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Abstract. In the multiarmed bandit problem a gambler chooses an arm
of a slot machine to pull considering a tradeoff between exploration and
exploitation. We study the stochastic bandit problem where each arm
has a reward distribution supported in a known bounded interval, e.g.
[0, 1]. For this model, policies which take into account the empirical vari-
ances (i.e. second moments) of the arms are known to perform effectively.
In this paper, we generalize this idea and we propose a policy which ex-
ploits the first d empirical moments for arbitrary d fixed in advance.
The asymptotic upper bound of the regret of the policy approaches the
theoretical bound by Burnetas and Katehakis as d increases. By choos-
ing appropriate d, the proposed policy realizes a tradeoff between the
computational complexity and the expected regret.

1 Introduction

The multiarmed bandit problem is one of the formulations of the tradeoff be-
tween exploration and exploitation. This problem is based on an analogy with
a gambler playing a slot machine with more than one arm. The gambler pulls
arms sequentially so that the total reward is maximized.

We consider a K-armed stochastic bandit problem originally considered in
[1]. There are K arms and each arm i = 1, · · · , K has a probability distribution
Fi with the expected value µi. The gambler chooses an arm to pull based on a
policy and receives a reward according to Fi independently in each round. We
call an arm i optimal if µi = µ∗ and suboptimal if µi < µ∗. Then, the goal of
the gambler is to maximize the sum of the rewards by pulling optimal arms as
often as possible. Many researches have been conducted for the stochastic bandit
problem [2, 3, 4, 5, 6, 7] as well as the non-stochastic bandit [8, 9].

In this paper we consider the model F , the family of distributions with sup-
ports contained in the bounded interval [0, 1]. The gambler knows that each dis-
tribution Fi is included in F . For this model Upper Confidence Bound (UCB)
policies are popular for their simple form and fine performance [10, 11]. Re-
cently Honda and Takemura [12] proposed Deterministic Minimum Empirical
? Supported by JSPS Research Fellowships for Young Scientists.

?? Supported by Aihara Project, the FIRST program from JSPS.



Divergence (DMED) policy which satisfies for arbitrary suboptimal arm i that

E[Ti(n)] ≤
(

1
Dmin(Fi, µ∗)

+ o(1)
)

log n (1)

where Ti(n) denotes the number of times that arm i has been pulled over the
first n round and

Dmin(F, µ) ≡ min
G∈F :EG[X]≥µ

D(F‖G)

with Kullback-Leibler divergence D(·‖·). DMED is asymptotically optimal since
the coefficient of log n on the right-hand side of (1) coincides with the theoret-
ical bound given in [13]. However, the complexity of the DMED policy is still
larger than e.g. UCB policies, although the computation involved in DMED is
formulated as a univariate convex optimization. It is mainly because DMED re-
quires the empirical distributions of the arms themselves whereas other popular
policies can be computed by the moments of the empirical distributions of the
arms, such as means and variances.

Now, our question is how we can bring the performance close to the right-
hand side of (1) by a policy which only considers the first d empirical moments
of the arms at each round. In this paper, we propose DMED-M policy which is
a variant of DMED and is computable only by the empirical moments of the
arms. For arbitrary suboptimal arm i, DMED-M satisfies

E[Ti(n)] ≤

(
1

infF∈F :E(d)(F )=E(d)(Fi) Dmin(F, µ∗)
+ o(1)

)
log n , (2)

where E(d)(F ) ≡ (EFi [X], · · · , EFi [X
d]) denotes the first d moments of F and

this upper bound approaches (1) as d → ∞.
DMED-M is obtained by an analogy with DMED. Intuitively, DMED exploits

the fact that the maximum likelihood that the arm with empirical distribution
Fi is actually the best is roughly exp(−tDmin(Fi, µ

∗)) for number of samples t.
When ignoring properties of the distribution Fi except for its first d moments,
we overestimate the maximum likelihood as

exp
(
− t inf

F∈F :E(d)(F )=E(d)(Fi)
Dmin(F, µ∗)

)
instead of exp(−tDmin(Fi, µ

∗)) and the bound (2) appears correspondingly.
In DMED-M, it is necessary to compute infF∈F :E(d)(F )=(M1,··· ,Md) Dmin(F, µ)

for each round. Classical results on Tchebysheff systems and moment spaces
reveal that F̄ attaining the infimum is determined only by the value of the first
d moments (M1, · · · ,Md) when the objective function Dmin( · , µ) is included
in a particular class. Therefore the infimum is obtained by computing firstly
the optimal solution F̄ and then the value of the function Dmin(F̄ , µ). Both
are obtained by solving polynomial equations and DMED-M can be computed
efficiently for small d.



This paper is organized as follows. In Sect. 2, we give definitions used through-
out this paper. We propose DMED-M policy in Sect. 3. In Sect. 4, we study the
minimization of Dmin over distributions whose first d moments are common for
a practical implementation of DMED-M. Proofs of results in Sects. 3 and 4 are
given in Sect. 5. In Sect. 6, we discuss an improvement of DMED-M in terms of
the worst case performance. We present some simulation results on DMED-M
in Sect. 7. We conclude the paper with some remarks in Sect. 8.

2 Preliminaries

Let F be the family of probability distributions on [0, 1] and Fi ∈ F be the
distribution of the arm i = 1, . . . , K. EF [·] denotes the expectation under F ∈ F .
When we write e.g. EF [u(X)] for a function u : IR → IR, X denotes a random
variable with distribution F . A set of probability distributions for K arms is
denoted by F ≡ (F1, . . . , FK) ∈ FK ≡

∏K
i=1 F . The expected value of arm

i is denoted by µi ≡ EFi [X] and the optimal expected value is denoted by
µ∗ ≡ maxi µi.

Let Ti(n) be the number of times that arm i has been pulled through the
first n rounds. F̂i(n) and µ̂i(n) denote the empirical distribution and the mean
of arm i after the first n rounds, respectively. µ̂∗(n) ≡ maxi µ̂i(n) denotes the
highest empirical mean after the first n rounds. We call an arm i a current best
if µ̂i(n) = µ̂∗(n).

Now we review results in [12]. Define an index for F ∈ F and µ ∈ [0, 1]

Dmin(F, µ) ≡ min
G∈F :E(G)≥µ

D(F‖G) ,

where Kullback-Leibler divergence D(F‖G) is given by

D(F‖G) ≡

{
EF

[
log dF

dG

]
dF
dG exists,

+∞ otherwise.

Under DMED policy proposed in [12], the expectation of Ti(n) for any subopti-
mal arm i is bounded as

EF [Ti(n)] ≤ 1 + ε

Dmin(Fi, µ∗)
log n + O(1) (3)

where ε > 0 is arbitrary. The coefficient of the logarithmic term 1/Dmin(Fi, µ
∗) is

the best possible [13] and the following property holds for the function Dmin(F, µ).

Proposition 1 ([12, Theorems 5 and 8]). If EF [X] ≥ µ then Dmin(F, µ) =
0. If EF [X] < µ = 1 then Dmin(F, µ) = ∞. If EF [X] < µ < 1,

Dmin(F, µ) = max
0≤ν≤ 1

1−µ

EF [log(1 − (X − µ)ν)]

=

EF [log (1 − X)] − log(1 − µ) EF

[
1

1−X

]
≤ 1

1−µ ,

max0<ν< 1
1−µ

EF [log(1 − (X − µ)ν)] otherwise,

where we define log 0 ≡ −∞.



Let E(d)(F ) ≡ (EF [X], · · · , EF [Xd]) denote the first d moments of F . The
set of distributions with the first d moments equal to M = (M1, · · · ,Md) is
defined as F(M) ≡ {F ∈ F : E(d)(F ) = M}. We sometimes write M (d) instead
of M to clarify the length of the vector.

Now define D
(d)
min(M , µ) by

D
(d)
min(M , µ) ≡ inf

F∈F(M)
Dmin(F, µ) .

This function D
(d)
min plays a central role throughout this paper.

3 DMED-M Policy

In this section we introduce DMED-M policy. This policy determines an arm to
pull based on the empirical moments of the arms. DMED-M requires computa-
tion of the function D

(d)
min and we analyze this function in the next section.

In the following algorithm, each arm is pulled at most once in one loop.
Through the loop, the list of arms pulled in the next loop is determined. LC

denotes the list of arms to be pulled in the current loop. LN denotes the list
of arms to be pulled in the next loop. LR ⊂ LC denotes the list of remaining
arms of LC which have not yet been pulled in the current loop. The criterion for
choosing an arm i is the occurrence of the event Ji(n) given by

Ji(n) ≡ {Ti(n)D(d)
min(E(d)(F̂i(n)), µ̂∗(n)) ≤ log n − log Ti(n)}, (4)

where E(d)(F̂i(n)) represents the first d empirical moments of arm i.

[DMED-M Policy]
Parameter. Integer d > 0.
Initialization. LC , LR := {1, · · · ,K}, LN := ∅. Pull each arm once.
n := K.
Loop.
1. For i ∈ LC in the ascending order,

1.1. n := n + 1 and pull arm i. LR := LR \ {i}.
1.2. LN := LN ∪ {j} (without a duplicate) for all j /∈ LR such that

Jj(n) occurs.
2. LC , LR := LN and LN := ∅.

As shown above, |LC | arms are pulled in one loop. At every round, arm i is
added to LN if Ji(n) occurs unless i ∈ LR, that is, arm i is planned to be pulled
in the remaining rounds in the current loop. Note that if arm i is a current best
for the n-th round then Ji(n) holds since Dmin(E(m)(F̂i(n)), µ̂∗(n)) = 0 for this
case. Then LC is never empty. Note that DMED in [12] is obtained by replacing
D

(d)
min(E(d)(F̂i(n)), µ̂∗(n)) in (4) by Dmin(F̂i(n), µ). In view of Theorem 2 below,

DMED can be regarded as DMED-M with d = ∞.



Theorem 1. Fix F ∈ FK for which there exists a unique optimal arm j. Under
DMED-M policy, for any suboptimal arm i and ε > 0 it holds that

EF [Ti(n)] ≤ 1 + ε

D
(d)
min(E(d)(Fi), µ∗)

log n + O(1)

where O(1) denotes a constant dependent on ε and F but independent of n.

This theorem can be proved in a similar way as Theorem 4 of [12] with the
fact that Dmin(F, µ) ≥ D

(d)
min(E(d)(F ), µ) always holds. However, we omit the

proof because it is long and very similar to the proof of Theorem 4 of [12]. The
bound in Theorem 1 approaches that of DMED given by (3) as d → ∞ from the
following theorem, which we show in Sect. 5.

Theorem 2. For arbitrary F ∈ F it holds that

lim
d→∞

D
(d)
min(E(d)(F ), µ) = Dmin(F, µ) .

4 Practical Representation of D
(d)
min

For a computation and a theoretical evaluation of DMED, it is essential to
analyze the function D

(d)
min(M , µ) = infF∈F :E(d)(F )=M Dmin(F, µ). In this section

we study an explicit representation of this function.
The following theorem is the main result of the paper. In this theorem, we

identify a pair ({xi}, {fi}) with a discrete distribution such that F ({xi}) = fi.

Theorem 3. If F(M) = {F ∈ F : E(d)(F ) = M} is nonempty then there
exists a unique optimal solution F̄ ∈ F such that

D
(d)
min(M , µ) = inf

F∈F(M)
Dmin(F, µ) = Dmin(F̄ , µ) . (5)

Furthermore, F ∈ F is the unique optimal solution F̄ if and only if
(
(x1, · · · , xl),

(f1, · · · , fl)
)

for l = dd/2e + 1 is a solution of{∑l
i=1 fix

m
i = Mm (m = 0, · · · , d), x1 = 0, xl = 1, d is odd,∑l

i=1 fix
m
i = Mm (m = 0, · · · , d), xl = 1, d is even,

(6)

where we define the zeroth moment as M0 = 1.

Note that the above F̄ only depends on the moment M . Then, the value of
D

(d)
min(M , µ) is obtained by computing F̄ first and then Dmin(F̄ , µ). Recall that

Dmin(F̄ , µ) = max0≤ν≤(1−µ)−1 EF̄ [log(1 − (X − µ)ν)]. Since F̄ has finite sup-
port {x1, · · · , xl}, the optimal solution ν∗ attaining the maximum is one of the
boundary points 0, (1 − µ)−1 or an interior point ν ∈ (0, (1 − µ)−1) such that

d
dν

EF̄ [log(1 − (X − µ)ν)] =

∑l
i=1(µ − xi)

∏
j 6=i(1 − (xj − µ)ν)∏l

i=1(1 − (xi − µ)ν)
= 0 , (7)



which is obtained by solving the l-th degree polynomial equation. We give an
explicit form of D

(d)
min(M , µ) for d = 1, 2, 3 in the following theorem.

Theorem 4. If M1 < µ < 1 and F(M) is nonempty, then D
(d)
min(M , µ) is

expressed for d = 1, 2 as

D
(1)
min(M , µ) = (1 − M1) log

1 − M1

1 − µ
+ M1 log

M1

µ
,

D
(2)
min(M , µ) =

(1 − M1)2

1 − 2M1 + M2
log
(

1 −
(

M1 − M2

1 − M1
− µ

)
ν(2)

)
+

M2 − M2
1

1 − 2M1 + M2
log
(
1 − (1 − µ) ν(2)

)
where

ν(2) =
(1 − M1)(M1 − µ)

(1 − M1)µ2 − (1 − M2)µ + M1 − M2
.

For d = 3 it is expressed as

D
(3)
min(M , µ) =

{
D

(1)
min(M , µ), M1 = M2 = M3,∑3
l=1 fl log(1 − x̄lν

(3)) otherwise,

where

(x̄1, x̄2, x̄3) =
(
−µ,

M2 − M3

M1 − M2
− µ, 1 − µ

)
,

(f2, f3) =
(

(M1 − M2)3

(M2 − M3)(M1 − 2M2 + M3)
,

M1M3 − M2
2

M1 − 2M2 + M3

)
, f1 = 1 − f2 − f3,

(8)

ν(3) =

{
−b+

√
b2+4ac
2a , a 6= 0,

c
b , a = 0,

for

(a, b, c) =
(
x̄1x̄2x̄3, (M2 − 2µM1 + µ2) + (x̄1 + x̄2 + x̄3)(µ − M1), µ − M1

)
.

This theorem is obtained by solving (7) with F̄ = F̄ (d) given in Lemma 1 below.

Lemma 1. If F(M) is nonempty then the solution F̄ (d)of (6) is expressed for
d = 1, 2, 3 as

F̄ (1) = (1 − M1)δ (0) + M1δ (1) ,

F̄ (2) =

{
δ (1) M1 = M2 = 1,

(1−M1)
2

1−2M1+M2
δ
(

M1−M2
1−M1

)
+ M2−M2

1
1−2M1+M2

δ (1) otherwise,

F̄ (3) =

{
F̄ (1) M1 = M2 = M3,

f1δ (0) + f2δ
(

M2−M3
M1−M2

)
+ f3δ (1) otherwise,

where δ (x) denotes the delta measure at x and (f1, f2, f3) is given by (8).



This lemma can be confirmed easily by substitution of F̄ (d) (d = 1, 2, 3) into (6).

5 Proofs

In this section we show Theorems 2 and 3.

5.1 A Proof of Theorem 2

Theorem 2 is proved by a basic result on weak convergence and Lévy distance
(see, e.g., [14]). We say that a sequence of probability distributions {Fi} con-
verges weakly to F if limi→∞ EFi [u(X)] = EF [u(X)] for all bounded, continuous
function u(x). Define the Lévy distance L(·, ·) as

L(F,G) = inf{h > 0 : ∀x, F (x − h) − h ≤ G(x) ≤ F (x + h) + h}

where F (·) and G(·) denote cumulative distribution functions. A weak conver-
gence is equivalent to the convergence of the Lévy distance, that is, {Fi} con-
verges weakly to F if and only if limi→∞ L(Fi, F ) = 0.

Proposition 2 ([12, Theorem 7]). Dmin(F, µ) is continuous in F ∈ F with
respect to the Lévy distance.

Now we show Theorem 2 by Prop. 2.

Proof (of Theorem 2). From the continuity of Dmin(F, µ) in F , it suffices to show
for M (d) = E(d)(F ) that

lim sup
d→∞

sup
G∈F(M(d))

L(G,F ) = 0 . (9)

Let {Gd ∈ F(M (d))}d=1,2,··· be a sequence such that

lim sup
d→∞

sup
G∈F(M(d))

L(Fd, F ) = lim sup
d→∞

L(Gd, F ) =: L̄ .

Since F ⊃ F(M (d)) is compact with respect to the Lévy distance, there exist
Ḡ ∈ F and a convergent subsequence {Gdi} of {Gd} such that

lim
i→∞

L(Gdi , F ) = L̄ , (10)

lim
i→∞

L(Gdi , Ḡ) = 0 , (11)

where (11) means that {Gdi} converges weakly to Ḡ. From the definition of weak
convergence, for all natural numbers m ∈ IN it holds that limi→∞ EGdi

[Xm] =
EḠ[Xm]. On the other hand, EGdi

[Xm] = EF [Xm] for all di ≥ m from Gdi ∈
F(M (di)). Therefore we obtain for all m ∈ IN that

EF [Xm] = lim
i→∞

EGdi
[Xm] = EḠ[Xm] .

Note that a sequence of moments {EF [Xm]} has one-to-one correspondence
to a distribution F for the case of bounded support. Therefore Ḡ = F and we
obtain L̄ = 0 from (10). ut



5.2 A Proof of Theorem 3

Theorem 3 is proved by theories of Tchebysheff systems and moment spaces (see
Appendix), and the basic result on a saddle-point in the following. For a function
ϕ(x, y) : X × Y → [−∞, +∞], a point (x̄, ȳ) ∈ X × Y is called a saddle-point if
ϕ(x̄, y) ≤ ϕ(x̄, ȳ) ≤ ϕ(x, ȳ) for all x ∈ X and y ∈ Y . A necessary and sufficient
condition for a saddle-point is

sup
y∈Y

ϕ(x̄, y) = inf
x∈X

sup
y∈Y

ϕ(x, y) = sup
y∈Y

inf
x∈X

ϕ(x, y) = inf
x∈X

ϕ(x, ȳ) .

Proposition 3 (Minimax Theorem [15]). Let X and Y be a compact subset
of a topological vector space V and U . Let ϕ(x, y) : X × Y → [−∞, +∞] be a
function such that ϕ(·, y) is convex and lower-semicontinuous for any fixed x and
ϕ(x, ·) is concave and upper-semicontinuous for any fixed y. Then there exists a
saddle point (x̄, ȳ) ∈ X × Y.

In the proof of Theorem 3, we regard a probability measure F as an element of
the family V of positive measures on [0, 1] to exploit the results in Appendix. By
letting M̃ := (1,M1, · · · , Md) for M = (M1, · · · ,Md), D

(d)
min(M , µ) is rewritten

as

Dmin(M , µ) = inf
F∈V(M̃)

max
0≤ν≤ 1

1−µ

EF [log(1 − (X − µ)ν)] , (12)

where V(M̃) is the set of positive measures with 0, 1, · · · , d-th moments equal
to M̃ , written in (16).

Proof (of Theorem 3). Let Md+1 be the moment space with respect to the
system (1, x, · · · , xd). It is easily checked that the solutions of (6) have one-to-
one correspondence to the representations of M̃ ∈ Md+1 with index at most
d/2 or to the upper principal representation.

First consider the trivial case that M̃ is a boundary point of Md+1. For this
case, the proof is straightforward since V(M̃) has a single element and its index
is at most d/2 from Prop. 5.

Now we consider the remaining case that M̃ is an interior point of Md+1.
For this case, the upper principal representation of M is the unique solution of
(6) since existence of a representation with index at most d/2 implies that M̃ is
a boundary point of Md+1 from Prop. 5. In the following, we complete the proof
by showing that the upper principal representation of M̃ is the optimal solution
F̄ in (5).

Consider applying the minimax theorem to (12). First, F ⊃ V(M̃) is compact
with respect to the Lévy distance and EF [log(1 − (X − µ)ν)] is linear in F ∈ V
for any fixed ν. Next, EF [log(1−(X−µ)ν)] is upper-semicontinuous and concave
in ν for any fixed F . Then we obtain from the the minimax theorem that there
exists ν̄ satisfying

Dmin(M , µ) = inf
F∈V(M̃)

EF [log(1 − (X − µ)ν̄)] .



Now we show ν̄ < (1 − µ)−1 by contradiction. Assume ν̄ = (1 − µ)−1. From
Prop. 6 with x∗ := 1, there exists F ′ ∈ V(M̃) such that F ′({1}) > 0. Therefore,
from log 0 = −∞,

inf
F∈V(M)

EF [log(1 − (X − µ)ν̄)] ≤ EF ′ [log(1 − (X − µ)ν̄)] = −∞ .

It contradicts the positivity of D
(d)
min and ν̄ < (1 − µ)−1 is obtained.

From Lemma 3 with p := 1+µν̄ and q := ν̄, (1, x, · · · , xd,− log(1−(x−µ)ν̄))
is a T -system on [0, 1] since p/q = 1/ν̄+µ > 1. Therefore, from Prop. 8, we obtain

inf
F∈V(M)

EF [log(1 − (X − µ)ν̄)] = − sup
F∈V(M)

EF [− log(1 − (X − µ)ν̄)]

= −EF̄ [− log(1 − (X − µ)ν̄)]
= EF̄ [log(1 − (X − µ)ν̄)] = Dmin(F̄ , µ) ,

where F̄ corresponds to the upper principal representation of M̃ . ut

6 Improvement of DMED-M Policy

In DMED-M, Dmin(F, µ) is bounded from below by D
(d)
min(E(d)(F ), µ). When the

gap between D
(d)
min and Dmin is small, DMED-M behaves like the asymptotically

optimal policy, DMED. In this section, we propose DMED-MM policy which
is obtained by a slight modification to DMED-M. We discuss that DMED-MM
works successfully for the case where the gap between D

(d)
min and Dmin is large.

Define a function D̃
(d)
min(F, µ) by

D̃
(d)
min(F, µ) =

{
Dmin(F, µ) EF

[
1

1−X

]
≤ 1

1−µ ,

D
(d)
min(E(d)(F ), µ) otherwise,

where recall that Dmin(F, µ) = EF [log(1 − X)] − log(1 − µ) for the first case.
DMED-MM (DMED-M Mixed) policy is obtained by replacing D

(d)
min(E(d)(F̂i(n)),

µ) in DMED-M by D̃
(d)
min(F̂i(n), µ). Then the criterion for choosing an arm is the

same as DMED for the case EF̂i(n)[1/(1 − X)] ≤ 1/(1 − µ) and the same as
DMED-M otherwise.

In the first place, D
(d)
min(E(d)(F̂i(n)), µ) in DMED-M is easy to compute since

the empirical moments E(d)(F̂i(n)) can be obtained in constant time from the
sum

∑Ti(n)
t=1 Xm

i,t where Xi,t denotes the t-th reward from arm i. On the other
hand, Dmin(F̂i(n), µ) = maxν EF̂i(n)[1 − (X − µ)ν] in DMED requires the com-
putation of the sum

∑
t log(1−(Xi,t−µ)ν) where µ and ν generally take various

values. In this viewpoint, the computation of D̃
(d)
min(F̂i(n), µ) is practical since it

is obtained from the sums
∑

t Xm
i,t,

∑
t 1/(1 − Xi,t) and

∑
t log(1 − Xi,t).

Now consider the maximum gap between D
(d)
min(E(d)(F ), µ) and Dmin(F, µ)

among distributions F with moment M .



Lemma 2. The supremum in

sup
F∈F(M)

(
Dmin(F, µ) − D

(d)
min(M , µ)

)
= sup

F∈F(M)

Dmin(F, µ) − D
(d)
min(M , µ) (13)

is attained by the unique solution of{∑d(d+1)/2e
i=1 fix

m
i = Mm (m = 0, · · · , d), d is odd,∑d(d+1)/2e

i=1 fix
m
i = Mm (m = 0, · · · , d), x1 = 0, d is even.

(14)

The proof of the lemma is parallel to that of Theorem 3 which considers the
infimum of Dmin(F, µ). In Theorem 3, we saw that the upper principal represen-
tation F̄ of M attains the infimum from Prop. 8. Similarly, we can show that
the lower principal representation F of M attains the supremum in (13).

Note that we can obtain an explicit expression of (13) for small d in the same
way as Theorem 4. However, such an expression is a complicated function on M
as Theorem 4 and it is not useful as an evaluation of the gap, since we cannot
know the value of the expression until we substitute the specific value of M .

Lemma 2 is useful when we consider the performance of DMED-MM. Com-
pare the solution F of (14) to the upper principal representation F̄ in (6). For
odd d, F is supported by fewer points which generally contain neither 0 nor
1. For even d, F is supported by the same number of points which contain 0
instead of 1. In any case, we can say qualitatively that F , distribution such that
DMED-M behaves badly (i.e., gap between Dmin and D

(d)
min is large), has small

weight around 1.
Note that such a distribution often satisfies EF [1/(1−X)] ≤ 1/(1− µ) since

EF [1/(1−X)] is controlled mainly by the weight around 1. In fact, we can show
from Prop. 8 that minF∈F(M) EF [1/(1 − X)] is attained by the lower principal
representation F , which also attains the supremum in (13).

Now we summarize the above argument: (1) DMED-M behaves most differ-
ently from DMED for F among distributions with the moment M . (2) Among
these distributions F , F is also the distribution minimizing EF [1/(1 − X)], al-
though the minimum value is not always smaller than 1/(1−µ). (3) If EF [1/(1−
X)] ≤ 1/(1 − µ), DMED-MM behaves in the same way as DMED (otherwise it
does in the same way as DMED-M). In this sense, the worst case gap between
DMED-MM and DMED is sometimes smaller than that between DMED-M and
DMED.

7 Experiments

In this section we show some numerical results on DMED-MM and the function
D

(d)
min.

First, we compare the performance of 1, 2, 3-th degree DMED-MM and DMED
in Fig. 1. Each plot is an average over 1000 different runs and we used 5 arms with
beta distributions Be(α, β). Note that beta distribution covers various forms of
distributions on [0, 1]. The parameters of the arms are (α, β) = (9, 1), (0.7, 0.3),
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Fig. 1. Empirical regrets of 1, 2, 3-th degree DMED-MM and DMED for beta distri-
butions. Each plot is an average over 1000 different runs.

Table 1. Values of D
(d)
min(E(d)(F ), µ) and Dmin(F, µ) for beta distributions.

F EF [X] µ D
(1)
min D

(2)
min D

(3)
min Dmin EF

[
1

1−X

]
≤ 1

1−µ

Be(2, 2) 0.5 0.6 0.0204 0.0703 0.0843 0.0984 False
Be(0.5, 0.5) 0.5 0.6 0.0204 0.0366 0.0400 0.0408 False

Be(1, 3) 0.25 0.6 0.253 0.459 0.522 0.583 True
Be(0.25, 0.75) 0.25 0.6 0.253 0.348 0.391 0.431 False

Be(2, 2)/2 0.25 0.3 0.00617 0.0373 0.0490 0.0576 True
Be(0.5, 0.5)/2 0.25 0.3 0.00617 0.0239 0.0337 0.0401 True

(5, 5), (0.3, 0.7), (1, 9) with expectations µ = 0.9, 0.7, 0.5, 0.3, 0.1. The vertical
axis denotes the regret

∑
i:µi<µ∗(µ∗−µi)Ti(n), which is the loss due to choosing

suboptimal arms. We see from the figure that the performance of DMED-MM
approaches DMED as the degree increases.

Next, we show values of D
(d)
min and whether EF [1/(1−X)] ≤ 1/(1−µ) or not

for various distributions in Table 1. Recall that DMED-MM works the same as
DMED for the case EF [1/(1−X)] ≤ 1/(1−µ). Distribution Be(α, β)/2 denotes
the distribution of X/2 for random variable X with distribution Be(α, β). It
corresponds to the case that the upper bound of the support of distributions is
unknown and assumed conservatively as 2 instead of 1. For this case, a reward
X is passed as X/2 to a policy for distributions on [0, 1]. We see from the figure
that D

(d)
min bounds Dmin from below accurately when EF [1/(1−X)] ≤ 1/(1−µ)



is false, as discussed in the previous section. Overall, the gap between D
(1)
min and

D
(2)
min seems to be very large and it seems to be necessary to use at least the

second moment (i.e., variance) to achieve a smaller regret.

8 Conclusion

In this paper we proposed DMED-M policy which is computed by the first d
empirical moments of the arms. The regret bound of DMED-M approaches that
of DMED, which is asymptotically optimal, as d increases. The computation
involved in DMED-M is represented in an explicit form for small d. We also pro-
posed DMED-MM policy, which sometimes improves the worst case performance
of DMED-M.

An open problem is whether the asymptotic bound of DMED-M is the best
for all policies which only consider the empirical moments. We may be able to
prove the optimality of DMED-M in this sense under some regularity conditions.
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A Tchebycheff Systems and Moment Spaces

In this appendix we summarize results on Tchebycheff systems and moment
spaces needed for the proof of Theorem 3. All functions and measures are defined
on [a, b] (a < b) in this appendix whereas they are on [0, 1] elsewhere. For any
set of points {x1, · · · , xl}, we always assume a ≤ x1 < x2 < · · · < xl ≤ b.

Definition 1. Let u0(x), · · · , ud(x) denote continuous real-valued functions on
[a, b]. These functions are called a Tchebycheff system (or T-system) if determi-
nants

det


u0(x0) u1(x0) · · · ud(xd)
u0(x1) u1(x1) · · · ud(xd)

...
...

...
u0(xd) u1(xd) · · · ud(xd)

 (15)

are positive for all {x0, · · · , xd}.

A typical T -system is ui(x) = xi (i = 0, 1, · · · , d), where (15) is represented
as the Vandermonde determinant

det


1 x0 · · · xd

0

1 x1 · · · xd
1

...
...

...
1 xd · · · xd

d

 =
∏

1≤i<j≤d

(xj − xi) > 0 .

Let Z(u) of a function u(x) denote the number of distinct points x ∈ [a, b]
such that u(x) = 0. Then T -systems are discriminated by the following proposi-
tion.

Proposition 4 ([16, Chap. I, Theorem 4.1]). If a system {ui}d
i=0 of con-

tinuous functions on [a, b] satisfies Z(u) ≤ d for all

u(x) =
d∑

i=0

aiui(x), {ai} ∈ IRd+1 \ {0d+1} ,

then (u0, u1, · · · , ud−1, ud) or (u0, u1, · · · , ud−1,−ud) is a T -system.

Lemma 3. For any p and q > 0 satisfying b < p/q, (1, x, · · · , xd,− log(p− qx))
is a T -system on [a, b].



Proof. Let b′ ∈ (b, p/q) be sufficiently close to p/q and consider function

u(x) =
d∑

m=0

amxm − ad+1 log(p − qx)

on x ∈ [a, b′]. Since the derivative of u(x) is written as

du(x)
dx

=
(p − qx)

∑d
m=1 amxm−1 + ad+1q

p − qx
,

u(x) has at most d extreme points in [a, b′]. Therefore Z(u) ≤ d + 1 and
(1, x, · · · , xd, log(p − qx)) or (1, x, · · · , xd,− log(p − qx)) is a T -system on [a, b′]
from Prop. 4.

The determinant (15) for the system (1, x, · · · , xd, log(p − qx)) is written as

det


1 x0 · · · xd

0 log(p − qx0)
1 x1 · · · xd

1 log(p − qx1)
...

...
...

...
1 xd+1 · · · xd

d+1 log(p − qxd+1)


=

d+1∑
m=0

(−1)d+m+1

 ∏
0≤i<j≤d+1:i,j 6=m

(xj − xi)

 log(p − qxm) .

For the case that xd+1 = b′ with b′ ↑ p/q, log(p − qxd+1) goes to −∞ and the
sign of the determinant is controlled by the term involving log(p−qxd+1), which
is written as

(−1)2m+2

 ∏
0≤i<j≤d+1:i,j 6=m

(xj − xi)

 log(p − qxd+1) < 0 .

Then, (1, x, · · · , xd, log(p− qx)) cannot be a T -system on [a, b′] for b′ sufficiently
close to p/q and therefore (1, x, · · · , xd,− log(p − qx)) has to be a T -system on
[a, b′]. From the definition of T -system, it also is a T -system on [a, b] ⊂ [a, b′]. ut

Let V be the family of positive measures on [a, b] and define a subset V(M̃)
of V for a vector M̃ = (M0,M1, · · · , Md) as

V(M̃) =

{
σ ∈ V : ∀m ∈ {0, 1, · · · , d},

∫ b

a

xmdσ(x) = Mm

}
. (16)

The notion of moment spaces is essential to examine properties of T -systems.

Definition 2. The moment space Md+1 with respect to the T -system {ui} is
given by

Md+1

≡

{(∫ b

a

u0(x)dσ(x),
∫ b

a

u1(x)dσ(x), · · · ,

∫ b

a

ud(x)dσ(x)

)
∈ IRd+1 : σ ∈ V

}
.



Consider the case that M̃ ∈ Md+1 satisfies

Mm =
l∑

i=1

fium(xi) (m = 0, · · · , d) (17)

with x1, · · · , xl ∈ [a, b] and f1, · · · , fl > 0 for any finite l. We call such an
expression representation of M̃ . A representation of M̃ corresponds uniquely to
the measure

σ =
l∑

i=1

fiδ(xi) ∈ V

for the delta measure δ(x) at point x. We sometimes identify the measure σ with
the representation of M̃ . The measure σ is a probability measure if

∑
i fi = 1.

The index of the representation (17) is defined as the number of the points
(x1, · · · , xl) under the special convention that the points a, b are counted as one
half. A representation is called principal if its index is (d + 1)/2. Furthermore,
the representation is upper if (x1, · · · , xl) contains b and lower otherwise.

For the proof of Theorem 3, it is necessary to study the nature on the set
V(M̃). It differs according to whether M̃ is a boundary point of Md+1 or an
interior point of Md+1.

Proposition 5 ([16, Chap. II, Theorem 2.1]). Every boundary point M̃ has
a unique representation. Moreover, M̃ ∈ Md+1 is a boundary point of Md+1 if
and only if there exists a representation of M̃ with index at most d/2.

Proposition 6 ([16, Chap. II, Theorem 3.1]). If M̃ is an interior point of
Md+1 then, for arbitrary x∗ ∈ [a, b], there exists a representation of M̃ such
that (x1, · · · , xl) contains x∗.

Proposition 7 ([16, Chap. II, Corollary 3.1]). If M̃ is an interior point of
Md+1 then there exist precisely one upper and one lower principal representa-
tions of M̃ .

We use Prop. 7 implicitly in Prop. 8 below and the proof of Theorem 3. Prop. 8
is the main result of the appendix.

Proposition 8 ([16, Chap. III, Theorem 1.1]). Assume (u0, u1, · · · , ud) and
(u0, u1, · · · , ud, h) are T-systems. Then

max
σ∈V(M̃)

∫ b

a

h(x)dσ(x)

is attained uniquely by σ̄, the upper principal representation of M̃ . Similarly,

min
σ∈V(M̃)

∫ b

a

h(x)dσ(x)

is attained uniquely by σ, the lower principal representation of M̃ .


