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Abstract

Hexagonal population distributions of several sizes are shown to be self-

organized from a uniformly inhabited state, which is modeled by a system of

places (cities) on a hexagonal lattice. Microeconomic interactions among the

places are expressed by a core–periphery model in new economic geography.

Lösch’s ten smallest hexagonal distributions in central place theory are guar-

anteed to be existent by equivariant bifurcation analysis on D6 +̇ (Zn × Zn),

and are obtained by computational analysis. The missing link between cen-

tral place theory and new economic geography has thus been discovered in

light of the bifurcation analysis.
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1 Introduction

In central place theory of economic geography,1 self-organization of hexagonal
market areas of three kinds shown in Fig. 1 was proposed by Christaller (1966) [6]
based on market, traffic, and administrative principles. The ten smallest hexagons
shown in Fig. 2 were presented as fundamental sizes of market areas by Lösch
(1954) [27]. The assemblage of hexagonal market areas with different sizes is ex-
pected to produce hierarchical hexagonal distributions of the population of places
(cities, towns, villages, etc.).

3
4

(a)k = 3 system (b) k = 4 system

(c) k = 7 system

Figure 1: Three systems predicted by Christaller (the area of a circle indicates the

size of population)

In economics, a criticism on central place theory is raised that it is not derived
from market equilibrium conditions (Fujitaet al., 1999, p.27 [14]). Early studies
of the formation of patterns were conducted by Clarke & Wilson (1985) [7] and
Munz & Weidlich (1990) [29]. Hexagonal distributions, as envisioned with central
place theory, were inferred to be self-organized in core–periphery models in two
dimensions by Krugman (1996) [25]. Core–periphery models are capable of ex-
pressing the migration of population among cities underpinned by microeconomic
mechanism (Krugman, 1991 [23] and Combeset al., 2008 [8]). Yet most studies
for these models were confined to overly simplified geometry of two-city case. To
transcend the two-city case, studies on the racetrack economy, which comprises a

1For books and reviews for central place theory, see, for example, Lösch (1954) [27], Lloyd and

Dicken (1972) [28], Isard (1975) [20], and Beavon (1977) [2].
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Figure 2: L̈osch’s ten smallest hexagons (b = d/
√

3)

system of identical cities spread uniformly around the circumference of a circle,
have been conducted: Krugman (1993 [24], 1996 [25]) conducted local analysis
(linearized eigenproblem) of the racetrack economy to identify the emergence of
several bifurcating spatial frequencies, and Tabuchi and Thisse (2011) [36] have
shown the occurrence of spatial period doubling bifurcation cascade for this econ-
omy. The description of this cascade as a hierarchical bifurcation of Dn-symmetric
system withn = 2m is under way (Ikeda, Akamatsu & Kono, 2011 [18]).

Hexagonal patterns have been observed for several physical phenomena, in-
cluding: the B́enard problem (B́enard, 1900 [3]), and the Faraday experiment (Ku-
drolli, Pier & Gollub, 1998 [26]). The hexagonal patterns in the planar Bénard
problem were studied by Sattinger (1978) [31] under a simplifying assumption
that solutions are doubly periodic with respect to a hexagonal lattice. Mathematical
analysis is conducted on the the D6 +̇ T2-symmetric hexagonal lattice with periodic
boundary conditions (Buzano & Golubitsky, 1983 [4]), where D6 is the dihedral
group expressing local hexagonal symmetry and T2 is the two-torus of translation
symmetries. Equivariant bifurcation analysis of six- and twelve-dimensional ir-
reducible representations of the group D6 +̇ T2 has been conducted to search for
possible bifurcated patterns:

• For six-dimensional ones, hexagons, as well as rolls and triangles, are shown
to be existent (Buzano & Golubitsky, 1983 [4]; Dionne & Golubitsky, 1992
[10]; Golubitsky & Stewart, 2002 [16]).
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• For twelve-dimensional ones, simple hexagons and super hexagons are shown
to be existent (Kirchg̈assner, 1979 [22]; Dionne, Silber & Skeldon, 1997
[11]; Judd & Silber, 2000 [21]).

During the course of this, equivariant branching lemma has come to be used as a
pertinent means in guaranteeing the existence of a bifurcated solution of a given
symmetry (Vanderbauwhede, 1980 [37]; Golubitsky, Stewart & Schaeffer, 1988
[17]). Nonlinear competition between hexagonal and triangular patterns were stud-
ied (Skeldon & Silber, 1998 [35]; Silber & Proctor, 1998 [34]). Bifurcated patterns
of a honeycomb structure were classified in Saiki et al. (2005) [30] and Ikeda &
Murota (2010, Chapter 16) [19].

The objective of this paper is to demonstrate the self-organization of Lösch’s
ten smallest hexagons in Fig. 2 for a core–periphery model in two dimensions. It is
an important information drawn from the study of the hexagonal patterns by equiv-
ariant bifurcation theory that the two-city with D2-symmetry and the racetrack with
Dn-symmetry, which are currently used for the study of core–periphery modes, are
insufficient as spatial platforms for the hexagonal distributions for these models.
As a pertinent spatial platform, we use a hexagonal lattice with periodic bound-
aries that comprises uniformly distributedn× n places that are connected by roads
of the same length forming a regular-triangular mesh. The mechanism of microe-
conomic interactions and migration of workers among the places are expressed by a
core–periphery model. The equivariant bifurcation analysis is conducted on a finite
group D6 +̇ (Zn ×Zn) that represents the symmetry of uniformly inhabited state of
the workers. In comparison with the group D6 +̇ T2, the symmetries of bifurcated
solutions of which have been thoroughly obtained in the aforementioned literature,
the study of D6 +̇ (Zn × Zn) poses some additional issues such as the values ofn
that give the patterns of interest. To be specific, the values ofn, the multiplicity
of bifurcation points, and irreducible representations corresponding to Lösch’s ten
smallest hexagons are given and classified. Although there are bifurcation points
of various kinds, those which produce the hexagonal patterns are identified and
the emergence of those hexagons is successfully demonstrated by computational
bifurcation analysis.

This paper is organized as follows: A system of places that is uniformly spread
on an infinite hexagonal lattice in two dimensions is modeled in Section 2. Sec-
tion 3 introduces a core–periphery model and predicts its bifurcation mechanism
producing hexagonal distributions by group-theoretic bifurcation theory. Group-
theoretical prediction of hexagonal distributions for D6 +̇ (Zn × Zn)-symmetric
system is carried out in Section 4. Computational bifurcation analysis of then× n
hexagonal lattice is conducted to find bifurcated patterns that represent hexago-
nal market areas in Section 5. Details of the core–periphery model are given in
Appendix A. Equivariant bifurcation analysis of twelve-dimensional irreducible
representations is carried out in Appendix B.
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Figure 3: Hexagonal lattice

2 System of places on a hexagonal lattice

We introduce in this section ann × n hexagonal lattice with periodic boundaries
comprising a system of uniformly distributedn × n places, and prescribe groups
expressing the symmetry of this lattice. As a spatial configuration of a system of
places, we use the hexagonal lattice because it is geometrically consistent with the
hexagonal market areas that are predicted to appear in the literature of economic
geography (L̈osch, 1954, pp.133–134 [27]).

2.1 Hexagonal lattice

Figure 3 portrays the hexagonal lattice, which comprises regular triangles and
which covers an infinite two-dimensional domain. A place is allocated at each
node of this lattice, expressed by

p= n1ℓ1 + n2ℓ2, (n1,n2 ∈ Z),

whereℓ1 = (d,0)⊤ andℓ2 = (−d/2,d
√

3/2)⊤ are oblique basis vectors (d is the
length of these vectors);Z is the set of integers.

In this paper, we consider a finiten×n hexagonal lattice with periodic boundary
conditions: an example forn = 2 is shown by the dashed lines in Fig. 3. A system
of n× n places are allocated at hexagonal lattice points

p= n1ℓ1 + n2ℓ2, (n1,n2 = 0, 1, · · · , n− 1)

in a finite two-dimensional domain. Neighboring places, in view of the periodic
boundaries, are connected by straight lines2 of equal lengthd to form a regular-
triangular meshes.

2These stright lines are interpreted as roads in the core–periphery model in§3.1.
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2.2 Two-dimensional periodicity and hexagonal distributions

If the population distribution of a system of places (i.e., a subset of nodes) has
two-dimensional periodicity, then we can set a pair of independent vectors

(t1, t2), (1)

called the spatial period vectors, such that the system remains invariant under the
translations associated with these vectors. The spatial periods (T1,T2) are defined
as

Ti = ∥t i∥, (i = 1, 2).

The tilted angleφ betweenℓ1 and t1 is defined as

cosφ =
(ℓ1)⊤ t1

∥t1∥
. (2)

Although the choice of the vectors (t1, t2) is not unique,T1 andT2 must be chosen
to be as small as possible, and then to choose the smallest non-negativeφ.

To consider hexagonal distributions among possible doubly-periodic distribu-
tions, we specifically examine (t1, t2) of the form

t1 = αℓ1 + βℓ2, t2 = −βℓ1 + (α − β)ℓ2, (α, β ∈ Z), (3)

for which T1 = T2(≡ T) is satisfied and the angle betweent1 and t2 is 2π/3. The
associated normalized spatial period is given by

T/d =
√

(α − β/2)2 + (β
√

3/2)2 =
√
α2 − αβ + β2. (4)

We consider a positive integer

a = α2 − αβ + β2, (5)

which can take some specific integer values, such as 1, 3, 4, 7,. . . , and rewrite the
normalized spatial period in (4) as

T/d =
√

a, (6)

which takes some specific values, such as
√

1,
√

3,
√

4,
√

7, . . ., and lies in the
range 1≤ T/d ≤ n in ann× n system. We refer to the hexagonal distribution with
a = 1 as the uniform distribution (Fig. 4(a)). In particular,a = 3, 4, 7 correspond
respectively to Christaller’sk = 3, 4, 7 systems (Fig. 4(b)–(d)). The values of
(α, β) for these systems are given, for example, for Lösch’s ten smallest hexagons
as listed in Table 1. The tilted angleφ in (2) for the hexagonal distributions is given
by

φ = arcsin

 β
√

3/2√
α2 − αβ + β2

 , (7)
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Table 1: The values of (α, β), tilted angleφ, type of hexagon, local and translational

symmetries, and compatiblen for Lösch’s ten smallest hexagons

Tilted Type of Local Translational Lattice size
a (α, β) angle hexagons symmetry symmetry n M

φ G′local G′trans (m= 1,2, . . .)

3 (2,1) π/6 M ⟨r, s⟩ ⟨p2
1p2, p−1

1 p2⟩ 3m 2

4 (2,0) 0 V ⟨r, s⟩ ⟨p2
1, p

2
2⟩ 2m 3

7 (3,1) 0.106π Tilted ⟨r⟩ ⟨p3
1p2, p−1

1 p2
2⟩ 7m 12

9 (3,0) 0 V ⟨r, s⟩ ⟨p3
1, p

3
2⟩ 3m 6

12 (4,2) π/6 M ⟨r, s⟩ ⟨p4
1p2

2, p
−2
1 p2

2⟩ 6m 6

13 (4,1) 0.077π Tilted ⟨r⟩ ⟨p4
1p2, p−1

1 p3
2⟩ 13m 12

16 (4,0) 0 V ⟨r, s⟩ ⟨p4
1, p

4
2⟩ 4m 6

19 (5,2) 0.130π Tilted ⟨r⟩ ⟨p5
1p2

2, p
−2
1 p3

2⟩ 19m 12

21 (5,1) 0.061π Tilted ⟨r⟩ ⟨p5
1p2, p−1

1 p4
2⟩ 21m 12

25 (5,0) 0 V ⟨r, s⟩ ⟨p5
1, p

5
2⟩ 5m 6

and its values are listed in Table 1. With reference to the tilted angleφ defined by
(7), we can classify hexagonal distributions into

hexagonal distributions of type V, φ = 0, a = 4, 9, 16,25,
hexagonal distributions of type M, φ = π/6, a = 3, 12,
tilted hexagonal distributions, otherwise, a = 7, 13,19, 21,

(8)

in which “V” signifies that the vertices of the hexagons are located on thex-axis
and “M” denotes that midpoints of sides of the hexagons are located on thex-axis.
The classification of hexagonal distributions is listed in Table 1. The translational
symmetry and the compatible value ofn listed in this table are derived later in§2.3.

2.3 Groups expressing the symmetry

For the study of the agglomeration pattern of population distribution on then × n
hexagonal lattice, we use group-theoretic bifurcation theory: an established math-
ematical tool for investigating pattern formation. In this theory, the symmetries
of possible bifurcated solutions are determined with resort to the group that labels
the symmetry of the system. Hence the first step of the bifurcation analysis is to
identify the underlying group.
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(a)a = 1, type V, (α, β) = (1,1) (b)a = 3, type M, (α, β) = (2,1)

(Christaller’sk = 3 system)

(c) a = 4, type V, (α, β) = (2,0) (d)a = 7, tilted, (α, β) = (3,1)

(Christaller’sk = 4 system) (Christaller’sk = 7 system)

Figure 4: Hexagonal distributions on the hexagonal lattice
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2.3.1 Symmetry of then× n hexagonal lattice

Symmetry of then×n hexagonal lattice is characterized by invariance with respect
to:

• r: counterclockwise rotation about the origin at an angle ofπ/3.

• s: reflectiony 7→ −y.

• p1: periodic translation along theℓ1-axis (i.e., thex-axis).

• p2: periodic translation along theℓ2-axis.

Consequently, the symmetry of the hexagonal lattice is described by the group

G = ⟨r, s, p1, p2⟩, (9)

where⟨· · · ⟩ denotes a group generated by the elements therein, with the fundamen-
tal relations given by

r6 = s2 = (rs)2 = p1
n = p2

n = e,
rp1 = p1p2r, rp2 = p−1

1 r, sp1 = p1s, sp2 = p−1
1 p−1

2 s, p2p1 = p1p2,

wheree is the identity element. Each element ofG can be represented uniquely in
the form of

slrmp1
i p2

j , i, j ∈ {0, . . . , n− 1}; l ∈ {0, 1}; m ∈ {0,1, . . . , 5}.

(For group theory, see Curtis & Reiner, 1962 [9]; Serre, 1977 [33].)
The groupG contains the dihedral group⟨r, s⟩ ≃ D6 and cyclic groups⟨p1⟩ ≃

Zn and⟨p2⟩ ≃ Zn as its subgroups. Moreover, it has the structure of semidirect
product of D6 by Zn × Zn, which is denoted as

G = D6 +̇ (Zn × Zn) (10)

or G = D6 n (Zn × Zn) in another notation. This means, in particular, that⟨p1, p2⟩
is a normal subgroup ofG.

Remark 2.1. For the group D6 +̇ T2, where T2 denotes the two-dimensional torus,

a thorough classification of the symmetries of bifurcated solutions has been ob-

tained in the literature using the standard approach based on the equivariant branch-

ing lemma (see Buzano & Golubitsky, 1983 [4] and Dionne, Silber & Skeldon,

1997 [11]). Naturally, this is closely related to the present study of the bifurcation

problem equivariant to D6 +̇ (Zn × Zn). Considering discrete case, with finiten,

poses some additional issues. For example, we may be concerned with the values

of n that give the patterns of interest, which are important in computational studies.

�
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2.3.2 Subgroups

Among many subgroups ofG = ⟨r, s, p1, p2⟩ = D6 +̇ (Zn × Zn), we are interested
in those subgroups expressing Lösch’s ten smallest hexagons. Such subgroupsG′

are represented as the semidirect product of a subgroupG′local of D6 by a subgroup
G′transof Zn × Zn; i.e.,

G′ = G′local +̇G′trans. (11)

For example,G′local = ⟨r, s⟩ andG′trans= ⟨p2
1p2, p−1

1 p2⟩ for the system witha = 3. It
should be clear thatG′local represents the local symmetry andG′transthe translational
symmetry.

The local symmetry of the hexagons of Type V or Type M is described by
G′local = ⟨r, s⟩. The tilted hexagons, lacking in reflection symmetrys, have the
local symmetry ofG′local = ⟨r⟩. Thus the classification of hexagons in (8) gives

G′local =

{
⟨r, s⟩ for a = 3,4,9,12, 16, 25,
⟨r⟩ for a = 7,13, 19, 21.

The translational symmetry is given as

G′trans= ⟨pα1 pβ2, p
−β
1 pα−β2 ⟩.

Hereα andβ are the nonnegative integers in (3), which are listed in Table 1. From
this translational symmetry we can derive a compatibility condition on the sizen
of the hexagonal lattice for specifieda value. For example,

• For a = 3 with (α, β) = (2,1), we have (p2
1p2) × (p−1

1 p2)−1 = p3
1, which

represents a translation in the direction of theℓ1-axis at the length of 3d;
accordingly,n must be a multiple of 3. The spatial period vectors are given
by (t1, t2) = (2ℓ1 + ℓ2,−ℓ1 + ℓ2). The spatial period elongates asT/d = 1→√

3 (=
√

a).

• For a = 4 with (α, β) = (2,0), the symmetry ofp2
1 and p2

2 implies thatn is
a multiple of 2. The spatial period vectors are given by (t1, t2) = (2ℓ1, 2ℓ2).
The spatial period elongates asT/d = 1→

√
4 (=
√

a).

• For a = 7 with (α, β) = (3, 1), we have (p3
1p2)2 × (p−1

1 p2
2)−1 = p7

1, from
which follows thatn is a multiple of 7. The spatial period vectors are given
by (t1, t2) = (3ℓ1 + ℓ2,−ℓ1 + 2ℓ2). The spatial period elongates asT/d =
1→

√
7 (=
√

a).

Likewise, fora = 9, 12, 13, 16, 19, 21, 25, respectively, compatiblen is a multiple
of 3, 6, 13, 4, 19, 21, 5, as listed in Table 1.

Example 2.1. For n = 3, the population distributionh for a = 3 is given uniquely

as

h = (b, c, c; c, c,b; c, b, c)⊤, (12)
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where (b, c) = (1/9+ 2δ,1/9− δ) with −1/18≤ δ ≤ 1/9. This distribution has the

symmetryG′ = ⟨r, s, p2
1p2, p−1

1 p2⟩ with G′local = ⟨r, s⟩ andG′trans= ⟨p2
1p2, p−1

1 p2⟩ =
⟨p2

1p2⟩. The population distributionh for n = 3m (m = 2, 3, . . .) can be obtained

by spatially repeating the distribution in (12) for (b, c) = (1/n2 + 2δ,1/n2 − δ) with

−1/(2n2) ≤ δ ≤ 1/n2. �

Example 2.2. For n = 7, the population distributionh for the hexagonal distribu-

tion with a = 7 is given uniquely as

h = (b, c, c, c, c, c, c; c, c, c, b, c, c, c; c, c, c, c, c, c, b; c, c, b, c, c, c, c;

c, c, c, c, c,b, c; c,b, c, c, c, c, c; c, c, c, c, b, c, c)⊤,
(13)

where (b, c) = (1/49+6δ,1/49− δ) with −1/294≤ δ ≤ 1/49. This distribution has

the symmetryG′ = ⟨r, p3
1p2, p−1

1 p2
2⟩ with G′local = ⟨r⟩ andG′trans= ⟨p3

1p2, p−1
1 p2

2⟩ =
⟨p3

1p2⟩. The population distributionh for n = 7m (m = 2, 3, . . .) can be obtained

by spatially repeating the distribution in (12) for (b, c) = (1/n2 + 6δ,1/n2 − δ) with

−1/(6n2) ≤ δ ≤ 1/n2. �
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3 Core–periphery model and bifurcation

In this section, we present a multi-regional core–periphery model. The group-
equivariance of this model for the system of places is introduced and the mecha-
nism of bifurcation producing hexagonal distributions is studied. Details are given
in Appendix A.

3.1 Core–periphery model

We employ a core–periphery model by Forslid & Ottaviano (2003) [13] that re-
places the production function of Krugman with that of Flam & Helpman (1987)
[12].

The economy is composed ofK places (labeledi = 1, . . . ,K), two factors
of production (skilled and unskilled labor), and two sectors (manufacture M and
agriculture A). There,H skilled andL unskilled workers consume two final goods:
manufactural-sector goods and agricultural-sector goods. Workers supply one unit
of each type of labor inelastically; hereH is a constant expressing the total number
of skilled workers. Skilled workers are mobile across places, and the number of
skilled workers in placei is denoted byhi . Unskilled workers are immobile and
equally distributed across all places with the unit density (i.e.,L = 1× K). Hence
the population in placei is equal tohi + 1.

The governing equation of this model is formulated in a standard form of static
equilibrium as

F(h, τ) = HP(h) − h = 0. (14)

Thereinh = (hi) ∈ RK is aK-dimensional vector expressing the population distri-
bution of the skilled workers,τ ∈ R is a (bifurcation) parameter corresponding to
the transport parameter, andF: RK × R → RK is a sufficiently smooth nonlinear
function inh andτ; P = (Pi) ∈ RK is aK-dimensional vector given by

Pi(h, τ) ≡
exp[θvi(h, τ; µ, σ)]∑K

j=1 exp[θv j(h, τ; µ, σ)]
, i = 1, . . . ,K, (15)

whereθ is the constant representing the inverse of variance of the idiosyncratic
tastes,µ is the constant expenditure share on industrial varieties,σ expresses the
constant elasticity of substitution between any two varieties, andvi(h, τ; µ, σ) (i =
1, . . . ,K) are nonlinear functions representing the components of an indirect utility
function vectorv(h, τ; µ, σ).

The equalityH =
∑K

i=1 hi is satisfied by any solution of (14) because
∑K

i=1 Pi(h, τ) =
1 by (15). As a normalization we putH = 1 in the subsequent analysis.

3.2 Exploiting symmetry of core–periphery model

For investigation of the patterns of the bifurcated solutions, it is crucial to formu-
late the symmetry that is inherent in the governing equation. In group-theoretic
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bifurcation theory, the symmetry of the equation for the system ofn× n places on
the hexagonal lattice is described as

T(g)F(h, τ) = F(T(g)h, τ), g ∈ G, (16)

in terms of an orthogonal matrix representationT of groupG = ⟨r, s, p1, p2⟩ in
(9) on theK-dimensional spaceRK . The condition (or property) (16) is called the
equivariance ofF(h, τ) to G. The most important consequence of the equivariance
(16) is that the symmetries of the whole set of possible bifurcated solutions can be
obtained and classified.

In our study of a system ofn× n places on the hexagonal lattice, each element
g of G acts as a permutation among place numbers (1, . . . ,K) for K = n2 and hence
eachT(g) is a permutation matrix. Then we can show the equivariance (16) of the
core–periphery model toG = ⟨r, s, p1, p2⟩ = D6 +̇ (Zn × Zn).
Proof. By expressing the action ofg ∈ G asg : i 7→ i∗ for place numbersi andi∗,
we havevi(T(g)h, τ) = vi∗(h, τ) andPi(T(g)h, τ) = Pi∗(h, τ) by (15) for anyg ∈ G.
Therefore, we have

Fi(T(g)h, τ) = HPi(T(g)h, τ) − hi∗ = HPi∗(h, τ) − hi∗ = Fi∗(h, τ).

This proves the equivariance (16). �
The group-theoretic bifurcation analysis proceeds as follows. Consider a criti-

cal point (hc, τc) of multiplicity M (≥ 1), at which the Jacobian matrix ofF hasM
zero eigenvalues. Throughout this paper we assume that a critical point is generic
(or group-theoretic) in the sense that theM-dimensional kernel space of the Jaco-
bian matrix is irreducible with respect to the representationT. See Remark 3.1.

Using a standard procedure called theLiapunov–Schmidt reduction with sym-
metry(Sattinger, 1979 [32]; Golubitsky, Stewart & Schaeffer, 1988 [17]; Ikeda &
Murota, 2010 [19]), the full system of equations

F(h, τ) = 0 (17)

in h ∈ RK (see (14)) is reduced, in a neighborhood of (hc, τc), to a system ofM
equations (called bifurcation equations)

F̃(w, τ̃) = 0 (18)

in w ∈ RM, whereF̃ : RM × R → RM is a function and̃τ = τ − τc denotes the
increment ofτ. In this reduction process the equivariance of the full system, which
is formulated in (16), is inherited by the reduced system (18) in the following form:

T̃(g)F̃(w, τ̃) = F̃(T̃(g)w, τ̃), g ∈ G, (19)

whereT̃ is the subrepresentation ofT on theM-dimensional kernel space of the
Jacobian matrix. The symmetry of the kernel space, sometimes referred to as the

13



kernel symmetry, is expressed by the subgroup{g ∈ G | T̃(g) = I }. It is this inheri-
tance of symmetry that plays a key role in determining the symmetry of bifurcating
solutions.

The reduced equation (18) is to be solved forw asw = w(̃τ), which is often
possible by virtue of the symmetry of̃F described in (19). Since (w, τ̃) = (0, 0)
is a singular point of (18), there can be many solutionsw = w(̃τ) with w(0) = 0,
which gives rise to bifurcation. Eachw uniquely determines a solutionh of the full
system (17).

The symmetry ofh is represented by a subgroup ofG defined by

Σ(h) = Σ(h; G,T) = {g ∈ G | T(g)h = h}, (20)

called the isotropy subgroup ofh. The isotropy subgroupΣ(h) can be computed in
terms of the symmetry of the correspondingw as

Σ(h; G,T) = Σ(w; G, T̃), (21)

where
Σ(w; G, T̃) = {g ∈ G | T̃(g)w = w}. (22)

The relation (21) enables us to determine the symmetry of bifurcated solutionsh
through the analysis of bifurcation equations inw.

Remark 3.1. The numberNd of d-dimensional irreducible representations ofG =

D6 +̇ (Zn × Zn) is given as follows:

n \ d 1 2 3 4 6 12

N1 N2 N3 N4 N6 N12

6m 4 4 4 1 2n− 6 (n2 − 6n+ 12)/12

6m± 1 4 2 0 0 2n− 2 (n2 − 6n+ 5)/12

6m± 2 4 2 4 0 2n− 4 (n2 − 6n+ 8)/12

6m± 3 4 4 0 1 2n− 4 (n2 − 6n+ 9)/12

Herem is a positive integer. For some values ofn (treated in Section 5), the num-

bersNd of thed-dimensional irreducible representations are listed in Table 2.�

Remark 3.2. Simple bifurcation points do not play a role in the present analysis.

The one-dimensional irreducible representations of the groupG = ⟨r, s, p1, p2⟩ in

(9), which we label as (+,+), (+,−), (−,+), and (−,−), are given by

T(+,+)(r) = 1, T(+,+)(s) = 1, T(+,+)(p1) = 1, T(+,+)(p2) = 1,

T(+,−)(r) = 1, T(+,−)(s) = −1, T(+,−)(p1) = 1, T(+,−)(p2) = 1,

T(−,+)(r) = −1, T(−,+)(s) = 1, T(−,+)(p1) = 1, T(−,+)(p2) = 1,

T(−,−)(r) = −1, T(−,−)(s) = −1, T(−,−)(p1) = 1, T(−,−)(p2) = 1.
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Table 2: NumberNd of d-dimensional irreducible representations of D6 +̇ (Zn×Zn)

n \ d 1 2 3 4 6 12

N1 N2 N3 N4 N6 N12
∑

Nd

2 4 2 4 10

3 4 4 1 2 11

4 4 2 4 4 14

5 4 2 8 14

6 4 4 4 1 6 1 20

7 4 2 12 1 19

8 4 2 4 12 2 24

9 4 4 1 14 3 26

10 4 2 4 16 4 30

11 4 2 20 5 31

12 4 4 4 1 18 7 38

13 4 2 24 8 38

14 4 2 4 24 10 44

15 4 4 1 26 12 47

16 4 2 4 28 14 52

17 4 2 32 16 54

18 4 4 4 1 30 19 62

19 4 2 36 21 63

20 4 2 4 36 24 70

21 4 4 1 38 27 74
...

...
...

...
...

...
...

...

25 4 2 48 40 94
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In general (+,+) is associated with a limit point of the bifurcation parameterτ, and

(+,−), (−,+), and (−,−) with a simple bifurcation point withΣ(h) = ⟨r, p1, p2⟩,
⟨s, p1, p2⟩, and⟨sr, p1, p2⟩, respectively. Yet, for the present definition ofh = (hi)

in §3.1 for the hexagonal lattice withn× n places, such bifurcation points are non-

existent since⟨p1, p2⟩-symmetry restrictsh to be G = ⟨r, s, p1, p2⟩-symmetric,

which corresponds to the uniform population. Alternatively, we can say in more

technical terms that the irreducible representations (+,−), (−,+), and (−,−) are not

contained in the representationT(g) for the core–periphery model. �
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4 Theoretically predicted hexagonal distributions

By using group-theoretic bifurcation theory, we present in this section a possible
bifurcation mechanism that can produce Lösch’s ten smallest hexagons (§2.2). It
is noted first that uniformly distributed population of the skilled workers, given
by h1 = · · · = hn2 = 1/n2, is the simplest hexagonal distribution associated with
the pre-bifurcation solution of the governing equation (14). The symmetry of this
solution is labeled by the group

G = ⟨r, s, p1, p2⟩ = D6 +̇ (Zn × Zn)

in (9) and (10).
The symmetry of a bifurcated solutionh of the governing equation (14), in

general, is expressed by a subgroupΣ(h) of G in (20). Among many possible sym-
metries of bifurcated solutions, we are particularly interested in those bifurcated
solutions, if any, for whichΣ(h) coincides with subgroups in (11) corresponding to
Lösch’s ten smallest hexagons (Table 1):

G′local +̇G′trans=



⟨r, s⟩ +̇ ⟨p2
1p2, p−1

1 p2⟩ for a = 3,

⟨r, s⟩ +̇ ⟨p2
1, p

2
2⟩ for a = 4,

⟨r⟩ +̇ ⟨p3
1p2, p−1

1 p2
2⟩ for a = 7,

⟨r, s⟩ +̇ ⟨p3
1, p

3
2⟩ for a = 9,

⟨r, s⟩ +̇ ⟨p4
1p2

2, p
−2
1 p2

2⟩ for a = 12,

⟨r⟩ +̇ ⟨p4
1p2, p−1

1 p3
2⟩ for a = 13,

⟨r, s⟩ +̇ ⟨p4
1, p

4
2⟩ for a = 16,

⟨r⟩ +̇ ⟨p5
1p2

2, p
−2
1 p3

2⟩ for a = 19,

⟨r⟩ +̇ ⟨p5
1p2, p−1

1 p4
2⟩ for a = 21,

⟨r, s⟩ +̇ ⟨p5
1, p

5
2⟩ for a = 25.

(23)

The main message of this section is that such bifurcated solutions do exist, and
therefore L̈osch’s ten smallest hexagons can be understood within the framework of
group-theoretic bifurcation theory. We shall see that Lösch’s ten smallest hexagons
emerge from bifurcation points of multiplicityM = 2, 3, 6, and 12, but not of
M = 1 and 4. Specifically we have

a =


3 for M = 2,
4 for M = 3,
9, 12,16, 25 for M = 6,
7, 13,19, 21 for M = 12.

Lösch’s hexagons witha = 9,12, 16,25 forM = 6 are called “hexagons” in Buzano
& Golubitsky (1983) [4] and L̈osch’s hexagons witha = 7, 13,19, 21 for M = 12
are called “simple hexagons” in Dionne, Silber & Skeldon (1997) [11].

Our analysis for specific cases are described below (Sections 4.2 to 4.5) and
mathematical analysis of the bifurcation equations at group-theoretic bifurcation
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points of multiplicity M = 12 is worked out in Appendix B. The emergence of
these hexagons is confirmed numerically in Section 5 by the computational bifur-
cation analysis of the hexagonal lattice with various sizesn.

4.1 Analysis by equivariant branching lemma

The emergence of L̈osch’s hexagons is proved by applying the equivariant branch-
ing lemma (Vanderbauwhede, 1980 [37]) to the bifurcation equationF̃(w, τ̃) in
(18); see, e.g., Golubitsky, Stewart & Schaeffer, 1988 [17] for this lemma. Recall
that bifurcation equation is associated with an irreducible representation ofG and
that the isotropy subgroupΣ(h) in (20) expressing the symmetry of a bifurcated
solutionh is identical with the isotropy subgroupΣ(w) in (22) of the correspond-
ing solutionw for the bifurcation equation, i.e.,Σ(h) = Σ(w) as shown in (21). A
subgroupΣ is said to be an isotropy subgroup ifΣ = Σ(h) for someh.

The analysis based on the equivariant branching lemma proceeds as follows:

• Specify an isotropy subgroupΣ of G for the symmetry of a possible bi-
furcated solution as well as an irreducible representationT̃ of G that can
possibly be associated with the bifurcation point.

• Obtain the fixed-point subspace Fix(Σ) for the isotropy subgroupΣ with re-
spect to the irreducible representationT̃, where

Fix(Σ) = {w ∈ RM | T̃(g)w = w for all g ∈ Σ}. (24)

• Calculate the dimension dim Fix(Σ) of this subspace.

• If dim Fix(Σ) = 1, a bifurcated solution with symmetryΣ is guaranteed to
exist generically by the equivariant branching lemma. If dim Fix(Σ) = 0, a
bifurcated solution with symmetryΣ is non-existent. If dim Fix(Σ) ≥ 2, no
definite conclusion can be reached by the equivariant branching lemma.

Isotropy subgroups with dim Fix(Σ) = 1 are calledaxial subgroupsand the asso-
ciated spatially doubly periodic solutions are calledaxial planforms(Golubitsky,
Dionne & Stewart, 1994 [15]).

In our present analysis, we employ the above procedure withΣ = G′ for each
G′ in (23) and for each irreducible representationT̃ of G; note that eachG′, rep-
resenting the symmetry of a Lösch’s hexagon, is an isotropy subgroup. Since the
dimension of̃T is eitherd = 1, 2, 3, 4, 6, or 12, the multiplicityM of the critical
point is generically either 1, 2, 3, 4, 6, or 12. The equivalent branching lemma
applies only if dim Fix(Σ) = 1. Fortunately, it will turn out (see Sections 4.2 to 4.4)
that, in all cases of our interest in (23), we have dim Fix(Σ) ≤ 1 and therefore we
can always rely on the equivalent branching lemma to determine the existence or
nonexistence of bifurcated solutions for Lösch’s ten smallest hexagons.
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4.2 Hexagon witha = 3: bifurcation point of multiplicity 2

Whenn is a multiple of 3, hexagons witha = 3 appear generically as a branch
from a double bifurcation point (M = 2) that is associated with the irreducible
representation given by

T(r) =

[
1 0
0 −1

]
, T(s) =

[
1 0
0 1

]
, T(p1) = T(p2) =

[
cos 2π/3 − sin 2π/3
sin 2π/3 cos 2π/3

]
.

(25)
This is one of the four two-dimensional irreducible representations of D6 +̇ (Zn ×
Zn) = ⟨r, s, p1, p2⟩ (Table 2).

The general procedure in Section 4.1 is applied to

Σ = ⟨r, s, p2
1p2, p

−1
1 p2⟩ = ⟨r, s⟩ +̇ ⟨p2

1p2, p
−1
1 p2⟩, (26)

which describes the symmetry of the hexagon witha = 3 (Christaller’sk = 3
system) in Fig. 4(b). The fixed-point subspace Fix(Σ) with respect tõT = T in (25)
is a one-dimensional subspace ofR2 spanned by (1, 0)⊤. Then, by the equivariant
branching lemma, there exists a bifurcated path with the symmetry of (26).

It is mentioned that the standard results for a double bifurcation point for the
dihedral group symmetry can be adapted to this case with (25). In particular, the
concrete form of the bifurcation equations can be determined and the number and
the asymptotic form of bifurcated paths can be analyzed; see Sattinger (1979) [32];
Golubitsky, Stewart & Schaeffer (1988) [17]; Ikeda & Murota (2010, Chapter 8)
[19].

Remark 4.1. Forn = 3m (m is a positive integer), there are successive bifurcations

associated with a hierarchy of subgroups

D6 +̇ (Zn × Zn)→ D6 +̇ ⟨p2
1p2, p

−1
1 p2⟩ → D6 +̇ (Zn/3 × Zn/3)→ · · ·

→ D6 +̇ ⟨p2n/3
1 pn/3

2 , p
−n/3
1 pn/3

2 ⟩ → D6 +̇ (Z1 × Z1) = D6, (27)

where→ means the occurrence of bifurcation. These successive bifurcations pro-

duce a set of nested hexagons (see computational analysis in§5.1). The spatial

period is multiplied
√

3-times successively as

T/d = 1→
√

3→ 3→ · · · → n/
√

3→ n. (28)

This fact can be proved as follows. The subgroup

D6 +̇ ⟨p2
1p2, p

−1
1 p2⟩ = D6 +̇ ⟨p2

1p2, p
3
1⟩ = D6 +̇ ⟨q1,q2⟩

(q1 = p2
1p2, q2 = p3

1) has the two-dimensional irreducible representation

T(r) =

 1 0

0 −1

 , T(s) =

 1 0

0 1

 , T(q1) =

 cos 2π/3 − sin 2π/3

sin 2π/3 cos 2π/3

 , T(q2) =

 1 0

0 1

 .
(29)
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Since the bifurcation equation equivariant with respect to (29) takes the same form

as that for the direct bifurcation associated with (25), by the analysis of this equa-

tion, we see that

Σ(h) = ⟨r, s,q3
1, q2⟩ = ⟨r, s, p6

1p3
2, p

3
1⟩ = ⟨r, s, p

3
1, p

3
2⟩. (30)

This process is repeated to prove (27). �

4.3 Hexagon witha = 4: bifurcation point of multiplicity 3

When n is a multiple of 2, hexagons witha = 4 are predicted to branch from
a triple bifurcation point that is associated with the three-dimensional irreducible
representation given as

T(r) =

 0 1 0
0 0 1
1 0 0

 , T(s) =

 1 0 0
0 0 1
0 1 0

 ; (31)

T(p1) =

 1 0 0
0 −1 0
0 0 −1

 , T(p2) =

 −1 0 0
0 1 0
0 0 −1

 . (32)

This corresponds to one of the four three-dimensional irreducible representations
of D6 +̇ (Zn × Zn) = ⟨r, s, p1, p2⟩ (Table 2).

The general procedure in Section 4.1 is applied to

Σ = ⟨r, s, p2
1, p

2
2⟩ = ⟨r, s⟩ +̇ ⟨p2

1, p
2
2⟩ ≃ D6 +̇ (Zn/2 × Zn/2), (33)

which expresses the symmetry of the hexagon witha = 4 of type V (Christaller’s
k = 4 system) in Fig. 4(c). The fixed-point subspace Fix(Σ) with respect tõT =
T in (31) and (32) is a one-dimensional subspace ofR3 spanned by (1, 1, 1)⊤.
Then, by the equivariant branching lemma, there exists a bifurcated path with the
symmetry of (33).

It is mentioned that a slight extension of a pre-existing result can be utilized
to obtain the concrete form of the bifurcation equations and the asymptotic form
of bifurcated paths. Specifically, the irreducible representation in (31) and (32) is
denoted asT(3,1) in Ikeda & Murota (2010, Chapter 16) [19], and the flower mode
solution there corresponds to the solution expressing Lösch’s hexagon witha = 4.

Remark 4.2. Forn = 2m (m is a positive integer), there are successive bifurcations

associated with a hierarchy of subgroups

D6 +̇ (Zn × Zn)→ D6 +̇ (Zn/2 × Zn/2)→ · · ·
→ D6 +̇ (Z2 × Z2)→ D6 +̇ (Z1 × Z1) = D6, (34)
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where→ means the occurrence of bifurcation. These successive bifurcations pro-

duce a set of nested hexagons (see computational analysis in§5.2). The spatial

period doubles successively as

T/d = 1→ 2→ · · · → n/2→ n, (35)

which is called spatial period-doubling bifurcation cascade. �

4.4 Hexagons witha = 9, 12, 16, 25: bifurcation point of multiplicity
6

A hexagon witha = 9, 12, 16, or 25 branches from a bifurcation point of multi-
plicity 6. The hexagons witha = 9(= 32), 16(= 42), 25(= 52) are of type V with
φ = 0, and the hexagon witha = 12 is of type M withφ = π/6.

The group D6 +̇ (Zn × Zn) = ⟨r, s, p1, p2⟩, with n ≥ 3, has 6-dimensional
irreducible representations. By defining

T(k,ℓ, j)(r) =

 S
S

S

 , T(k,ℓ, j)(s) = σ j

 I
I

I

 , (36)

T(k,ℓ, j)(p1) =

 Rk

Rℓ

R−k−ℓ

 , T(k,ℓ, j)(p2) =

 Rℓ

R−k−ℓ

Rk

 , (37)

whereσ1 = 1,σ2 = −1, and

R=

[
cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

]
, S =

[
1 0
0 −1

]
, (38)

we can designate the 6-dimensional irreducible representations by

(k, ℓ, j) = (k,0, j) with 1 ≤ k ≤ ⌊n− 1
2
⌋, j ∈ {1,2}; or (39)

(k, ℓ, j) = (k, k, j) with 1 ≤ k ≤ ⌊n− 1
2
⌋, k ,

n
3

; j ∈ {1, 2}. (40)

The action given in (36) and (37) on 6-dimensional vectors, say, (w1, · · · ,w6),
can be expressed for complex variables (z1, z2, z3) = (w1 + iw2,w3 + iw4,w5 + iw6)
as

r :

z1

z2

z3

 7→
z2

z3

z1

 , s :

z1

z2

z3

 7→
σ j z2

σ j z1

σ j z3

 , (41)

p1 :

z1

z2

z3

 7→
 ω

kz1

ωℓz2

ω−k−ℓz3

 , p2 :

z1

z2

z3

 7→
 ω

ℓz1

ω−k−ℓz2

ωkz3

 , (42)
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whereω = exp(i2π/n).
Recall from Section 2.3 that L̈osch’s hexagons witha = 9, 12, 16, 25 are

endowed with the symmetry of

Σ(α,β) = ⟨r, s⟩ +̇ ⟨pα1 pβ2, p
−β
1 pα−β2 ⟩, (43)

where

(α, β; n) =


(3,0; 3m) for a = 9,
(4,2; 6m) for a = 12,
(4,0; 4m) for a = 16,
(5,0; 5m) for a = 25.

(44)

To apply the general procedure in Section 4.1 toΣ = Σ(α,β) in (43) we search
for irreducible representations (k, ℓ, j) such that

Fix(Σ(α,β)) = {z= (z1, z2, z3) | T(k,ℓ, j)(g) · z= z for all g ∈ Σ(α,β)} (45)

is nontrivial with dim Fix(Σ(α,β)) ≥ 1. HereT(k,ℓ, j)(g) · z means the action ofg
given in (41) and (42), and the dependence of Fix(Σ(α,β)) on (k, ℓ, j) is implicit in
the notation.

Lemma 4.1. For (α, β; n) in (44) we have the following.

(i) Fix(⟨r, s⟩) = {(ρ, ρ, ρ) | ρ ∈ R} for each (k, ℓ, j) with j = 1; and

Fix(⟨r, s⟩) = {0} for each (k, ℓ, j) with j = 2.

(ii) Fix(Σ(α,β)) = {(ρ, ρ, ρ) | ρ ∈ R} holds for

(k, ℓ, j; n) =


(m, 0, 1; 3m) for a = 9,

none for a = 12,

(m, 0, 1; 4m) for a = 16,

(m, 0, 1; 5m), (2m, 0, 1; 5m) for a = 25

(46)

or

(k, ℓ, j; n) =


none for a = 9,

(m,m, 1; 6m) for a = 12,

(m,m, 1; 4m) for a = 16,

(m,m, 1; 5m), (2m,2m, 1; 5m) for a = 25.

(47)

Proof. (i) This is immediate from (41).

(ii) The invariance ofz= (z1, z2, z3) = (ρ, ρ, ρ) with ρ , 0 to pα1 pβ2 is expressed

as

kα + ℓβ ≡ 0, ℓα − (k+ ℓ)β ≡ 0, −(k+ ℓ)α + kβ ≡ 0 modn, (48)

whereas the invariance top−β1 pα−β2 as

−kβ+ ℓ(α− β) ≡ 0, −ℓβ− (k+ ℓ)(α− β) ≡ 0, (k+ ℓ)β+ k(α− β) ≡ 0 modn,
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which is equivalent to (48). For (k, ℓ) = (k,0), (48) is simplified to

kα ≡ 0, kβ ≡ 0, −kα + kβ ≡ 0 modn, (49)

and the parameter values (k, ℓ) = (k, 0) satisfying (49) in the range of (39) are

enumerated by (46). For (k, ℓ) = (k, k), on the other hand, (48) is reduced to

kα + kβ ≡ 0, kα − 2kβ ≡ 0, −2kα + kβ ≡ 0 modn, (50)

and the parameter values (k, ℓ) = (k, k) satisfying (50) in the range of (40) are

enumerated by (47). �

The following is the main result of this section.

Proposition 4.1. Lösch’s hexagons witha = 9, 12, 16, and 25 arise as bifurcated

solutions from bifurcation points of multiplicity 6 associated with the irreducible

representations given in (46) or (47).

Proof. For the parameter values in (46) or (47) we have dim Fix(Σ(α,β)) = 1 by

Lemma 4.1(ii). Then the equivariant branching lemma guarantees the existence of

a bifurcated solutionh with Σ(h) = Σ(α,β). �

Knowledge about the possible bifurcation points given in Proposition 4.1 and
Lemma 4.1 is helpful in conducting numerical analysis.

Remark 4.3. There exist no bifurcated solutions fora = 3 ora = 4 from a bifurca-

tion point of multiplicity 6. This follows from the fact that the equation (48) with

(α, β) = (2,1) or (2,0) has no solution (k, ℓ) satisfying (39) or (40). �

Remark 4.4. There exist no bifurcated solutions fora = 7, 13, 19, 21 (tilted

hexagons) from a bifurcation point of multiplicity 6. This follows from the fact

that the equation (48) with (α, β) given later in (58) has no solution (k, ℓ) satisfying

(39) or (40). �

4.5 Hexagons witha = 7, 13, 19, 21 : bifurcation point of multiplicity
12

A hexagon witha = 7, 13, 19, or 21 branches from a bifurcation point of multi-
plicity 12. These hexagons are tilted (φ , 0, π/6) in contrast to the other hexagons
obtained in Sections 4.2, 4.3, and 4.4. The emergence of such tilted hexagons is
most phenomenal in the present study.
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The group D6 +̇ (Zn × Zn) = ⟨r, s, p1, p2⟩, with n ≥ 6, has 12-dimensional
irreducible representations. We can designate them by (k, ℓ) with

1 ≤ ℓ ≤ k− 1, 2k+ ℓ ≤ n− 1, (51)

where the irreducible representation (k, ℓ) is defined as

T(k,ℓ)(r) =



S
S

S
S

S
S


, T(k,ℓ)(s) =



I
I

I
I

I
I


, (52)

T(k,ℓ)(p1) =



Rk

Rℓ

R−k−ℓ

Rk

Rℓ

R−k−ℓ


,T(k,ℓ)(p2) =



Rℓ

R−k−ℓ

Rk

R−k−ℓ

Rk

Rℓ


,

(53)
where

R=

[
cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

]
, S =

[
1 0
0 −1

]
. (54)

The action given in (52) and (53) on 12-dimensional vectors, say, (w1, · · · ,w12),
can be expressed for complex variableszj = w2 j−1 + iw2 j ( j = 1, . . . ,6) as

r :



z1

z2

z3

z4

z5

z6


7→



z3

z1

z2

z5

z6

z4


, s :



z1

z2

z3

z4

z5

z6


7→



z4

z5

z6

z1

z2

z3


, (55)

p1 :



z1

z2

z3

z4

z5

z6


7→



ωk z1

ωℓ z2

ω−k−ℓ z3

ωk z4

ωℓ z5

ω−k−ℓ z6


, p2 :



z1

z2

z3

z4

z5

z6


7→



ωℓ z1

ω−k−ℓ z2

ωk z3

ω−k−ℓ z4

ωk z5

ωℓ z6


, (56)

whereω = exp(i2π/n).
Recall from Section 2.3 that L̈osch’s hexagons witha = 7, 13, 19, 21 are

endowed with the symmetry of

Σ
(α,β)
0 = ⟨r⟩ +̇ ⟨pα1 pβ2, p

−β
1 pα−β2 ⟩, (57)
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where

(α, β; n) =


(3, 1; 7m) for a = 7,
(4, 1; 13m) for a = 13,
(5, 2; 19m) for a = 19,
(5, 1; 21m) for a = 21.

(58)

To apply the general procedure in Section 4.1 toΣ = Σ(α,β)
0 we search for

irreducible representations (k, ℓ) such that

Fix(Σ(α,β)
0 ) = {z= (z1, z2, z3, z4, z5, z6) | T(k,ℓ)(g) · z= z for all g ∈ Σ(α,β)

0 } (59)

is nontrivial with dim Fix(Σ(α,β)
0 ) ≥ 1. HereT(k,ℓ)(g)·zmeans the action ofg given in

(55) and (56), and the dependence of Fix(Σ
(α,β)
0 ) on (k, ℓ) is implicit in the notation.

Lemma 4.2. For (α, β; n) in (58) we have the following.

(i) Fix(⟨r⟩) = {(ρ, ρ, ρ, ρ′, ρ′, ρ′) | ρ, ρ′ ∈ R} for each (k, ℓ).

(ii) dim Fix(Σ(α,β)
0 ) ≤ 1 for each (k, ℓ).

(iii) If dim Fix( Σ(α,β)
0 ) = 1, then

Fix(Σ(α,β)
0 ) = {(ρ, ρ, ρ, 0, 0, 0) | ρ ∈ R} or (60)

Fix(Σ(α,β)
0 ) = {(0, 0, 0, ρ′, ρ′, ρ′) | ρ′ ∈ R}. (61)

(iv) (60) holds for

(k, ℓ; n) =


(2m,m; 7m) for a = 7,

(3m,m; 13m) for a = 13,

(3m,2m; 19m), (6m, 4m; 19m) for a = 19,

(4m,m; 21m), (8m,2m; 21m) for a = 21.

(62)

(v) (61) holds for

(k, ℓ; n) =


none for a = 7,

(5m,2m; 13m) for a = 13,

(7m,m; 19m) for a = 19,

(6m,3m; 21m) for a = 21.

(63)

Proof. (i) is immediate from the action ofr in (55).

For the proof of (ii) to (v) we first consider the symmetry ofz= (z1, z2, z3, z4, z5, z6) =

(ρ, ρ, ρ, 0,0,0) with ρ , 0. The invariance of suchz to pα1 pβ2 is expressed as

kα + ℓβ ≡ 0, ℓα − (k+ ℓ)β ≡ 0, −(k+ ℓ)α + kβ ≡ 0 modn, (64)

whereas the invariance top−β1 pα−β2 as

−kβ+ ℓ(α− β) ≡ 0, −ℓβ− (k+ ℓ)(α− β) ≡ 0, (k+ ℓ)β+ k(α− β) ≡ 0 modn,
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which is equivalent to (64). The parameter values (k, ℓ) satisfying (64) in the range

of (51) are enumerated by (62), as can be verified easily using the relationn =

(α2 − αβ + β2)m, which follows from (5) and (58). Hence we have

Fix(Σ(α,β)
0 ) ⊇ {(ρ, ρ, ρ, 0,0,0) | ρ ∈ R} (65)

for (k, ℓ) in (62).

Next we consider, in a similar manner, the symmetry ofz= (z1, z2, z3, z4, z5, z6) =

(0,0,0, ρ′, ρ′, ρ′) with ρ′ , 0. The invariance of suchz to pα1 pβ2 andp−β1 pα−β2 is ex-

pressed as

kα − (k+ ℓ)β ≡ 0, ℓα + kβ ≡ 0, −(k+ ℓ)α + ℓβ ≡ 0 modn. (66)

The parameter values (k, ℓ) satisfying (66) in the range of (51) are enumerated by

(63), and therefore

Fix(Σ(α,β)
0 ) ⊇ {(0,0,0, ρ′, ρ′, ρ′) | ρ′ ∈ R} (67)

for (k, ℓ) in (63).

Since no (k, ℓ) is common to (62) and (63), (65) and (67) cannot be true si-

multaneously. Furthermore, we can see from the above argument that ifz =

(ρ, ρ, ρ, ρ′, ρ′, ρ′) ∈ Fix(Σ(α,β)
0 ), then we must haveρ = 0 or ρ′ = 0. This shows

the assertions (ii) and (iii). Then the assertions in (iv) and (v) follow from (65) and

(67). �

Remark 4.5. We note the relation

k̂2 + k̂ℓ̂ + ℓ̂2 ≡ 0 mod n̂ (68)

as a consequence of (64), where

k̂ =
k

gcd(k, ℓ, n)
, ℓ̂ =

ℓ

gcd(k, ℓ, n)
, n̂ =

n
gcd(k, ℓ, n)

,

in which gcd(k, ℓ, n) denotes the greatest common divisor ofk, ℓ, n. To see this we

first rewrite (64) as

k̂α + ℓ̂β ≡ 0, ℓ̂α − (k̂+ ℓ̂)β ≡ 0, −(k̂+ ℓ̂)α + k̂β ≡ 0 mod n̂,

and then eliminateβ or α to obtain

(k̂2 + k̂ℓ̂ + ℓ̂2)α ≡ 0, (k̂2 + k̂ℓ̂ + ℓ̂2)β ≡ 0 mod n̂.

This implies (68), sinceα or β is relatively prime to ˆn in each case of our interest

in (58). �
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The following is the main result of this section. Recall Fig. 4(d) for the hexagon
with a = 7.

Proposition 4.2. Lösch’s hexagons witha = 7, 13, 19, and 21 arise as bifurcated

solutions from bifurcation points of multiplicity 12 associated with the irreducible

representations given in (62) or (63).

Proof. For the parameter values in (62) or (63) we have dim Fix(Σ
(α,β)
0 ) = 1 by

Lemma 4.2. Then the equivariant branching lemma guarantees the existence of a

bifurcated solutionh with Σ(h) = Σ(α,β)
0 . �

Detailed analysis of the bifurcation equations is carried out in Appendix B. It
shows, for example, that theρ versusτ curve at the bifurcation point at (ρ, τ) =
(0,0) is given asymptotically asAτ + Bρ = 0. Knowledge about the bifurcated
solutions obtained through this analysis, as well as about the bifurcation points
stated in Lemma 4.2, is helpful in conducting numerical analysis.

Remark 4.6. Bifurcated solutions representing hexagons of type V from a bifurca-

tion point of multiplicity 12 are considered here. Such solutions are characterized

by the symmetry⟨r, s⟩ +̇ ⟨pα1, p
α
2⟩ with α ≥ 2, which can be denoted asΣ(α,0), i.e.,

Σ(α,β) with β = 0, in the notation of (43). Then we havea = α2 in (5). First, by (55)

we have

Fix(⟨r, s⟩) = {(ρ, ρ, ρ, ρ, ρ, ρ) | ρ ∈ R} (69)

for each (k, ℓ). We have dim Fix(Σ(α,0)) = 1 if (k, ℓ) satisfies (64) and (66) forβ = 0;

otherwise dim Fix(Σ(α,0)) = 0. This condition for (k, ℓ) reduces tokα ≡ ℓα ≡ 0

mod n, where (k, ℓ) must lie in the range of (51). Then we must haven = αm for

some integerm, and (k, ℓ) is given as (k, ℓ) = (pm,qm) with

1 ≤ q ≤ p− 1, 2p+ q ≤ α − 1, p,q ∈ Z.

Such (k, ℓ) does not exist forα ≤ 5, showing that there exist no bifurcated solutions

from a bifurcation point of multiplicity 12 that represent Lösch’s hexagons witha =

4, 9, 16,25 associated respectively withα = 2, 3, 4, 5 (Table 1). Forα ≥ 6, on the

other hand, the following parameter values satisfy the above-mentioned condition.

a (α, β) n (k, ℓ)

36 (6, 0) 6m (2m,m)

49 (7, 0) 7m (2m,m)

64 (8, 0) 8m (2m,m), (3m,m)

81 (9, 0) 9m (2m,m), (3m,m), (3m, 2m)
...

...
...

...
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These parameter values generically give rise to bifurcated solutions representing

hexagons of type V. It is noted that whenm = 1, we haveα = n, and hence the

symmetry⟨r, s⟩ +̇ ⟨pα1, p
α
2⟩ reduces to⟨r, s⟩ = D6 (see Remark 4.8). �

Remark 4.7. Bifurcated solutions representing hexagons of type M from a bifur-

cation point of multiplicity 12 are considered here. Such solutions are character-

ized by the symmetry⟨r, s⟩ +̇ ⟨p2β
1 pβ2, p

−β
1 pβ2⟩, which can be denoted asΣ(2β,β), i.e.,

Σ(α,β) with α = 2β, in the notation of (43). Then we havea = 3β2 in (5). The

expression (69) for the subspace Fix(⟨r, s⟩) is again valid for each (k, ℓ). We have

dim Fix(Σ(2β,β)) = 1 if (k, ℓ) satisfies (64) and (66) for (α, β) = (2β, β); otherwise

dim Fix(Σ(2β,β)) = 0. This condition is equivalent to

(2k+ ℓ)β ≡ (k+ 2ℓ)β ≡ (k− ℓ)β ≡ 0 modn,

where (k, ℓ) must lie in the range of (51). Then we must haven = 3βm for some

integerm, and (k, ℓ) is given as (k, ℓ) = (pm,qm) with

1 ≤ q ≤ p− 1, p− q ≡ 0 mod 3, 2p+ q ≤ 3β − 1, p, q ∈ Z.

Such (k, ℓ) does not exist forβ ≤ 3, showing that there exist no bifurcated solutions

from a bifurcation point of multiplicity 12 that represent Lösch’s hexagons with

a = 3, 12 associated respectively withβ = 1, 2 (Table 1). Forβ ≥ 4, on the other

hand, the following parameter values satisfy the above-mentioned condition.

a (α, β) n (k, ℓ)

48 (8,4) 12m (4m,m)

75 (10, 5) 15m (4m,m), (5m,2m)

108 (12, 6) 18m (4m,m), (5m,2m), (6m,3m), (7m,m)
...

...
...

...

These parameter values generically give rise to bifurcated solutions representing

hexagons of type M. �

Remark 4.8. Bifurcated solutions with D6-symmetry are considered here. Put

z = (ρ, ρ, ρ, ρ, ρ, ρ) with ρ , 0. Sincez ∈ Fix(⟨r, s⟩) by (69), we haveΣ(z) ⊇ ⟨r, s⟩.
We often haveΣ(z) = ⟨r, s⟩, since, except for some special values of (k, ℓ) such as

those listed in Remarks 4.6 and 4.7, there exists no nontrivial (α, β) that satisfies

(64) and (66). Note in this connection that we must have

(k− ℓ)α ≡ (2k+ ℓ)α ≡ (2ℓ + k)α ≡ 0 modn,

(k− ℓ)β ≡ (2k+ ℓ)β ≡ (2ℓ + k)β ≡ 0 modn
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Figure 5: Pattern with D6-symmetry (n = 6)

as a consequence of (64) and (66). For (k, ℓ; n) = (k, k − 1;n) with 2 ≤ k ≤ n/3,

for example, we must haveα ≡ β ≡ 0 modn, and henceΣ(z) = ⟨r, s⟩. For the

parameter values of (k, ℓ) for whichΣ(z) = ⟨r, s⟩ holds, the subgroup D6 = ⟨r, s⟩ is

an axial subgroup and, by the equivariant branching lemma, there exist bifurcated

solutions with D6-symmetry (lacking translational symmetry). It is noted that the

normalized spatial period is given asT/d =
√

a = n with (α, β) = (n, 0) or (0, n) in

(4) and (5). Figure 5 illustrates the pattern of such solution for (k, ℓ; n) = (2,1; 6).

D6-symmetric bifurcated solutions correspond to “super hexagons” investigated

for the group D6 +̇ T2 in Kirchgässner (1979) [22] and Dionne, Silber & Skeldon

(1997) [11]. �
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5 Computationally obtained hexagonal distributions

In this section, we examine spatial agglomeration patterns of the population of
skilled workers among a system of places spread uniformly on a two-dimensional
domain. Computational bifurcation analysis is conducted to obtain bifurcated so-
lutions from the uniformly distributed state of population of the skilled workers for
a system ofn × n place on the hexagonal lattice forn = 9, 16, and 19 to observe
several L̈osch’s ten smallest hexagons. We employ the following parameter values:

• The lengthd of the road connecting neighboring places isd = 1/n.

• The constant expenditure shareµ on industrial varieties isµ = 0.4.

• The constant elasticityσ of substitution between any two varieties isσ =
5.0.

• The inverseθ of variance of the idiosyncratic tastes isθ = 1000.

• The total numberH of skilled workers isH = 1.

5.1 Hexagons witha = 3 and a = 9 for 9× 9 places

For the 9×9 places with D6 +̇ (Z9×Z9)-symmetry, we conducted the computational
bifurcation analysis to obtain the maximum populationhmax versus the transport
parameterτ curves in Fig. 6(a). Although several bifurcation points are found on
the trivial solution OABC with uniform population, we specifically examine the
bifurcation points A and B of multiplicityM = 2, from which a hexagonal distri-
bution with a = 3 emanates, and the bifurcation point C of multiplicityM = 6,
from which a hexagonal distribution witha = 9 emanates. Among many bifurca-
tion points of multiplicityM = 6, we have chosen the bifurcation point C with the
kernel symmetry⟨p3

1, p
3
2⟩.

On the bifurcated path ADB that branches from the bifurcation points A and B
of multiplicity M = 2, we encounter L̈osch’s smallest hexagon witha = 3 that has
⟨r, s, p2

1p2, p−1
1 p2⟩-symmetry and the spatial periodT/d =

√
a =
√

3 (§4.2).
On the bifurcated path DEC that branches from the bifurcation point C of mul-

tiplicity M = 6, we encounter L̈osch’s fourth smallest hexagon witha = 9 that has
⟨r, s, p3

1, p
3
2⟩-symmetry and has the spatial periodT/d =

√
a = 3 (§4.4).

At the bifurcation point D of multiplicity 2 on the primary bifurcated path
ADB, we encounter a secondary bifurcation. This is the spatial period

√
3-times

cascade (Remark 4.1), in which the spatial periodT is extended
√

3-times repeat-
edly as

T/d : 1 →
√

3 → 3
(t1, t2) : (ℓ1, ℓ2) → (2ℓ1 + ℓ2,−ℓ1 + ℓ2) → (3ℓ1, 3ℓ2)
group : D6 +̇ (Z9 × Z9) → D6 +̇ (Z9 × Z3) → D6 +̇ (Z3 × Z3)
path : OABC → ADB → DEC
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(c) Hexagon witha = 19 for 19× 19 places

Figure 6: Maximum populationhmax versus the transport parameterτ curves. (The

solid curve is stable and the dashed curve is unstable. The hexagonal window is cut

from the infinite domain that is obtained by repeating then × n hexagonal lattice

spatially; and the area of each circle is proportional to the population of the skilled

worker at that place.) 31



5.2 Hexagons witha = 4 and a = 16 for 16× 16places

For the 16× 16 places with D6 +̇ (Z16× Z16)-symmetry, Fig. 6(b) shows the max-
imum populationhmax versus the transport parameterτ curves. Several bifurcation
points are found on the trivial solution OABC with uniform population. We specif-
ically examine the bifurcation points A and B of multiplicityM = 3, from which a
hexagonal distribution witha = 4 emanates, and the bifurcation point C of multi-
plicity M = 6, from which a hexagonal distribution witha = 16 emanates. Among
many bifurcation points of multiplicityM = 6, we chose the bifurcation point C
with the kernel symmetry⟨p4

1, p
4
2⟩.

On the bifurcated path ADB that branches from the bifurcation points A and B
of multiplicity M = 3, we encounter L̈osch’s smallest hexagon witha = 4 that has
⟨r, s, p2

1, p
2
2⟩-symmetry and the spatial periodT/d =

√
a =
√

4 (§4.3).
On the bifurcated path DEC that branches from the bifurcation point C of mul-

tiplicity M = 6, we encounter L̈osch’s six seventh smallest hexagon witha = 16
that has⟨r, s, p4

1, p
4
2⟩-symmetry and has the spatial periodT/d =

√
a =
√

16 (§4.4).
At the bifurcation point D of multiplicity 3 on the primary bifurcated path

ADB, we encounter a secondary bifurcation. This is the spatial period-doubling
cascade, in which the spatial periodT is doubled repeatedly as

T/d : 1 → 2 → 22

(t1, t2) : (ℓ1, ℓ2) → (2ℓ1,2ℓ2) → (22ℓ1, 22ℓ2)
group : D6 +̇ (Z16× Z16) → D6 +̇ (Z8 × Z8) → D6 +̇ (Z4 × Z4)
path : OABC → ADB → DEC

This hierarchy is in agreement with the theoretically predicted hierarchy (34) and
(35) forn = 16.

5.3 Hexagons witha = 19 for 19× 19places

For the 19× 19 places with D6 +̇ (Z19×Z19)-symmetry, Fig. 6(c) shows the maxi-
mum populationhmax versus the transport parameterτ curves. Several bifurcation
points are found on the trivial solution OAB with uniform population. We specif-
ically examine the bifurcation points A and B of multiplicityM = 12 from which
hexagonal distributions of interest emanate. On the bifurcated path ACDB that
branches from these two bifurcation points A and B we encounter Lösch’s eighth
smallest hexagon witha = 19 that has⟨r, p5

1p2
2, p
−2
1 p3

2⟩-symmetry and the spatial
periodT/d =

√
a =
√

19 (§4.5).
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6 Conclusion

For a two-dimensional system modeled by a core–periphery model in new eco-
nomic geography, self-organization of hexagonal population distributions for Lösch’s
ten smallest hexagons in central place theory is predicted by equivariant bifurca-
tion analysis, and its existence is verified by computational bifurcation analysis.
The equivariant bifurcation analysis has displayed its usefulness to predict possible
bifurcating agglomeration patterns among a system of places in two dimensions,
often associated with successive elongation of spatial periods.

Information about symmetries of bifurcated solutions offered by the equivari-
ant bifurcation analysis is important in the computational analysis for choosing a
bifurcation point that produces hexagonal distributions of interest. In particular, it
is to be emphasized that tilted hexagons (super hexagons) that are directed towards
different directions than the original hexagonal lattice do branch from bifurcation
points of multiplicity 12.

Inherent capability of the core–periphery model to express those systems, pro-
vided with pertinent spatial platforms, is demonstrated. Major results of this paper,
in principle, are applicable to other core–periphery models, and its application to
other core–periphery models is a topic in the future.
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A Core–Periphery model

Details of the core–periphery model in Section 3 are presented. After presenting
basic assumptions, we describe the short-run equilibrium and define the long-run
equilibrium and its stability.

A.1 Basic Assumptions

PreferencesU over the M- and A-sector goods are identical across individuals,
where M signifies manufacture and A stands for agriculture. The utility of an
individual in placei is3

U(CM
i ,C

A
i ) = µ ln CM

i + (1− µ) ln CA
i , (0 < µ < 1), (A.1)

whereµ is the constant expenditure share on industrial varieties,CA
i is the con-

sumption of the A-sector product in placei, andCM
i is the manufacturing aggregate

in placei and is defined as

CM
i ≡

∑
j

∫ n j

0
q ji (k)(σ−1)/σdk


σ/(σ−1)

,

whereq ji (k) is the consumption in placei of a varietyk ∈ [0,n j ] produced in
place j, n j is the continuum range of varieties produced in placej, often called the
number of available varieties, andσ > 1 is the constant elasticity of substitution
between any two varieties. The budget constraint is given as

pA
i CA

i +
∑

j

∫ n j

0
p ji (k)q ji (k)dk= Yi , (A.2)

wherepA
i is the price of A-sector goods in placei, p ji (k) is the price of a varietyk

in placei produced in placej andYi is the income of an individual in placei. The
incomes (wages) of the skilled worker and the unskilled worker are represented,
respectively, bywi andwL

i . We denote byK the number of places, and thereforei
and j run through 1 toK.

An individual in placei maximizes (A.1) subject to (A.2). This yields the
following demand functions:

CA
i = (1− µ) Yi

pA
i

, CM
i = µ

Yi

ρi
, q ji (k) = µ

pA
i ρ
σ−1
i Yi

p ji (k)σ
, (A.3)

3We take logarithms of the Forslid and Ottaviano (2003) type (i.e., Cobb-Douglas-type) utility

function to facilitate the analysis. This transformation has no influence on the properties of the

model.
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whereρi denotes the price index of the differentiated product in placei, which is

ρi =

∑
j

∫ n j

0
p ji (k)1−σdk


1/(1−σ)

. (A.4)

Since the total income and population in placei arewihi+wL
i andhi+1, respectively,

we have the total demandQ ji (k) in placei for a varietyk produced in placej:

Q ji (k) = µ
pA

i ρ
σ−1
i

p ji (k)σ
(wihi + wL

i ). (A.5)

The A-sector is perfectly competitive and produces homogeneous goods under
constant returns to scale technology, which requires one unit of unskilled labor
in order to produce one unit of output. For simplicity, we assume that the A-
sector goods are transported freely between places and that they are chosen as the
numèraire. These assumptions mean that, in equilibrium, the wage of an unskilled
workerwL

i is equal to the price of A-sector goods in all places (i.e.,pA
i = wL

i = 1
for eachi = 1, . . . ,K).

The M-sector output is produced under increasing returns to scale technol-
ogy and Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input re-
quirement ofα units of skilled labor and a marginal input requirement ofβ units
of unskilled labor. Given the fixed input requirementα, the skilled labor market
clearing implies that, in equilibrium, the number of firms in placei is determined
by ni = hi/α. An M-sector firm located in placei chooses (pi j (k) | j = 1, . . . ,K)
that maximizes its profit

Πi(k) =
∑

j

pi j (k)Qi j (k) − (αwi + βxi(k)) ,

wherexi(k) is the total supply. The transportation costs for M-sector goods are
assumed to take the iceberg form.4 That is, for each unit of M-sector goods trans-
ported from placei to place j , i, only a fraction 1/ϕi j < 1 arrives. Consequently,
the total supplyxi(k) is given as

xi(k) =
∑

j

ϕi j Qi j (k). (A.6)

To put it concretely, we define the transport costϕi j between the two placesi and j
as

ϕi j = exp(τDi j ), (A.7)

whereτ is the transport parameter andDi j represents the shortest distance between
placesi and j.

4This is a standard term in economics; see, for example, Samuelson (1952).
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Since we have a continuum of firms, each firm is negligible in the sense that
its action has no impact on the market (i.e., the price indices). Therefore, the first-
order condition for profit maximization gives

pi j (k) =
σβ

σ − 1
ϕi j . (A.8)

This expression implies that the price of the M-sector product does not depend on
varietyk, so thatQi j (k) andxi(k) do not depend onk. Therefore, we describe these
variables without the argumentk. Substituting (A.8) into (A.4), we have the price
index

ρi =
σβ

σ − 1

1α∑
j

h jd ji


1/(1−σ)

, (A.9)

whered ji = ϕ
1−σ
ji is a spatial discounting factor between placesj andi; from (A.5)

and (A.9),d ji is obtained as (p ji Q ji )/(pii Qii ), which means thatd ji is the ratio of
total expenditure in placei for each M-sector product produced in placej to the
expenditure for a domestic product.

A.2 Short-run Equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial
distribution (h = (hi) ∈ RK) is assumed to be given. The short-run equilibrium
conditions consist of the M-sector goods market clearing condition and the zero-
profit condition because of the free entry and exit of firms. The former condition
can be written as (A.6). The latter condition requires that the operating profit of a
firm is absorbed entirely by the wage bill of its skilled workers:

wi(h, τ) =
1
α

∑j

pi j Qi j (h, τ) − βxi(h, τ)

 . (A.10)

Substituting (A.5), (A.6), (A.8), and (A.9) into (A.10), we have the short-run equi-
librium wage:

wi(h, τ) =
µ

σ

∑
j

di j

∆ j(h, τ)
(w j(h, τ)h j + 1), (A.11)

where∆ j(h, τ) ≡
∑

k dk jhk denotes the market size of the M-sector in placej.
Consequently,di j/∆ j(h, τ) defines the market share in placej of each M-sector
product produced in placei.

The indirect utilityvi(h, τ) is obtained by substituting (A.3), (A.9), and (A.11)
into (A.1):5

vi(h, τ) = Si(h, τ) + ln[wi(h, τ)], (A.12)

5We ignore the constant terms, which have no influence on the results below.
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where
Si(h, τ) ≡ µ(σ − 1)−1 ln∆i(h, τ).

For convenience in conducting the following analysis, we express the indirect util-
ity function v(h, τ) in vector form, using the spatial discounting matrixD = (di j ),
as

v(h, τ) = S(h, τ) + ln[w(h, τ)], (A.13)

w(h, τ) =
µ

σ
[ I −W(h, τ)]−1 w(L)(h, τ), (A.14)

where

S(h, τ) ≡ [S1(h, τ), . . . ,SK(h, τ)]⊤, ln[w] ≡ [ln w1, ln w2, . . . , ln wK ]⊤,

I is a unit matrix, andW(h, τ), w(H), w(L) andM are defined as

W ≡ µ
σ

Mdiag[h], w(H) ≡ Mh, w(L) ≡ M1, (A.15a)

M ≡ D∆−1, ∆ ≡ diag[D⊤h], 1 ≡ [1, . . . , 1]⊤. (A.15b)

A.3 Adjustment Process, Long-run Equilibrium and Stability

In the long run, the skilled workers are inter-regionally mobile. They are assumed
to be heterogeneous in their preferences for location choice. That is, the indirect
utility for an individuals in placei is expressed as

v(s)
i (h, τ) = vi(h, τ) + ϵ

(s)
i .

In this equation,ϵ(s)i , which is distributed continuously across individuals, denotes
the utility representing the idiosyncratic taste for residential location,

We present the dynamics of the migration of the skilled workers to define the
long-run equilibrium and its stability with respect to small perturbations (i.e., local
stability). We assume that at each time periodt, the opportunity for skilled workers
to migrate emerges according to an independent Poisson process with arrival rate
λ. That is, for each time interval [t, t + dt), a fractionλdt of skilled workers have
the opportunity to migrate. Given an opportunity at timet, each worker chooses
the place that provides the highest indirect utilityv(s)

i (h, τ), which depends on the
current distributionh = h(t). The fraction of skilled workers who choose placei
under distributionh is Pi(v(h), τ), where

Pi(v, τ) = Pr[v(s)
i > v(s)

j , ∀ j , i].

Therefore, we have

hi(t + dt) = (1− λdt)hi(t) + λdtHPi(v(h(t)), τ).
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By normalizing the unit of time so thatλ = 1, we obtain the following adjustment
process:

ḣ(t) = F(h(t), τ) ≡ HP(v(h(t)), τ) − h(t), (A.16)

whereḣ(t) denotes the time derivative ofh(t), andP(v(h), τ) = (Pi(v(h), τ)). For
the specific functional form ofPi(v, τ), we use the logit choice function:

Pi(v, τ) ≡
exp[θvi ]∑
j exp[θv j ]

, (A.17)

whereθ ∈ (0,∞) is the parameter denoting the inverse of variance of the idiosyn-
cratic tastes. This implies the assumption that the distributions of (ϵ(s)i )’s are Gum-
bel distributions, which are identical and independent across places (e.g., McFad-
den, 1974; Anderson et al., 1992). The adjustment process described by (A.16)
and (A.17) is the logit dynamics, which has been studied in evolutionary game the-
ory (e.g., Fudenberg and Levine, 1998; Hofbauer and Sandholm, 2007; Sandholm,
2010).

Next, we define the long-run equilibrium and its stability. The long-run equi-
librium is a stationary point of the adjustment process of (A.16).

Definition A.1. The long-run equilibrium is defined as the distributionh∗ that

satisfies

F(h∗, τ) ≡ HP(v(h∗), τ) − h∗ = 0. (A.18)

The heterogeneous worker case includes the conventional homogeneous worker
case. Indeed, whenθ → ∞, the condition given in (A.18) reduces to that for the
homogeneous worker case:V∗ − vi(h∗, τ) = 0 if h∗i > 0,

V∗ − vi(h∗, τ) ≥ 0 if h∗i = 0,

whereV∗ denotes the equilibrium utility.
We restrict our concern to the neighborhood ofh∗, and define the stability ofh∗

in the sense of asymptotic stability, the precise definition of which is the following.

Definition A.2. A long-run equilibriumh∗ is asymptotically stableif, for any ϵ >

0, there is a neighborhoodN(h∗) of h∗ such that, for everyh0 ∈ N(h∗), the solution

h(t) of (A.16) with an initial valueh(0) ≡ h0 satisfies||h(t) − h∗|| < ϵ for any time

t ≥ 0, and limt→∞ h(t) = h∗. It is unstableif equilibrium h∗ is not asymptotically

stable.

In dynamic system theory,h∗ is asymptotically stable if all the eigenvalues of
the Jacobian matrix∇F(h, τ) ≡ (∂Fi(h, τ)/∂h j) of the adjustment process of (A.16)
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have negative real parts; otherwiseh∗ is unstable (see, for example, Hirsch and
Smale, 1974). Therefore, the asymptotic stability can be assessed by examining
the following Jacobian matrix:

∇F(h, τ) = HJ(v(h), τ)∇v(h, τ) − I , (A.19)

whereJ(v, τ) and∇v(h, τ) areK-by-K matrices, the (i, j) entries of which are, re-
spectively,∂Pi(v, τ)/∂v j and∂vi(h, τ)/∂h j . For the logit choice function of (A.17),
it is easily verified that the former Jacobian matrixJ(v, τ) is expressed as

J(v, τ) = θ{diag[P(v, τ)] − P(v, τ)P(v, τ)⊤}. (A.20)

The latter Jacobian matrix∇v(h, τ) is given as

∇v(h, τ) = ∇S(h, τ) + diag[w(h, τ)]−1∇w(h, τ), (A.21)

∇w(h, τ) =
µ

σ
[ I −W(h, τ)]−1

{
∇ŵ(H)(h, τ) + ∇w(L)(h, τ)

}
, (A.22)

where the matrices∇S(h, τ), ∇ŵ(H)(h, τ), ∇w(H)(h, τ) and∇w(L)(h, τ) are obtained
as

∇S(h, τ) = µ(σ − 1)−1M⊤, (A.23)

∇ŵ(H)(h, τ) = Mdiag[w(h, τ)] − Mdiag[w(h, τ)]diag[h]M⊤, (A.24)

∇w(H)(h, τ) = M − Mdiag[h]M⊤, (A.25)

∇w(L)(h, τ) = −MM⊤. (A.26)
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B Bifurcated solutions at bifurcation point of multiplicity

12

We consider a group-theoretic bifurcation point of multiplicity 12. To investigate
Lösch’s hexagons witha = 7,13, 19,21, we restrict ourselves to the cases ofn =
7m, 13m, 19m, and 21m with m= 1,2, . . . ((58)).

B.1 Equivariance of bifurcation equation

Our objective here is to demonstrate that Lösch’s hexagons witha = 7, 13, 19,21
can be understood as bifurcated solutions from bifurcation points of multiplicity
12. As it turns out, not every bifurcation point of multiplicity 12 serves for this
possibility, but only if it is associated with a 12-dimensional irreducible represen-
tation (k, ℓ) in (52) and (53) with some special values ofk andℓ.

To be specific, we investigate the following cases:

(n, k, ℓ) = (7m, 2m,m), (13m, 3m,m), (19m,3m, 2m), (21m, 4m,m), (B.1)

wherem = 1, 2, . . . , corresponding to some of Lösch’s ten smallest hexagons. We
define

n̂ = n/m, k̂ = k/m, ℓ̂ = ℓ/m, (B.2)

to obtain
(n̂, k̂, ℓ̂) = (7, 2, 1), (13, 3, 1), (19,3,2), (21,4,1). (B.3)

Note thatn̂, k̂, andℓ̂ are pairwise relatively prime and satisfy

n̂ = k̂2 + k̂ℓ̂ + ℓ̂2, (B.4)

which plays a key role in the subsequent derivation.
The bifurcation equation for the group-theoretic bifurcation point of multiplic-

ity 12 is a 12-dimensional equation overR. This equation can be expressed as a
6-dimensional complex-valued equation in complex variablesz1, . . . , z6 as

Fi(z1, . . . , z6, τ) = 0, i = 1, . . . ,6, (B.5)

where
(z1, . . . , z6, τ) = (0, . . . , 0, 0)

is assumed to correspond to the bifurcation point. We often omitτ in the subse-
quent derivation.

Since the group D6 +̇ (Zn × Zn) is generated by the four elementsr, s, p1,
p2, the equivariance of the bifurcation equation to the group D6 +̇ (Zn × Zn) is

40



equivalent to the equivariance to the action of these four elements. Therefore, the
equivariance condition for (B.5) can be written as

r : F3(z1, z2, z3, z4, z5, z6) = F1(z3, z1, z2, z5, z6, z4), (B.6)

F1(z1, z2, z3, z4, z5, z6) = F2(z3, z1, z2, z5, z6, z4), (B.7)

F2(z1, z2, z3, z4, z5, z6) = F3(z3, z1, z2, z5, z6, z4), (B.8)

F5(z1, z2, z3, z4, z5, z6) = F4(z3, z1, z2, z5, z6, z4), (B.9)

F6(z1, z2, z3, z4, z5, z6) = F5(z3, z1, z2, z5, z6, z4), (B.10)

F4(z1, z2, z3, z4, z5, z6) = F6(z3, z1, z2, z5, z6, z4); (B.11)

s : Fi+3(z1, z2, z3, z4, z5, z6) = Fi(z4, z5, z6, z1, z2, z3),

Fi(z1, z2, z3, z4, z5, z6) = Fi+3(z4, z5, z6, z1, z2, z3),

i = 1,2,3; (B.12)

p j : ω ji Fi(z1, . . . , z6) = Fi(ω j1z1, . . . , ω j6z6),

j = 1, 2; i = 1, . . . ,6, (B.13)

where

(ω11, . . . , ω16) = (ωk, ωℓ, ω−k−ℓ, ωk, ωℓ, ω−k−ℓ),

(ω21, . . . , ω26) = (ωℓ, ω−k−ℓ, ωk, ω−k−ℓ, ωk, ωℓ).

We expandF1 as

F1(z1, z2, z3, z4, z5, z6)

=
∑
a=0

∑
b=0

· · ·
∑
u=0

Aabcdeghi jstu(τ)z
a
1zb

2zc
3zd

4ze
5zg

6z1
hz2

iz3
jz4

sz5
tz6

u. (B.14)

Since (z1, z2, z3, z4, z5, z6, τ) = (0,0,0,0,0,0,0) corresponds to the bifurcation point
of multiplicity 12, we have

A000000000000(0) = 0, (B.15)

A100000000000(0) = A010000000000(0) = · · · = A000000000001(0). (B.16)

The equivariance conditions (B.6)–(B.8) with respect tor give

F1(z1, z2, z3, z4, z5, z6) = F2(z3, z1, z2, z5, z6, z4)

= F3(z2, z3, z1, z6, z4, z5)

= F1(z1, z2, z3, z4, z5, z6),
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from which we see thatAab···tu are real. ThenF2, . . . , F6 are obtained from the
equivariance conditions (B.6)–(B.11) and (B.12) with respect tor ands as

F2(z1, z2, z3, z4, z5, z6) = F1(z2, z3, z1, z6, z4, z5), (B.17)

F3(z1, z2, z3, z4, z5, z6) = F1(z3, z1, z2, z5, z6, z4), (B.18)

F4(z1, z2, z3, z4, z5, z6) = F1(z4, z5, z6, z1, z2, z3), (B.19)

F5(z1, z2, z3, z4, z5, z6) = F1(z5, z6, z4, z3, z1, z2), (B.20)

F6(z1, z2, z3, z4, z5, z6) = F1(z6, z4, z5, z2, z3, z1). (B.21)

Next we determine the set of indices (a, b, . . . , t, u) of nonvanishing coefficients
Aab···tu(τ) in (B.14). The equivariance conditions (B.13) with respect top1 andp2

yield

k(a− h) + ℓ(b− i) − (k+ ℓ)(c− j) + k(d − s) + ℓ(e− t) − (k+ ℓ)(g− u)

≡ k mod n, (B.22)

ℓ(a− h) − (k+ ℓ)(b− i) + k(c− j) − (k+ ℓ)(d − s) + k(e− t) + ℓ(g− u)

≡ ℓ mod n, (B.23)

which are equivalent, by (B.2), to

k̂(a− h) + ℓ̂(b− i) − (k̂+ ℓ̂)(c− j) + k̂(d − s) + ℓ̂(e− t) − (k̂+ ℓ̂)(g− u)

≡ k̂ mod n̂, (B.24)

ℓ̂(a− h) − (k̂+ ℓ̂)(b− i) + k̂(c− j) − (k̂+ ℓ̂)(d − s) + k̂(e− t) + ℓ̂(g− u)

≡ ℓ̂ mod n̂. (B.25)

By introducing
(m1,m2,m3) = (k̂, ℓ̂, −(k̂+ ℓ̂)) (B.26)

we can rewrite (B.24) and (B.25) as

(m1,m2,m3,m1,m2,m3) · (a− h,b− i, c− j, d − s, e− t,g− u) ≡ m1 mod n̂,

(B.27)

(m2,m3,m1,m3,m1,m2) · (a− h,b− i, c− j, d − s, e− t,g− u) ≡ m2 mod n̂,

(B.28)

where “·” denotes the inner product of vectors. We denote byS the set of indices
(a,b, . . . , t, u) that satisfy the above conditions, i.e.,

S = {(a,b, . . . , t, u) | (B.27) and (B.28)}. (B.29)

Then (a, b, . . . , t,u) must belong toS if Aab···tu(τ) , 0, and the converse is also true
generically, except for the cases described in (B.15) and (B.16). Hence (B.14) can
be replaced by

F1(z1, z2, z3, z4, z5, z6) =
∑

S

Aabcdeghi jstu(τ)z
a
1zb

2zc
3zd

4ze
5zg

6z1
hz2

iz3
jz4

sz5
tz6

u. (B.30)
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We observe here two facts that we need in Section B.2. The first fact is:

a+ b+ c+ h+ i + j ≥ 1 for every (a,b, . . . , t, u) ∈ S. (B.31)

To see this we calculate [(B.24)× (k̂+ ℓ̂) + (B.25)× k̂] using (B.4), to obtain

(k̂2 + 2k̂ℓ̂)(a− h) + (ℓ̂2 − k̂2)(b− i) − (2k̂ℓ̂ + ℓ̂2)(c− j) ≡ k̂2 + 2k̂ℓ̂ mod n̂.

Hence we must have

(a,b, c,h, i, j) , (0, 0, 0, 0, 0, 0),

since k̂2 + 2k̂ℓ̂ . 0 mod n̂ for the parameter values in (B.3). The second fact is:

(m3,m1,m2,m2,m3,m1) · (a− h,b− i, c− j, d − s, e− t,g− u) ≡ m3 mod n̂,

(B.32)

which results from the addition of (B.24) and (B.25).

B.2 Bifurcated solutions

For the bifurcation equation (B.5) we show the presence of bifurcated solutions
such that

|z1| = |z2| = |z3|, z4 = z5 = z6 = 0. (B.33)

As their conjugate solutions, there also exist bifurcated solutions with

z1 = z2 = z3 = 0, |z4| = |z5| = |z6|. (B.34)

Although we do not exclude the possibility of other bifurcated solutions, those
bifurcated solutions in (B.33) and (B.34) are sufficient for our purpose since they
correspond to L̈osch’s hexagons witha = 7, 13,19, 21, as we see below.

In the following we focus on the solutions with|z1| = |z2| = |z3| andz4 = z5 =

z6 = 0 in (B.33). Such solutions satisfyF4 = F5 = F6 = 0, since (B.19)–(B.21)
together with (B.31) imply

F4(z1, z2, z3,0,0,0) = F1(0, 0, 0, z1, z2, z3) = 0,

F5(z1, z2, z3,0,0,0) = F1(0, 0, 0, z3, z1, z2) = 0,

F6(z1, z2, z3,0,0,0) = F1(0, 0, 0, z2, z3, z1) = 0.

On the other hand, we see from (B.30) that

F1(z1, z2, z3, 0, 0, 0) =
∑

P

Aabc000hi j000(τ)z
a
1zb

2zc
3z1

hz2
iz3

j , (B.35)

where
P = {(a, b, c, h, i, j) | (a,b, c,0,0,0,h, i, j,0,0,0) ∈ S}.
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For any (a,b, c,h, i, j) ∈ P we have

(m1,m2,m3) · (a− h, b− i, c− j) ≡ m1 mod n̂, (B.36)

(m2,m3,m1) · (a− h, b− i, c− j) ≡ m2 mod n̂, (B.37)

(m3,m1,m2) · (a− h, b− i, c− j) ≡ m3 mod n̂ (B.38)

by (B.27), (B.28), and (B.32). To find solutions forF1 = F2 = F3 = 0, we set

zj = ρexp(iθ j) ( j = 1, 2, 3).

Then, using (B.35) with (B.17) and (B.18), we obtain

F1(z1, z2, z3, 0, 0, 0)

=
∑

P

Aabc000hi j000(τ)z
a
1zb

2zc
3z1

hz2
iz3

j

=
∑

P

Aabc000hi j000(τ)ρ
a+b+c+h+i+ j exp i[(θ1, θ2, θ3) · (a− h,b− i, c− j)],

F2(z1, z2, z3, 0, 0, 0) = F1(z2, z3, z1, 0, 0, 0)

=
∑

P

Aabc000hi j000(τ)z
a
2zb

3zc
1z2

hz3
iz1

j

=
∑

P

Aabc000hi j000(τ)ρ
a+b+c+h+i+ j exp i[(θ2, θ3, θ1) · (a− h,b− i, c− j)],

F3(z1, z2, z3, 0, 0, 0) = F1(z3, z1, z2, 0, 0, 0)

=
∑

P

Aabc000hi j000(τ)z
a
3zb

1zc
2z3

hz1
iz2

j

=
∑

P

Aabc000hi j000(τ)ρ
a+b+c+h+i+ j exp i[(θ3, θ1, θ2) · (a− h,b− i, c− j)].

We consider two sets of solution candidates

(θ1, θ2, θ3) =


2πt
n̂

(m1,m2,m3) (t = 0,1, . . . , n̂− 1),
2πt
n̂

(m1,m2,m3) + π(1, 1, 1) (t = 0, 1, . . . , n̂− 1).
(B.39)

For the first set (θ1, θ2, θ3) =
2πt
n̂

(m1,m2,m3), we have

(θ1, θ2, θ3) · (a− h, b− i, c− j) =
2πt
n̂

(m1,m2,m3) · (a− h, b− i, c− j)

≡ 2πt
n̂

m1 = θ1 mod 2π

by (B.36). Therefore,

F1 = ρexp(iθ1)
∑

(a,b,c,h,i, j)∈P
Aabc000hi j000(τ)ρ

a+b+c+h+i+ j−1.
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Similarly, for F2 andF3, we use (B.37) and (B.38) to obtain

F2 = ρexp(iθ2)
∑

(a,b,c,h,i, j)∈P
Aabc000hi j000(τ)ρ

a+b+c+h+i+ j−1,

F3 = ρexp(iθ3)
∑

(a,b,c,h,i, j)∈P
Aabc000hi j000(τ)ρ

a+b+c+h+i+ j−1.

Therefore,

F1

ρexp(iθ1)
=

F2

ρexp(iθ2)
=

F3

ρexp(iθ3)
=

∑
(a,b,c,h,i, j)∈P

Aabc000hi j000(τ)ρ
a+b+c+h+i+ j−1,

and the bifurcated solution curve is determined from∑
(a,b,c,h,i, j)∈P

Aabc000hi j000(τ)ρ
a+b+c+h+i+ j−1 = 0. (B.40)

The leading terms of (B.40) are given as

Aτ + Bρ = 0 (B.41)

with generically nonzero coefficientsA and B (see Remark B.1). The equation
(B.41) has a solution of the formρ = cτ for somec , 0, which shows the generic
existence of bifurcated solutions for all (θ1, θ2, θ3) in (B.39).

For the second set (θ1, θ2, θ3) =
2πt
n̂

(m1,m2,m3) + π(1, 1, 1) in (B.39), we have

(θ1, θ2, θ3) · (a− h, b− i, c− j)

=
2πt
n̂

(m1,m2,m3) · (a− h, b− i, c− j) + π(a+ b+ c− h− i − j)

≡ θ1 + π(a+ b+ c− h− i − j) mod 2π

by (B.36). Therefore,

F1 = ρexp(iθ1)
∑

(a,b,c,h,i, j)∈P
Aabc000hi j000(τ)(−1)a+b+c−h−i− jρa+b+c+h+i+ j−1.

Likewise, we have

F1

ρexp(iθ1)
=

F2

ρexp(iθ2)
=

F3

ρexp(iθ3)

=
∑

(a,b,c,h,i, j)∈P
Aabc000hi j000(τ)(−1)a+b+c−h−i− jρa+b+c+h+i+ j−1,

and the bifurcated solution curve is determined from∑
(a,b,c,h,i, j)∈P

Aabc000hi j000(τ)(−1)a+b+c−h−i− jρa+b+c+h+i+ j−1 = 0. (B.42)

The leading terms of (B.42) are given as

−Aτ + Bρ = 0 (B.43)

with generically nonzero coefficientsA andB (see Remark B.1).
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Remark B.1. The coefficientsA andB in (B.41) and (B.43) are considered here.

First note thata+ b+ c+ h+ i + j ≥ 1 for all (a,b, c,h, i, j) ∈ P with the equality

holding only for (a, b, c, h, i, j) = (1, 0, 0, 0, 0, 0). This showsA = A′100000000000(0),

which denotes the derivative ofA100000000000(τ) with respect toτ, evaluated at

τ = 0. The other coefficient B is given as the sum ofAabc000hi j000(0) over all

(a,b, c, h, i, j) ∈ P with a+ b+ c+ h+ i + j = 2. We haveB = A000000011000(0)+

A001000100000(0) + A020000000000(0) for (n̂, k̂, ℓ̂) = (7, 2, 1) andB = A000000011000(0)

for (n̂, k̂, ℓ̂) = (13,3,1), (19,3,2), (21,4,1). �

B.3 Symmetry of solutions

To reveal the symmetry of the bifurcated solutions, we first consider the case of
(θ1, θ2, θ3) = (0,0,0) in (B.39). Thenz1 = z2 = z3 = ρ ∈ R, whereasz4 = z5 = z6 =

0. This solution, say,z(0) = (ρ, ρ, ρ, 0,0,0) is invariant to the action ofr by (55),
and hence the isotropy subgroupΣ(z(0)) representing the symmetry of this solution
contains⟨r⟩. By (56), on the other hand, this solution has the symmetry of the form
pα1 pβ2 if and only if (α, β) satisfies the relations

kα + ℓβ ≡ 0, ℓα − (k+ ℓ)β ≡ 0, −(k+ ℓ)α + kβ ≡ 0 modn.

By (B.2) and (B.4), this equation is satisfied by

(α, β) = p(k̂+ ℓ̂, ℓ̂) + q(−ℓ̂, k̂), p,q ∈ Z.

It therefore follows thatΣ(z(0)) ⊇ ⟨r, pk̂+ℓ̂
1 pℓ̂2, p

−ℓ̂
1 pk̂

2⟩, where it can be verified that
the inclusion is in fact equality, i.e.,

Σ(z(0)) = ⟨r, pk̂+ℓ̂
1 pℓ̂2, p

−ℓ̂
1 pk̂

2⟩ (B.44)

=


⟨r, p3

1p2, p−1
1 p2

2⟩ ((n̂, k̂, ℓ̂) = (7,2,1))
⟨r, p4

1p2, p−1
1 p3

2⟩ ((n̂, k̂, ℓ̂) = (13, 3, 1))
⟨r, p5

1p2
2, p
−2
1 p3

2⟩ ((n̂, k̂, ℓ̂) = (19, 3, 2))
⟨r, p5

1p2, p−1
1 p4

2⟩ ((n̂, k̂, ℓ̂) = (21, 4, 1)).

(B.45)

The associated distributions correspond to Lösch’s hexagons; indeed, for (α, β) =
(k̂+ ℓ̂, ℓ̂) or (−ℓ̂, k̂), we have

T/d =
√
α2 − αβ + β2 =

√
k̂2 + k̂ℓ̂ + ℓ̂2 =


7 ((n̂, k̂, ℓ̂) = (7,2,1))
13 ((n̂, k̂, ℓ̂) = (13, 3, 1))
19 ((n̂, k̂, ℓ̂) = (19, 3, 2))
21 ((n̂, k̂, ℓ̂) = (21, 4, 1)).

Let z(t) denote the solution corresponding to (θ1, θ2, θ3) =
2πt
n̂

(m1,m2,m3) in

(B.39), where 0≤ t ≤ n̂− 1. As shown in Table B.1, we have

(m1,m2,m3) ≡ δ(ℓ̂,−k̂− ℓ̂, k̂) mod n̂ (B.46)
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Table B.1: Value ofδ in (B.46)

n̂ (k̂, ℓ̂) (m1,m2,m3) ≡ (ℓ̂,−k̂− ℓ̂, k̂) × δ
7 (2, 1) (2,1,−3) ≡ (1,−3, 2) × 2 mod 7

13 (3, 1) (3,1,−4) ≡ (1,−4, 3) × 3 mod 13

19 (3, 2) (3,2,−5) ≡ (2,−5, 3) × 11 mod 19

21 (4, 1) (4,1,−5) ≡ (1,−5, 4) × 4 mod 21

with δ = 2, 3, 11,4 for n̂ = 7,13, 19,21, respectively. Since (ℓ̂,−k̂ − ℓ̂, k̂) corre-
sponds to the action ofp2 on (z1, z2, z3) in (56), z(t) is obtained fromz(0) by the
transformation ofpδt2 , which we may designate asz(t) = pδt2 · z

(0). Then the isotropy
subgroup ofz(t) is a conjugate subgroup of that ofz(0), i.e.,

Σ(z(t)) = pδt2 · Σ(z
(0)) · p−δt2 .

This means that the solutionsz(t) for t ≥ 1 are essentially (or geometrically) the
same asz(0).

A bifurcated solution of the form of (B.34), withz1 = z2 = z3 = 0 and|z4| =
|z5| = |z6|, can be obtained fromz(0) by transformingz(0) with s. The isotropy
subgroup representing the symmetry of this solution is obtained ass·Σ(z(0)) · s−1. It
is noted, however, such conjugate solutions should be identified from a geometrical
point of view.
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