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Abstract

Hexagonal population distributions of several sizes are shown to be self-
organized from a uniformly inhabited state, which is modeled by a system of
places (cities) on a hexagonal lattice. Microeconomic interactions among the
places are expressed by a core—periphery model in new economic geography.
Losch’s ten smallest hexagonal distributions in central place theory are guar-
anteed to be existent by equivariant bifurcation analysis @A [Z, x Zy),
and are obtained by computational analysis. The missing link between cen-
tral place theory and new economic geography has thus been discovered in
light of the bifurcation analysis.
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1 Introduction

In central place theory of economic geograplself-organization of hexagonal
market areas of three kinds shown in Fig. 1 was proposed by Christaller (1966) [6]
based on market, tfizc, and administrative principles. The ten smallest hexagons
shown in Fig. 2 were presented as fundamental sizes of market areasbly L
(1954) [27]. The assemblage of hexagonal market areas widrelit sizes is ex-
pected to produce hierarchical hexagonal distributions of the population of places
(cities, towns, villages, etc.).
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Figure 1: Three systems predicted by Christaller (the area of a circle indicates the
size of population)

In economics, a criticism on central place theory is raised that it is not derived
from market equilibrium conditions (Fujitat al, 1999, p.27 [14]). Early studies
of the formation of patterns were conducted by Clarke & Wilson (1985) [7] and
Munz & Weidlich (1990) [29]. Hexagonal distributions, as envisioned with central
place theory, were inferred to be self-organized in core—periphery models in two
dimensions by Krugman (1996) [25]. Core—periphery models are capable of ex-
pressing the migration of population among cities underpinned by microeconomic
mechanism (Krugman, 1991 [23] and Comiegs/, 2008 [8]). Yet most studies
for these models were confined to overly simplified geometry of two-city case. To
transcend the two-city case, studies on the racetrack economy, which comprises a

1For books and reviews for central place theory, see, for examphgH (1954) [27], Lloyd and
Dicken (1972) [28], Isard (1975) [20], and Beavon (1977) [2].
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Figure 2: Llosch’s ten smallest hexagoris= d/ V3)

system of identical cities spread uniformly around the circumference of a circle,
have been conducted: Krugman (1993 [24], 1996 [25]) conducted local analysis
(linearized eigenproblem) of the racetrack economy to identify the emergence of
several bifurcating spatial frequencies, and Tabuchi and Thisse (2011) [36] have
shown the occurrence of spatial period doubling bifurcation cascade for this econ-
omy. The description of this cascade as a hierarchical bifurcation-gyBhmetric
system withn = 2™ is under way (lkeda, Akamatsu & Kono, 2011 [18]).

Hexagonal patterns have been observed for several physical phenomena, in-
cluding: the Eenard problem (Bnard, 1900 [3]), and the Faraday experiment (Ku-
drolli, Pier & Gollub, 1998 [26]). The hexagonal patterns in the planandad
problem were studied by Sattinger (1978) [31] under a simplifying assumption
that solutions are doubly periodic with respect to a hexagonal lattice. Mathematical
analysis is conducted on the the B T2-symmetric hexagonal lattice with periodic
boundary conditions (Buzano & Golubitsky, 1983 [4]), whergiBthe dihedral
group expressing local hexagonal symmetry afdsThe two-torus of translation
symmetries. Equivariant bifurcation analysis of six- and twelve-dimensional ir-
reducible representations of the group © T2 has been conducted to search for
possible bifurcated patterns:

e For six-dimensional ones, hexagons, as well as rolls and triangles, are shown
to be existent (Buzano & Golubitsky, 1983 [4]; Dionne & Golubitsky, 1992
[10]; Golubitsky & Stewart, 2002 [16]).



¢ Fortwelve-dimensional ones, simple hexagons and super hexagons are shown
to be existent (Kirchgssner, 1979 [22]; Dionne, Silber & Skeldon, 1997
[11]; Judd & Silber, 2000 [21]).

During the course of this, equivariant branching lemma has come to be used as a
pertinent means in guaranteeing the existence of a bifurcated solution of a given
symmetry (Vanderbauwhede, 1980 [37]; Golubitsky, Stewart & Sthael 988

[17]). Nonlinear competition between hexagonal and triangular patterns were stud-
ied (Skeldon & Silber, 1998 [35]; Silber & Proctor, 1998 [34]). Bifurcated patterns

of a honeycomb structure were classified in Saiki et al. (2005) [30] and Ikeda &
Murota (2010, Chapter 16) [19].

The objective of this paper is to demonstrate the self-organizatiordath’s
ten smallest hexagons in Fig. 2 for a core—periphery model in two dimensions. Itis
an important information drawn from the study of the hexagonal patterns by equiv-
ariant bifurcation theory that the two-city witl,EBBymmetry and the racetrack with
Dn-symmetry, which are currently used for the study of core—periphery modes, are
insuficient as spatial platforms for the hexagonal distributions for these models.
As a pertinent spatial platform, we use a hexagonal lattice with periodic bound-
aries that comprises uniformly distributack n places that are connected by roads
of the same length forming a regular-triangular mesh. The mechanism of microe-
conomic interactions and migration of workers among the places are expressed by a
core—periphery model. The equivariant bifurcation analysis is conducted on a finite
group Dy + (Zn X Zn) that represents the symmetry of uniformly inhabited state of
the workers. In comparison with the groug B T2, the symmetries of bifurcated
solutions of which have been thoroughly obtained in the aforementioned literature,
the study of @ + (Z, X Z,) poses some additional issues such as the values of
that give the patterns of interest. To be specific, the values tife multiplicity
of bifurcation points, and irreducible representations correspondinggoH’s ten
smallest hexagons are given and classified. Although there are bifurcation points
of various kinds, those which produce the hexagonal patterns are identified and
the emergence of those hexagons is successfully demonstrated by computational
bifurcation analysis.

This paper is organized as follows: A system of places that is uniformly spread
on an infinite hexagonal lattice in two dimensions is modeled in Section 2. Sec-
tion 3 introduces a core—periphery model and predicts its bifurcation mechanism
producing hexagonal distributions by group-theoretic bifurcation theory. Group-
theoretical prediction of hexagonal distributions fog B (Zn x Zn)-symmetric
system is carried out in Section 4. Computational bifurcation analysis of the
hexagonal lattice is conducted to find bifurcated patterns that represent hexago-
nal market areas in Section 5. Details of the core—periphery model are given in
Appendix A. Equivariant bifurcation analysis of twelve-dimensional irreducible
representations is carried out in Appendix B.
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Figure 3: Hexagonal lattice

2 System of places on a hexagonal lattice

We introduce in this section amx n hexagonal lattice with periodic boundaries
comprising a system of uniformly distributedx n places, and prescribe groups
expressing the symmetry of this lattice. As a spatial configuration of a system of
places, we use the hexagonal lattice because it is geometrically consistent with the
hexagonal market areas that are predicted to appear in the literature of economic
geography (bsch, 1954, pp.133-134 [27]).

2.1 Hexagonal lattice

Figure 3 portrays the hexagonal lattice, which comprises regular triangles and
which covers an infinite two-dimensional domain. A place is allocated at each
node of this lattice, expressed by

pP= nlfl + nzfz, (nl, Np € Z),

where#; = (d,0)" andf, = (-d/2,dV3/2)" are oblique basis vectord (s the
length of these vectorsy; is the set of integers.

In this paper, we consider a finitexn hexagonal lattice with periodic boundary
conditions: an example far = 2 is shown by the dashed lines in Fig. 3. A system
of nx n places are allocated at hexagonal lattice points

p=né+ Nl (N,n2=0,1,---,n-1)

in a finite two-dimensional domain. Neighboring places, in view of the periodic
boundaries, are connected by straight lfnetequal lengthd to form a regular-
triangular meshes.

°These stright lines are interpreted as roads in the core—periphery mg®elin



2.2 Two-dimensional periodicity and hexagonal distributions

If the population distribution of a system of places (i.e., a subset of nodes) has
two-dimensional periodicity, then we can set a pair of independent vectors

(t1, t2), )

called the spatial period vectors, such that the system remains invariant under the
translations associated with these vectors. The spatial pefiedB,] are defined
as

Ti=tll, (@(=12).

The tilted anglep betweer¥; andt; is defined as

(f1)"ts
lltall

Although the choice of the vectorg(t2) is not uniqueT; andT, must be chosen
to be as small as possible, and then to choose the smallest non-negative

To consider hexagonal distributions among possible doubly-periodic distribu-
tions, we specifically examind(, t) of the form

cosp = 2)

ty=aly+pl, to=-Bl+(a-P2, (a.BeZ), 3

for which Ty = To(= T) is satisfied and the angle betwegrandt; is 2r/3. The
associated normalized spatial period is given by

T/d= \/(a —BJ2) + (BV3/2)2 = yJa? - aB + 2. 4)

We consider a positive integer

a:az—aﬁ+,82, (5)

which can take some specific integer values, such as 1, 3, 4,,And rewrite the
normalized spatial period in (4) as

T/d= +a (6)

which takes some specific values, suchvis V3, V4, V7, ..., and lies in the
range 1< T/d < nin ann x n system. We refer to the hexagonal distribution with
a = 1 as the uniform distribution (Fig. 4(a)). In particular= 3, 4, 7 correspond
respectively to Christallers = 3, 4, 7 systems (Fig. 4(b)-(d)). The values of
(a, B) for these systems are given, for example, fosth’s ten smallest hexagons
as listed in Table 1. The tilted ang}an (2) for the hexagonal distributions is given

by
BV3/2 ]
VaZ=ap+p2)

6

¢ = arcsi

(7)



Table 1: The values ofy, B), tilted angleyp, type of hexagon, local and translational
symmetries, and compatibtefor Losch’s ten smallest hexagons

Tilted | Type of Local Translational| Lattice size
a | (o,p) | angle | hexagons symmetry| symmetry n M

) Gl,cal Glrans (m=1,2,..)
3/ (1) | n/6 M ;s | (Pip2, Pr'p2) 3m 2
4| (2,0) 0 \Y; {r,s) (P2, p3) 2m 3
71 (3,1) | 01067 | Tilted {ry (P3p2, p;1p3) 7m 12
9|/ (30| O Y r,s (3, p3) 3m 6
12| (4,2) | n/6 M {r,s) (P1P3, P12P3) 6m 6
13| (4,1) | 0.077t | Tilted (r) (ptp2, P;P3) 13m 12
16 | (4,0) 0 \Y} {r,s (py. P3) 4m 6
19| (5,2) | 0.130r | Tilted (r) (P3P3. P2P3) 19m 12
21| (5,1) | 0.061r | Tilted {r) (P3P2, Pr1P3) 21m 12
25| (5,0) 0 \Y; {r,s) (p3, P3) 5m 6

and its values are listed in Table 1. With reference to the tilted andifined by
(7), we can classify hexagonal distributions into

hexagonal distributions of typeM ¢ =x/6, a=3,12 (8)

hexagonal distributions of type,V ¢ =0, a=4>9,16,25,
tilted hexagonal distributions otherwise a=7,1319 21

in which “V” signifies that the vertices of the hexagons are located orxiles
and “M” denotes that midpoints of sides of the hexagons are located orakis.
The classification of hexagonal distributions is listed in Table 1. The translational
symmetry and the compatible valuerdisted in this table are derived later§.3.

2.3 Groups expressing the symmetry

For the study of the agglomeration pattern of population distribution om the
hexagonal lattice, we use group-theoretic bifurcation theory: an established math-
ematical tool for investigating pattern formation. In this theory, the symmetries
of possible bifurcated solutions are determined with resort to the group that labels
the symmetry of the system. Hence the first step of the bifurcation analysis is to
identify the underlying group.
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(Christaller'sk = 3 system)
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(c)a=4,typeV, @.B) =(2,0) (d)a =7, tilted, @,8) = (3,1)
(Christaller'sk = 4 system) (Christaller'sk = 7 system)

Figure 4: Hexagonal distributions on the hexagonal lattice



2.3.1 Symmetry of then x n hexagonal lattice

Symmetry of then x n hexagonal lattice is characterized by invariance with respect
to:

e r: counterclockwise rotation about the origin at an angle /&
e s reflectiony — -y.

e p1: periodic translation along thig-axis (i.e., thex-axis).

e py: periodic translation along th-axis.

Consequently, the symmetry of the hexagonal lattice is described by the group

G =(1,s p1, P2), 9)

where(- - - ) denotes a group generated by the elements therein, with the fundamen-
tal relations given by

r6

S=(rs)?=p"=p" =¢
P = Pap2f, TrIp2= pllr, SpL=pP1S Sk = pllpils, P2P1 = P1P2,

wheree is the identity element. Each element®tan be represented uniquely in
the form of

sr™pi'py), i,je(0,...,n-1}; 1€{0,1}; me{0,1,...,5}.

(For group theory, see Curtis & Reiner, 1962 [9]; Serre, 1977 [33].)

The groupG contains the dihedral group, s) ~ Dg and cyclic groupgp:) ~
Zn and({py) ~ Zn as its subgroups. Moreover, it has the structure of semidirect
product of Iy by Z,, x Z,,, which is denoted as

G = Dg + (Zn X Zn) (10)

or G = Dg x (Zn X Zp) in another notation. This means, in particular, ttat p2)
is a normal subgroup @5.

Remark 2.1. For the group @ + T2, where F denotes the two-dimensional torus,

a thorough classification of the symmetries of bifurcated solutions has been ob-

tained in the literature using the standard approach based on the equivariant branch-

ing lemma (see Buzano & Golubitsky, 1983 [4] and Dionne, Silber & Skeldon,

1997 [11]). Naturally, this is closely related to the present study of the bifurcation

problem equivariant to P+ (Zn x Zyn). Considering discrete case, with finite

poses some additional issues. For example, we may be concerned with the values

of nthat give the patterns of interest, which are important in computational studies.
O



2.3.2 Subgroups

Among many subgroups & = (r, s, p1, p2) = Dg + (Zn X Zp), we are interested
in those subgroups expressingdch’s ten smallest hexagons. Such subgré@fps
are represented as the semidirect product of a subgeup of Dg by a subgroup

GfiansOf Zn X Zn; i.e.,

GI:GI

local + G{rans (11)
For exampleG/, ., = (1, s) andGy,,,s = (P22, P+ p2) for the system witka = 3. It
should be clear th&, __ represents the local symmetry a@fl, ,sthe translational
symmetry.

The local symmetry of the hexagons of Type V or Type M is described by
Glocat = (IS). The tilted hexagons, lacking in reflection symmegryhave the

local symmetry of5; ., = (r). Thus the classification of hexagons in (8) gives

, | A9 fora=34,91216 25
local ™ | (ry  fora=713192L

The translational symmetry is given as
G{rans = < p(jf pg’ pIIB ple—ﬂ>

Herea andpg are the nonnegative integers in (3), which are listed in Table 1. From
this translational symmetry we can derive a compatibility condition on thersize
of the hexagonal lattice for specifiadsalue. For example,

e Fora = 3 with (,8) = (2,1), we have p?p2) x (p;tp2)™t = p3, which
represents a translation in the direction of theaxis at the length of &
accordingly,n must be a multiple of 3. The spatial period vectors are given
by (t1, t2) = (261 + €2, —€1 + £2). The spatial period elongates®gd = 1 —

V3 (=Va).

e Fora = 4 with (,8) = (2,0), the symmetry op7 and p3 implies thatn is
a multiple of 2. The spatial period vectors are given iy t)) = (21, 2¢5).
The spatial period elongates 8gd = 1 — V4 (= v/a).

e Fora = 7 with (o, 8) = (3,1), we have p3p,)? x (p;*ps)~* = pf, from
which follows thatn is a multiple of 7. The spatial period vectors are given
by (t1,t2) = (361 + £», —€1 + 2¢2). The spatial period elongates &sd =
1- V7 (=+a).

Likewise, fora=9, 12, 13, 16, 19, 21, 25, respectively, compatiible a multiple
of 3, 6, 13, 4, 19, 21, 5, as listed in Table 1.

Example 2.1. Forn = 3, the population distributioh for a = 3 is given uniquely
as
h=(b,cciccb;cb,c), (12)

10



where p,c) = (1/9 + 26, 1/9 — §) with —1/18 < § < 1/9. This distribution has the
symmetryG’ = (r, s, pipz, p;p2) With G/, = (1, S) andG{ s = (PFP2, P11 P2) =
(p§p2>. The population distributiof for n = 3m (m = 2,3,...) can be obtained
by spatially repeating the distribution in (12) fdx, €) = (1/n? + 26, 1/n? — §) with
~1/(2n%) <6 < 1/, O

Example 2.2. Forn = 7, the population distributioh for the hexagonal distribu-
tion with a = 7 is given uniquely as

h = (bcc.cccc cccbcccccccccb; cchb,cccc

(13)
c,ccccb,c cbccccc ccccbccer,

where p, ¢) = (1/49+ 66, 1/49-6) with —1/294 < § < 1/49. This distribution has
the symmetnG’ = (r, pjpz, p;*p3) With Gy, = (1) andGians = (P}P2, Py P5) =
(pfp2>. The population distributiof for n = 7m (m = 2,3,...) can be obtained
by spatially repeating the distribution in (12) fdx, €) = (1/n? + 66, 1/n? — 6) with

~1/(6n%) <6 < 1/, O

11



3 Core—periphery model and bifurcation

In this section, we present a multi-regional core—periphery model. The group-

equivariance of this model for the system of places is introduced and the mecha-
nism of bifurcation producing hexagonal distributions is studied. Details are given

in Appendix A.

3.1 Core—periphery model

We employ a core—periphery model by Forslid & Ottaviano (2003) [13] that re-
places the production function of Krugman with that of Flam & Helpman (1987)
[12].

The economy is composed &f places (labeled = 1,...,K), two factors
of production (skilled and unskilled labor), and two sectors (manufacture M and
agriculture A). ThereH skilled andL unskilled workers consume two final goods:
manufactural-sector goods and agricultural-sector goods. Workers supply one unit
of each type of labor inelastically; hekeis a constant expressing the total number
of skilled workers. Skilled workers are mobile across places, and the number of
skilled workers in place is denoted byh;. Unskilled workers are immobile and
equally distributed across all places with the unit density (Les,1 x K). Hence
the population in placeis equal toh; + 1.

The governing equation of this model is formulated in a standard form of static
equilibrium as

F(h,7) =HP(h)-h =0. (24)

Thereinh = (h;) € RX is aK-dimensional vector expressing the population distri-
bution of the skilled workers; € R is a (bifurcation) parameter corresponding to
the transport parameter, afd R x R — RK is a suficiently smooth nonlinear
function inh andr; P = (P,) € RX is aK-dimensional vector given by
Pi(h,7) = KeXp[HV'(h’T’”’ AN _ o1k (15)
2z explevi(h, 7, )]

where@ is the constant representing the inverse of variance of the idiosyncratic
tastesy is the constant expenditure share on industrial variettespresses the
constant elasticity of substitution between any two varieties vdidr; u, o) (i =
1,...,K) are nonlinear functions representing the components of an indirect utility
function vectow(h, T; u, o).

The equalityH = 3, hyj is satisfied by any solution of (14) becaysg, Pi(h, 7) =
1 by (15). As a normalization we pit = 1 in the subsequent analysis.

3.2 Exploiting symmetry of core—periphery model

For investigation of the patterns of the bifurcated solutions, it is crucial to formu-
late the symmetry that is inherent in the governing equation. In group-theoretic

12



bifurcation theory, the symmetry of the equation for the system>ofi places on
the hexagonal lattice is described as

T(QF(h.7) = F(T(@h,7), g€G, (16)

in terms of an orthogonal matrix representatibrof groupG = (r, s, p1, p2) in
(9) on theK-dimensional spacRX. The condition (or property) (16) is called the
equivariance of(h, ) to G. The most important consequence of the equivariance
(16) is that the symmetries of the whole set of possible bifurcated solutions can be
obtained and classified.

In our study of a system af x n places on the hexagonal lattice, each element
g of G acts as a permutation among place numbers (1K) for K = n? and hence
eachT(g) is a permutation matrix. Then we can show the equivariance (16) of the
core—periphery model 18 = (r, s, p1, p2) = D¢ + (Zn X Zn).
Proof. By expressing the action gfe G asg: i — i* for place numbersandi*,
we havevi(T(g)h, 7) = vi-(h, ) andP;(T(g)h, 7) = P;-(h, 7) by (15) for anyg € G.
Therefore, we have

Fi(T(9)h, ) = HRi(T(g)h,7) — hix = HPi(h, 7) - hi- = Fi-(h, 7).

This proves the equivariance (16). a

The group-theoretic bifurcation analysis proceeds as follows. Consider a criti-
cal point (¢, 7¢) of multiplicity M (> 1), at which the Jacobian matrix 6fhasM
zero eigenvalues. Throughout this paper we assume that a critical point is generic
(or group-theoretic) in the sense that tdedimensional kernel space of the Jaco-
bian matrix is irreducible with respect to the representafioSee Remark 3.1.

Using a standard procedure called thapunov—-Schmidt reduction with sym-
metry(Sattinger, 1979 [32]; Golubitsky, Stewart & Sclfi@e, 1988 [17]; lkeda &
Murota, 2010 [19]), the full system of equations

F(h,7)=0 (a7)

in h € RKX (see (14)) is reduced, in a neighborhood laf, (), to a system oM
equations (called bifurcation equations)

Fw?)=0 (18)

inw e RM, whereF : RM x R — RM is a function an& = 7 — 7. denotes the
increment ofr. In this reduction process the equivariance of the full system, which
is formulated in (16), is inherited by the reduced system (18) in the following form:

TOFW7) = F(T@@w.7), geG, (19)

whereT is the subrepresentation @fon the M-dimensional kernel space of the
Jacobian matrix. The symmetry of the kernel space, sometimes referred to as the

13



kernel symmetry, is expressed by the subgrmup G | T(g) = 1}. It is this inheri-
tance of symmetry that plays a key role in determining the symmetry of bifurcating
solutions.

The reduced equation (18) is to be solvedvioasw = w(7), which is often
possible by virtue of the symmetry & described in (19). Sincem7) = (0,0)
is a singular point of (18), there can be many solutians w(r) with w(0) = 0,
which gives rise to bifurcation. Eastuniquely determines a solutidnof the full
system (17).

The symmetry oh is represented by a subgroup®efined by

Z(h) =2(h;G, T) ={ge G| T(gh = h}, (20)

called the isotropy subgroup bf The isotropy subgroup(h) can be computed in
terms of the symmetry of the correspondings

2(h;G,T) =W, G,T), (21)

where N _

Iw,G,T)={ge G| T(gw = w} (22)
The relation (21) enables us to determine the symmetry of bifurcated soliitions
through the analysis of bifurcation equationsin
Remark 3.1. The numbeiNy of d-dimensional irreducible representation<of
De + (Zn x Zy) is given as follows:

nn\d |1 2 3 4 6 12
N]_ N2 N3 N4 N6 N12
6m | 4 4 4 1 JD-6 (n°-6n+12)/12
6m+1| 4 2 0 0 ZX-2 (n®-6n+5)/12
6m+2| 4 2 4 0 ZX-4 (n®-6n+8)/12
6m+3| 4 4 0 1 Zn-4 (?-6n+9)/12

Heremis a positive integer. For some valuesmoftreated in Section 5), the num-
bersNy of thed-dimensional irreducible representations are listed in Table[2.

Remark 3.2. Simple bifurcation points do not play a role in the present analysis.
The one-dimensional irreducible representations of the g@ep(r, s, p1, p2) in
(9), which we label as«, +), (+,-), (-, +), and £, -), are given by

T =1, TEN9=1  TEA(p)=1 TEI(p)=1,
TN =1, TEI(9=-1 TEApy=1 TEIAp)=1
TENM=-1,  TEN9=1  TEpy=1 TEI(p)=1,
TEIN=-1  TEN9=-1 TEIApy=1 TEI(p)=1

14



Table 2: NumbeNy of d-dimensional irreducible representations @f-B(Znx Zn)

n\d| 1 2 3 4 6 12

N1 N2 Nz Ng Ne Nz > Ng
2 |4 2 a4 10
3 |4 4 1 2 11
4 4 2 4 4 14
5 4 2 8 14
6 4 4 4 1 6 1 20
7 4 2 12 1 19
8 4 2 4 12 2 24
9 4 4 1 14 3 26
10 4 2 4 16 4 30
11 4 2 20 5 31
12 4 4 4 1 18 7 38
13 4 2 24 8 38
14 4 2 4 24 10 44
15 4 4 1 26 12 47
16 4 2 4 28 14 52
17 4 2 32 16 54
18 4 4 4 1 30 19 62
19 4 2 36 21 63
20 4 2 4 36 24 70
21 4 4 1 38 27 74
25 4 2 48 40 94

15



In general ¢, +) is associated with a limit point of the bifurcation parameteand
(+,-), (-, +), and £, -) with a simple bifurcation point witfE(h) = (r, p1, p2),

(s, p1, P2), and(sr, p1, p2), respectively. Yet, for the present definitionlo (h;)

in §3.1 for the hexagonal lattice withx n places, such bifurcation points are non-
existent sincgpy, p2)-symmetry restrictdh to be G = (r, s, p1, p2)-symmetric,
which corresponds to the uniform population. Alternatively, we can say in more
technical terms that the irreducible representatiens), (-, +), and ¢, —) are not
contained in the representatidiig) for the core—periphery model. O
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4 Theoretically predicted hexagonal distributions

By using group-theoretic bifurcation theory, we present in this section a possible
bifurcation mechanism that can producéskch’s ten smallest hexagorf2(2). It

is noted first that uniformly distributed population of the skilled workers, given
by hy = --- = he = 1/n?, is the simplest hexagonal distribution associated with
the pre-bifurcation solution of the governing equation (14). The symmetry of this
solution is labeled by the group

G =(I,s p1, P2) = Dg + (Zn X Zn)

in (9) and (10).

The symmetry of a bifurcated solutidm of the governing equation (14), in
general, is expressed by a subgrayp) of G in (20). Among many possible sym-
metries of bifurcated solutions, we are particularly interested in those bifurcated
solutions, if any, for whiclt(h) coincides with subgroups in (11) corresponding to
Losch’s ten smallest hexagons (Table 1):

(r,s) +(p2p2, pyip2) fora=3,

(r, sy + (p2, p3) fora= 4,
() +(p3pz, p;tp3y fora=7,
(r,s +(p3, p3) fora=9,

(r,s) +(p}p3, p;2p3) fora=12
(r) +(ptp2, prtpdy  fora=13
(r,s +(pl. p3) fora =16,
(ry +(p>p3, p;2p3y  fora=19,
(ry +(p;p2. py'pgy  fora=21
(r,s) +(p3, p3) for a = 25,

Glocal t Girans = (23)

The main message of this section is that such bifurcated solutions do exist, and
therefore losch’s ten smallest hexagons can be understood within the framework of
group-theoretic bifurcation theory. We shall see thag¢h'’s ten smallest hexagons
emerge from bifurcation points of multiplicitt = 2, 3, 6, and 12, but not of
M = 1 and 4. Specifically we have

3 for M = 2,
4 for M = 3,
9,12,16,25 forM =6,
7,13,19,21 forM =12

Losch’s hexagons with= 9, 12 16, 25 forM = 6 are called “hexagons” in Buzano
& Golubitsky (1983) [4] and bsch’s hexagons with = 7,13, 19,21 forM = 12
are called “simple hexagons” in Dionne, Silber & Skeldon (1997) [11].
Our analysis for specific cases are described below (Sections 4.2 to 4.5) and
mathematical analysis of the bifurcation equations at group-theoretic bifurcation
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points of multiplicity M = 12 is worked out in Appendix B. The emergence of
these hexagons is confirmed numerically in Section 5 by the computational bifur-
cation analysis of the hexagonal lattice with various sizes

4.1 Analysis by equivariant branching lemma

The emergence ofdsch’s hexagons is proved by applying the equivariant branch-
ing lemma (Vanderbauwhede, 1980 [37]) to the bifurcation equaﬁ(m?) in
(18); see, e.g., Golubitsky, Stewart & Scfae 1988 [17] for this lemma. Recall
that bifurcation equation is associated with an irreducible representati®rantl
that the isotropy subgroup(h) in (20) expressing the symmetry of a bifurcated
solutionh is identical with the isotropy subgrodw) in (22) of the correspond-
ing solutionw for the bifurcation equation, i.ex(h) = X(w) as shown in (21). A
subgrou is said to be an isotropy subgrougif= X(h) for someh.

The analysis based on the equivariant branching lemma proceeds as follows:

e Specify an isotropy subgroup of G for the symmetry of a possible bi-
furcated solution as well as an irreducible representafiasf G that can
possibly be associated with the bifurcation point.

e Obtain the fixed-point subspace Fj(for the isotropy subgroup with re-
spect to the irreducible representatibpwhere

Fix(Z) = fwe RM | T(gw = wfor all g € ). (24)

e Calculate the dimension dim FX) of this subspace.

e If dimFix(X) = 1, a bifurcated solution with symmetdy is guaranteed to
exist generically by the equivariant branching lemma. If dimEjx£ 0, a
bifurcated solution with symmetry} is non-existent. If dimFix{) > 2, no
definite conclusion can be reached by the equivariant branching lemma.

Isotropy subgroups with dim FiXj = 1 are calledaxial subgroupsand the asso-
ciated spatially doubly periodic solutions are caliedal planforms(Golubitsky,
Dionne & Stewart, 1994 [15]).

In our present analysis, we employ the above procedureXvithG’ for each
G’ in (23) and for each irreducible representatof G; note that eacl®’, rep-
resenting the symmetry of adlsch’s hexagon, is an isotropy subgroup. Since the
dimension ofT is eitherd = 1, 2, 3, 4, 6, or 12, the multiplicit} of the critical
point is generically either 1, 2, 3, 4, 6, or 12. The equivalent branching lemma
applies only if dim Fixg) = 1. Fortunately, it will turn out (see Sections 4.2 to 4.4)
that, in all cases of our interest in (23), we have dimE)x€ 1 and therefore we
can always rely on the equivalent branching lemma to determine the existence or
nonexistence of bifurcated solutions fabdch’s ten smallest hexagons.
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4.2 Hexagon witha = 3: bifurcation point of multiplicity 2

Whenn is a multiple of 3, hexagons with = 3 appear generically as a branch
from a double bifurcation pointM = 2) that is associated with the irreducible
representation given by

|1 0 110 B | cosZ/3 —sin2t/3
T = [ 0 -1 ] T = [ 01 } TP =T(P) = | Gnor/3  coszy3 |-
(25)
This is one of the four two-dimensional irreducible representationssof [Z,, x

Zn) = (1, s, p1, p2) (Table 2).
The general procedure in Section 4.1 is applied to

% = (1, s Pip2, Py P2) = (1, S) + (pip2. Py p2). (26)
which describes the symmetry of the hexagon vtk 3 (Christaller'sk = 3
system) in Fig. 4(b). The fixed-point subspace Epith respecttal = T in (25)
is a one-dimensional subspaceR# spanned by (10)T. Then, by the equivariant
branching lemma, there exists a bifurcated path with the symmetry of (26).

It is mentioned that the standard results for a double bifurcation point for the
dihedral group symmetry can be adapted to this case with (25). In particular, the
concrete form of the bifurcation equations can be determined and the number and
the asymptotic form of bifurcated paths can be analyzed; see Sattinger (1979) [32];
Golubitsky, Stewart & Schdker (1988) [17]; Ikeda & Murota (2010, Chapter 8)
[19].

Remark 4.1. Forn = 3™ (mis a positive integer), there are successive bifurcations
associated with a hierarchy of subgroups

D6 + (Zn X Zn) — De + (P2p2, P2 p2) — D6 + (Znja X Znyz) — -+~
— Dg + (p3"°p), p°p)/®) — D + (Z1 x Z1) = D, (27)

where— means the occurrence of bifurcation. These successive bifurcations pro-
duce a set of nested hexagons (see computational analy$tslin The spatial
period is multiplied V3-times successively as

T/d=1- V353—..->n/V3->n. (28)
This fact can be proved as follows. The subgroup
D6 + (PiP2, P1'P2) = Do + (P2, P3) = Do + (0, )
(g1 = p%pz, U = pf) has the two-dimensional irreducible representation

1 3 _ | cosZ/3 —sin2r/3 |10
0 —1]’T(S)_[o 1}’T(q1)_l sin27/3 coszr/Sl’T(qZ)_[O 1]'
(29)

T(r) = [
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Since the bifurcation equation equivariant with respect to (29) takes the same form
as that for the direct bifurcation associated with (25), by the analysis of this equa-
tion, we see that

2(h) = (r, s 5, q2) = (1, s, PSS, P2y = (1, s, 5, p). (30)

This process is repeated to prove (27). O

4.3 Hexagon witha = 4: bifurcation point of multiplicity 3

Whenn is a multiple of 2, hexagons with = 4 are predicted to branch from
a triple bifurcation point that is associated with the three-dimensional irreducible
representation given as

010 100
Tr)=[0 0 1], T(s):1o 0 1}; (31)
100 010
1 0 0 10 0
T(pl):lo -1 0|, T(p2)=l 01 o‘ (32)
0 0 -1 00 -1

This corresponds to one of the four three-dimensional irreducible representations
of D + (Zn X Zn) = (I, s, p1, p2) (Table 2).
The general procedure in Section 4.1 is applied to

Y =(r,s P2, p3) = (1, S) + (P2, p3) = Dg + (Znj2 X Zn/2), (33)

which expresses the symmetry of the hexagon with 4 of type V (Christaller's

k = 4 system) in Fig. 4(c). The fixed-point subspace Ejxfith respect toT =

T in (31) and (32) is a one-dimensional subspacé&dfspanned by (11,1)".
Then, by the equivariant branching lemma, there exists a bifurcated path with the
symmetry of (33).

It is mentioned that a slight extension of a pre-existing result can be utilized
to obtain the concrete form of the bifurcation equations and the asymptotic form
of bifurcated paths. Specifically, the irreducible representation in (31) and (32) is
denoted a3 @1 in Ikeda & Murota (2010, Chapter 16) [19], and the flower mode
solution there corresponds to the solution expressiigrh’s hexagon with = 4.

Remark 4.2. Forn = 2™ (mis a positive integer), there are successive bifurcations
associated with a hierarchy of subgroups

Dé + (Zn X Zn) — De + (Znj2 X Znj2) — -+
— Dg + (Zo X Z3) — Dg + (Z1 X Z1) = De, (34)
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where— means the occurrence of bifurcation. These successive bifurcations pro-
duce a set of nested hexagons (see computational analy$tsZn The spatial
period doubles successively as

T/d=1-2—--->n/2->n, (35)

which is called spatial period-doubling bifurcation cascade. O

4.4 Hexagons witha =9, 12, 16, 25: bifurcation point of multiplicity
6

A hexagon witha = 9, 12, 16, or 25 branches from a bifurcation point of multi-
plicity 6. The hexagons witl = 9(= 3?), 16(= 42), 25(= 5°) are of type V with
¢ = 0, and the hexagon with= 12 is of type M withy = 7/6.

The group B + (Zn X Zpn) = (I, S, p1, P2), With n > 3, has 6-dimensional
irreducible representations. By defining

S I
T =| s TkED(g) =a,-l | } (36)
S I
TEDp)=| K TED(p) = RO @)
R—k—[ Rk
whereo1 = 1,0, = -1, and
_ | cosz/n —sin2t/n |1 0O
_[ sin2r/n  cos Zr/n } S _[ 0o -1/ (38)
we can designate the 6-dimensional irreducible representations by
(L) = (0.j) with 1<k< 1" je 1,2 or (39)
(D)= (k) with 1<k<I" 0] k=3 je12. (40)

The action given in (36) and (37) on 6-dimensional vectors, say; (- , Wg),
can be expressed for complex variables 2, z3) = (Wy + W, W3 + Wz, Ws + iWg)

as .
VAl V) VAl il
r: {zz —1Zz|, s: [zz H{O’j zl], (42)
Z3 Z Z3 OjiZ3
4] wkzl Z; w[Zl
Py : [22] - Wz ] P2 {22] - [w‘k‘fzzl, (42)
Z3 w_k_623 Z3 a)k23
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wherew = exp(i2r/n).
Recall from Section 2.3 thatdsch’s hexagons witlh = 9, 12, 16, 25 are
endowed with the symmetry of

@A) = (1,9 + (piel, P P ), (43)

where
(3,0;3m) fora=09,
) 4,2,6m) fora=12
(@B =Y (40:4m) fora= 16
(5,0;5m) fora=25.

(44)

To apply the general procedure in Section 4.Ete () in (43) we search
for irreducible representationk, ¢, j) such that

Fix(2P) = (z= (2, 2, z3) | T®ED(g) - z = zfor all g € =)} (45)

is nontrivial with dim Fixg@#) > 1. HereT®k%)(g) - z means the action dj
given in (41) and (42), and the dependence of E&4) on (, ¢, j) is implicit in
the notation.

Lemma 4.1. For (@, 8; n) in (44) we have the following.

) Fix{cr,s) = {(o,p,0) | p € R} foreach k, ¢, j) with j = 1; and
Fix(¢r, s)) = {0} for each k, ¢, j) with j = 2.

(i)  Fix(Z@h)) = {(p, p,p) | p € R} holds for

(m 0,1;3m) fora=9,
(KL.jn) = none fora=12 (46)
5 1 = (m,0,1; 4m) fora= 16,
(m,0,1;5m),(2m,0,1;5m) fora= 25
or
none fora=9,
1;6m fi =1
(k¢ jimy = (mmLom ora=12 (7)
(m,m, 1; 4m) fora= 16,

(m m,1;5m),(2m,2m,1;5m) fora= 25.

Proof. (i) This is immediate from (41).
(ii) The invariance oz = (z1, 2, z3) = (p, p, p) With p # 0 to p‘l’pg is expressed
as
ke + =0, ta—-(k+6)B=0, —-(k+0a+kB=0 modn, (48)

whereas the invariance [g” pj * as
KB+ la—p) =0, —lh—(k+O)(@—-p) =0, (K+Of+kl@—g =0 modn,
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which is equivalent to (48). Fok(¢) = (k, 0), (48) is simplified to
ke=0, kB=0, -ka+ks=0 modn, (49)

and the parameter valuek, {) = (k,0) satisfying (49) in the range of (39) are
enumerated by (46). Fok,(¢) = (k, k), on the other hand, (48) is reduced to

ke +kB=0, ka—-2k8=0, -2ka+kB3=0 modn, (50)

and the parameter valuek, {) = (k, k) satisfying (50) in the range of (40) are
enumerated by (47). O

The following is the main result of this section.

Proposition 4.1. Losch’s hexagons with = 9, 12, 16, and 25 arise as bifurcated
solutions from bifurcation points of multiplicity 6 associated with the irreducible
representations given in (46) or (47).

Proof. For the parameter values in (46) or (47) we have dim¥#Q) = 1 by
Lemma 4.1(ii). Then the equivariant branching lemma guarantees the existence of
a bifurcated solutiom with (h) = x(@5), O

Knowledge about the possible bifurcation points given in Proposition 4.1 and
Lemma 4.1 is helpful in conducting numerical analysis.

Remark 4.3. There exist no bifurcated solutions far 3 ora = 4 from a bifurca-
tion point of multiplicity 6. This follows from the fact that the equation (48) with
(a,8) = (2,1) or (2 0) has no solutionk( ¢) satisfying (39) or (40). a

Remark 4.4. There exist no bifurcated solutions far= 7, 13, 19, 21 (tilted
hexagons) from a bifurcation point of multiplicity 6. This follows from the fact
that the equation (48) withu(8) given later in (58) has no solutiok, ) satisfying
(39) or (40). O

4.5 Hexagons witha = 7,13, 19, 21: bifurcation point of multiplicity

12
A hexagon witha = 7, 13, 19, or 21 branches from a bifurcation point of multi-
plicity 12. These hexagons are tilted £ 0, 7/6) in contrast to the other hexagons

obtained in Sections 4.2, 4.3, and 4.4. The emergence of such tilted hexagons is
most phenomenal in the present study.
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The group R + (Zn X Zn) = (1, S, p1, P2), With n > 6, has 12-dimensional
irreducible representations. We can designate thenk, l8Y ith

1<f<k-1,

2k+¢£<n-1,

where the irreducible representatidn{) is defined as

S
S
T®O() = | S (k0 (g) =
(r) = - TH(9) =
S |
S
S
- Rk
R
R—k—[
T®(py) = = T (py) =
R’
Rk
where

p1:

Z

sin2r/n

The action givenin (52) and (53) on 12-dimensional vectors, say; (- , Wi12),
can be expressed for complex variates woj_1 +iwj (j = 1,...,6) as

wherew = exp(i2r/n).
Recall from Section 2.3 thatdsch’s hexagons witlh = 7, 13, 19, 21 are
endowed with the symmetry of

_ | cosz/n —sin2t/n
B cos Zr/n

NEYEAESESES

SHNHYH N

| o

=

(51)
I
|
, (52)
I
I
[ R
Rk
Rk
Rfkff
Rk
R
(53)
Lol e

S = () i o P,
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where
(3,1;7m fora=7,
.~ ] (41,13m) fora=13
(o, ;1) = (5,2;19m) fora=19,
(5,1;21m) fora=21

(58)

To apply the general procedure in Section 4.13tG= Zg"ﬁ) we search for
irreducible representationk, ¢) such that

Fix(y™) = (2= (21,2, 28, 2, 25,2) | T*O(g) - 2= zforall g e 35} (59)

is nontrivial with dim FixQ:g”’B)) > 1. HereT®9(g)-zmeans the action gfgiven in
(55) and (56), and the dependence of Ef?((g)) on (k, ) is implicit in the notation.

Lemma 4.2. For (a,3; n) in (58) we have the following.
(i) Fix((r) ={(o,p,p.0".0",0") | p,p" € R} for each k, ¢).
(i) dimFix(=?) < 1 for eachk, ¢).
iy 1f dim Fix(£*?) = 1, then

FixEY?) = {(0.0,0,0,0,0)[p R} or (60)
FixZ5?) = 10,000,090 1o/ € R). (61)
(iv) (60) holds for
(2m, m; 7m) fora=7,
(K.£n) = (8m, m; 13m) fora=13 (62)

(8m, 2m; 19m), (6m, 4m; 19m) for a = 19,
(4m, m; 21m), (8m, 2m; 21m) fora =21
(v) (61) holds for
none fora=7,
k. £:n) = (5m,2m; 13m) fora= 13 (63)
o (7mm;19m) fora= 19,
(6m,3m; 21m) fora=21

Proof. (i) is immediate from the action afin (55).
For the proof of (i) to (v) we first consider the symmetryzct (z1, 2, 3, Z1, 75, Z5) =
(0, 0,p,0,0,0) with p # 0. The invariance of suchto pfpg is expressed as

ke +8=0, ta—-(k+0)B=0, —-(k+0a+kB=0 modn, (64)
whereas the invariance [g” pj * as

KB+ la-B) =0, —lB—(k+O)(@—-B) =0, (k+0B+ki@—B)=0 modn,
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which is equivalent to (64). The parameter valleg) satisfying (64) in the range
of (51) are enumerated by (62), as can be verified easily using the retation
(a? — a8 + f2)m, which follows from (5) and (58). Hence we have

Fix(=5™) 2 ((0.p,£,0,0,0) | p € R} (65)

for (k, €) in (62).

Next we consider, in a similar manner, the symmetry ef(z1, 2, 73, 21, 75, z5) =
(0,0,0,0",0’, p") with p’ # 0. The invariance of suchto p?p andp,” pa* is ex-
pressed as

ke —(k+0)B=0, Cta+kB=0 —(k+&a+{8=0 modn. (66)

The parameter valueg, () satisfying (66) in the range of (51) are enumerated by
(63), and therefore

Fix(25") 21(0,0,0,0,0,0') | p/ € R} (67)

for (k, €) in (63).

Since no K, ¢) is common to (62) and (63), (65) and (67) cannot be true si-
multaneously. Furthermore, we can see from the above argument that if
(0, 0,0,0,0,0) € Fix(Zg“"B)), then we must have = 0 orp’ = 0. This shows
the assertions (ii) and (iii). Then the assertions in (iv) and (v) follow from (65) and
(67). O

Remark 4.5. We note the relation
K2+ki+>=0 modr (68)
as a consequence of (64), where
k i t f o n
gcdk, £,n)’ gedk 4,n)’ gedk 4n)

in which gcdk, ¢, n) denotes the greatest common divisokof, n. To see this we
first rewrite (64) as

k=

ke +8=0, ta-(k+0)B=0, —(k+&)a+kp=0 modn,
and then eliminatg or « to obtain
(R +kl+Pa=0, (+kl+%p=0 modn

This implies (68), since or B is relatively prime tanin each case of our interest
in (58). O
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The following is the main result of this section. Recall Fig. 4(d) for the hexagon
witha=7.

Proposition 4.2. Losch’s hexagons with = 7, 13, 19, and 21 arise as bifurcated
solutions from bifurcation points of multiplicity 12 associated with the irreducible
representations given in (62) or (63).

Proof. For the parameter values in (62) or (63) we have dimlf(jﬁﬁ)) = 1 by
Lemma 4.2. Then the equivariant branching lemma guarantees the existence of a
bifurcated solutiorh with £(h) = £ O

Detailed analysis of the bifurcation equations is carried out in Appendix B. It
shows, for example, that theversusr curve at the bifurcation point ap(r) =
(0,0) is given asymptotically asr + Bp = 0. Knowledge about the bifurcated
solutions obtained through this analysis, as well as about the bifurcation points
stated in Lemma 4.2, is helpful in conducting numerical analysis.

Remark 4.6. Bifurcated solutions representing hexagons of type V from a bifurca-
tion point of multiplicity 12 are considered here. Such solutions are characterized
by the symmetryr, s) + (p2, p$) with @ > 2, which can be denoted &9, i.e.,
»(@F) with 8 = 0, in the notation of (43). Then we hage= 2 in (5). First, by (55)
we have

Fix((r, 8)) = {(0. p, 0.0, 0.9) | p € R} (69)

for each k, £). We have dim Fix¢(®9) = 1 if (k, £) satisfies (64) and (66) fg = O;
otherwise dim Fixt®9) = 0. This condition for k, ¢) reduces tke = fa = 0
mod n, where k, ¢) must lie in the range of (51). Then we must hawve am for
some integem, and k, ¢) is given ask, ¢) = (pm gqm) with

1<g<p-1 2p+g<a-1, p,geZ.

Such k, £) does not exist for < 5, showing that there exist no bifurcated solutions
from a bifurcation point of multiplicity 12 that represeritéch’s hexagons witha =
4,9,16, 25 associated respectively with= 2,3,4,5 (Table 1). Fokr > 6, on the
other hand, the following parameter values satisfy the above-mentioned condition.

a (o.8) n (ko)
36 (60) 6m (2m,m)
49 (7,0) 7m (2m,m)
64 (80) 8m (2m,m),(3m m)
81 (90) 9m (2m,m),(3m, m),(3m,2m)
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These parameter values generically give rise to bifurcated solutions representing
hexagons of type V. It is noted that whem= 1, we havexr = n, and hence the
symmetry(r, s) + (pf, p3) reduces tdr, s) = Dg (see Remark 4.8). O

Remark 4.7. Bifurcated solutions representing hexagons of type M from a bifur-
cation point of multiplicity 12 are considered here. Such solutions are character-
ized by the symmetryr, s) + (p?’ b, p” ), which can be denoted &84, i.e.,

>(@h) with & = 28, in the notation of (43). Then we haee= 382 in (5). The
expression (69) for the subspace FKix6)) is again valid for eachk(¢). We have

dim Fix(Z@4)) = 1 if (k, ¢) satisfies (64) and (66) forn(B) = (28,5); otherwise

dim Fix(2@%#)) = 0. This condition is equivalent to

(k+0)B=(k+208=K-£6)8=0 modn,

where k, £) must lie in the range of (51). Then we must have 38m for some
integerm, and K, ¢) is given ask, £) = (pm gm) with

1<q<p-1 p-gq=0 mod3 2p+q<38-1, pqgeZ

Such k, £) does not exist fog < 3, showing that there exist no bifurcated solutions
from a bifurcation point of multiplicity 12 that represenbsch’s hexagons with
a = 3,12 associated respectively wigh= 1,2 (Table 1). FopB > 4, on the other
hand, the following parameter values satisfy the above-mentioned condition.

a (p) n (k9
48 (84) 12m (4m,m)
75 (105) 15m (4m,m),(5m, 2m)
108 (126) 18m (4m,m), (5m, 2m), (6m, 3m), (7m, m)

These parameter values generically give rise to bifurcated solutions representing
hexagons of type M. O

Remark 4.8. Bifurcated solutions with B-symmetry are considered here. Put
z= (o,p,p0,p,p,p) With p # 0. Sincez € Fix({r, s)) by (69), we have&(2) 2 (r, s).
We often haves(2) = (r, s), since, except for some special valueslgf] such as
those listed in Remarks 4.6 and 4.7, there exists no nontrivig@l) that satisfies
(64) and (66). Note in this connection that we must have

k-=0Oa=(2k+)a=20+Ka=0 modn,
k-0B=(2k+O)B=(20+kp=0 modn
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Figure 5: Pattern with BPsymmetry (i = 6)

as a consequence of (64) and (66). Hor(n) = (k,k— 1;n) with 2 < k < n/3,

for example, we must hawe = 8 = 0 modn, and hence(2) = (r, s). For the
parameter values ok(¢) for which Z(2) = (r, s) holds, the subgroup = (r, s) is

an axial subgroup and, by the equivariant branching lemma, there exist bifurcated
solutions with -symmetry (lacking translational symmetry). It is noted that the
normalized spatial period is given @gd = +/a = nwith («,8) = (n,0) or (Q n) in

(4) and (5). Figure 5 illustrates the pattern of such solutionkof; f) = (2,1; 6).
Des-symmetric bifurcated solutions correspond to “super hexagons” investigated
for the group @ + T2 in Kirchgassner (1979) [22] and Dionne, Silber & Skeldon
(1997) [11]. O
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5 Computationally obtained hexagonal distributions

In this section, we examine spatial agglomeration patterns of the population of
skilled workers among a system of places spread uniformly on a two-dimensional
domain. Computational bifurcation analysis is conducted to obtain bifurcated so-
lutions from the uniformly distributed state of population of the skilled workers for
a system oh x n place on the hexagonal lattice for= 9, 16, and 19 to observe
several lbsch’s ten smallest hexagons. We employ the following parameter values:

e The lengthd of the road connecting neighboring placedis 1/n.

The constant expenditure sharen industrial varieties ig = 0.4.

The constant elasticity- of substitution between any two varietiesdis=
5.0.

The inversd of variance of the idiosyncratic tasteiss 1000.

The total numbeH of skilled workers iH = 1.

5.1 Hexagons witha =3 anda = 9for 9 x 9 places

For the 9 places with [ + (ZgxZg)-symmetry, we conducted the computational
bifurcation analysis to obtain the maximum populatigf,x versus the transport
parameter curves in Fig. 6(a). Although several bifurcation points are found on
the trivial solution OABC with uniform population, we specifically examine the
bifurcation points A and B of multiplicityM = 2, from which a hexagonal distri-
bution witha = 3 emanates, and the bifurcation point C of multiplichly = 6,
from which a hexagonal distribution with= 9 emanates. Among many bifurca-
tion points of multiplicityM = 6, we have chosen the bifurcation point C with the
kernel symmetryp3, p3).

On the bifurcated path ADB that branches from the bifurcation points A and B
of multiplicity M = 2, we encounter éisch’s smallest hexagon with= 3 that has
(r,'s, p2p2, p;p2)-symmetry and the spatial periddd = va= V3 (§4.2).

On the bifurcated path DEC that branches from the bifurcation point C of mul-
tiplicity M = 6, we encounter &isch’s fourth smallest hexagon wih= 9 that has
(r,s, p3, p3)-symmetry and has the spatial peribfd = va = 3 (§4.4).

At the bifurcation point D of multiplicity 2 on the primary bifurcated path
ADB, we encounter a secondary bifurcation. This is the spatial peviddimes
cascade (Remark 4.1), in which the spatial pefiag extendedy3-times repeat-
edly as

T/d: 1 — V3 - 3
(tl, tz) : (fl, fz) - (2f1+[2, —fl+l’2) - (3f1, 3[2)
group : Oy + (Zgx Zg) — Dg + (Zg X Z3) — D¢+ (Z3 x Z3)
path : OABC - ADB - DEC
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Figure 6: Maximum populatiohnax Versus the transport parametegurves. (The

solid curve is stable and the dashed curve is unstable. The hexagonal window is cut
from the infinite domain that is obtained by repeating the n hexagonal lattice
spatially; and the area of each circle is proportional to the population of the skilled
worker at that place.) 31



5.2 Hexagons witha=4anda = 16for 16 x 16 places

For the 16x 16 places with @ + (Z16 X Z16)-symmetry, Fig. 6(b) shows the max-
imum populatiorhmax versus the transport parametesurves. Several bifurcation
points are found on the trivial solution OABC with uniform population. We specif-
ically examine the bifurcation points A and B of multiplicitd = 3, from which a
hexagonal distribution witla = 4 emanates, and the bifurcation point C of multi-
plicity M = 6, from which a hexagonal distribution with= 16 emanates. Among
many bifurcation points of multiplicittM = 6, we chose the bifurcation point C
with the kernel symmetryp?, p3).

On the bifurcated path ADB that branches from the bifurcation points A and B
of multiplicity M = 3, we encounter éisch’s smallest hexagon with= 4 that has
(s, p2, p)-symmetry and the spatial periddd = va= V4 (§4.3).

On the bifurcated path DEC that branches from the bifurcation point C of mul-
tiplicity M = 6, we encounter &sch’s six seventh smallest hexagon vatk 16
that hasgr, s, p, p3)-symmetry and has the spatial peribtl = va = V16 (§4.4).

At the bifurcation point D of multiplicity 3 on the primary bifurcated path
ADB, we encounter a secondary bifurcation. This is the spatial period-doubling
cascade, in which the spatial periods doubled repeatedly as

22

T/d: 1 — 2 —
(t, t2) (61, 62) - (20,20) - (220,2%)
group : Dy + (Z1e X Z1g) — De + (Zg x Zg) — Deg + (74 X Z4)
path : OABC — ADB — DEC

This hierarchy is in agreement with the theoretically predicted hierarchy (34) and
(35) forn = 16.

5.3 Hexagons witha = 19for 19x 19 places

For the 19x 19 places with @ + (Z19 X Z19)-symmetry, Fig. 6(c) shows the maxi-
mum populatiorhmay Versus the transport parametecurves. Several bifurcation
points are found on the trivial solution OAB with uniform population. We specif-
ically examine the bifurcation points A and B of multiplicity = 12 from which
hexagonal distributions of interest emanate. On the bifurcated path ACDB that
branches from these two bifurcation points A and B we encouriech’s eighth
smallest hexagon wita = 19 that hagr, p;p3, p;?p3)-symmetry and the spatial

periodT/d = va= V19 (§4.5).
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6 Conclusion

For a two-dimensional system modeled by a core—periphery model in new eco-
nomic geography, self-organization of hexagonal population distribution$mt’s

ten smallest hexagons in central place theory is predicted by equivariant bifurca-
tion analysis, and its existence is verified by computational bifurcation analysis.

The equivariant bifurcation analysis has displayed its usefulness to predict possible
bifurcating agglomeration patterns among a system of places in two dimensions,
often associated with successive elongation of spatial periods.

Information about symmetries of bifurcated solutiofiteed by the equivari-
ant bifurcation analysis is important in the computational analysis for choosing a
bifurcation point that produces hexagonal distributions of interest. In particular, it
is to be emphasized that tilted hexagons (super hexagons) that are directed towards
different directions than the original hexagonal lattice do branch from bifurcation
points of multiplicity 12.

Inherent capability of the core—periphery model to express those systems, pro-
vided with pertinent spatial platforms, is demonstrated. Major results of this paper,
in principle, are applicable to other core—periphery models, and its application to
other core—periphery models is a topic in the future.

Acknowledgment
Discussion with Dr. Kono and Dr. Takayama was important in this study. Support
of Grant-in-Aid for Scientific Research (B) 19360227360240 is acknowledged.

This research is partially supported by Aihara Project, the FIRST program from
JSPS.

33



A Core—Periphery model

Details of the core—periphery model in Section 3 are presented. After presenting
basic assumptions, we describe the short-run equilibrium and define the long-run
equilibrium and its stability.

A.1 Basic Assumptions

Preferenced) over the M- and A-sector goods are identical across individuals,
where M signifies manufacture and A stands for agriculture. The utility of an
individual in placei is®

uecM,ct) =uinCM + (1 -p)InCh, (O<pu<1), (A1)

whereyu is the constant expenditure share on industrial varie@ésis the con-
sumption of the A-sector productin pIait;candCi'V' is the manufacturing aggregate
in placei and is defined as

n, o/(o-1)
c E(Z fo q,-i(k)“’—l)/f’dk] :
j

whereg;ji(K) is the consumption in placeof a varietyk € [0, n;] produced in
placej, n; is the continuum range of varieties produced in plaagften called the
number of available varieties, amd> 1 is the constant elasticity of substitution
between any two varieties. The budget constraint is given as

et + ) [ paanodk =Y. (A2)
j

wherepiA is the price of A-sector goods in plagepji(K) is the price of a varietk
in placei produced in placg andY; is the income of an individual in pladge The
incomes (wages) of the skilled worker and the unskilled worker are represented,
respectively, byw; andw{-. We denote b the number of places, and therefore
andj run through 1 tK.

An individual in placei maximizes (A.1) subject to (A.2). This yields the
following demand functions:

A .
A i —H—> ji =M
prt T pji (K)”

3We take logarithms of the Forslid and Ottaviano (2003) type (i.e., Cobb-Douglas-type) utility
function to facilitate the analysis. This transformation has no influence on the properties of the
model.

Ch=(1-p (A3)
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wherep; denotes the price index of theflidirentiated product in pladgewhich is

n 1/(1-0)
pi=[2 fo Pji(k)l‘”dk] . (A.4)

Since the total income and population in plaegew; h; +WiL andh;+1, respectively,
we have the total demar@;i (k) in placei for a varietyk produced in placg:

Q(k) — M(W‘h' + WL) (A 5)
ji =M pji(k)o- i i )- .

The A-sector is perfectly competitive and produces homogeneous goods under
constant returns to scale technology, which requires one unit of unskilled labor
in order to produce one unit of output. For simplicity, we assume that the A-
sector goods are transported freely between places and that they are chosen as the
numeraire. These assumptions mean that, in equilibrium, the wage of an unskilled
workerw- is equal to the price of A-sector goods in all places (ip8.= w- = 1
foreachi=1,...,K).

The M-sector output is produced under increasing returns to scale technol-
ogy and Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input re-
guirement ofe units of skilled labor and a marginal input requiremenpafnits
of unskilled labor. Given the fixed input requirementthe skilled labor market
clearing implies that, in equilibrium, the number of firms in plaée determined
by nj = hij/a. An M-sector firm located in placechooses §j(k) | j = 1,...,K)
that maximizes its profit

(k) = > i (KQij () — (awi +Bxi(K)),
i

wherex;(K) is the total supply. The transportation costs for M-sector goods are
assumed to take the iceberg fofrThat is, for each unit of M-sector goods trans-
ported from place to placej # i, only a fraction X¢i; < 1 arrives. Consequently,
the total supplyx;(K) is given as

XK = > i Qij (K. (A.6)
j
To put it concretely, we define the transport apgtbetween the two placesind j
as
¢ij = exp@Dij), (A7)

wherer is the transport parameter abg} represents the shortest distance between
places andj.

4This is a standard term in economics; see, for example, Samuelson (1952).
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Since we have a continuum of firms, each firm is negligible in the sense that
its action has no impact on the market (i.e., the price indices). Therefore, the first-
order condition for profit maximization gives

pij (k) = —¢|j (A.8)

This expression implies that the price of the M-sector product does not depend on
varietyk, so thatQ;; (k) andx;(k) do not depend ok. Therefore, we describe these
variables without the argumekt Substituting (A.8) into (A.4), we have the price
index

5 (1 1/(1-0)
(o
pi = m[azj:hjdji] : (A.9)

wheredji = ¢.1i‘” is a spatial discounting factor between plagesdi; from (A.5)
and (A.9),d;i is obtained asgj Qji)/(pii Qii), which means thad; is the ratio of
total expenditure in placefor each M-sector product produced in plact the
expenditure for a domestic product.

A.2 Short-run Equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial
distribution (v = (h;) € RX) is assumed to be given. The short-run equilibrium
conditions consist of the M-sector goods market clearing condition and the zero-
profit condition because of the free entry and exit of firms. The former condition
can be written as (A.6). The latter condition requires that the operating profit of a
firm is absorbed entirely by the wage bill of its skilled workers:

Wi(h,T)=C—lk{Z pijQij(h’T)_ﬁXi(hsT)}- (A.10)
j

Substituting (A.5), (A.6), (A.8), and (A.9) into (A.10), we have the short-run equi-
librium wage:

wi(h,7) = £ Z = ( S (.0 + 1), (A.11)

whereAj(h,7) = X dijhe denotes the market size of the M-sector in place
Consequentlydij/Aj(h, ) defines the market share in plag®f each M-sector
product produced in plade
The indirect utilityv;(h, 7) is obtained by substituting (A.3), (A.9), and (A.11)
into (A.1)>
vi(h,7) = Sij(h, 7) + In[wi(h, 7)], (A.12)

SWe ignore the constant terms, which have no influence on the results below.
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where
Si(h,7) = u(o - 1) InA(h, 7).

For convenience in conducting the following analysis, we express the indirect util-
ity function v(h, 7) in vector form, using the spatial discounting matbx= (d;),
as

v(h, 1)
w(h, 1)

S(h, 7) + In[w(h, 7)], (A.13)
g[l —W(h,7)]"*wO (h, 7), (A.14)

where
S(h,7) = [S1(h,7),...,Sk(h,7)]T, IN[w] = [Inwy, Inwy, ..., Inwk] T,

| is a unit matrix, andV(h, 7), W), wb) andM are defined as

w = Emdiagh], w = Mh, w® = M1, (A.153)
a
M= DAY, A=diag[D™h], 1=[1,...,1]". (A.15b)

A.3 Adjustment Process, Long-run Equilibrium and Stability

In the long run, the skilled workers are inter-regionally mobile. They are assumed
to be heterogeneous in their preferences for location choice. That is, the indirect
utility for an individual sin placei is expressed as

VO(h,7) = vi(h, 7) + €.

In this equationgi(s), which is distributed continuously across individuals, denotes
the utility representing the idiosyncratic taste for residential location,

We present the dynamics of the migration of the skilled workers to define the
long-run equilibrium and its stability with respect to small perturbations (i.e., local
stability). We assume that at each time petiatie opportunity for skilled workers
to migrate emerges according to an independent Poisson process with arrival rate
A. That is, for each time intervat,|t + dt), a fractionAdt of skilled workers have
the opportunity to migrate. Given an opportunity at timeach worker chooses
the place that provides the highest indirect util]ﬁ)(h,r), which depends on the
current distributiorh = h(t). The fraction of skilled workers who choose place
under distributiorh is P;(v(h), 7), where

Pi(v,7) = Pr[vi(s) > v(js), Vi #il.
Therefore, we have

hi(t + dt) = (1 — AdDhi(t) + AdtH P, («(h(Y), 7).
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By normalizing the unit of time so that = 1, we obtain the following adjustment
process:

h(t) = F(h(t),7) = HP(V(h(t)),7) — h(t), (A.16)

Whereh(t) denotes the time derivative ¢it), and P(v(h), ) = (P;(v(h), 7)). For
the specific functional form d®;(v, T), we use the logit choice function:

_ _explvi]
Pi(v.7) = W,

wheref € (0, ) is the parameter denoting the inverse of variance of the idiosyn-
cratic tastes. This implies the assumption that the distribution#%)’i are Gum-
bel distributions, which are identical and independent across places (e.g., McFad-
den, 1974; Anderson et al., 1992). The adjustment process described by (A.16)
and (A.17) is the logit dynamics, which has been studied in evolutionary game the-
ory (e.g., Fudenberg and Levine, 1998; Hofbauer and Sandholm, 2007; Sandholm,
2010).

Next, we define the long-run equilibrium and its stability. The long-run equi-
librium is a stationary point of the adjustment process of (A.16).

(A.17)

Definition A.1. The long-run equilibrium is defined as the distributibh that
satisfies

F(h*,7) = HP(v(h"),7) - h* = 0. (A.18)

The heterogeneous worker case includes the conventional homogeneous worker
case. Indeed, wheth — oo, the condition given in (A.18) reduces to that for the
homogeneous worker case:

Vi—v(ht,1)=0 if h*>0,
V' —v(h,7)>0 if h =0,

whereV* denotes the equilibrium utility.
We restrict our concern to the neighborhoodhdfand define the stability df*
in the sense of asymptotic stability, the precise definition of which is the following.

Definition A.2. A long-run equilibriumh* is asymptotically stablé, for any € >
0, there is a neighborhodd(h*) of h* such that, for evering € N(h*), the solution
h(t) of (A.16) with an initial valueh(0) = hg satisfieg|h(t) — h*|| < e for any time
t > 0, and lim_, h(t) = h*. It is unstablef equilibrium h* is not asymptotically
stable.

In dynamic system theoryy* is asymptotically stable if all the eigenvalues of
the Jacobian matriXF(h, 7) = (0Fi(h, 7)/dh;) of the adjustment process of (A.16)
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have negative real parts; otherwiké is unstable (see, for example, Hirsch and
Smale, 1974). Therefore, the asymptotic stability can be assessed by examining
the following Jacobian matrix:

VF(h,7) = HI(W(h), 7)Vv(h,7) - I, (A.19)

whereJ(v, 7) andVv(h, ) areK-by-K matrices, thei( j) entries of which are, re-
spectivelydP;(v, 7)/advj andovi(h, t)/oh;. For the logit choice function of (A.17),
it is easily verified that the former Jacobian matlifv, 7) is expressed as

J(v, 7) = o{diag[P(v, 7)] — P(v,7)P(v,7)"}. (A.20)
The latter Jacobian matrikv(h, 1) is given as

w(h,7) = VS(h,7)+ diagiv(h, 7)]"vw(h, 7), (A.21)
vw(h, ) ‘é [ = W(h, )] H{v#(h,7) + v (h, 1)}, (A.22)

where the matrice¥S(h, 7), VWM (h, 7), vw(h, 7) andvwD (h, 7) are obtained
as

vS(h,7) = u(oc - 1) M7, (A.23)
v (h, ) = Mdiagjw(h, 7)] - Mdiagfw(h, 7)]diaglh]M T, (A.24)
vwi(h,7) = M — Mdiaglh]M ™, (A.25)
w(h,7) = -MMT. (A.26)
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B Bifurcated solutions at bifurcation point of multiplicity
12

We consider a group-theoretic bifurcation point of multiplicity 12. To investigate
Losch’s hexagons with = 7,13,19, 21, we restrict ourselves to the casesof
7m, 13m, 19m, and 2Imwithm= 1,2, ... ((58)).

B.1 Equivariance of bifurcation equation

Our objective here is to demonstrate théskh’s hexagons with = 7,13 19,21
can be understood as bifurcated solutions from bifurcation points of multiplicity
12. As it turns out, not every bifurcation point of multiplicity 12 serves for this
possibility, but only if it is associated with a 12-dimensional irreducible represen-
tation , ¢) in (52) and (53) with some special valueskadnd?.

To be specific, we investigate the following cases:

(n,k,€) = (7m,2m,m), (13m, 3m, m), (19m, 3m, 2m), (21m, 4m, m), (B.1)

wherem = 1,2,..., corresponding to some ofdlsch’s ten smallest hexagons. We
define A A
n=n/m k=k/m ¢=¢/m, (B.2)

to obtain o
Ak ¢)=(7,2,1), (13 3,1), (19,3,2), (21 4,1). (B.3)

Note thatn k, and? are pairwise relatively prime and satisfy
A=k + ke + &2, (B.4)

which plays a key role in the subsequent derivation.

The bifurcation equation for the group-theoretic bifurcation point of multiplic-
ity 12 is a 12-dimensional equation oMBr This equation can be expressed as a
6-dimensional complex-valued equation in complex variables ., zs as

Fi(zs,...,25,7) =0, i=1,...,6, (B.5)
where

(z1,...,28,7) =(0,...,0,0)

is assumed to correspond to the bifurcation point. We often onmitthe subse-
guent derivation.

Since the group B+ (Zn x Zy) is generated by the four elementss, ps,
p2, the equivariance of the bifurcation equation to the groyp+D(Zn x Zn) is
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equivalent to the equivariance to the action of these four elements. Therefore, the
equivariance condition for (B.5) can be written as

r: F3(z, 2,23, 2, %5, %) = F1(B, 21, 22, 75, 5, Za), (B.6)
Fi(z1, 22, 23, 2, 75, 26) = F2(Z, 71, 22, 5, %6, Za), (B.7)
Fo(21, 22, 23, 24, 25, %) = F3(B., 71, 22, 5, 75, Za) (B.8)
Fs(z1, 22, 23, 2, 75, Z6) = Fu(Z, 71, 22, 5, %5, Za), (B.9)
Fo(z1. 22. 23, 24, 75, 26) = F5(23, 71, 22. 75, 76, Za), (B.10)
Fa(z1, 22, 23, 24, 25, Z6) = Fo(Z3. Z1. 22, 75, 76, Z4); (B.11)

S: F|+3(Zla 229 23, 243 257 26) = F|(Z47 ZSa 267 Zl, 223 23)9
I:I (219 22’ 233 247 Z5’ 26) = F|+3(Z4’ 25’ 269 Zl’ 22’ 23)9
i=123; (B.12)

Pj . wjiFi(z,....%) = Fi(wj1z1,...,wjsZ),
j=12;i=1....6, (B.13)
where

t k-¢ Kk £ —k—f)

(w11, ...,w16) = (wk,w/,w_ LWL oW
-k-¢  k  —k-¢

(w21, ..., w2) = (a)f,w LW, W ,wk, a)f).
We expand-; as

F1(z1, 22, 23, 24, 25, Z)

= Z Z “' Z Aabcdeghi jst&r)zé{zgzgzz‘z‘;zf;z—l“z—z‘zjzsz—gz“. (B.14)

a=0 b=0 u=0

Since @, 2, 23,24, 25,25, 7) = (0,0,0, 0,0, 0, 0) corresponds to the bifurcation point
of multiplicity 12, we have

A00000000000(0) = O, (B.15)
A1000000000060) = A01000000000(0) = - - - = Aoooooooo0000).  (B.16)

The equivariance conditions (B.6)—(B.8) with respeat give

Fi(z1,22,23, 24,25, 25) = Fo(Z3, 71,22, 75,26, Za)
= F3(2.23,21, 2,24, 25)

= Fl(z_l, 227 237 24’ 257 26)’
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from which we see tha#\y,.1, are real. TherF,,..., Fg are obtained from the
equivariance conditions (B.6)—(B.11) and (B.12) with respectdnds as

Foz1, 22,23, 2,25, 2%5) = Fi(z, 23,21, 26, 24, Z5), (B.17)
Fs(z1, 22,23, 2,25, 2%5) = Filzs, 21,22, 25, 25, 24), (B.18)
Fa(z1,22. 23,2, 25, %6) = F1(z. 25,2, 21, 22, 3), (B.19)
Fs(z1,22.23, 2. 25, %5) = Fi(25.25, 2, 23, 21, 2), (B.20)
Fe(z1, 22,23, 2,25, 25) = Fu(z, 2,25, 22,23, 21). (B.21)

Next we determine the set of indicesk, . . ., t, u) of nonvanishing caécients
Aap-w(7) In (B.14). The equivariance conditions (B.13) with respegbi@nd p;
yield

k@-h)+t(b-i)—(k+O)(c—-j)+k{d-9s) +l(e-t)—(k+£)(g—u)

=k modn, (B.22)
t@a-h—(k+0)Mb-i)+kic-j)—(k+)(d-s)+k(e-t)+¢(g—u)
={¢ modn, (B.23)

which are equivalent, by (B.2), to

k(@=h)+ (b —i)— (k+ &)(c—j) + k(d — s) + Z(e—t) — (k + £)(g - U)

=k modn, (B.24)
fa-h)—(k+O)b-i)+kc—j) - (k+&)(d-9) +ke—1t)+ £(g-u)
={ modHn. (B.25)
By introducing o
(mg, mp, mg) = (k, £, —(k+¢)) (B.26)

we can rewrite (B.24) and (B.25) as
(mg, mp, Mg, Mg, Mp, M) - (@a—h,b—i,c— jd-—se-t,g—u)=m modn,
(B.27)

(Mg, mg, My, Mg, My, Mp) - (@—h,b—i,c— jd-se-t,g-—u)=m modn,
(B.28)

where “" denotes the inner product of vectors. We denoteStthe set of indices
(ab,...,t,u) that satisfy the above conditions, i.e.,

S={(ab,...,t,u)| (B.27) and (B.28) (B.29)

Then @ b, ...,t,u) must belong t& if Agp.w(r) # 0, and the converse is also true
generically, except for the cases described in (B.15) and (B.16). Hence (B.14) can
be replaced by

F1(z1, 22,23, 24, 75, Z6) = Z AabcdeghijstT )222223222‘5222_1“2_22_3"?2_5%“. (B.30)
5
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We observe here two facts that we need in Section B.2. The first fact is:
a+b+c+h+i+j=1 forevery gb,...,t,u)eS. (B.31)
To see this we calculate [(B4) x (k + ) + (B.25) x k] using (B.4), to obtain
(K% + 2ké)(@—-h) + (> - ) (b - i) — (2ké + O (c— j) = kK> + 2k¢ modA.
Hence we must have
(a,b,c,h,i,j)#(0,0,0,0,0,0),
since k2 + 2kf 2 0 modri for the parameter values in (B.3). The second fact is:

(Mg, My, mp, M, Mg, My) - (@—-h,b—i,c—-j,d-se-t,g-u)=mg modnr,
(B.32)

which results from the addition of (B.24) and (B.25).

B.2 Bifurcated solutions

For the bifurcation equation (B.5) we show the presence of bifurcated solutions
such that

21| = 22| = |z3], z=25=2=0. (B.33)
As their conjugate solutions, there also exist bifurcated solutions with

n=2=23=0, |ul=I|zl=]z (B.34)

Although we do not exclude the possibility of other bifurcated solutions, those
bifurcated solutions in (B.33) and (B.34) ardistient for our purpose since they
correspond to isch’s hexagons wita = 7,13, 19, 21, as we see below.

In the following we focus on the solutions with| = |z = |z3| andzy = z5 =
Zs = 0in (B.33). Such solutions satisfy, = F5 = Fg = 0, since (B.19)—(B.21)
together with (B.31) imply

Fa(z1,22,23,0,0,0) = F1(0,0,0,21,25,23) = 0,
Fs(z1,2,23,0,0,0) = F1(0,0,0, 23,2, 2) = 0,
Fe(z1,22,23,0,0,0) = F1(0,0,0, 22, 23,2) = 0.

On the other hand, we see from (B.30) that

F1(z1,22,23,0,0,0) = Z AabcootnijoooNZBEZ"Z 73!, (B.35)
P

where
P = {(a,baca h’i’ J) | (a-:b’c’o90,0’hvi’ j’o,oao) € S}
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Forany @ b,c, h,i, j) € Pwe have

(Mg, mp,mg) - (@—h,b-i,c—j)=m modn, (B.36)
(mp,mg,my) - (@a—h,b—i,c—j)=m modn, (B.37)
(mg,my,mp) - (@a—h,b—i,c—j)=mg modn (B.38)

by (B.27), (B.28), and (B.32). To find solutions fBf = F, = F3 = 0, we set
zj = pexp(¥;) (j=2,23).
Then, using (B.35) with (B.17) and (B.18), we obtain
Fi1(z1,2,2,0,0,0)
= Z Aaboomijood T EBEZ'Z 75!
P
= D AabaoomijoooT)o™ > expil(6s, 62,63) - (a - h,b -, c - )],
P
Fa(z1,2,23,0,0,0) = F1(2, 2,2, 0,0,0)
= Z AaboomijoodT)BBZE2%"2 77!
P
= Z Aaboanijooo(T)p? T expif(62, 63, 61) - (a— h,b—i,c - )],
P
F3(z1,2,2,0,0,0) = Fi(z,2,2,0,0,0)
= Z Aaboomijood B2 577 25!
P

= D Aabaooaijooo(T)o™ > expif(63, 61,62) - (a - h,b— i, ¢ - j)].
p

We consider two sets of solution candidates

2nt )
W(ml,mz,ms) (t=0,1,...,7-1),

(91’ 927 93) = 27Tt
W(ml,mz,nh)'i'ﬂ'(l,l,l) t=0.1,...,n-1).

. 2nt
For the first setd, 62, 03) = W(ml’ nmp, mg), we have

(01’02,63).(a_h’b_i’0_ J)

2nt . .

%ml =6, mod 2r

by (B.36). Therefore,

F1 = pexp(61) Z Aabooanijooo(r)o® e ii=L
(@bchi.j)eP
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Similarly, for F, andF3, we use (B.37) and (B.38) to obtain

F2 = pexp(i62) Z Aab(DOChijOOO(T),Oa+b+C+h+i+j_l,

(ab,chii,j)eP
F3 = p exp(6s) Z Aabeooanijooo(r)oBFeriTi=L
(a,b,chi,j)eP
Therefore,
Fi1 (= Fs -
Z Aab(ﬂomijooo(T)pa+b+c+h+l+J 1,

pexp(Er) ~ pexp()  pexp(s) L4
and the bifurcated solution curve is determined from

Aaboanijooo(r)p PreMiTITL = o, (B.40)
(@b, j)eP

The leading terms of (B.40) are given as
Ar+Bp=0 (B.41)

with generically nonzero cdigcients A and B (see Remark B.1). The equation
(B.41) has a solution of the form = cr for somec # 0, which shows the generic
existence of bifurcated solutions for adh (62, 63) in (B.39).

For the second sef, 6,, 63) = %(ml, np, M) + 7(1, 1, 1) in (B.39), we have
(61,62,63) - (@—h,b—i,c—j)
2nt . . S
= ?(ml,mz,mg)-(a—h,b—l,c— J+m(@a+b+c-h-i-j)
=0+n(@a+b+c-h-i—-j) mod 2r
by (B.36). Therefore,

Fi=pexp(®) D, Aanomijooor)(~L)FPreilparbresiaiL
(@bchi.j)eP
Likewise, we have
Fr F2 F3
pexp(B) pexp(#2)  pexp(bs)

_ Z Aabd)omijOOO(T)(_1)a+b+c—h—i—jpa+b+c+h+i+j—1
(a,b,c.h,i,j)eP

and the bifurcated solution curve is determined from

AachO(hijOOO(T)(—1)a+b+c_h_i_jpa+b+c+h+i+j_l =0. (B.42)
(ab,chii,j)eP

The leading terms of (B.42) are given as
-Ar+Bp=0 (B.43)

with generically nonzero cdicientsA andB (see Remark B.1).
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Remark B.1. The codficientsA andB in (B.41) and (B.43) are considered here.
First note thah+ b+ c+h+i+ j > 1forall (a b,c, h,i, j) € Pwith the equality
holding only for @, b,c, h.i, j) = (1,0,0,0,0,0). This showsA = A} 155000000060
which denotes the derivative @&i00000000006r) With respect tor, evaluated at

= 0. The other cofiicient B is given as the sum ofanhgomijooo(0) over all
(a, b,c h,i, j) e Pwitha+b+c+h+i+ j = 2. We haveB = Aooooooo]_]_oo(p) +

A0010001000060) + Ao200000000060) for (A, k, £) = (7,2,1) andB = Agn0000110060)
for (A, k, £) = (13,3,1),(19,3,2), (21, 4, 1). O

B.3 Symmetry of solutions

To reveal the symmetry of the bifurcated solutions, we first consider the case of
(01,62,603) = (0,0,0)in (B.39). Therpy =z =23 =p € R,whereagy =75 = z5 =

0. This solution, sayZ? = (p, p,p,0,0,0) is invariant to the action af by (55),

and hence the isotropy subgrob@®) representing the symmetry of this solution
containgr). By (56), on the other hand, this solution has the symmetry of the form
p o if and only if (e, §) satisfies the relations

ke +8=0, ta—-(k+0)B=0 —-(k+Oa+kB=0 modn.
By (B.2) and (B.4), this equation is satisfied by
(@B =pk+00+d-L0),  pgeZ

It therefore follows thaE(Z?) o (r, p"*f pz, pIE p%), where it can be verified that
the inclusion is in fact equality, i.e.,

(2% =, P ol prfpky (B.44)
(r, P22, Py p2> (k. 0) = (7.2,1))
) <r,|o‘l‘|02,|o1 3 (k. 0) = (13.3,1)) (B.45)
{r, pp2, P2 p2> ((h.k. 2) = (19.3,2)) '

(r,psp2, PPy (ALK 0) = (21,4,1)).

The associated distributions correspond &sth’s hexagons; indeed, far,3) =
(k+¢,0) or (¢, k), we have

7 ((ﬁ, E, g) = (7, 2, 1))
_ 13 ((A, k¢ 331
T/d = m= R+ + 02 = 19 EEA’W; 21932;;
21 ((A.k 0) = (21,4,1)).
Let ZY denote the solution corresponding t,02, 63) = %(ml’ Mg, Mg) in

(B.39), where (x t < Ai— 1. As shown in Table B.1, we have
(Mg, mp, mg) = (¢, —k — £,k) modn (B.46)
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Table B.1: Value of in (B.46)

(¢, -k-tk xs6
(1,-3,2) x2 mod?7
(1,-4,3) x3 mod 13
(2,-5,3) x 11 mod 19
(1,-5,4) x4 mod 21

A (k) | (my,mp, mg)
72yl @1-3
13| 31| (31-4)
191 3,2)| (32-5)
21| (4,1)| (41,-5)

with § = 2,3,11,4 for A = 7,13 19,21, respectively. Since?,(—R - 2, R) corre-
sponds to the action gf, on (z1, 2, z3) in (56), 2V is obtained fronZ® by the
transformation o3, which we may designate @ = pS'- Z%. Then the isotropy
subgroup otV is a conjugate subgroup of thatz, i.e.,

22 = py - 2(Z% - g™

This means that the solutioz® for t > 1 are essentially (or geometrically) the
same ag?).

A bifurcated solution of the form of (B.34), withy = z = z3 = 0 and|z| =
1zs| = |zl, can be obtained frord® by transformingZ® with s. The isotropy
subgroup representing the symmetry of this solution is obtained4?)- s, It
is noted, however, such conjugate solutions should be identified from a geometrical
point of view.
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