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Abstract

Recent analysis of social communications among humans has revealed that the interval between
interactions for a pair of individuals and for an individual often follows a long-tail distribution. We
investigate the effect of such a non-Poissonian nature of human behavior on dynamics of opinion
formation. We use a variant of the voter model and numerically compare the time to consensus of
all the voters with different distributions of inter-event intervals and different networks. Compared
with the exponential distribution of inter-event intervals (i.e., the standard voter model), the power-
law distribution of inter-event intervals slows down consensus on the ring because of the memory
effect of the power-law distribution; in the power-law case, the expected time until the next update
event on a link is large if the link has not had an update event for a long time. On the complete
graph, the ratio of the consensus time with the power-law distribution is smaller as compared to
the case of the ring. Regular graphs bridge these two results such that the slowing down of the
consensus in the power-law case as compared to the exponential case is less pronounced as the
degree increases.

1 Introduction

Macroscopic social dynamics often occur as a result of microscopic dynamics of individuals interacting
on networks of social contacts. Studies of interacting particle systems such as spin systems have
enriched our understanding of various types of social dynamics such as epidemics, information cascades,
opinion formation, synchronization, and evolutionary games [1–4]. It is established that the structure
of social networks influences social dynamics in many different ways.

Social dynamics on networks are often modeled by stochastic processes. Models of these dynamics
usually assume that interaction events between a pair of individuals occur according to the Poisson
process. This assumption facilitates theoretical analysis of models and corresponds to the situation
where the rate at which an event occurs generally depends on the current configuration of the network,
but not on the history of the dynamics.

Recent developments of sensor technologies and accumulation of massive amounts of electronic data
have facilitated detailed analysis of point processes related to social dynamics of humans. Examples
of such data include email exchanges [5–9], cell-phone calls [10, 11], and face-to-face conversations [12–
14]. Apart from the network structure, these studies have revealed a novel universal feature of social
dynamics: the non-Poissonian inter-event intervals (IEIs). The distributions of IEIs are often inherited
with long tails and can be modeled by the power-law distribution possibly with an exponential cutoff [7,
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15] or by the log-normal distribution [16]. The long-tail IEI distribution can be explained by the
prioritization of tasks [6, 7] or by the combination of seasonality and the circadian rhythm of human
activities [8, 17].

The effect of the long-tail IEI distributions on epidemic dynamics such as the susceptible-infected
(SI) and susceptible-infected-recovered (SIR) models has been investigated [12, 14–16, 18–20]. It has
been suggested that the long-tail IEI distribution is responsible for the persistent prevalence of com-
puter viruses [15] and email advertisements [16] that cannot be explained by the Poisson assumption.
The slowing down of epidemic dynamics owing to the long-tail IEI distributions is also found in the
epidemic model on priority-queue networks [19].

In this paper, we consider the effect of the long-tail IEI distribution on opinion dynamics. We use a
variant of the voter model and compare the time required by this variant to achieve consensus among
all the voters with that required by the standard voter model with the exponential IEI distribution.
By numerical simulations, we show that the long-tail IEI distribution increases the consensus time
for the voters placed on the ring. The consensus time obtained for the exponential and long-tail IEI
distributions is comparable on the complete graph. We interpolate the results on the ring and the
complete graph by examining the voter models on the regular random graph; by this interpolation,
we show that the node degree is a main determinant of the difference in the consensus time.

2 Model

We analyze a variant of the voter model [2, 21–23] on static regular networks (i.e., all the nodes have
the same degree.) A voter is placed at each node in the network, and each voter takes one of the
two opinions denoted by 0 and 1. Initially, each voter takes 0 and 1 with equal probability (i.e.,
0.5), and the opinions of different voters are assigned independently. Each link between the nodes is
independently endowed with a random IEI τ1, which represents the time until the initial update event
occurs on this link. We denote the distribution of τ1 by p1(τ1). Suppose that an update event on a
link occurs at a certain time. If the two endpoints of the link are occupied by the opposite opinions,
one of the two voters is selected with equal probability (i.e., 0.5) and the opinion of the selected voter
is flipped such that the two voters take the same opinion. Otherwise, nothing happens in the update
event. Then, the next IEI for this link is drawn from distribution p(τ). The sequence of update
events on each link is a renewal process [24] and only the initial IEI τ1 obeys p1(τ1), whereas all the
subsequent IEIs obey p(τ). Update events and the assignment of random IEIs occur independently
on all the links. We assume that each node is updated once per unit time such that δt = 1/N .
When p1(τ1) = p(τ) = λ exp(−λτ), this updating procedure is called link update [25] or link dynamics
(LD) [26], and the model is equivalent to the standard voter model. In this paper, we use the term
LD for the case of general distributions p1(τ1) and p(τ).

We run the dynamics until the entire network is taken over by one opinion; we refer to such
a unanimous configuration as a consensus. We are concerned with the consensus time, i.e., the
time required to reach a consensus. To obtain the averaged quantities, we perform 1000 rounds of
simulations under each condition unless otherwise stated.

In the present study, we compare the standard voter model with the model based on a power-law
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IEI distribution given by

p(τ) =
α − 1

c

(
τ + c

c

)−α

, (1)

which asymptotically obeys p(τ) ∝ τ−α for large τ . Our choice of the power-law distribution is
motivated by recent experimental results obtained for face-to-face interactions [12]. We refer to the
LD with the power-law p(τ) as the power-law voter model. For clarity, we refer to the standard voter
model as the exponential voter model. We assume α > 2 such that the power-law distribution has a
finite mean. Empirically, p(τ) usually has a value of α less than two [5–8, 10–12, 15] and accompanies
an exponential cutoff [7, 10, 15]. With α ≤ 2, the consensus time of the power-law voter model trivially
diverges for any network, because 〈τ〉, where 〈·〉 denotes the mean, diverges. Instead of setting α < 2
and modulate α or the cutoff value of τ , we use Eq. (1) with different values of α > 2 to examine the
effect of the large variance of inter-event intervals on the consensus time. We set λ = 1 and c = α− 2
to set 〈τ〉 of both distributions to unity. In our numerical simulations, we set (α, c) = (2.5, 0.5) and
(3.5, 1.5). We verified that our numerical results presented in the following sections for α = 2.5 are
qualitatively the same in the range 2 < α < 3 and that the results for α = 3.5 are qualitatively the
same in the range 3 < α < 4.

We assume that p1(τ1) for the power-law voter model is given by

p1(τ1) =
1
〈τ〉

∫ ∞

τ1

p(τ ′)dτ ′ =
(

τ1 + c

c

)−(α−1)

. (2)

With this definition of p1(τ1), the renewal process is the so-called equilibrium renewal process [24].
We assume that τ1 obeys Eq. (2), not Eq. (1), because, if the power-law point process is ongoing and
the voter dynamics begin at an arbitrary instant, τ1 obeys Eq. (2) rather than Eq. (1).

The heterogeneous degree distribution of the network, which is eminent in scale-free networks,
makes the consensus time sensitive to the adopted update rule [25, 26]. The consensus time in networks
with heterogeneous degree distribution has been investigated for the exponential (i.e., standard) voter
model [25–31]. To focus on the effect of the power-law IEI distribution, we restrict ourselves to the
regular graphs in the present study. Specifically, we compare the consensus time of the exponential and
power-law voter models on the ring, the complete graph, the extended ring, and the regular random
graph.

3 Results

3.1 Ring

Assume that the voters are placed on the ring with N nodes. The degree of each node is equal to two.
To understand the mechanism governing the consensus time, denoted by T , we begin with tracking

the fraction of voters who take opinion 1 and the number of the interfaces, denoted by m and Eif ,
respectively. For the ring, a link is defined to be an interface when the two endpoints of the link are
occupied by the opposite opinions (Fig. 1). In the case of the ring, an interface separates a domain
of 0s and a domain of 1s. Figures 2(a) and 2(b) represent an example time course of m and Eif for
the exponential and power-law voter models on the ring with N = 100, respectively. Because two
interfaces that meet on a link annihilate each other and decrease Eif by two and because new interfaces
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Figure 1: Schematic of interface on the ring. The local network surrounding an interface (pointed by
the arrow) is depicted. Open and solid circles represent voters with opinions 0 and 1, respectively.
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Figure 2: Time course of the fraction of 1 voters m (gray lines) and the number of interfaces Eif (black
lines) in the (a) exponential and (b) power-law voter models on the ring with 100 nodes. The values
of Eif shown are those normalized by the total number of links in the ring, which is equal to N .

are not produced inside a domain containing a single opinion, Eif monotonically decreases for both
the models. Figure 2 also indicates that Eif = 2 for most of the time before consensus. When Eif = 2,
the ring consists of one domain of 0s and one domain of 1s. Therefore, T can be approximated by the
time at which the two interfaces collide since Eif decreases to two. For the exponential voter model
on the ring, the distance between the two interfaces follows the simple random walk. Therefore, T is
estimated to be the time needed for the random walker to travel a distance of O(N), i.e., T ∝ N2 [2, 32].
Because the probability with which an interface moves to the left and that to the right are equal to 1/2
independent of the detail of p(τ), the number of the movements of the interface until the consensus is
reached for the power-law voter model is the same as that of the exponential voter model. Therefore,
T for the power-law voter model also obeys T ∝ N2.

Therefore, the effect of the power-law p(τ) on T for the ring can be ascribed to the difference in
the behavior of the interval between successive movements of an interface. We refer to this interval as
the sojourn time of the interface and denote it as τw. For the exponential and power-law voter models
on the ring, T is roughly proportional to the product of 〈τw〉 and N2. Therefore, the ratio of T for the
power-law voter model to that of the exponential voter model, denoted by rT , is determined by 〈τw〉.

To derive 〈τw〉 for the exponential and power-law voter models, we consider the situations illus-
trated in Figs. 3(a) and 3(b). The time lines in the figures indicate the renewal process on link `. We
refer to the situations as case (a) and case (b), respectively. Suppose that an interface moves to the
right at time t. Link ` shown in Fig. 3 becomes an interface at time t owing to the occurrence of an
event on the adjacent link. In case (a), no update event is assumed to have occurred on link ` between
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Figure 3: Schematics of the movement of an interface on the ring. In (a), no update event occurs on
link ` between time 0 and time t. In (b), at least one update event occurs between time 0 and time
t. In (b), the time of the last update event before t is denoted as tlast. The nodes and links near link
` on the ring are depicted above the time lines of the update events. Open and solid circles represent
voters with opinion 0 and 1, respectively.

time 0 and time t. Time t is included in IEI τ1, which obeys p1(τ1). In case (b), at least one update
event is assumed to have occurred on link ` between time 0 and time t. We denote the time at which
the last update event occurs on ` before time t as tlast. Time t is included in IEI τ that was drawn
from distribution p(τ) at time tlast. Therefore, the sojourn time of interface ` is equal to τw,1 and τw

indicated in Fig. 3 for cases (a) and (b), respectively.
We calculate 〈τw〉 of the exponential and power-law voter models for cases (a) and (b). In case (a),

the probability that τ1 > τ ′ conditioned by t is given by

Pr(τ1 > τ ′ | t) =
R ∞

τ ′ p1(u′)du′
R ∞

t p1(u′)du′ =
P1(τ ′)
P1(t)

, (3)

where
P1(u) =

∫ ∞

u
p1(u′)du′. (4)

Therefore, we obtain

p1(τ1 | t) = d
dτ1

[
1 − P1(τ1)

P1(t)

]
=

p1(τ1)
P1(t)

. (5)

Because τ1 = τw,1 + t (see Fig. 3(a)), we obtain

pw,1(τw,1 | t) =
p1(τw,1 + t)

P1(t)
. (6)

For the exponential voter model, the substitution p1(τ1) = λ exp(−λτ1) in Eq. (6) yields

pw,1(τw,1 | t) = λ exp(−λτw,1). (7)

Therefore, τw,1 obeys the same exponential distribution as that obeyed by τ , and we obtain

〈τw,1〉exp
t = 〈τ〉, (8)
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where 〈τw,1〉t denotes the mean of τw,1 with respect to the density pw,1(τw,1 | t). For the power-law
voter model, the substitution p1(τ1) = [(τ1 + c) /c]−(α−1) in Eq. (6) yields

pw,1(τw,1 | t) =
α − 2
t + c

[
τw,1 + t + c

t + c

]−(α−1)

. (9)

This conditional density is of the same form as p1(τ1) for the power-law voter model given by Eq. (2),
with c in Eq. (2) replaced by t + c and the exponent α − 1 unchanged. Therefore, we obtain

〈τw,1〉power
t =

{
+∞ (α ≤ 3),
α−2
α−3

(
〈τ〉 + t

α−2

)
(3 < α).

(10)

On the basis of Eqs. (8) and (10), we obtain

〈τw,1〉exp
t < 〈τw,1〉power

t (11)

in case (a). Equation (11) holds true regardless of the value of α. It should be noted that Eq. (10)
suggests that T diverges for the power-law voter model with α ≤ 3.

In case (b), the probability density of τw conditioned by t − tlast is given by

pw(τw | t − tlast) =
p(τw + t − tlast)

P (t − tlast)
, (12)

through a derivation similar to that of Eq. (6), where

P (u) =
∫ ∞

u
p(u′)du′. (13)

For the exponential voter model, the substitution p(τ) = λ exp(−λτ) in Eq. (12) yields

pw(τw | t − tlast) = λ exp(−λτw), (14)

that is, τw is statistically the same as τw,1 given by Eq. (7) and τw obeys the same exponential
distribution as that obeyed by τ . Therefore, we obtain

〈τw〉exp
t−tlast

= 〈τ〉, (15)

where 〈τw〉t−tlast denotes the mean of τw with respect to the density pw(τw|t− tlast). For the power-law
voter model, the substitution p(τ) = [(α − 1) /c] [(τ + c) /c]−α in Eq. (12) yields

pw(τw | t − tlast) =
α − 1

t − tlast + c

[
τw + t − tlast + c

t − tlast + c

]−α

. (16)

Equation (16) is of the same form as Eq. (1), with c in Eq. (1) replaced by t−tlast+c and α unchanged.
Therefore, we obtain

〈τw〉power
t−tlast

= 〈τ〉 +
t − tlast
α − 2

. (17)
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Figure 4: (a) Average consensus time of the exponential voter model (circles) and power-law voter
model with α = 3.5 (squares) on the ring (main panel). The solid line indicates T ∝ N2. For the
results shown in the main panel, rT = T power/T exp (squares) and 〈t − tlast〉 for the power-law voter
model (circles) are plotted against N in the inset. (b) Average consensus time of the power-law voter
model with α = 2.5 on the ring as a function of the number of simulation runs. We set N = 100.

Although 〈τw〉power
t−tlast

increases with t − tlast, 〈τw〉power
t−tlast

does not diverge because t − tlast on link ` is
finite by definition.

On the basis of Eqs. (15) and (17), we obtain

〈τw〉exp
t−tlast

< 〈τw〉power
t−tlast

(18)

in case (b).
Equations (11) and (18) predict that T for the power-law voter model is larger than that for the

exponential voter model. The mechanism governing the enlarged consensus time for the power-law
voter model is essentially the same as that governing the slowing down of epidemic dynamics in the
case of long-tail IEI distributions [15, 16, 18, 19]. T for the exponential voter model and power-law
voter model with α = 3.5 on the ring are shown in Fig. 4(a). The numerical results are consistent with
the theoretical prediction T exp < T power. We find rT ≡ T power/T exp ≈ 1.8 for different values of N
(inset of Fig. 4(a)). To understand the origin of the value of rT , we note that rT ≈ 〈τw〉power

t−tlast
/〈τw〉exp

t−tlast
because the most of the movements of the interfaces correspond to case (b) when t is sufficiently large.
We approximate t− tlast in 〈τw〉power

t−tlast
(Eq. (17)) by 〈t− tlast〉 ≈ 1.2, which we obtained from the direct

numerical simulations of the power-law voter model on the ring. Then, the substitution 〈τ〉 = 1 and
α = 3.5 in Eqs. (15) and (17) yields rT ≈ 1.8.

Equation (10) indicates that T diverges for the power-law voter model with α ≤ 3. In numer-
ical simulations of with α = 2.5, we confirmed that T increases with the number of runs, albeit
slowly (Fig. 4(b)).
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Figure 5: Average consensus time of the exponential (circles) and power-law (squares) voter models
on the complete graph with N nodes. The solid line is the analytical solution given by Eq. (19) for
the exponential voter model, i.e., T = N ln 2.

3.2 Complete graph

In this section, we examine the exponential and power-law voter models on the complete graph. The
average consensus time T for the exponential voter model is given by [26]:

T = N

[
m0 log

1
m0

+ (1 − m0) log
1

1 − m0

]
, (19)

where m0 denotes the initial value of m. Figure 5 shows the plot of T for the exponential and power-
law voter models on the complete graph. The value of T for the power-law voter model with α = 2.5
and α = 3.5 are close to that for the exponential voter model.

In contrast to the case of the ring, we cannot understand the behavior of T for the two voter
models on the complete graph by tracking the position of a single interface. Therefore, we focus on
the sequences of the effective events. We define the effective event as the update event that occurs on
an inconsistent link whose two endpoints have the opposite opinions (essentially the same as Fig. 1). If
an update event is an effective event, mean magnetization m changes by 1/N . Otherwise, the update
event does not affect m. We denote the interval between successive effective events on the network
as τe. T is equal to the sum of τe until the consensus. Note that τe is generally large when there are
relatively few inconsistent links.

In Fig. 6, we plot the values of 〈Me〉 and 〈τe〉 until the consensus for the two voter models. We
define 〈Me〉 as the average number of the effective events until the consensus. 〈Me〉 is almost the same
for the exponential and power-law models and scales as N2, as shown in Fig. 6(a). 〈τe〉 is almost the
same for the two voter models and scales as N−1, as shown in Fig. 6(b). Figure 6 is consistent with
Fig. 5; T is equal to the product of 〈Me〉 and 〈τe〉.
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Figure 6: (a) Average number of the effective events 〈Me〉 and (b) average interval between successive
effective events 〈τe〉 on the complete graph for the exponential (circles) and power-law (squares) voter
models.

In the rest of this section, we examine 〈τe〉 for the two voter models. Suppose that an effective
event occurs at time t. The time to the next effective event τe is equal to the smallest sojourn time
among those of the Ei inconsistent links. We estimate τe by the extremal criterion∫ τe

0
pi(τi)dτi ≈

1
Ei

, (20)

where pi(τi) represents the probability density of sojourn time τi of an inconsistent link and is given
by [24]:

pi(τi) =
1
〈τ〉

P (τi). (21)

For the exponential voter model, by substituting

pi(τi) = λ exp(−λτi) (22)

in Eq. (20), we obtain

τ exp
e (Ei) = − 1

λ
log

(
1 − 1

Ei

)
. (23)

For the power-law voter model, by substituting

pi(τi) =
(

τi + c

c

)−(α−1)

(24)

in Eq. (20), we obtain

τpower
e (Ei) = c ·

[
−1 +

(
1 − 1

Ei

)− 1
α−2

]
. (25)

In Fig. 7, τ exp
e (Ei) and τpower

e (Ei) are plotted against Ei. For the complete graph, Ei = m(1−m)N2

is relatively large as compared with that for the ring. For a sufficiently large Ei, both Eqs. (23) and
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Figure 7: Expected interval between effective update events τe for the exponential and power-law
voter models, i.e., Eqs. (23) and (25).

(25) are approximated by 〈τ〉/Ei. Therefore, we obtain τ exp
e (Ei) ≈ τpower

e (Ei) for a large Ei, which
is consistent with the results shown in Fig. 7 and the numerically obtained 〈τe〉 shown in Fig. 6(b).
The results shown in Fig. 7 are also consistent with the results for the ring, for which Eif = Ei = 2
for most of the time (Fig. 2). As shown in Fig. 7, τpower

e (Ei) is considerably larger than τ exp
e (Ei) for

a small Ei. Therefore, T ∝ 〈τe〉N2 is presumably larger for the power-law voter model than for the
exponential voter model on the ring, which is actually the case (Fig. 4).

3.3 Extended rings and regular random graphs

rT = T power/T exp is different for the ring (Sec. 3.1) and the complete graph (Sec. 3.2). Therefore, the
effect of the power-law IEIs on rT may depend on the degree of the node.

To show this, we first investigate the consensus time on the extended ring with degree k, where k
is an even number and each node is connected to up to the (k/2)th nearest neighbors on each side on
the conventional ring. The extended ring with k = 2 is equivalent to the conventional ring considered
in Sec. 3.1. The extended ring approaches the complete graph as k → N − 1. For the extended ring,
rT is shown as a function of k by filled symbols in Figs. 8(a) and 8(b) for N = 500 and N = 1000,
respectively. rT decreases and approaches unity as k increases.

To further examine if rT decreases with k, we investigate the consensus time for the regular random
graph (RRG) with degree k. We generate the RRG by using the configuration model [33] as follows.
Each node is initially given k stubs, i.e., half links. Then, two stubs are chosen randomly with equal
probability. We connect the two stubs to create a link unless a self-loop or multiple links are generated;
in such a case, we discard the selected pair of stubs. We repeat this procedure until all the stubs are
exhausted to obtain an instance of the RRG with degree k. If the procedure is stuck midway or the
generated network is not connected, we restart the procedure.

For the RRG, rT is shown as a function of k by empty symbols in Figs. 8(a) and 8(b) for N = 500
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Figure 8: rT = T power/T exp for the extended ring (filled symbols) and for the RRG (empty symbols)
with degree k. We set (a) N = 500 and (b) N = 1000.

and N = 1000, respectively. rT decreases and approaches unity as k increases, which is qualitatively
the same as the results for the extended ring.

4 Conclusions

In this study, we numerically investigated voter models with the power-law IEI distribution. On the
ring, the consensus time for the power-law voter models is larger than that for the exponential (i.e.,
standard) voter model. On the complete graph, the ratio of the consensus time for the power-law
voter model to that for the exponential voter model becomes relatively small compared to the ratio
in the case of the ring. We numerically investigated the two voter models on the the extended ring
and the regular random graph, and we confirmed that the effect of the power-law IEI distribution to
enlarge the consensus time decreases with the degree of the node. The difference in the consensus
time originates from the fact that the expected time until the next update event on a link for the
power-law voter model is large if the link has not had an update event for a long time. On the ring,
the interval between successive movements of the interface (i.e., the link connecting nodes with the
opposite opinions) is elongated by the memory effect for the power-law distribution. On the complete
graph, the dynamics is determined by the smallest waiting time among many inconsistent links, which
can be nearly identical for the exponential and power-law distributions.

Long-tail IEI distributions are known to make epidemic dynamics slower [15, 16, 18, 19]. Our
results for the ring are consistent with these results; the occurrence of extremely large IEIs at some
links crucially slows down the dynamics.

Antal and colleagues considered two other update rules, i.e., the voter model (VM) and the invasion
process (IP) [26, 30] (also see [25, 31, 34]). The consensus time for the LD, VM, and IP is considerably
different on heterogeneous networks [26, 30]. We can define the VM and the IP on regular graphs
with degree k for a general IEI distribution p(τ) as follows. Initially, each voter, not each link, is
independently assigned with a random IEI until the initial update event occurs according to the
distribution p1(τ1). Suppose that an update event occurs at a voter. In the VM, the voter adopts the
opinion of a neighbor that is selected with the equal probability 1/k from the neighborhood. In the
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IP, the voter imposes its opinion on a neighbor that is selected with probability 1/k. For either update
rule, the next IEI for the voter is drawn from p(τ). On the complete graph with N = 200, λ = 1, and
(α, c) = (2.5, 0.5), for example, we obtain T ≈ 1.35×102 and 3.84×104 for the exponential and power-
law voter models with the VM update rule, respectively. With the VM, T for the power-law voter
model is larger than that for the exponential voter model. This result is in contrast to the that with
LD; T with the LD is almost the same between the exponential and power-law voter models (Sec. 3.2).
We note that even on regular graphs, T with the power-law IEI distribution depends on the update
rule, where the LD, VM, and IP are equivalent in the case of the exponential IEI distribution [26, 30].

Finally, we remark the relationship between our model and two other models that were recently
proposed. Stark and colleagues examined a variant of the voter model with the VM update rule and
an increasing inertia of voters [35]. The inertia implies that the transition rate at which a focal voter
imitates the opinion of a neighbor decreases with the time since the latest change in the focal voter’s
opinion. They found that an appropriate amount of inertia shortens the consensus time on several
networks. This result is opposite to our preliminary results for the VM described above. Although
the reason of this inconsistency is not clear, we point out two differences in the two models. First, the
transition rate can be infinitesimally small in the VM with the power-law IEI distribution, whereas
it has a lower bound in Stark’s model. Second, when a voter experiences an update event that does
not change its opinion, the transition rate of the voter is reset in the VM with the power-law IEI
distribution, whereas the transition rate is not affected by such an update event in Stark’s model.

Fernández-Gracia and colleagues investigated other variants of power-law voter models [36]. One
of their models in which the rate at which a voter experiences an update event decreases with the
time since the last update event of the voter (called exogenous update in [36]) is equivalent to the VM
variant of our power-law voter model. They also considered the update rule in which update events
occur at a constant rate (called random asynchronous update in [36]), which is equivalent to the VM
variant of our exponential voter model. For the complete graph, they found that T with the exogenous
update is larger than that with the random asynchronous update. This result is consistent with our
preliminary result described above.
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[31] F. Vazquez and V. M. Egúıluz, New J. Phys. 10, 063011 (2008).

[32] J. T. Cox, Ann. Probab. 17, 1333 (1989).

[33] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E 64 026118 (2001).

[34] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak, Nature 441, 502 (2006).

[35] H.-U. Stark, C. J. Tessone, and F. Schweitzer, Phys. Rev. Lett. 101, 018701 (2008).
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