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Oscillations in Cyclic Gene Regulatory Networks
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Analytic Existence Conditions
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Masaaki TAKADA∗, Yutaka HORI† and Shinji HARA‡

June 21st, 2011

Abstract

In this paper, we present analytic conditions for the existence of oscil-
lations in gene regulatory networks with cyclic structure. In particu-
lar, inherent time delays in transcription, translation and translocation
process are explicitly treated, and the effects of such time delays are re-
vealed. We first show that local instability of a unique equilibrium state
results in oscillations of protein concentrations based on the Poincaré-
Bendixson theorem for cyclic time delay systems. Then, an analysis
scheme of local instability for large-scale time delay systems is intro-
duced. Using this scheme, we derive graphical and analytic conditions
for the existence of oscillations. The developed analytic conditions
are represented only in terms of biochemical parameters, thus they are
suitable for obtaining biological insights. The results are applied to ex-
isting genetic networks, and biological insights are demonstrated with
illustrative numerical simulations.

1 Introduction

One of the main objectives of systems biology is to develop unified analysis
schemes that can systematically examine the dynamical behaviors of large-
scale gene regulatory networks. During the last decade, many theoretical
works have been devoted to investigate the oscillatory as well as convergent
behaviors of protein concentrations in living cells (see [12] and references
therein).
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One of the pioneering theoretical analyses of gene regulatory networks
was presented by Goodwin [7], where the dynamical model of cyclically inter-
connected gene’s products was introduced. Later, the cyclic feedback struc-
ture was found in metabolic and cellular signaling pathways as well [13,19],
and it is recently considered that cyclic structure plays a key role to produce
the various dynamical behaviors of protein levels (see Hori et al. [11] and
references therein). In fact, the artificially constructed biological oscillator,
named Repressilator [5], was performed with a simple cyclic interaction of
repressors in Escherichia coli. Therefore, better understanding of cyclic gene
regulatory network behaviors becomes the first key step to reveal the whole
picture of large-scale gene regulatory networks.

Many works were devoted to understand the stability [1, 2, 22], robust-
ness [14] and oscillatory behavior [11,18] of cyclic gene regulatory networks.
Regarding the oscillations, El-Samad et al. [18] and Hori et al. [11] recently
provided analytic criteria for the existence of periodic oscillations. A key
feature of their results is that the criteria are explicitly represented in terms
of biochemical parameters, thus, one can easily observe the relation between
the parameters and the periodic oscillations of protein concentrations. In
fact, essential dimensionless quantities which are related to the existence of
oscillations were found in [11].

In these previous works, however, the inherent time delays in transcrip-
tion, translation and translocation process in gene regulatory networks were
not considered in the model. Such time delays are essential especially for
eukaryotic cells, because mRNA and protein productions occur at differ-
ent locations in a cell, and the transportation of these substances results
in sizable time delays [4]. Moreover, recent studied showed potential ap-
plications of the time delays as a feedback controller in gene regulatory
networks [17,23]. These facts motivate us to study the effect of time delays
in cyclic gene regulatory networks.

The dynamical model of the gene regulatory networks with time delay
was presented by Chen and Aihara [4]. Based on this model, several works
analyzed the stability of equilibrium states of such genetic networks [6,24,25].
However, analytic criteria which enable us to gain biological insight on the
relation between biochemical parameters and the dynamical behaviors of
protein concentrations have not been obtained so far. Also, to the authors’
knowledge, oscillatory behavior analysis has not been done for cyclic gene
regulatory networks with time delay.

Therefore, the objective of this paper is to develop analytic criteria for
the existence of oscillations in large-scale cyclic gene regulatory networks
with sizable time delays, and reveal the effects of such delays based on the
analytic result. The paper is organized as follows: In Section 2, we show
that local instability of the unique equilibrium state results in oscillations of
protein concentrations based on the Poincaré-Bendixson theorem for cyclic
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time delay systems [16]. Then, Section 3 introduce an analytic scheme
of local instability for large-scale linear time delay systems. In Section 4,
we derive analytic conditions for the existence of oscillations, which can
be applied to gene regulatory networks composed of arbitrary number of
genes. The basic idea of our approach comes from framework of large-scale
systems with a generalized frequency variable proposed by Hara et al. [8,21].
Section 5 is devoted to gain biological insights from the analytic conditions.
In Section 6, our theorems are applied to two existing biological networks,
Repressilator [5] and somitogenesis oscillator [15], with illustrative numerical
simulations. Finally, Section 7 concludes the paper.

Some results in this paper were presented in our conference paper [20].
In this version of the paper, we further provide detailed mathematical proofs
of the theorems and comparison with existing works. In particular, we show
a counterexample of Theorem 2 in [4], which conflicts with our results, and
argue the difference of the two results. We also present new examples of
existing biological networks that make our theorems more convincing in
Section 6.

2 Modelling and Nonlinear Analysis for Gene Reg-
ulatory Networks with Time Delay

2.1 Model of Cyclic Gene Regulatory Network with Time
Delay

The well-known central dogma of molecular biology states that gene expres-
sion consists of the transcription and translation steps. During the transcrip-
tion step, genes are decoded into molecules called messenger RNA (mRNA).
Then, the information coded in mRNA is translated into proteins during the
translation step. The rate of mRNA production is affected by the proteins
called transcription factors, which are also created by the transcription and
translation steps. Thus, there is an elaborate feedback mechanism to regu-
late protein levels in a cell as illustrated in Fig. 1. This networked system
is called gene regulatory network.

In this paper, we consider the gene regulatory network, where each pro-
tein activates or represses another transcription in a cyclic way as depicted
in Fig. 1. In particular, time delays arising from transportation and inter-
mediate chemical reactions are explicitly considered. The dynamics of the
cyclic gene regulatory network composed of N genes is modeled as{

ṙi(t) = −airi(t) + βifi(pi−1(t − τpi−1)),
ṗi(t) = −bipi(t) + ciri(t − τri),

(1)

for i = 1, 2, · · · , N , where ri, pi ∈ R+(:= {x ∈ R | x ≥ 0}) denote the
concentration of the i-th mRNA and its corresponding protein synthesized

3



Figure 1: Cyclic gene regulatory network with time delay

in the i-th gene, respectively [4]. We define p0(t) := pN (t) for the sake
of notational simplification. Positive constants ai, bi, ci and βi have the
following biological meanings: ai and bi denote the degradation rates of
the i-th mRNA and protein, respectively: ci and βi denote the synthesis
rates of the i-th mRNA and protein, respectively. A monotonic function
fi : R+ → R+ represents either repression or activation of the transcription.
For repression, fi(·) is defined as fi(·) := f−(·) such that f−(0) = 1 and
f−(∞) = 0. For activation, f(·) := f+(·) such that f+(0) = 0 and f+(∞) =
1. In this paper, we use the following Hill functions:

f−(p) :=
1

1 + pν
, f+(p) :=

pν

1 + pν
, (2)

where ν(≥ 1) is a Hill coefficient, which represents the degree of coopera-
tive binding and determines the degree of nonlinearity of the system. The
constants τri and τpi (i = 1, 2, · · · , N) represent time delays associated with
the transcription and translation processes, respectively.

Let the following assumption be imposed throughout this paper:

Assumption 1.

δ :=
N∏

i=1

δi < 0, where δi :=

{
+1, for fi(·) = f+(·),
−1, for fi(·) = f−(·).

(3)

It is known that almost all solutions of (1) asymptotically converge to one
of equilibria in the case of δ > 0 [16]. Thus, it is reasonable to impose
Assumption 1 to study the existence of oscillations, which is of our main
interest in this paper.

2.2 Omega-limit Set of the System

The omega-limit set of the gene regulatory network system (1) can be spec-
ified by using a Poincaré-Bendixson type theorem for time delay systems
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derived by Mallet-Paret and Sell [16]. The following proposition allows us
to see that the omega-limit set of (1) is actually restricted to equilibrium
points, periodic oscillations or homoclinic and heteroclinic orbits, and chaos
is ruled out.

Proposition 1. [16] Consider the following system.

ẋi(t)=gi(xi(t), xi+1(t)), (i=1, 2, · · · ,n−1)
ẋn(t)=gn(xn(t), x1(t − 1)),

(4)

where gi(·, ·) (i = 1, 2, · · · , n) are C1 nonlinear functions satisfying

zi
∂gi(w, v)

∂v
>0 and zi =

{
1 if i ̸= n

z∗ ∈ {−1, 1} if i = n.
(5)

Let x(t) = [x1(t), x2(t), · · · , xn(t)] ∈ Rn be a solution of (4) on some interval
[t0,∞), and assume that x(t) is bounded in Rn as t → ∞. Then, the omega-
limit set of x(t) consists of

(a) a single non-constant periodic orbit,
(b) equilibrium points, or
(c) homoclinic and heteroclinic orbits.

The dynamical model of gene regulatory networks (1) can be transformed
to the form (4) satisfying (5) by letting n = 2N and xi as follows.{

x2i−1(t) = σ2i−1pN−i+1(Tt − η2i−1),
x2i(t) = σ2irN−i+1(Tt − η2i),

(6)

for i = 1, 2, · · · , N , where

T :=
2N∑
j=1

τj and ηi :=

{
0 for i = 1∑i

j=2 τj for i = 2, 3, · · · , 2N

with τ2i−1 := τpN−i+1 and τ2i := τrN−i+1 . The constants σi (i = 1, 2, · · · , 2N)
take either +1 or −1, and they are defined by

σi :=

{
1 for i = 1∏i

j=2 ρj for i = 2, 3, · · · , 2N,

where

ρ2i−1 := sgn
[

dfN−i+2

dp

]
ρ2i := 1

for i = 1, 2, · · · , N.

The constant z∗ is then determined as z∗ =
∏2N

i=1 ρi. The detailed proof is
provided in Appendix A. Note that the above transformation affects only
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the sign of the omega-limit set, thus, the omega-limit set of ri(t) and pi(t)
can be specified, once that of xi(t) is obtained.

Boundedness of x(t) is easily verified in the similar way to El-Samad et
al. [18], where non-delay cyclic gene regulatory networks were considered.
Existence of an equilibrium point and its uniqueness were proved in Hori et
al. [11] in the case of no time delay, and time delay does not affect these
properties of the equilibrium point. Hence, the following lemma readily
follows from Proposition 1.

Lemma 1. Consider the cyclic gene regulatory networks modeled by (1).
Then, the protein levels pi(t) (i = 1, 2, · · · , N) exhibit (a) non-constant peri-
odic oscillations, (b) convergence to the equilibrium point, or (c) homoclinic
orbits.

Note that chaos is ruled out for the system (1). This lemma immediately
leads to the following proposition, which becomes a key to deriving existence
conditions of oscillations in Section 4.

Proposition 2. Consider the cyclic gene regulatory networks modeled by
(1). The system has oscillations of protein levels pi(t) (i = 1, 2, · · · , N), if
the unique equilibrium point is locally unstable.

In this paper, the term ’oscillations’ refers to both non-constant periodic and
homoclinic orbits. It should be noted that oscillations are periodic except
for the case of homoclinic orbits.

3 Stability Analysis of the Linearized Model

We see from Proposition 2 that the local instability at a unique equilibrium
point implies the existence of oscillations. Hence, a linearized model of gene
regulatory networks is introduced in this section, then a simple graphical
test for local stability analysis is presented.

3.1 Linearized Model of Gene Regulatory Networks

Consider a linearized system of (1) at the unique equilibrium point [r∗1, p
∗
1,

· · · , r∗N , p∗N ]T . Let r̂i(s) and p̂i(s) denote Laplace transform of ri(t) and
pi(t), respectively. Then, Laplace transform of the linearized system with
zero initial condition is obtained for i = 1, 2, · · · , N as[

sr̂i(s)
sp̂i(s)

]
=

[
−ai 0

cie
−sτri −bi

] [
r̂i(s)
p̂i(s)

]
+

[
βie

−sτpi−1

0

]
ûi(s),

where ûi(s) := ζip̂i−1(s) and ζi := f ′
i(p

∗
i−1). Thus, the transfer function of

the i-th gene from ûi to p̂i denoted by hi(s) is computed as

hi(s) =
R2

i e
−s(τri+τpi−1 )

(Tris + 1)(Tpis + 1)
, (7)
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where

Ri :=
√

ciβi√
aibi

, Tri :=
1
ai

, Tpi :=
1
bi

. (8)

The constant Ri represents the ratio of the geometric means of synthesis
rates and degradation rates of the i-th gene, and it is known as one of
the essential biological quantities which characterize the oscillations in gene
regulatory networks [11]. The cyclic gene regulatory network system can be
considered as the cyclic interconnection of the dynamical system hi(s) (i =
1, 2, · · · , N).

Let the following assumption on the degradation rates be imposed through-
out this paper.

Assumption 2. a1 = a2 = · · · = aN (=: a) and b1 = b2 = · · · = bN (=: b),
i.e., mRNAs and proteins have common degradation rates between genes.

Then, the overall system can be written by a transfer function H(s)
defined by

H(s) := (ϕ(s)esτI − K)−1, ϕ(s) :=
1

h(s)
, (9)

where

h(s) :=
1

(Trs + 1)(Tps + 1)
, Tr :=

1
a
, Tp :=

1
b
, (10)

τ :=
1
N

N∑
i=1

(τri + τpi), (11)

K :=


0 0 · · · 0 ζ1R

2
1

ζ2R
2
2 0 · · · 0 0

0 ζ3R
2
3 · · · 0 0

...
...

. . .
...

...
0 0 · · · ζNR2

N 0

 . (12)

The time delays τri and τpi (i = 1, 2, · · · , N) of hi(s) can be different between
genes, but the cyclic structure and the distributive property of linear systems
allows us to equally distribute the time delays over all genes. Thus, the
system H(s) shares the time delay τ among all genes, where τ represents the
average of time delays in the network. Note that the structure of the matrix
K is determined from the graph topology of the gene regulatory network,
and ϕ(s)esτ is determined from the dynamics of each gene’s expression. In
the next section, we will show that the stability of H(s) can be systematically
analyzed using a simple graphical condition which is easy to apply even for
large-scale systems.
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3.2 Graphical Condition for Local Instability

In this subsection, we provide a systematic way to determine the local insta-
bility of the large-scale time delay system H(s). In particular, a necessary
and sufficient graphical condition for local instability is presented for the
cyclic gene regulatory networks consisting of any number of genes.

First, we introduce an instability region of the large-scale linear system
H(s), which is characterized by the gene’s dynamics h(s)e−sτ . Let a set of
complex values Ω+ be defined as

Ω+ := {λ ∈ C| ∃s ∈ C+, ϕ(s)esτ = λ}, (13)

where C+ := {s ∈ C | Re[s] > 0}. The set Ω+ is the image of the open
right-half complex plane under the mapping ϕ(s)esτ . The instability of H(s)
can be characterized by Ω+ and the matrix K as follows.

Proposition 3. Consider the system H(s) defined by (9). Then, at least
one pole of H(s) lies in the open right half plane of the complex plane, if
and only if

spec(K) ∩ Ω+ ̸= ∅. (14)

The idea behind this proposition is that the mapping ϕ(s)esτ can be consid-
ered as a generalized frequency variable proposed in [8,21], since H(s) in (9)
is obtained by replacing the frequency variable ’s’ of the transfer function
(sI −K)−1 with ϕ(s)esτ . Thus, the above graphical criterion is obtained in
the same way as Proposition 5.1 in Hara et al. [8], though time delay was
not considered in the previous work. An example of the instability region
Ω+ is illustrated in Fig. 2.

The stability counterpart of Proposition 3 is characterized by the set
Ωc

+ := {λ ∈ C | ∀s ∈ C̄+, ϕ(s)esτ ̸= λ} with C̄+ := {s ∈ C | Re[s] ≥
0}, which is an open complementary set of Ω+. Then, it follows that all
the eigenvalues of K lie in the stability region Ωc

+ if and only if H(s) is
asymptotically stable.

Remark 1. Regarding the necessary and sufficient stability condition of
H(s), Chen and Aihara [4] presented a similar graphical test (see Theorem
2 in [4]). The authors, however, have found that their graphical test is
incorrect. A counterexample to their result is shown below.

Let N = 3, a = b = 1.0000, ci = βi = 1.7498, ν = 2.0000 and τri =
τpi = 0.5000 (i = 1, 2, 3). Then, it follows that ϕ(s)esτ = (s + 1)2e0.5s,
R2

1 = R2
2 = R2

3 = 1.7498 and ζ1 = ζ2 = ζ3 = 0.6858. Theorem 2 in [4]
states that the system H(s) is stable if and only if all the eigenvalues of the
matrix K lie inside the region specified by an Archimedean spiral illustrated
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Figure 2: The instability region Ω+ and the eigenvalue locations of K.

in Fig. 7(a) (see Appendix B for details). The eigenvalues of the matrix K
are obtained as {1.2e±jπ/3,−1.2}, and H(s) would be concluded as stable
from Fig. 7(a) in Appendix B.

The Nyquist plot of the loop transfer function H(s), however, verifies
that it is actually unstable as shown in Fig. 7(b). Also, the numerical
simulation of the protein time course starts oscillations as shown in Fig.
8. Therefore, Theorem 2 in [4] is not the necessary and sufficient stability
condition for H(s). We point out errors in their mathematical proof in
Appendix B.

It should be noted that the stability region Ωc
+ is illustrated in Fig. 7(a),

and Proposition 3 in this paper concludes that H(s) is unstable in the above
example. ¤

Next, we provide some characterizations of stability of H(s) derived from
the graphical test in Proposition 3 . Consider the matrix K in (12). A key
feature of this matrix is that the eigenvalues are equally distributed on a
circle with the center at the origin. Specifically, the eigenvalues of K are
written as

λk := Le
j(2k−1)π

N (k = 1, 2, · · · , N) (15)

with

L :=
N∏

i=1

|ζiR
2
i |

1
N . (16)
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Note that L is the radius of the circle. We designate L as the average gain,
since it is a geometric mean of the feedback gains of K in (12). These
features lead to the following characterization of the instability of H(s).

Lemma 2. Consider the system H(s) defined by (9). Then, the following
conditions are equivalent.

(i) ∃k λk ∈ Ω+.

(ii) λ1 ∈ Ω+.

(iii) ∃ω♯ such that
∣∣ϕ(jω♯)ejω♯τ

∣∣ < L and arg
(
ϕ(jω♯)ejω♯τ

)
= π/N .

(iv) ∃ω∗ such that arg
(
ϕ(jω∗)ejω∗τ

)
> π/N and

∣∣ϕ(jω∗)ejω∗τ
∣∣ = L.

where arg(·) is the argument of a complex number.

Proof. (i) ⇔ (ii): The proof is mainly based on the fact that both
|ϕ(jω)ejωt| and arg(ϕ(jω)ejωτ ) monotonically increase for positive ω. The
monotonicity is obvious from the definition (9). Then, it is easily verified
that λ1, which is the eigenvalue closest to the positive real axis, always goes
inside the region Ω+ first, since the eigenvalues of the matrix K are located
on a circle center at the origin and radius L (see Fig. 2).

(ii) ⇔ (iii): Let ω♯ denote a frequency such that arg(ϕ(jω♯)ejω♯τ ) =
π/N . The conclusion immediately follows from the fact that |λ1| = L and
arg(λ1) = π/N .

(iii) ⇔ (iv): We only show (iii) ⇒ (iv), since the converse can be shown
in a similar manner. Suppose (iii) is satisfied. Let ω∗ be defined such
that

∣∣ϕ(jω∗)ejω∗τ
∣∣ = L. It follows that ω♯ < ω∗, because |ϕ(jω♯)ejω♯τ | <

|ϕ(jω∗)ejω∗τ | = L and there is the gain monotonicity for ϕ(jω)ejωτ as shown
above. Then, the phase monotonicity implies arg(ϕ(jω♯)ejω♯τ ) = π/N <
arg(ϕ(jω∗)ejω∗τ ). ¤

The condition (ii) in Lemma 2 greatly simplifies the graphical test, be-
cause the instability can be determined by the position of one specific eigen-
value λ1 and the region Ω+. The condition (iii) is an analytic version of the
consequence (ii), though it is generally difficult to obtain ω♯ in terms of the
system’s parameters. In the next section, the condition (iv) plays a key role
to derive the analytic conditions for the existence of oscillations.

4 Existence Conditions of Oscillations

In this section, we provide analytic existence conditions of oscillations.
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4.1 Existence Conditions of Oscillations in terms of Average
Gain

Recall that local instability of H(s) is a sufficient condition for the existence
of oscillations as shown in Proposition 2, and the instability of H(s) can be
examined by the graphical test presented in Proposition 3. The following
graphical condition is a direct consequence of these results.

Proposition 4. Consider the cyclic gene regulatory networks modeled by
(1). Suppose Assumptions 1 and 2 hold. Then, the system has oscillations
of protein concentrations pi(t) (i = 1, 2, · · · , N), if

spec(K) ∩ Ω+ ̸= ∅. (17)

Note that (17) is the same graphical condition as the one in Proposition 3.
In what follows, analytic conditions are derived based on this graphi-

cal condition. We first introduce normalized parameters of gene regulatory
networks to avoid notational complexity, and to capture the essence of math-
ematical conditions. Let TA and TG denote the arithmetic and geometric
means of the mRNA and protein degradation time constants, i.e.,

TA :=
Tr + Tp

2
, TG :=

√
TrTp. (18)

The constants TA and TG have the physical dimension of time. Define the
following dimensionless constants Q, ω̃ and τ̃ ,

Q :=
TG

TA
, ω̃ := ωTA, τ̃ :=

τ

TA
. (19)

Then, the boundary of the region Ω+ defined in (13) can be written as

ϕ(jω)ejωτ = (−Q2ω̃2 + 1 + 2jω̃)ejω̃τ̃ . (20)

We see that the eigenvalues of K and the region Ω+ are characterized in
analytic form as (15) and (20), respectively. This leads to analytic conditions
for the existence of oscillations. We first show existence conditions in terms
of the average gain L in (15).

Theorem 1. Consider the gene regulatory networks modeled by (1). Sup-
pose Assumptions 1 and 2 hold. Define the two functions W (N,Q) and
D(Q,L) as

W (N,Q) :=
2

cos π
N +

√
cos2 π

N + Q2 sin2 π
N

, (21)

D(Q,L) := 4(1 − Q2) + Q4L2. (22)

11



Then, the system has oscillations of protein concentrations pi(t) (i = 1, 2,
· · · , N), if one of the following two conditions holds 1 .

(i) L > W (N,Q),

(ii) 1 < L ≤ W (N,Q) and

arg
(

2 −
√

D(Q,L) + j2
√

Q2 − 2 +
√

D(Q, L)
)

>
π

N
−

√
Q2 − 2 +

√
D(Q, L)

Q2
τ̃ . (23)

Proof. It follows from Proposition 2 that there exists oscillations if the
unique equilibrium point of (1) is unstable. Hence, we consider the insta-
bility condition of H(s), for which the simple graphical test in Proposition
3 is available.

We first consider the case of L ≤ 1. It should be noted that the average
gain L is the radius of the circle where eigenvalues are located. It follows
that L ≤ 1 ≤ |ϕ(jω)ejωτ | for all ω. Since |ϕ(jω)ejωτ | = 1 only when ω = 0,
and arg(ϕ(jω)ejωτ ) = 0 for ω = 0, there is no ω∗ satisfying the condition (iv)
in Lemma 2. Thus, Lemma 2 implies λ1 /∈ Ω+, and H(s) is not unstable.

In the case of L > W (N,Q), we readily see λ1 ∈ Ω+ according to
Theorem 2 in [11]. In the case of 1 < L ≤ W (N,Q), consider the condition
(iv) in Lemma 2. Then,

∣∣ϕ(jω∗)ejω∗τ
∣∣ = L yields

Q4ω̃4
∗ + 2(2 − Q2)ω̃2

∗ + 1 − L2 = 0, (24)

where ω̃∗ := ω∗TA. Then, ω̃∗ is obtained as

ω̃∗ =

√
Q2 − 2 +

√
D(Q,L)

Q2
, (25)

and (23) is derived by substituting ω̃∗ into arg(ϕ(jω∗)ejω̃∗τ̃ ) > π/N . ¤
The existence of oscillations can be determined by substituting the given

parameters into Theorem 1. In particular, biological insights can be obtained
by observing the relation between the quantities, which will be introduced
in Section 5.

Since (23) has a certain monotone property in terms of L, we can simplify
Theorem 1, and obtain the equivalent condition as follows.

Corollary 1. Consider the cyclic gene regulatory networks modeled by
(1) Suppose Assumptions 1 and 2 hold. Define W (N,Q) and D(Q,L) as

1This condition is necessary and sufficient for local instability of H(s), which is readily
seen from the proof.
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(21) and (22), respectively. Then, the system has oscillations of protein
concentrations pi(t) (i = 1, 2, · · · , N), if L > L̄, where L̄ is the solution of
the equation

arg

(
2 −

√
D(Q, L̄) + j2

√
Q2 − 2 +

√
D(Q, L̄)

)

=
π

N
−

√
Q2 − 2 +

√
D(Q, L̄)

Q2
τ̃ . (26)

In particular, the solution L̄ is uniquely determined and satisfies L̄ ∈
(1,W (N,Q)].

The proof of Corollary 1 is attached in Appendix C.

Remark 2. In the case of τ = 0, Theorem 1 and Corollary 1 coincide
with Theorem 2 in [11], which provides an existence condition of periodic
oscillations for non-delay case.

Remark 3. L̄ is a monotonically decreasing function in terms of N,Q, and
τ̃ . This fact implies that the system tends to have oscillations as

• the number of genes, N gets larger,

• normalized time delay, τ̃ , gets larger, and

• Q approaches to unity.

Note that Q is the ratio of the arithmetic and geometric means of degra-
dation rates, thus Q → 1 means that the mRNA and protein degradation
rates get closer.

4.2 Existence Conditions of Oscillations in terms of Biolog-
ical Parameters

We have obtained the conditions for the existence of oscillations in terms of
the average gain. In Theorems 1 and Corollary 1, the value of L depends on
ζi, which is determined from the equilibrium point p∗i . Since the equilibrium
point depends on the parameters a, b, ci and βi, Theorem 1 and Corollary 1
require a numerical computation of the equilibrium point to determine ζi.
It is, however, desirable to explicitly take its dependence into account in
the analytic conditions in order to gain biological insights on the relation
between the parameters and the existence of oscillations. In this section, we
restrict our attention to a class of the cyclic gene regulatory networks, and
present analytic conditions for the existence of oscillations that explicitly
consider the dependence of the equilibrium on the parameters.

13



We consider the class of systems that satisfy fi(·) = f−(·) for all i =
1, 2, · · · , N , and that R1 = R2 = · · · = RN (=: R) in this section. Note that
this class of regulatory networks includes Repressilator [5].

We first see that the equilibrium p∗i does not change by time delay, and
p∗1 = p∗2 = · · · = p∗N (= p∗) and ζ∗1 = ζ∗2 = · · · = ζ∗N (= ζ∗) hold as shown
in [10]. Using this property, we have the following relation between L and
R.

Lemma 3. Consider the gene regulatory networks modeled by (1). Sup-
pose fi(·) = f−(·) (i = 1, 2, · · · , N), R1 = R2 = · · · = RN (=: R), and
Assumptions 1 and 2 hold. Then L < ν, and the following equality holds.

R2 =
(

L

ν − L

)1/ν ν

ν − L
. (27)

Proof. It follows that

L = −R2ζ = −R2

(
−νp∗ν−1

(1 + p∗ν)2

)
, (28)

where the second equality follows from the definition of ζ. According to [10],
we have

p∗ =
R2

1 + p∗ν
. (29)

Then, it follows from (28) and (29) that

L =
νp∗ν

1 + p∗ν
. (30)

This implies L < ν. In addition, it follows that

ζ = − ν

R4
(R2 − p∗) (31)

(see [10] for the details). Multiplicating R2 to (31), we have

L = − ν

R2
(R2 − p∗). (32)

Thus, we can eliminate p∗ from (30) by using (32), and obtain (27). ¤
Lemma 3 shows a direct relation between the average gain L and the

biological parameters, R and ν. Then, this lemma leads to the following
existence condition of oscillations, which is explicitly written in terms of the
biological parameters.

Theorem 2. Consider the gene regulatory networks modeled by (1). Sup-
pose fi(p) = f−(p) (i = 1, 2, · · · , N), R1 = R2 = · · · = RN (= R), and
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Assumptions 1 and 2 hold. Define W (N,Q), D(Q,L) and L̄ as (21), (22)
and (26), respectively. Then, the system has oscillations of protein concen-
trations pi(t) (i = 1, 2, · · · , N) if both ν > L̄ and R > R̄ hold, where

R̄2 :=
(

L̄

ν − L̄

)1/ν
ν

ν − L̄
. (33)

Proof. We derive an equivalent condition to Corollary 1. Observe that
R2 in (27) is monotonically increasing for L(< ν). Thus, if the condition
L̄ < L in Corollary 1 is satisfied, R̄ < R follows, where R̄2 is defined by
(33). We see from Lemma 3 that ν > L̄ is also satisfied, because ν > L. On
the other hand, if ν > L̄ and R > R̄ are satisfied, we have L > L̄ because of
the monotonicity of (27).

Since the conditions ν > L̄ and R > R̄ are equivalent to those of Corol-
lary 1, we can conclude that there exists oscillations if these conditions are
satisfied. ¤

Theorem 2 provides a condition for the existence of oscillations in terms
of biological parameters ν,R and R̄(ν, L̄(N,Q, τ̃)) without any information
about the equilibrium point p∗. This is contrast with the conditions in
Theorem 1 and Corollary 1. Therefore, the essential parameters related to
the existence of oscillations are the following five parameters: the number of
genes (N), time delay normalized by the arithmetic mean of the lifetime (τ̃),
the Hill coefficient (ν), the ratio between the geometric mean of degradation
rate and production rates (R), and the ratio between the geometric and
arithmetic means of degradation rates (Q).

Remark 4. We can see that R̄ and L̄ are monotone with respect to
the system’s parameters. This observation leads to the conclusion that the
system tends to have oscillations by increasing any of the above five essential
quantities, N, τ̃ , ν, R and Q.

5 Biological Consideration

In this section, the results presented in the previous section are biologically
interpreted with illustrative numerical simulations.

5.1 Effects of Time Delay on the Existence of Oscillations

Consider the cyclic gene regulatory networks composed of N = 7 genes.
Assume that a = 1.2, b = 4.8, c1 = c3 = c6 = c7 = 1.92, c2 = c4 = c5 =
3.84, β1 = β3 = β6 = β7 = 4.32, β2 = β4 = β5 = 2.16, and let the Hill
function be defined as fi(p) = 1/(1 + pν) with ν = 2.6 for i = 1, 2, · · · , N .
Then, Q and R(:= R1 = R2 = · · · = R7) are obtained as Q = 0.800 and
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R = 1.200 from the definition (19) and (8), respectively. The value of L in
(15) can be computed as L = 1.048. Note that ζi in L involves computation
of the unique equilibrium of the system, but it can be efficiently done with
the bisection algorithm (see [10] for details). In the following, we will see
the effect of time delay by comparing a genetic regulatory network with and
without time delay.

We first apply the graphical existence condition in Proposition 4. Figure
2 illustrates the instability region Ω+ and the eigenvalue distribution of K
for τ̃ = 0 and τ̃ = 1.00, where the time delays of the reactions are set as
τr1 = τr3 = τr4 = τr7 = 0.31, τr2 = τr5 = τr6 = 0.26, τp1 = τp3 = τp4 = τp7 =
0.21, τp2 = τp5 = τp6 = 0.26, thus the average of the time delay is τ = 0.52.
In the case of τ̃ = 1.00, the boundary of the instability region Ω+ is given by
ϕ(jω)ejωτ in Fig. 2. Thus, Proposition 4 implies the existence of oscillations,
because two eigenvalues of K belong to the region Ω+. In the case of τ̃ = 0,
the boundary of the instability region Ω+ is ϕ(jω) in Fig. 2. We can see
that all eigenvalues of K are located outside the region Ω+ when τ̃ = 0.
Thus, it is concluded from Proposition 3 that a unique equilibrium point of
the system is locally asymptotically stable, and the protein concentrations
do not exhibit oscillations when they are perturbed around the equilibrium
point. Note that this result does not imply non-existence of oscillations,
since Proposition 4 is a sufficient condition for the existence of oscillations.

The same conclusion follows from the analytic conditions in Theorem
1. We can see from Theorem 1 that there exist oscillations when τ̃ = 1.00,
because L = 1.048 > L̄ = 1.031, where L̄ is computed by (26). On the other
hand, L = 1.048 < L̄ = 1.072 in the case of τ̃ = 0. Since the condition in
Theorem 1 is equivalent to that of Proposition 3, we can conclude that the
equilibrium point is locally asymptotically stable.

Theorem 1 and Corollary 1 required the value of equilibrium point to
compute L. In contrast, Theorem 2 does not require the computation of
the equilibrium. For given parameters, L̄ and R̄ can be determined from
(26) and (33), respectively. Specifically, L̄ = 1.031 and R̄ = 1.187 when
τ̃ = 1.00. Computing R from (8) yields R = 1.200. Therefore, both of
ν = 2.6 > L̄ = 1.031 and R = 1.200 > R̄ = 1.187 in Theorem 2 are
satisfied, and the existence of oscillations is concluded. On the other hand,
R̄ = 1.218 when τ̃ = 0. Thus, the conditions in Theorem 2 do not hold,
because R = 1.200 ≤ R̄ = 1.218 despite ν = 2.6 > L̄ = 1.072. It should
be noted that this result, in turn, implies that there exists oscillations even
for τ̃ = 0, if the parameters a, b, ci and βi are set so that R > 1.218 and
L̄ < 2.6.

In fact, numerical simulations shown in Fig. 3 show oscillations and con-
vergence to the equilibrium of protein concentrations for the time delay and
non-delay case, respectively. We have seen that the existence of oscillations
is more probable when the time delay is large. In what follows, we will see
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(a) Case: τ̃ = 1. The protein concen-
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(b) Case: τ̃ = 0. The protein concen-
trations converge to the equilibrium.

Figure 3: Time plot of protein concentrations.

that this is indeed the case in general.

5.2 Effects of Parameters on the Existence of Oscillations

As we have seen in Theorem 2, the existence of oscillations in cyclic gene
regulatory networks with time delay can be characterized by the five dimen-
sionless parameters N,Q, τ̃ , ν and R. The parameter regions that guarantee
the existence of oscillations can be drawn as shown in Fig. 4 based on the
analytic conditions given in Theorem 2. From these figures, we can readily
conclude that the system tends to have oscillations as ν and R get larger.
In addition, the larger the parameters τ̃ , Q and N are, the more probable
the existence of oscillations becomes because of each figure in Fig. 4.

An advantage of Theorem 2 is that we can confirm that these observa-
tions are true in general because the conditions are written in an analytic
form in terms of the given biological parameters. Therefore, we conclude
that the gene regulatory networks, in general, tends to have oscillations by
letting the five essential parameters N,Q, τ̃ , ν and R larger (see also Remark
4) 2.

6 Applications

In this section, we will apply our results to two existing biological systems,
and see how our results work in analyzing the effect of time delay on the
existence of oscillations.

2The constant R̄ in Theorem 2 is not monotone decreasing for all ν (≥ 1), but it
becomes a decreasing function for 1 ≤ ν ≤ 8, which is the region of our interest.
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(a) τ̃ = 0, 1 and 10 with N = 3 and Q =
1

(b) Q = 0.1, 0.5 and 1.0 with N = 3 and
τ̃ = 1

(c) N = 3, 5 and 11 with Q = 1 and τ̃ = 1

Figure 4: Parameter regions (ν,R) for the existence of oscillations.
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6.1 Repressilator

Repressilator is one of the pioneering synthetic gene regulatory networks cre-
ated by Elowitz and Leibler [5]. This artificial cyclic gene regulatory network
is composed of three repressor genes, each of which represses another gene
and forms cyclic reaction structure shown in Fig. 1. In [5], Repressilator was
implemented in Escherichia Coli, and oscillations of protein concentrations
were observed in vitro.

The dynamical model of Repressilator can be written asṙi(t) = −ri(t) +
α

1 + pi−1(t − τri−1)ν
+ α0,

ṗi(t) = −γ(pi(t) − ri(t − τri)),
(34)

for i = 1, 2, 3, where γ denotes the ratio of the protein degradation rate to
the mRNA degradation rate, and the constant α0 represents leakiness of the
promoter [5]. Note that time delays are not considered, i.e., τri = τpi = 0 for
i = 1, 2, 3, in the original paper [5]. We remark that the recently proposed
technique [23] could enable us to engineer the time delay, and it would
contribute to obtaining a desired dynamics (see, for example, [17]). Hence,
the time delays in the above model should account for such engineered delay
as well as fast dynamics omitted in the modelling process. It can be seen
that the model (34) is equivalent to (1) by rescaling the parameters when
α0 = 0. We notice that Proposition 2 holds, even when α0 ̸= 0, and Theorem
1 and Corollary 1 can be applied to analyze the existence of oscillations.

Let us first consider the case where no time delay appears in dynamics,
i.e., τri = τpi = 0 (i = 1, 2, · · · , N), which is the original model of Repressi-
lator presented in [5]. Following the numerical simulations conducted in [5],
we set α = 624, α0 = 0.0866, β = 0.200 and ν = 2.0. Then, L and L̄ in
Corollary 1 can be computed as L = 1.833 and L̄ = 1.519, respectively.
Thus, we conclude the existence of oscillations from Corollary 1, which is
consistent with the simulation result in [5].

Next, we investigate the effect of time delay on the existence of oscilla-
tions, and show that time delay increases robustness of Repressilator. Here
we numerically examined the existence conditions in Theorem 1 for various
time delays and parameters. The result is shown in Fig. 5, where the param-
eter regions for the existence of oscillations are illustrated. Note that only
the normalized time delay τ̃ rather than each time delay itself affects the
existence of oscillations as seen in Section 5.2. Also note that the parameter
region for τ̃ = 0 in Fig. 5 coincides with that in Fig. 1 (b) in [5]. We can
see from Fig. 5 that the regions for the existence of oscillations get larger
as τ̃ become larger. This implies that one could make robust oscillator by
inserting time delay. Moreover, the parameter region is not sensitive to a
little change of α0 and ν when τ̃ is large.
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Figure 5: Parameter regions (α, γ−1) for the existence of oscillations in
Repressilator. Both axes are in common log scale. Oscillations are more
probable as the time delay becomes large.

20



6.2 Somitogenesis Oscillator

Somitogenesis is the process by which the somites of living organisms are
created. Biological experiments as well as theoretical studies showed that the
timing of the somite segmentation is regulated by an oscillatory expression
of Hes7 gene (see [9, 15] and the references therein). In particular, it was
shown by a biological experiment that oscillations produced by negative
self feedback of Hes7 play a crucial role in controlling the somitegenesis
oscillations [9]. In this section, we focus on the Hes7 regulatory network,
and see the validity of our theorems by comparing with the experimental
data presented in [9]. In addition, we provide some insights obtained from
the developed theorems.

Following [9], we consider the following dynamical model of the regula-
tory network of the Hes7 protein.ṙ(t) = −ar(t) +

β

1 + (p(t − τp)/p0)2
,

ṗ(t) = −bp(t) + cr(t − τr).
(35)

This model is equivalent to the model (1) setting N = 1 and ν = 2. Here,
the mRNA and protein degradation rates a and b are defined as

a =
log 2
tr

, b =
log 2
tp

, (36)

where tr and tp denote mRNA and protein half-life time. We employ the pa-
rameter values for wild-type Hes7 provided in [9]: tp = 20 [min], tr = 3 [min],
a = 0.231 [min−1], b = 0.0347 [min−1], c = 4.5 [min−1], β = 33 [min−1],
τp = 30 [min], τr = 7 [min].

In [9], a point mutation in the gene was introduced, and mice express-
ing mutant Hes7 were generated. The protein half-life of one of the Hes7
mutants was identified as almost tp = 30 minutes, which is longer than that
of the wild-type Hes7, which is tp = 20 minutes. As a result, the protein
degradation rate of the mutant Hes7 changed to b = 0.0231 [min−1].

Numerical simulations of the model (35) revealed that the protein of the
wild-type Hes7 shows oscillations, but that of the mutant Hes7 converges to
a stable equilibrium [9]. In addition, the experimental result was consistent
with the numerical simulations [9].
We here present that Corollary 1 and Theorem 2 can explain these obser-
vations. First, we compute the values of the essential biological parameters,
and obtain Table 1. We see from Table 1 that there exist oscillations before
the mutation, because L = 1.97 > L̄ = 1.85 in Corollary 1, and equivalently
R = 21.5 > R̄ = 6.99 in Theorem 2. On the other hand, the equilib-
rium point can be found to be locally stable after the mutation, because
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Table 1: Values of the essential biological parameters in somitogenesis oscil-
lator

Parameter Before mutation 　After mutation
N 1 1
Q 0.674 0.575
τ̃ 2.23 1.55
ν 2 2
R 21.5 26.4
R̄ 6.99 -
L 1.97 1.97
L̄ 1.85 2.39

L = 1.97 < L̄ = 2.39 in Corollary 1, and L̄ = 2.39 > ν = 2 in Theo-
rem 2. We see that these results agree with the existing experimental work
addressed above.

It was concluded in [9] that short half-life time tp of Hes7 protein is a
key to the oscillations, though theoretical analysis was not performed. This
hypothesis can be theoretically verified by using the presented theorems.
Using Corollary 1, we can obtain the parameter region for the existence of
oscillations in terms of half-life time of mRNA tr and protein tp in Fig. 6.
We see that robust oscillations are guaranteed if the protein half-life time
is shortened. For example, when mRNA half-life time is tr = 3 [min], there
exists oscillations for 0.1 [min] ≤ tp ≤ 22 [min].

7 Conclusion

In this paper, we have developed analytic conditions for the existence of
oscillations in cyclic gene regulatory networks with time delay. We have em-
ployed the Poincaré-Bendixson type theorem for cyclic time delay systems,
and showed that a local instability of the unique equilibrium state implies
the existence of oscillations. Then, we have presented the instability analy-
sis method for linearized gene regulatory networks with time delays, which
can be graphically confirmed. Using the graphical method, we have derived
the analytic conditions for the existence of oscillations.

One of the distinctive features of these conditions is that they can be
applied to large-scale gene regulatory networks consisting of any number of
genes. Moreover, the conditions are expressed only in terms of biochemical
parameters, and thus, novel biological insight is easily obtained. In par-
ticular, it has been pointed out that the normalized time delay defined in
this paper serves as one of the essential physical quantities for determining
the existence of oscillations. Then, the relation between the parameter and
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Figure 6: Parameter region for the existence of oscillations in somitogenesis
oscillator. The existence of oscillations is more probable when mRNA half-
life time is small, which is consistent with the hypothesis in [9].

the existence of oscillations has been revealed. Finally, we have applied the
presented theorems to the existing gene regulatory networks, and observed
that the results are consistent with those experimental works.
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A Transformation of the System

We here show that the gene regulatory network system defined by (1) can
be obtained from (4) by the transformation (6).

We take a time derivative of xi(t) (i = 1, 2, · · · , 2N), and substitute (1).

ẋ2i−1(t) = σ2i−1T ṗN−i+1(Tt − η2i−1)
= σ2i−1T{−bN−i+1pN−i+1(Tt − η2i−1)+

cN−i+1rN−i+1(Tt − η2i−1 − τrN−i+1)}
= −bN−i+1Tx2i−1(t) + cN−i+1Tσ2i−1rN−i+1(Tt − η2i)
= −bN−i+1Tx2i−1(t) + cN−i+1Tρ2ix2i(t), (37)

for i = 1, 2, · · · , N .

ẋ2i(t) = σ2iT ṙN−i+1(Tt − η2i)
= σ2iT{−aN−i+1rN−i+1(Tt − η2i)+

βN−i+1fN−i+1(pN−i(Tt − η2i − τpN−i
))}

= −aN−i+1Tx2i(t) + βN−i+1Tσ2ifN−i+1(pN−i(Tt − η2i+1))
= −aN−i+1Tx2i(t) + βN−i+1Tσ2ifN−i+1(σ2i+1x2i+1(t)), (38)

for i = 1, 2, · · · , N − 1, and

ẋ2N (t) = σ2NT ṙ1(Tt − η2N )
= σ2NT{−a1r1(Tt − η2N+

β1σ2Nf1(pN (Tt − η2N − τpN ))}
= −a1Tx2N (t) + β1Tσ2Nf1(pN (Tt − T ))
= −a1Tx2N (t) + β1Tσ2Nf1(x1(t − 1)). (39)

We see that (37), (38) and (39) are of the form (1). Also we can verify that
(37), (38) and (39) satisfy (5) as follows. It holds that

∂g2i−1(x2i−1, x2i)
∂x2i

= cN−i+1Tρ2i, (40)

∂g2i(x2i, x2i+1)
∂x2i+1

= βN−i+1Tσ2iσ2i+1
dfN−i+1

dp
, (41)

∂g2N (x2N , x1)
∂x1

= β1Tσ2N
df1

dp
. (42)
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It is clear from the definition that (40) is positive. We can see that (41) and
(42) are also positive, because it follows that

σ2iσ2i+1sgn
[
dfN−i+1

dp

]
= ρ2

2i+1 > 0 and σ2N sgn
[
df1

dp

]
= z∗. (43)

Note that the sign of xi is the same as that of σi, and fi(·) is a monotonic
function defined on positive orthant. The relation (5) can be alternatively
confirmed by the following calculation.

∂g2i−1(x2i−1, x2i)
∂x2i

=
∂rN−i+1

∂x2i

∂g2i−1

∂rN−i+1
= σ2icN−i+1Tσ2i−1

= cN−i+1Tρ2i, (44)
∂g2i(x2i, x2i+1)

∂x2i+1
=

∂pN−i

∂x2i+1

∂g2i

∂pN−i
= σ2i+1βN−i+1Tσ2i

dfN−i+1

dp
, (45)

∂g2N (x2N , x1)
∂x1

=
∂pN

∂x1

∂g2N

∂pN
= σ1β1Tσ2N

df1

dp

= β1Tσ2N
df1

dp
, (46)

where the right-hand sides coincide with those of (40), (41) and (42), re-
spectively.

B Supplementary Description of Remark 1

Figure 7(a) shows the comparison of Proposition 3 in this paper and Theo-
rem 2 in [4]. The white region corresponds to Ωc

+, which is a stability region
derived from Proposition 3 in this paper.

Figure 7(b) shows the Nyquist diagram of the linearized regulatory net-
work system, where the parameters are set as described in Remark 1, i.e.,

−
3∏

i=1

ciβi

(s + ai)(s + bi)
e−s(τri+τpi )f ′(p∗i−1) = 1.23 e−3s

(s + 1)6
.

We see that the Nyquist contour encloses −1 + j0, which implies that the
system is unstable. This contradicts Theorem 2 in [4], from which stability
is concluded as seen in Fig. 7(a). Indeed, a pair of Jacobian eigenvalues of
(1) is found in the right-half complex plane at 0.0212±0.3634j by numerical
computation (see Fig. 7(c)).

A numerical simulation of the dynamical model also verifies instability
of the equilibrium point. The simulation result is shown in Fig. 8. We ob-
serve that the trajectory started around the system’s equilibrium turns into
oscillations. Specifically, the initial values are set as [r1, p1, r2, p2, r3, p3] =
[0.699, 1.224, 0.698, 1.226, 0.697, 1.225] in this example.
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(a) Comparison of the stability regions.
The white region shows Ωc

+ specified by
Proposition 3 in this paper.
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(b) Nyquist contour of the system. The
contour encloses -1+j0.
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(c) Roots of the characteristic equation
in terms of the eigenvalue

√
1.2ejπ/6.

Figure 7: Proposition 3 in this paper and Theorem 2 in [4] are compared
for the system described in Remark 1.
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Figure 8: Time plot of the protein concentrations for the system described
in Remark 1. The trajectory started in the vicinity of the equilibrium even-
tually exhibits the oscillations.

In what follows, we will clarify the errors of their mathematical proof.
There are essentially two errors in the mathematical proof provided in [4].
First, Theorem 2.6 in [3], which is used in the proof in [4], is incorrect.
Second, Theorem 2.6 in [3] was applied in a wrong way in [4].

In the remaining of this section, we use the notations defined in [3,
4] for the sake of easy comprehension and comparison. Our first claim is
that Theorem 2.6 in [3] is not the necessary and sufficient, but a sufficient
condition. Using the notations in [3], we see that

λ = −1 + be−λτ ⇐⇒ σeστ = beτ

⇐⇒
{

R = ρe(r−1)τ

ϕ = θ + sτ + 2πj

⇐⇒
{

R = ρe(r−1)τ (a)
ϕ = θ + Re(1−r)ττ sin θ (b).

where ρ > 0 and 0 ≤ θ < 2π 3. Note that the equations (a) and (b) are
the same as (2.7a) and (2.8) in [3]. It was concluded that all roots λ of the
above equation have negative real parts if and only if (R,ϕ) ∈ {(R,ϕ) ∈
[0,∞) × [0, 2π) | (a) and (b) only if r < 1}. Then, the stability region was
considered by specifying (R,ϕ) that belongs to the above set. It follows that

{(R,ϕ)∈ [0,∞)×[0, 2π) | (a) and (b) only if r < 1} (47)
) {(R,ϕ) ∈ [0,∞) × [0, 2π) | (b) only if r < 1} (48)

= {(R,ϕ) ∈ [0,∞) × [0, 2π) | (b) for some r ≥ 1}, (49)

3Equation (2.4) in [3] is typo. It should be corrected as λ = −1 + be−λτ .
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where {·} denotes a complementary set. Then, the set (49) was specified in
Theorem 2.6 in [3] as

{(R,ϕ) ∈ [0,∞) × [0, 2π) | (b) for some r ≥ 1},

=
{

(R,ϕ) ∈ [0,∞) × [0, 2π) | ϕ ≤ π

2
+ Rτ or ϕ ≥ 3π

2
− Rτ

}
=

{
(R,ϕ) ∈ [0,∞) × [0, 2π) | ϕ >

π

2
+ Rτ and ϕ <

3π

2
− Rτ

}
. (50)

In [3], however, (48) was not derived as a subset but as an equivalent set
of (47). Therefore, it was concluded that (50) provides the stability region
where all the eigenvalues of the system are located, if and only if the system
is asymptotically stable. This conclusion is, however, incorrect, because (48)
is actually a subset of (47).

Instead, we see that (50) is the region where all the eigenvalues of the
system are located, if the system is asymptotically stable. Therefore, we
claim that Theorem 2.6 in [3] provides only a sufficient condition for stability.

The other error of Theorem 2 in [4] stems from the mis-application of
Theorem 2.6 in [3]. The boundary of the stability region provided in Theo-
rem 2.6 in [3] is the Archimedean spiral starting from the origin. Applying
Theorem 2.6 in [3] to the equation (11) in [4], we see that the boundary of
the stability region is given by

R =


2θ − π

kτ
for

π

2
< θ < π

3π − 2θ

kτ
for π < θ <

3π

2
,

(51)

where the constants k and τ are defined as in [4]. The tuple (R, θ) de-
fines the distance and the angle of the boundary measured from the origin.
Consequently, the arc drawn by (51) becomes the well-known Archimedean
spiral.

In Theorem 2 of [4], however, the left-hand side of (51), R, was shifted
by one, and the equation of the boundary was given by

R − 1 =


2θ − π

kτ
for

π

2
< θ < π

3π − 2θ

kτ
for π < θ <

3π

2
.

(52)

Then, R and θ are measured from the origin and 1 + j0, respectively (see
also Fig. 2 in [4]). It is clear that the boundary obtained in this way does
not coincide with the one in Theorem 2.6 in [3].
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C Proof of Corollary 1

We observe that the left-hand side of (23) is the monotonically increasing
function of L, and the right-hand side is the monotonically decreasing func-
tion of L. Moreover, we can see that the inequality (23) is not satisfied when
L ≤ 1, but it is satisfied when L > W (N,Q). Therefore, we have a critical
value L̄ at which the left-hand side and the right-hand side of (23) take the
same value, and the inequality (23) is satisfied if and only if L > L̄. It is
clear from the above argument that L̄ is given as the unique solution of (26),
and L̄ satisfies 1 < L̄ ≤ W (N,Q). ¤
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