆ Z or X ∩ Z = ∅, (3)

w∗(i) > 0, for any i ∈ X.

Note that the second inequality is equivalent to w∗(X) ≥ w∗(Y ) and w∗(X) ≥ w∗(Z) for any
Z ∈ FX,Y with X ⊆ Z.

For a minimizer w∗ of fX satisfying (3), we first observe the following lemma.

Lemma 10. Assume that a minimizer w∗ of fX satisfies (3). Then it holds that w∗(X) =
w∗(Y ).
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Proof. Assume to the contrary that w∗(X) > w∗(Y ). We replace w∗ with the vector u defined
to be u(i) = w∗(i) − ε for some small ε if i ∈ X with w∗(i) > 0, and u(i) = w∗(i) otherwise.
Then u is still (X,Y )-optimal and fX(u) < fX(w∗), a contradiction. Thus w∗(X) = w∗(Y ).

We denote W = w∗(X) = w∗(Y ). Let k′ = min{p, k}, where we recall that p = |X| and
k = |Y |. For i ∈ E, the vector χi ∈ ZE is a unit vector such that χi(i) = 1 and χi(j) = 0 for
j ̸= i. Then the following lemma holds by the concavity of the β-th power of numbers in fX .

Lemma 11. Assume that a minimizer w∗ of fX satisfies (3). Then there exist i1 ∈ X and
s, t ∈ R+ (s ≥ t) such that w∗(i1) = s and w∗(j) = t for any j ∈ X \ {i1}.

Proof. We let X = {i1, . . . , ip} in order that w∗(i1) ≥ · · · ≥ w∗(ip). Define t = w(ik′).
First assume that there exists an index ℓ with 2 ≤ ℓ ≤ k′ such that w∗(iℓ) > t. Among

such ℓ, take the maximum ℓ, and denote δ = w∗(iℓ) − t. Let λ = w∗(X) − max{w∗(Z) | i1 ∈
Z, iℓ ̸∈ Z,Z ∈ FX,Y }. Then λ > 0 by the first inequality of (3). Define ε = min{λ, δ/2} > 0,
and a weight vector u = w∗ + ε(χi1 − χiℓ). Then u remains (X,Y )-optimal. This is because
u(X) = w∗(X) and, for any Z ∈ FX,Y , if u(Z) > w∗(Z) then i1 ∈ Z and iℓ ̸∈ Z, and hence
we have u(Z) ≤ w∗(Z) + λ ≤ w∗(X) = u(X). Moreover, since u(i1) ≥ · · · ≥ u(ip) by 2ε ≤ δ,
we obtain fX(w∗)− fX(u) = (w∗(i1))

β + (w∗(iℓ))
β − (w∗(i1) + ε)β − (w∗(iℓ)− ε)β > 0, because

aβ + bβ > (a+ c)β + (b− c)β if a ≥ b and c > 0. This contradicts that w∗ is a minimizer of fX .
Thus w∗ satisfies w∗(iℓ) = t for any ℓ ∈ {2, . . . , k′}.

Next assume that there exists an index r ∈ {k′ + 1, . . . , p} such that w∗(ir) < t. Take the
minimum r among such r, and denote δ = t− w∗(ir) > 0. Let λ = w∗(X)−max{w∗(Z) | ir ∈
Z,L\Z ̸= ∅, Z ∈ FX,Y }, where L = {i1, . . . , ir−1}. Then λ > 0 holds by (3). Let ε = min{λ,δ}

r >

0, and define a weight vector u = w∗ + ε
∑r−1

d=1(χir − χid). Then u is (X,Y )-optimal, because
u(X) = w∗(X) and for any Z ∈ FX,Y with ir ∈ Z and L \ Z ̸= ∅, u(Z) ≤ w∗(Z) + (r − 1)ε ≤
w∗(X) = u(X). Since u(i1) ≥ · · · ≥ u(ip) by ε ≤ δ/r, we have fX(u) = fX(w∗)− k′ε < fX(w∗),
which contradicts that w∗ is a minimizer of fX .

Therefore, w∗ satisfies that w∗(i1) ≥ t and w∗(j) = t for any j ∈ X \ {i1}.

We further show the following lemma.

Lemma 12. Assume that a minimizer w∗ of fX satisfies (3). Then w∗(j) = W/p holds for
j ∈ X.

Proof. By Lemma 11, it holds that w∗(i1) = s for some i1 ∈ X and w∗(j) = t (s ≥ t) for any
j ∈ X \ {i1}. We will further show that t = W/p or t = 0. The function fX is equal to

fX(w) = (W − (p− 1)t)β + (k′ − 1)tβ,

denoted by a one-dimensional function g(t) for 0 ≤ t ≤ W/p. By differentiating g(t), we know
that g is concave and

min

{
g(t) | 0 ≤ t ≤ W

p

}
≥ min

{
k′(

W

p
)β,W β

}
,

where the minimum value is k′(W/p)β if and only if t = W/p, and W β if and only if t = 0.
Assume that W/p > t > 0. We denote L = X \ {i1}. For ε ∈ R, define the weight vector

uε by uε(i1) = W − (p − 1)(t + ε) and uε(j) = t + ε for any j ∈ L. Then, since w∗ satisfies
(3), both uε and u−ε are (X,Y )-optimal for some sufficiently small ε > 0. Indeed, if uε is not
(X,Y )-optimal for any ε > 0, then there exists a set Z ∈ FX,Y such that w∗(X) = w∗(Z),
i1 ̸∈ Z, and Z ∩ L ̸= ∅. Similarly, if u−ε is not, then there exists a set Z ∈ FX,Y such that
w∗(X) = w∗(Z), i1 ∈ Z, and L \ Z ̸= ∅. In both cases, we have a contradiction to (3). Since
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one of g(t− ε) or g(t+ ε) takes a smaller value than g(t) for small ε > 0, this contradicts that
w∗ is a minimizer. Thus we know that t = 0 or t = W/p. By (3), we have t > 0, and hence
t = W/p.

We then prove the following lemma, which completes the proof of Lemma 5.

Lemma 13. If w∗(j) = W/p for j ∈ X, then it holds that (wβ)≤k(X) ≥ α(F)wβ(Y ).

Proof. First consider the case of p ≥ k. Each i ∈ Y has an (X,Y )-admissible pair (Z, {i}) for
some Z with |Z| ≤ µ(F). Hence the equation (2) implies that w∗(i) ≤ w(Z) ≤ µW

p for any
i ∈ Y . Hence

(w∗β)≤k(X)

w∗β(Y )
≥ k(W/p)β

k(µW/p)β
≥ 1

µβ
≥ α(F).

Next consider the case of p < k. Then, by letting q = |Γ(w)∩Y |, we obtain w∗β(Y ) ≤ q ·(W/q)β

by maximizing w∗β(Y ) subject to w∗(Y ) ≤ W . Hence

(w∗β)≤k(X)

w∗β(Y )
≥ p(W/p)β

q(W/q)β
≥ (

p

q
)β ≥ 1

µβ
≥ α(F),

where the second to last inequality follows from Lemma 6.

3.2 Tight Examples for Theorem 1

This subsection discusses the tightness of the ratio in Theorem 1 and Corollary 1. Especially
we prove Theorem 2.

Let p denote an integer with p ≥ 2. For i = 1, . . . , p, let Vi = {vi1, . . . , vip}, and V =
∪p

i=1 Vi.

By definition, |V | = p2. Let E ⊆ 2V be the hypergraph defined as E = {e0, e1, . . . , ep}, where
e0 = (v11, v

2
2, . . . , v

p
p) and ej = (v1j , . . . , v

p
j ) for j = 1, . . . , p. Let F be the family of matchings

in E . It follows that µ(F) = p. We define a weight w ∈ RE
+ as w(e0) =

√
p and w(ej) = 1 for

j = 1, . . . , p.
We can see that F has exactly two maximal independent sets I = {e1, . . . , ep} and J = {e0}.

For a positive integer k, J is a w-optimal k-independent set if k ≤ ⌊√p⌋, and so is {ej | j =
1, . . . , k} if k >

√
p. Hence, for any α > 1/

√
p, J is not α-robust, since w≤p(J)/w(I) = 1/

√
p.

Similarly, I is not α-robust, since w≤1(I)/w(J) = 1/
√
p. Thus no independent set is α-robust.

This proves Theorem 2.

Note that the above example also shows the tightness for Corollary 1 (ii), (iv) and (v), since
F can be regarded as the family of matchings (if p = 2), hypergraph matchings, and p-matroid
intersection. Since Corollary 1 (i) is clearly tight, we next show the tightness for (iii), (vi), (vii)
and (viii).

(iii): Let |V | ≥ 4, and let a, b, c, d be distinct four vertices in V . Define w(e) = 1 if
e = (a, b), (b, c), (c, d),

√
3 if e = (c, b), and 0 otherwise. Then F is 1/

√
3-robust, but not

α-robust for any α > 1/
√
3.

(vi): For d = 1, we consider the problem of maximizing
√
px(0) +

∑p
i=1 x(i) subject to

px(0) +
∑p

i=1 x(i) ≤ p and x(i) ∈ {0, 1} for i = 0, . . . , p. Then F is 1/
√
p-robust, but not

α-robust for any α > 1/
√
p.

(vii): For a positive integer d, consider the star G = (V,E) with V = {v, u1, . . . , ud} and
E = {(v, ui) | i = 1, . . . , d}. Define a weight w ∈ RV

+ as w(v) =
√
d and w(ui) = 1 for

i = 1, . . . , d. This example shows the tightness for (vii).

(viii): Consider the directed graph G = (V,E) with V = {v, u} and E = {ei | i = 0, . . . , λ}
such that e0 = (v, u) and ei = (u, v) for i = 1, . . . , λ. Define a weight w ∈ RE

+ to be w(e0) =
√
λ

and w(ei) = 1 for i = 1, . . . , λ. This example shows the tightness for (viii).

13



3.3 Using Approximation Solution to Find a Robust Solution

This section discusses computational complexity to find a robust solution. We mentioned in
Section 1 that if the maximum independent set problem P(F) is polynomially solvable, then a
robust solution stated in Theorem 1 can be computed in polynomial time. However, it is often
NP-hard to solve P(F), for example, if F is the family of matchings in a hypergraph [2, 3], the
intersection of p matroids [23], or the family of stable sets in a graph. You might expect that a

γ-approximation solution with respect to w2 provides a
√

γ
µ -robust set with respect to w. Here

a set J in F is γ-approximation with respect to u, where γ < 1, if u(J) ≥ γ · u(J∗) holds for a
u-optimal set J∗. However, this is not the case.

Theorem 7. Let E be a finite set with |E| ≥ 3. There exist an independence system F ⊆
2E and a weight w ∈ RE

+ such that a γ-approximation solution with respect to w2 is not

1/
√

(γ−1 − 1)(|E| − 1)-robust.

Proof. Let G = (U, V ;E) be a bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}, and
E = {ei = (ui, vi) | i = 1, . . . , n} ∪ {f = (u1, v2)}. Let F be the family of matchings in G.
Define a weight w on E as w(ei) = 1 for i = 1, . . . , n and w(f) =

√
(γ−1 − 1)n+ 2, where

γ < 1. Then F contains exactly two maximal independent sets M1 = {ei | i = 1, . . . , n} and
M2 = {ei | i = 3, . . . , n} ∪ {f}. Note that w2(M1) = n and w2(M2) = (n− 2) + w(f)2 = γ−1n.
Since γ < 1, this implies M2 is w2-optimal and M1 is a γ-approximation solution with respect
to w2. The ratio between w≤1(M1) and the w-optimal 1-independent set {f} is

w≤1(M1)

w(f)
=

1√
(γ−1 − 1)n+ 2

<
1√

(γ−1 − 1)(|E| − 1)
.

Thus M1 is not 1/
√

(γ−1 − 1)(|E| − 1)-robust.

4 Maximizing Set Functions over Independence Systems

In this section, we generalize Theorem 1 to a non-linear weight w : 2E → R+, and prove Theorem
3. For a general weight function w : 2E → R+, we define functions w≤k(J) : 2

E → R+ as

w≤k(J) = max{w(I) | I ⊆ J, |I| ≤ k}, k = 1, . . . , |E|.

Then α-robustness can be defined in a similar way to the linear weight case, that is, J is called
α-robust if w≤k(J) ≥ α · w(Xk), where Xk is a w-optimal k-independent set.

Proof of Theorem 3. It follows from Theorem 1 that we have a 1/
√

µ(F)-robust set X∗ with
respect to the weight q. That is, X∗ satisfies q≤k(X

∗) ≥ q(X)/
√

µ(F) for any k ∈ Z+ and
X ∈ F with |X| ≤ k.

For k = 1, . . . , |E|, let X(k) be the subset of X∗ with q≤k(X
∗) = q(X(k)). Then by the

definition of h and q, we have w(X(k)) ≥ h(q(X(k))). This, together with w≤k(X
∗) ≥ w(X(k))

and the robustness of X∗ with respect to q, implies

w≤k(X
∗) ≥ h(q(X(k))) ≥ h

(
q(X)/

√
µ(F)

)
for any X ∈ F with |X| ≤ k. Since w(X) ≤ ρ · h(q(X)) for any X ⊆ E, the submultiplicativity
of h implies

w≤k(X
∗) ≥ w(X)

ρ · h
(√

µ(F)
) .

Thus X∗ has the desired robustness.
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As corollaries, we have the robustness results for submodular and convex quadratic weight
functions as below.

We say that a set function w : 2E → R+ is monotone if w(X) ≤ w(Y ) for any X,Y ⊆ E
with X ⊆ Y , and submodular if, for any X,Y ⊆ E,

w(X) + w(Y ) ≥ w(X ∩ Y ) + w(X ∪ Y ).

Submodular function optimization under combinatorial structure has been studied recently [12,
18]. We here discuss maximizing monotone submodular functions over independence systems.
It is known that a greedy algorithm finds a 1/(µ(F)+1)-approximation solution [1, 6], and hence
a greedy algorithm returns a 1/(µ(F) + 1)-robust solution. A local search algorithm computes
1/(κ(F) + ε)-approximation one for any ε > 0 [25].

For a monotone submodular function w, Goemans, Harvey, Iwata, and Mirrokni [13] pre-
sented a polynomial time algorithm for constructing an approximation of w with polynomially
many queries. More precisely, their algorithm constructs a set function ŵ(X) =

√∑
i∈X q(i)

for some q ∈ RE
+ such that ŵ(X) ≤ w(X) ≤ ρ · ŵ(X) for any X ⊆ E, where ρ = O(

√
n log n)

with n = |E|. If w is a matroid rank function, then their algorithm returns such a ŵ with
ρ =

√
n+ 1. Since h(x) =

√
x is monotone and submultiplicative, the results in [13] imply

Corollary 2.

Corollary 2. Let F be an independence system on E with n = |E|. If a weight function
w : 2E → R+ is monotone submodular, then F has a 1

µ(F)1/4O(
√
n logn)

-robust independent set

with respect to w. In particular, if w is a matroid rank function, it has a 1
µ(F)1/4

√
n+1

-robust

independent set. In either case, such robust sets can be computed in polynomial time and number
of queries if P(F) is polynomially solvable.

In addition, we obtain a corollary when a weight w is convex and quadratic.

Corollary 3. Let F be an independence system on E with n = |E|, and let w : 2E → R+ be
a convex quadratic function, i.e., a function defined by w(X) =

∑
i,j∈X aij for X ⊆ E with

a positive definite matrix A = (aij) ∈ RE×E. Then F has a λmin√
µ(F)λmax

-robust independent

set with respect to w, where λmax and λmin are the maximum and minimum eigenvalues of A,
respectively.

Proof. It is not difficult to see that

λmin|X| ≤ w(X) ≤ λmax · |X|,

where λmax and λmin denote the maximum and minimum eigenvalues of A, respectively. There-
fore, by taking h(x) = λmin · x and q = 1, we have Corollary 3.

5 Robust Independence Systems with Separable ConcaveWeight

This section deals with an independence system in ZE
+, that is, the family F of vectors in ZE

+

such that 0 ∈ F , and, for x, y ∈ ZE
+ with x ≤ y, y ∈ F implies x ∈ F . Here, x ≤ y for

two vectors x, y denotes x(i) ≤ y(i) for all i ∈ E. A vector x ∈ F is called independent, and
k-independent if x(E) ≤ k in addition, where x(J) =

∑
i∈J x(i) for J ⊆ E.

For two vectors x, y in ZE
+, we define x ∧ y and x ∨ y to be vectors such that (x ∧ y)(i) =

min(x(i), y(i)) and (x ∨ y)(i) = max(x(i), y(i)) for i ∈ E, respectively. Then, in a similar way
to one in the Boolean lattice, we introduce the µ-exchangeability of an independence system F
in ZE

+. We say that F is µ-exchangeable if it satisfies

∀x, y ∈ F , ∀i ∈ Γ(y − x ∧ y), ∃z ∈ ZE
+ such that z ≤ x− x ∧ y, z(E) ≤ µ and x+ χi − z ∈ F ,
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where χi for i ∈ E is a unit vector such that χi(i) = 1 and χj(j) = 0 for j ̸= i. The minimum
µ that satisfies the condition above is denoted by µ(F).

In this section, we focus on maximizing a separable concave function over an independence
system F in ZE . We say that a function w : ZE → R+ is separable concave if w can be written
as w(x) =

∑
i∈E wi(x(i)) for some one-dimensional concave functions wi : R → R+ for i ∈ E.

In this paper, we assume that wi(0) = 0 and monotonicity.
For a separable concave function w with a positive integer k, we define a function w≤k :

ZE → R+ as
w≤k(x) = max{w(y) | y ≤ x, y(E) ≤ k}.

For a real number α > 0, we say that an independent vector x is α-robust if for each k, w≤k(x)
is at least α times the maximum weight of k-independent vectors in F .

We then extend Theorem 6 as follows. For a separable concave function w and b ∈ R+, we
define wb : ZE

+ → R+ as follows:

wb(x) =
∑
i∈E

x(i)∑
t=1

(wi(t)− wi(t− 1))b.

Note that if w is linear, i.e., w(x) =
∑

i∈E w(i)x(i) for some vector w ∈ RE
+, then wb is equal to

wb(x) =
∑

i∈E w(i)bx(i). The following theorem is a generalization of Theorem 6.

Theorem 8. Let F be a bounded independence system in ZE
+ and w be a separable concave

function. Then, for b ≥ 1, a wb-optimal independent vector is min{1, 1/µβ, 1/µ1−β}-robust with
respect to w, where β = 1/b.

Proof. We reduce to the case of an independence system in the Boolean lattice. Let Ni =
maxx∈F x(i) for i ∈ E. Define an independence system H as follows. The ground set S is
defined to be S =

∪
i∈E Si, where Si = {e1i , . . . , e

Ni
i }, and H ⊆ 2S is to be H =

∪
x∈F {X ⊆ S |

|X ∩ Si| = x(i), ∀i ∈ E}. It is not difficult to see µ(F) = µ(H).
For a given separable concave function w, define a weight vector u ∈ RS

+ to be u(eji ) =
wi(j) − wi(j − 1) for i ∈ E and j ∈ {1, . . . , Ni}. Note that, since w is separable concave,
u(eji ) ≥ u(ej+1

i ) holds for i ∈ E and j ∈ {1, . . . , Ni−1}. Then a wb-optimal independent vector,

say x∗, corresponds to the set X∗ in H with X∗ ∩ Si = {e1i , . . . , e
x∗(i)
i } for i ∈ E and ub(X∗) =

wb(x∗). This set X∗ is in fact ub-optimal, because H has a ub-optimal independent set J with

J ∩ Si = {e1i , . . . , e
|J∩Si|
i }. Similarly, for each size k, we can take a w-optimal k-independent

vector x(k) and the corresponding u-optimal k-independent set X(k) with u(X(k)) = w(x(k)).
It follows from Theorem 6 that X∗ is α(H)-robust with respect to u, where α(H) is equal to

min{1, 1/µ(H)β, 1/µ(H)1−β}. That is, for each size k, it holds that u≤k(X
∗) ≥ α(H)u(X(k)).

By u≤k(X
∗) = w≤k(x

∗), we have w≤k(x
∗) ≥ α(H)w(x(k)) = α(F)w(x(k)). Thus Theorem 4

holds.

By setting b = 2 in the above theorem, we obtain Theorem 4.
Theorem 4 has applications as the following corollary. To prove (i), we exploits well-known

properties of polymatroids. See e.g., [8] for the properties.

Corollary 4. (i) Let f : 2E → Z+ be a monotone submodular function, and F be the set of
integral vectors in P(f), where P(f) = {x ∈ RE

+ |
∑

i∈J x(i) ≤ f(J), ∀J ⊆ E} denotes the
polymatroid. Then it is 1-robust.

(ii) Let fi : 2E → Z+ (i = 1, . . . , p) be monotone submodular functions, and F be the set of
integral vectors in

∩p
i=1 P(fi). Then it is 1/

√
p-robust.
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(iii) Let F be the set of feasible vectors of {x ∈ Zn
+ | Ax ≤ b}, where A ∈ Rd×n

+ and b ∈ Rd
+.

Then F is 1/
√

µ(A)-robust.

Proof. (i) We first claim that F is 1-exchangeable. Since Lemma 1 also holds for bounded
independence systems in integral lattice, it suffices to discuss the exchangeability of two maximal
vectors x, y in F . Note that x and y are known to be contained in the base polytope, i.e.,
B(f) = {x ∈ P(f) | x(E) = f(E)}. This fact implies that, for i ∈ Γ(y − x ∧ y), there exists
j ∈ Γ(x− x∧ y) such that x+ χi − χj ∈ F . Thus F is 1-exchangeable, and hence, by Theorem
4, F has a 1-robust independent vector. Thus (i) holds. (ii) easily follows from (i). (iii) is the
same as the Boolean case.
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[10] T. Fukunaga, M. Halldórsson, and H. Nagamochi, Robust cost colorings, Proceed-
ings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008),
2008, pp. 1204–1212.

[11] H. N. Gabow, An efficient reduction technique for degree-constrained subgraph and bidi-
rected network flow problems, Proceedings of the 15th ACM Symposium on Theory of
Computing (STOC 1983), 1983, pp. 448–456.

17



[12] G. Goel, C. Karande, R. Tripathi, and L. Wang, Approximability of combinato-
rial problems with multi-agent submodular cost functions, Proceedings of the 50th Annual
Symposium on Foundations of Computer Science (FOCS 2009), 2009.

[13] M. X. Goemans, N. J. A. Harvey, S. Iwata, and V. Mirrokni, Approximating
submodular functions everywhere, Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009), 2009, pp. 535–544.

[14] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinato-
rial Optimization, Springer-Verlag, 2nd ed., 1993.

[15] R. Hassin and S. Rubinstein, Robust matchings, SIAM Journal on Discrete Mathemat-
ics, 15 (2002), pp. 530–537.

[16] R. Hassin and D. Segev, Robust subgraphs for trees and paths, ACM Transaction on
Algorithms, 2 (2006), pp. 263–281.
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