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Worst Scenario Detection in Limit Analysis of Trusses

against Deficiency of Structural Components

Yoshihiro Kanno †

Department of Mathematical Informatics,
University of Tokyo, Tokyo 113-8656, Japan

Abstract

This paper addresses the plastic limit analysis of a truss with some deficient structural com-
ponents. Given the upper bound for the number of deficient members, we consider uncertainty in
the locations of deficient members, i.e., the set of deficient members is not specified in advance.
Then we attempt to find the worst scenario of deficiency, in which the limit load factor attains the
minimum value. We formulate this combinatorial optimization problem as a mixed integer linear
programming problem and solve it by using an algorithm with guaranteed global convergence.
The deficient structural components in the worst scenario are regarded as key elements which
cause the largest degradation of structural performance. Numerical examples illustrate that key
elements, as well as the collapse mode in the worst scenario, depends on the number of deficient
structural components.

Keywords

Robustness; Uncertainty; Structural degradation; Structural integrity; Plastic limit anal-
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1 Introduction

This paper discusses a problem of finding the worst scenario of deficiency of structural components in
a truss. Possibilistic (or unknown-but-bounded) models rather than stochastic models are employed
to represent the uncertainty in the set of damaged components. The plastic limit load factor of
a truss is focused as a mechanical performance. Given the number of possible deficient members,
the worst scenario is defined as the set of deficient members with which the limit load factor of the
damaged truss attains the minimum value.

For assessing the robustness and/or the redundancy of a structure, it is central to analyze the
response of an uncertain structural system. If reliable stochastic information of a structural system
is available, then a probabilistic reliability analysis can be performed. In contrast, the worst scenario
analysis is applicable to problems without reliable stochastic information, because it requires only
bounds for the input data to define the uncertainty in data.

The convex model approach [3] is one of the well known methods for the worst scenario anal-
ysis. Optimization of structures under uncertainty was also performed based on the convex model
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approach [10, 29, 33]. Some authors use the term “antioptmization” to mean the worst scenario ap-
proach; see, e.g., [7, 30]. This terminology is rather misleading because the worst scenario is defined
as the optimal solution of an optimization problem. The interval arithmetic is also regarded as a
worst scenario approach developed for error analysis in numerical computation with finite precision
calculations [1, 27]. The interval arithmetic has been applied to analyze bounds for the response of
structural systems possessing uncertainties; see, e.g., [5, 6, 24, 24, 26, 30] and the references therein.
Recently, semidefinite programming has been employed for finding outer ellipsoidal bounds for re-
sponses of uncertain structural systems [13, 14, 19, 21]. These semidefinite programming approaches
are based on the methodology of robust optimization [4]. The worst scenario problem is defined as
the global optimal solution of an optimization problem. When the optimization problem is noncon-
vex, it is difficult to find the global optimal solution in general. To overcome this difficulty, mixed
integer linear programming (MILP) approaches have been developed for worst scenario analysis of
trusses [12, 20]. For more surveys of worst scenario analysis, see [16, 25].

Redundancy of structures is often evaluated with respect to failure of structural components; see,
e.g., [8, 9, 28, 31]. High redundancy often means that the structure suffers only small degradation
of performance when one or more structural components fail. For example, for building structures
there have been many studies on static and dynamic structural responses in situations that some
columns and/or beams fail [11, 18, 23, 28, 32]. In these studies the set of deficient structural
components is specified. However, for a real-world structure we cannot know in advance which
components will fail. In this paper attention is focused on this uncertainty attribute. That is, we
specify only an upper bound for the number of deficient members, and then consider a problem
of finding the worst deficient scenario with respect to the degradation of the limit load factor.
This worst scenario problem is essentially a combinatorial optimization problem. To ensure that
the obtained solution is actually the severest deficient scenario, the worst scenario problem should
be solved by using an algorithm with guaranteed convergence to the global optimal solution. This
motivates us to propose an MILP reformulation of the worst scenario problem in question. An MILP
problem can be solved globally by using a branch-and-cut method, etc., and several commercial and
non-commercial software packages are available for this purpose.

The paper is organized as follows. In section 2, we define the uncertainty model in structural
deficiency and formulate the worst scenario detection problem. In section 3, we show that this prob-
lem can be reformulated as an MILP problem, which can enjoy existing algorithms with guaranteed
convergence to the global optimal solution. Two numerical examples are demonstrated in section 4.
We conclude in section 5.

A few words regarding our notation: All vectors are assumed to be column vectors. The (m+n)-
dimensional column vector (aT, bT)T consisting of a ∈ Rm and b ∈ Rn is often written as (a, b) for
simplicity. For two vectors b ∈ Rn and c ∈ Rn, we write b ≥ c if bi ≥ ci (i = 1, . . . , n). Particularly,
b ≥ 0 means bi ≥ 0 (i = 1, . . . , n). We use diag(p) to denote the n × n diagonal matrix with a
vector p ∈ Rn on its diagonal. For a set S, we use |S| to denote its cardinality. For example, if
S = {1, . . . , m}, then |S| = m. We denote by N the set of natural numbers, i.e., N = {1, 2, . . . }.
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2 Worst scenario problem

The worst scenario in the limit analysis is defined as the set of missing structural elements with
which the limit load factor attains minimum.

2.1 Uncertainty model of structural deficiency

Consider an elastic/perfectly-plastic truss consisting of m members. We denote by d the number of
degrees of freedom of displacements. Small deformations are assumed throughout the paper.

For each member i, we use a binary variable ti to indicate soundness of the member. Specifically,
the components of a vector t ∈ {0, 1}m are defined by

ti =

{
1 if member i is present,

0 if member i is absent.
(1)

Let t̃ denote the nominal (or the intact) truss. We usually suppose that all members are present in
the nominal structure, and hence t̃ = (1, . . . , 1)T.

Consider two scenarios of degradation represented by t ∈ {0, 1}m and t′ ∈ {0, 1}m (t ̸= t′). If
t ≤ t′, then some members in t′ are absent in t. Suppose that at most α members are possibly
missing from the nominal structure, t̃, due to damage, failure, aging, or fire, etc. The set of all such
scenarios is given by

T (α, t̃) = {t ∈ {0, 1}m | t ≤ t̃, ∥t̃ − t∥1 ≤ α}, α ∈ {0} ∪ N, (2)

where the L1-norm of the vector t̃ − t is defined by

∥t̃ − t∥1 =
m∑

i=1

|t̃i − ti|.

Note that we do not consider addition of members to the nominal truss. We call T (α, t̃) the
uncertainty set of the structural deficiency. The parameter α, called the uncertainty parameter ,
expresses the level of uncertainty in the following sense:

(i) T (0, t̃) = {t̃}.

(ii) α ≤ α′ implies T (α, x̃) ⊆ T (α′, t̃).

Namely, only the intact scenario is considered at α = 0, and the range of possible deficiency scenarios
increases as α increases.

Let x̃ ∈ Rm denote the vector of member cross-sectional areas in the nominal structure, where
x̃i > 0 (i = 1, . . . ,m). The true value, denoted x, is uncertain and is written as

x = diag(x̃)t, (3)

where t ∈ T (α, t̃). Let σy > 0 denote the yield stress. For simplicity, suppose that the yield stresses
in tension and compression share the common absolute value. Then, for each i = 1, . . . ,m, the
modulus of the admissible axial force, denoted qyi(xi), is given by

qyi(xi) = σyxi

= q̃yiti, (4)

where q̃yi = σyx̃i is its nominal value.
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2.2 Nominal problem in limit analysis

Let q ∈ Rm denote the vector of member axial forces. The yield conditions are given by

|qi| − qyi(xi) ≤ 0, i = 1, . . . ,m. (5)

Suppose that the external load consists of a constant part, denoted pd, and a proportionally increas-
ing part, represented by λpr. The constant vectors pd ∈ Rd and pr ∈ Rd \ {0} are sometimes called
the dead load and the reference load , respectively. The parameter λ ∈ R is called the load factor .
The force-balance equation is written as

Hq = pd + λpr, (6)

where H ∈ Rd×m is the equilibrium matrix.
From the lower bound principle, the limit load factor, denoted λ∗(x), is defined as the maximum

value of λ under the constraints in (5) and (6). Precisely, λ∗(x) is the optimal value of the following
problem:

max
λ,q

λ (7a)

s. t. Hq = pd + λpr, (7b)

|qi| ≤ qyi(xi), i = 1, . . . , m. (7c)

This is a linear programming (LP) problem in variables λ and q.
The problem dual to problem (7) is formulated as

min
u,c

−pT
d u + qy(x)Tc (8a)

s. t. pT
r u = 1, (8b)

ci ≥ |hT
i u|, i = 1, . . . ,m. (8c)

Here, u ∈ Rd and c ∈ Rm are the variables to be optimized, and hi ∈ Rd is the ith column vector
of the equilibrium matrix H in (6), i.e.,

H =
[
h1 h2 · · · hm

]
.

Problem (8) corresponds to the upper bound principle. Indeed, at the optimal solution, u corre-
sponds to the collapse mode and ci is the modulus of the (plastic) member elongation.

As is known well, the optimal value of problem (8) coincides with the limit load factor λ∗(x).
This relation is formally stated as follows.

Proposition 2.1. Suppose that problem (7) has a feasible solution. Then both (7) and (8) have
optimal solutions, and their optimal values are the same.

Proof. Since c1, . . . , cm are not bounded above and pr ̸= 0, problem (8) always has a feasible solution.
Then the assertion of this proposition immediately follows from the strong duality of LP.

Remark 2.2. If the assumption of Proposition 2.1 is not satisfied, then the optimal value of prob-
lem (8) is not bounded below. Therefore, we define λ∗(x) = −∞ if problem (7) is infeasible. �
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2.3 Definition of worst scenario

In section 2.2, the limit load factor has been introduced as a function of x. As seen in (3), x is a
function of t. Therefore, the limit load factor is considered a function of t as

λ∗(x(t)) = λ∗(diag(x̃)t). (9)

Since t is supposed to be uncertain, (9) describes the uncertainty in the limit load factor.
For the given α and t̃, t can possibly take any value in T (α, t̃) defined by (2). The limit load

factor in the worst scenario is then defined as the minimum value of λ∗(x(t)). Formally, the worst
limit load factor , denoted λmin(α, x̃), for given α and x̃ is defined by

λmin(α, x̃) = min
t

{λ∗(x(t)) | t ∈ T (α, t̃)}. (10)

The worst scenario, denoted tw, is the scenario at which the limit load factor attains the worst limit
load factor, i.e.,

tw ∈ arg min
t

{λ∗(x(t)) | t ∈ T (α, t̃)}. (11)

Remark 2.3. As discussed in Remark 2.2, we let λ∗(x) = −∞ if problem (7) is infeasible for a given
x. Therefore, for given α and t̃, if there exists t′ ∈ T (α, t̃) satisfying{

(λ, q)

∣∣∣∣∣ Hq = pd + λpr,

|qi| ≤ qyi(xi(t′)) (i = 1, . . . , m)

}
= ∅,

then λ∗(x(t′)) = −∞, and hence λmin(α, x̃) = −∞. �

Since λ∗(x(t)) included in (10) is the optimal value of problem (8), the minimization problem
on the right-hand side of (10) is equivalently rewritten as

min
t,qy,u,c

−pT
d u + qT

y c (12a)

s. t. pT
r u = 1, (12b)

ci ≥ |bT
i u|, i = 1, . . . , m, (12c)

qy = diag(q̃y)t, (12d)

t ∈ T (α, t̃). (12e)

Thus λmin(α, x̃) is obtained as the optimal value of this problem. Note that t, qy, u, and c are the
variables to be optimized. The worst scenario, tw, is optimal for problem (12).

Remark 2.4. It follows from definition (10) of λmin and T (0, t̃) = {t̃} that

λmin(0, x̃) = λ∗(x̃).

That is, the worst limit load factor at α = 0 coincides with the nominal limit load factor. �

Remark 2.5. The uncertainty set T (α, t̃) consists of finite number of elements. For example,
|T (1, t̃)| = m + 1. Hence, the optimal solution of problem (12) for α = 1 can be found by per-
forming the conventional limit analysis, problem (8), for all m + 1 trusses included in T (1, t̃).
However, since |T (α, t̃)| is the sum of combinations of selecting α′ truss members (1 ≤ α′ ≤ α) from
m members, it increases exponentially as α increases. Therefore, it is not acceptable to attempt to
solve problem (8) by enumerating all the scenarios included in T (α, t̃). This motivates us to explore
an MILP reformulation of problem (8) in section 3. �
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Remark 2.6. Let D(α, t̃) be the set of trusses which differ from t̃ by removing exactly α members,
i.e.,

D(α, t̃) = {t ∈ T (α, t̃) | ∥t̃ − t̃∥1 = min{α, ∥t̃∥1}}, α ∈ {0} ∪ N.

This set, called the deficiency set, was introduced in Example 3 of [22]. Then we can show that
(12e) can be replaced by

t ∈ D(α, t̃) (13)

without changing the optimal value of problem (12). Since D(α, t̃) ⊂ T (α, t̃) (∀α ∈ N), the practical
computational effort can possibly be smaller by using (13) instead of (12e). However, we consider
(12e) throughout the paper to make clear that α represents the magnitude of uncertainty, as discussed
in section 2.1. The results in section 3 also hold true for (13). �

2.4 Quantitative measure of robustness

For a general system possesses uncertainties, Ben-Haim [2] proposed a decision theory called the
information-gap theory . The robustness function was introduced there as a quantitative measure
of robustness. In this section, this concept can be applied to our problem in question naturally to
evaluate robustness of a structure against structural deficiency.

In the info-gap theory, the uncertainty parameter α is considered unknown. Then T (α, t̃) defined
by (2) corresponds to the info-gap uncertainty model discussed in Example 6 of [22]. Suppose that
the limit load factor is required not to be smaller than λc. We call λc the critical performance. Given
a design of the truss x̃ and a critical performance λc, the robustness function, denoted α̂(x̃, λc),
is defined as the largest number of deficient members up to which the performance requirement is
satisfied. By using the worst limit load factor defined by (10), the robustness function is given by

α̂(x̃, λc) = max
α

{λmin(α, x̃) ≥ λc}. (14)

We define α̂(x̃, λc) = 0 if λmin(0, x̃) < λc. Consider two different designs of a truss, say, x and x′. If
α̂(x̃, λc) < α̂(x̃′, λc), then x′ is considered more robust than x for the performance requirement λc,
because x′ allows that more members are absent without violating the performance requirement.

3 Mixed integer linear programming formulations

The worst scenario problem (12) is reduced to a tractable form in section 3.1. Section 3.2 discusses
uncertainty in partial deficiency scenarios of structural components.

3.1 MILP formulation for worst scenario problem

In section 2.3, we saw that the worst scenario is obtained as the optimal solution of problem (12).
It is worth of noting that this problem should be solved by an algorithm with guaranteed global
convergence, because, obviously, a local (but not global) optimal solution is not the worst scenario.
Unfortunately, it is difficult to find the global optimal solution of problem (12). This is because
integrality constraints are involved in (12e) and the objective function is nonconvex due to the
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nonlinear term qT
y c. These difficulties motivate us to reformulate problem (12) as an MILP problem,

which can be solved globally with a branch-and-bound method or a branch-and-cut method, etc.
A key idea for this reduction is to rewrite the nonlinear term qyici by using a system of linear

inequalities with integrality constraints as follows.

Proposition 3.1. Let M > 0 be a sufficiently large constant. Then (ti, qyi, ci, wi) satisfies

wi = qyici, (15a)

qyi = q̃yiti, (15b)

ti ∈ {0, 1} (15c)

if and only if (ti, ci, wi) satisfies

M(1 − ti) ≥ |wi − q̃yici|, (16a)

Mti ≥ |wi|, (16b)

ti ∈ {0, 1} (16c)

and qyi is defined by (15b).

Proof. We begin by observing that (15) is reduced to

wi =

{
q̃yici if ti = 1,

0 if ti = 0.
(17)

We show that (16) is equivalent to (17).
Suppose that ti = 1. Then (16a) is reduced to (17). This wi satisfies (16b), which is reduced to

M ≥ |wi|, because M is assumed to be sufficiently large. Alternatively, suppose that ti = 0. Then
(16b) is reduced to (17). This wi and any ci satisfy M ≥ |wi − q̃yci|, i.e., (16a).

Note again that (15a) is a nonconvex constraint. In contrast, (16a) and (16b) are linear inequality
constraints. Therefore, (16) is more tractable than (15).

As a consequence of Proposition 3.1, problem (12) can be rewritten equivalently as

min
t,u,c,w

−pT
d u +

m∑
i=1

wi (18a)

s. t. pT
r u = 1, (18b)

ci ≥ |bT
i u|, i = 1, . . . , m, (18c)

M(1 − ti) ≥ |wi − q̃yici|, i = 1, . . . , m, (18d)

Mti ≥ |wi|, i = 1, . . . , m, (18e)

t ∈ T (α, t̃). (18f)

It follows from (18c) that any feasible solution of problem (18) satisfies ci ≥ 0. Since q̃yi > 0,
the inequality

q̃yici ≥ 0 (19)
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holds for any feasible solution. Moreover, as shown in the proof of Proposition 3.1, any feasible
solution satisfies (17). Therefore, ci and wi satisfy

0 ≤ wi ≤ q̃yici. (20)

Thus, we can add (20) as additional constraints to problem (18) without changing the optimal
solution. On the other hand, (18d) includes the inequality

wi − q̃yici ≤ M(1 − ti),

while (18e) includes the inequality

wi ≥ −Mti.

These two inequalities become redundant, when we add (20) as additional constraints. Consequently,
(18d) and (18e) can be replaced by

−M(1 − ti) ≤ wi − q̃yici ≤ 0, i = 1, . . . ,m, (21a)

0 ≤ wi ≤ Mti, i = 1, . . . ,m (21b)

without changing the optimal solution.
The upshot of the discussion above is that (18d) and (18e) can be tightened as (21a) and (21b).

Thus, problem (18) (and hence problem (12) also) is equivalent to the following problem:

min
t,u,c,w

−pT
d u +

m∑
i=1

wi (22a)

s. t. pT
r u = 1, (22b)

−ci ≤ bT
i u ≤ ci, i = 1, . . . , m, (22c)

−M(1 − ti) ≤ wi − q̃yici ≤ 0, i = 1, . . . , m, (22d)

0 ≤ wi ≤ Mti, i = 1, . . . , m, (22e)

ti ≤ t̃i, i = 1, . . . , m, (22f)
m∑

i=1

(t̃i − ti) ≤ α, (22g)

ti ∈ {0, 1}, i = 1, . . . , m. (22h)

This is the goal formulation which we solve for detecting the worst scenario in the plastic limit
analysis. Note that definition (2) of T (α, t̃) was substituted into (18f).

In problem (22), continuous variables are u, c, and w, while binary variables are t. All the
constraints other than the integrality constraints are linear constraints. Thus, problem (22) is an
MILP programming problem, and hence it can be solved globally by using, e.g., a branch-and-cut
algorithm. Several software packages, e.g., CPLEX [17] and Gurobi Optimizer [15], are available for
this purpose.

Remark 3.2. A big constant M ≫ 0 is used in problem (22). It is known that such a “big-M” should
not be chosen larger than necessary, because constraints including unnecessarily large M often slow
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down the solution process. Unfortunately, it is not easy to guess the smallest admissible value of
M in advance. However, once the problem is solved, then we can check if the value of M was
appropriate or not as follows. For ti = 1, (22e) yields wi ≤ M . This constraint should not become
active at the optimal solution, because it is not involved in the original problem in (12). Similarly,
(22d) with ti = 0 yields

−M ≤ wi − q̃yici. (23)

Since ci = |hT
i u| holds at the optimal solution of problem (12) and (22e) with ti = 0 implies wi = 0,

(23) reads q̃yi|hT
i u| ≤ M . This constraint should be inactive at the optimal solution of problem (22).

In short, if the optimal solution of problem (22), denoted (t̄, ū, c̄, w̄), satisfies

w̄i < M, i = 1, . . . , m,

q̃yi|hT
i ū| < M, i = 1, . . . , m,

then (t̄, q̄y, ū, c̄) defined by q̄y = diag(q̃y)t̄ is correctly optimal for problem (12). �

3.2 Partial deficiency model of structural components

In the preceding sections, we supposed that a damaged structural component is completely absent.
Namely, the true value of the member cross-sectional area was assumed to be given as

xi =

{
x̃i if ti = 1,

0 if ti = 0.
(24)

Such complete deficiency of structural components may not occur frequently in a real-life structure.
Therefore, the worst scenario analysis based on this damage model might be rather pessimistic. In
this section, we explore a damage model in which structural components are possibly diminishing
in part.

Let ρ ∈ [0, 1[ be a constant representing the degree of damage. We assume that all members
share same value of ρ. We use ti, obeying the uncertainty model in (2), to indicate soundness of
member i. Specifically, member i is intact if ti = 1, while its cross-sectional area diminishes to ρx̃i

due to damage if ti = 0. Since we are not worried about possible increase of member cross-sectional
areas, we let ρ < 1. In short, the true value of the member cross-sectional area, xi, is given by

xi = [ti + ρ(1 − ti)]x̃i

=

{
x̃i if ti = 1,

ρx̃i if ti = 0.
(25)

Note that this model reverts to (24) if ρ = 0. The modulus of the admissible axial force, qyi, is then
written as

qyi = σyxi = [ti + ρ(1 − ti)]q̃yi. (26)

If ρ = 0, then (26) certainly reverts to (4).
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From (26), the internal plastic work of member i, denoted wi, is related to the plastic member
elongation ci as

wi = qyici, (27a)

qyi = [ti + ρ(1 − ti)]q̃yi, (27b)

ti ∈ {0, 1}. (27c)

Since ci ≥ 0, q̃yi > 0, and 0 ≤ ρ < 1, (27) implies that wi and q̃yi satisfy

0 ≤ wi ≤ q̃yici. (28)

In a manner similar to Proposition 3.1 (see also the discussion below Proposition 3.1), we can show
that (27) and (28) can be rewritten equivalently as

−M(1 − ti) ≤ wi − q̃yici ≤ 0, (29a)

0 ≤ wi − ρq̃yici ≤ Mti, (29b)

ti ∈ {0, 1}, (29c)

where M is a sufficiently large constant.
Consequently, the worst scenario problem for the partial deficient model of structural compo-

nents can also be formulated as an MILP problem. Specifically, by replacing (22d) and (22e) in
problem (22) by (29), we obtain the following MILP problem:

min
t,u,c,w

−pT
d u +

m∑
i=1

wi (30a)

s. t. pT
r u = 1, (30b)

−ci ≤ bT
i u ≤ ci, i = 1, . . . , m, (30c)

−M(1 − ti) ≤ wi − q̃yici ≤ 0, i = 1, . . . , m, (30d)

0 ≤ wi − ρq̃yici ≤ Mti, i = 1, . . . , m, (30e)

ti ≤ t̃i, i = 1, . . . , m, (30f)
m∑

i=1

(t̃i − ti) ≤ α, (30g)

ti ∈ {0, 1}, i = 1, . . . , m. (30h)

If ρ = 0, this problem certainly reverts to problem (22).

4 Numerical examples

The worst scenarios of two trusses are computed by solving problem (22). Computation was carried
out on Core 2 Duo (2.26 GHz) with 4.0 GB RAM. The mixed integer linear programming problems
were solved by using CPLEX Ver. 11.2 [17] with the default setting.
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Figure 1: A 32-member plane truss.

Table 1: Limit load factors in the worst scenarios of the plane truss example.

α λmin(α, x̃)

ρ = 0 ρ = 0.2

0 10.0000 10.0000
1 8.7500 9.0000
2 7.5000 8.0000
3 6.0716 7.0000
4 2.2855 6.0000
5 −∞ 3.2704
6 −∞ 3.2704

Figure 2: The collapse mode of the nominal structure of the plane truss example. The members
represented by thick lines experience plastic deformations.

4.1 A plane truss example

Consider the plane truss in Figure 1, where L1 = L2 = 1 m. The truss consists of m = 32 members.
The leftmost nodes are pin-supported, and hence the number of degrees of freedom of displacements
is d = 16. The yield stress is σy = 200 MPa and the intact cross-sectional area of each member is
x̃i = 1000 mm2. Therefore, q̃yi = 200 kN (i = 1, . . . , m). As the constant load, pd, suppose that
an external force of 50 kN is applied at each of two rightmost nodes in the negative direction of
the X1-axis. As the proportionally increasing part, λpr, a force of 10λ kN is applied at the upper
rightmost node in the negative direction of the X2-axis.

The limit load factor of the undeficient structure is λmin(0, x̃) = λ∗(x̃) = 10.0000. The collapse
mode is illustrated in Figure 2, where the members undergoing plastic deformations are depicted by
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(a) α = 1 (b) α = 2

(c) α = 3 (d) α = 4

Figure 3: Worst scenarios and collapse modes of the plane truss example (ρ = 0).

Figure 4: Worst scenario of the plane truss example for α = 5 (ρ = 0).

Figure 5: Worst scenario for α = 3 when the two missing members in Figure 3(b) are specified to
be absent (ρ = 0). The limit load factor of this scenario is 6.2500 (> λmin(3, x̃)).

thick lines.

4.1.1 Complete deficiency model

We first consider the complete deficiency model. That is, the member cross-sectional area is assumed
to vanish if the corresponding member is damaged, as formulated in (24). This corresponds to the
case of ρ = 0 in (25).

The worst scenarios for α = 1, . . . , 4 are computed by solving problem (22). The obtained worst
limit load factors, λmin(α, x̃), are listed in Table 1. The corresponding collapse modes are illustrated
in Figure 3. Here, the yielding members are represented by thick lines and the deficient members
are removed from the figures. Note that exactly α members are deficient in each case. Figure 4
illustrates one of deficiency scenarios for α = 5, where the truss is kinematically indeterminate (or
unstable) due to absence of five members. In this case, the force-balance equation, (6), has no
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(a) α = 1 (b) α = 2

(c) α = 3 (d) α = 4

(e) α = 5 (f) α = 6

Figure 6: Worst scenarios and collapse modes of the plane truss example (ρ = 0.2).

solution, because external forces are applied to the unstable upper rightmost node. Therefore, from
the discussion in Remark 2.3, we conclude λmin(5, x̃) = −∞.

In the worst scenarios collected in Figure 3, attention should be focused on the difference between
the cases of α = 2 and α = 3. The two members missing in Figure 3(b) are undeficient in Figure 3(c).
In other words, the set of missing members in Figure 3(c) is not a superset of the set of missing
members in Figure 3(b). As a consequence, the yielding members in Figure 3(c) are different from
those in Figure 3(b). For comparison, assume that the two members missing at α = 2 are also
absent in the case of α = 3. In other words, we explore the worst set of three absent members when
the set is restricted to a superset of the two members missing at α = 2. The worst scenario in this
case is shown in Figure 5. The corresponding limit load factor is 6.2500, which is larger than that
of the scenario in Figure 3(c). Thus the worst scenario at α = 3 cannot be obtained as a superset
of the deficient members at α = 2. This illustrates that “key” structural components, missing of
which causes the worst structural degradation, depends on α.

4.1.2 Partial deficiency model

We now consider the partial deficiency model investigated in section 3.2. The member cross-sectional
area is given by (25), where ρ = 0.2. Then the worst scenario is found by solving problem (30).
The obtained worst scenario for α = 1, . . . , 6 are shown in Figure 6. Here, deficient members are
represented by dotted lines. Among them, thick dotted lines are yielding ones, while a member
in Figure 6(f) represented by a thin dotted line is not deformed. Therefore, the collapse mode for
α = 6 is same as that for α = 5. Note that the structures in all scenarios are stable, because no
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Figure 7: A 164-member space truss.

Table 2: Computational results of the space truss example.

α λmin(α, x̃) CPU (s) Nodes

0 140.7079 0.1 —
1 128.3622 0.7 68
2 115.1253 33.5 7,301
3 97.3447 570.4 89,925
4 79.2562 2,455.6 321,155
5 57.7350 2,872.7 677,656
6 0.0000 25.5 1,251

member is absent in the partial deficiency model. The locations of yield members for α = 5 and
α = 6 are much different from those for α = 1, . . . , 4. The limit load factors in the worst scenarios
are listed in Table 1. For a given α, the worst limit load factor for α = 0.2 is, naturally, larger than
that for ρ = 0.

4.2 A space truss example

We next consider the space truss in Figure 7, where L1 = L2 = L3 = 1m. The truss consists of
m = 164 members and is in a cuboidal shape. The nine leftmost nodes, depicted with triangles, are
pin-supported, and hence the number of degrees of freedom of displacements is d = 108. The yield
stress is σy = 200 MPa and the cross-sectional area of each undeficient member is x̃i = 500 mm2.
Therefore, the modulus of the admissible axial force is q̃yi = 100 kN for each i = 1, . . . ,m. The
constant part of the external load is set pd = 0. As the parametrically increasing part, λpr, the
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Figure 8: The collapse mode of the nominal structure of the space truss example. The members
represented by thick lines experience plastic deformations.

following forces are applied at nodes (a)–(d) in Figure 7. Forces of 0.1λ kN are applied at nodes (a)–
(d) in the negative direction of the X1-axis. Then, in the negative direction of the X3-axis, forces
of 0.5λ kN are applied at nodes (a) and (b), while forces of λ kN are applied at nodes (c) and (d).

The limit load factor of the undeficient structure is λmin(0, x̃) = λ∗(x̃) = 140.7079. The corre-
sponding collapse mode is shown in Figure 8.

We assume that damaged members have vanishing cross-sectional areas, i.e., (24). By solving
the MILP problem (22), we find the worst scenarios for α = 1, . . . , 6. The obtained deficiency
scenarios, as well as the collapse modes, are shown in Figure 9. The absent members are depicted
by dotted lines. It is observed that the collapse modes for α = 5 and α = 6 are qualitatively different
from those for α = 0, 1, . . . , 4. At the worst scenario for α = 6, the truss becomes kinematically
indeterminate. The limit load factors in these worst scenarios and the computational efforts are
listed in Table 2. Here, “CPU” represents the computational time spent to solve problem (22) with
CPLEX [17], and “Nodes” represents the number of visited nodes of the branch-and-bound tree.
Note that more than 40 minutes are required for solving the problem with α = 5. On the other
hand, by definition, the number of feasible solutions of this problem, i.e., the number of scenarios
in the uncertainty set, is

|T (5, x̃)| = 1 +
5∑

α=1

(
m

α

)
= 959,418,328.

Therefore, it is unviable to enumerate scenarios for finding the worst one.
As discussed in section 2.4, the worst limit load factor can be linked to a measure of robustness.

Specifically, recall that the robustness function, α̂(x̃, λc), is defined by (14). From the results in
Table 2, the variation of α̂(x̃, λc) with respect to λc is depicted as Figure 10. The trade-off relation
between α̂(x̃, λc) and λc can be captured from this curve. Namely, the robustness cannot be improved
(i.e., α̂(x̃, λc) cannot be larger) when the requirement of the performance becomes severer (i.e., λc
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(a) α = 1 (b) α = 2

(c) α = 3 (d) α = 4

(e) α = 5 (f) α = 6

Figure 9: Worst scenarios and collapse modes of the space truss example.
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Figure 10: Trade-off relation between robustness and the critical performance for the space truss
example.

becomes larger).

5 Concluding remarks

To evaluate the redundancy and the robustness of a structure, a key is to assess the amount of degra-
dation of a structural performance when the structural system is subjected to uncertainty. Roughly
speaking, a structure is considered more robust and/or redundant if it can maintain a specified
performance requirement even when the structure suffers large uncertainty. Robust satisfaction of
a performance constraint against the specified amount of uncertainty can be checked by finding the
worst scenario. In this paper, we explored worst scenario detection in the plastic limit analysis of a
truss when one or more structural components fail.

The worst scenario problem was clearly formulated as the minimization problem of the limit load
factor under possible absent of the specified number of structural components. The set of absent
components in the worst scenario can be viewed as a set of key elements in the truss, in the sense
that absence of them causes the largest degradation of the limit load factor. For numerical solution
of this optimization problem, an algorithm with guaranteed global convergence is required, because
a local (but not global) optimal solution corresponds to more optimistic scenario than the true worst
scenario. To enjoy existing global algorithms such as a branch-and-cut method, we reformulated the
worst scenario problem as a mixed integer linear programming problem.

Discussion in this paper is restricted to degradation of the limit load factor of a truss. Other
problems remain to be explored. For instance, a worst scenario problem of a frame structure against
deficiency of columns in progressive collapse is important from a practical point of view [11, 18, 23,
32]. Also, implications of the worst scenario in designing a structure can be explored.
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