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Abstract

Repeated interaction between individuals is the main mechanism for maintaining co-

operation in social dilemma situations. Variants of tit-for-tat (repeating the previous

action of the opponent) and the win-stay lose-shift strategy are known as strong com-

petitors in the iterated social dilemma games. On the other hand, repeated interaction

generally allows plasticity (i.e., learning) of individuals based on the experience of the

past. Although plasticity is relevant to various biological phenomena, its role in repeated

social dilemma games is relatively unexplored. In particular, if experience-based learning

plays a key role in promotion and maintenance of cooperation, learners should evolve in
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the contest with nonlearners under selection pressure. By modeling players using a simple

reinforcement learning model, we numerically show that learning enables the evolution

of cooperation. We also show that numerically estimated adaptive dynamics appositely

predict the outcome of evolutionary simulations. The analysis of the adaptive dynamics

enables us to capture the obtained results as an affirmative example of the Baldwin effect,

where learning accelerates the evolution to optimality.

1 Introduction

The mechanisms of cooperation in social dilemma situations are a central topic in interdisci-

plinary research fields including evolutionary biology, ecology, economics, and sociology. As

analyzed by the prisoner’s dilemma (PD) game and its relatives, direct reciprocity is among

the main known mechanisms underlying cooperative behavior [1, 2]. In direct reciprocity, it-

erated interaction between the same individuals motivates them to continue cooperating (C)

rather than to defecting (D) to obtain momentarily large payoffs; defection would be negatively

rewarded by the opponent player’s retaliation in later rounds. Variants of the celebrated re-

taliatory strategy tit-for-tat (mimicking the opponent’s action in the previous round) [3] and a

win-stay lose-shift strategy [4, 5] are recognized as strong competitors in the iterated PD game.

In the iterated games concerning direct reciprocity, it is natural to assume that players

modify their strategies in response to their experiences in past rounds. The tit-for-tat, its

variants, and win-stay lose-shift strategies can be interpreted as examples of such learning

strategies because the tit-for-tat, for example, implies that the player selects the action (i.e., C

or D) depending on the result of the last round. A more sophisticated learning player of this

kind exploits a longer history of the game for action selection (e.g., cooperate if the player and

the opponent cooperated in the previous two rounds, and defect otherwise) [6]. Classes of other

learning models include fictitious play and reinforcement learning [7, 8]. Learning apparently

seems beneficial in iterated games because learning players are more flexible than nonlearning

players.

If learning is a key factor in promoting cooperation in real societies, the number of learning
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players should increase when a population evolves under selection pressure. However, the

advantage of learners over nonlearners in evolutionary dynamics is elusive because a pair of

learning players often results in mutual defection [9, 10, 11, 12, 13, 14] and learning may be

costly.

The constructive roles of learning in the evolution of certain traits are collectively called

the Baldwin effect (see [15, 16, 17, 18, 19] for reviews). Although earlier examples of the

Baldwin effect are not necessarily founded on firm empirical evidence [15, 17], there exists a

plethora of positive evidence of the Baldwin effect by now. Examples include fly’s morphological

developments [20], colonization of house finch in North America [19], and persistence of coastal

juncos [21]. In fact, the concept of the Baldwin effect differs by authors (see [15, 22, 16]).

Although earlier computational models suggest that learning accelerates evolution [23, 24, 25],

later theoretical and numerical studies suggest that learning either accelerates or decelerates

evolution toward the optimum depending on the details of the models [26, 27, 28, 29, 30]. The

advantage of learning in evolution is also nontrivial in this broader context.

We numerically investigate the effect of learning on evolution in the iterated PD game.

This question was explored in previous literature [31]. Our emphasis in this study is to use

a much simpler reinforcement learning model for the iterated PD game [32] than the plastic

look-up-table model adopted in [31]. In our model, players are satisfied with and persist in the

current action when the obtained payoff is larger than a plastic threshold. Our model of players

introduced in [32] modifies those in [33, 11, 13]. Via the stability analysis for nonlearning play-

ers, the numerical analysis of the discretized adaptive dynamics with nonlearning and learning

players, and full evolutionary simulations, we show that learning is needed for a noncooperative

population to evolve to be able to engage in mutual cooperation for wide parameter ranges.

We also discuss our results in the context of the Baldwin effect.
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2 Model

2.1 Iterated PD game

We assume that each player plays the PD game against each of the other players in a population.

In each round t (t = 1, 2, . . .) within a generation, a player selects C or D without knowing

the action (i.e., C or D) of the opponent player. The payoff to the focal player is defined by

(C D

C R S
D T P

)
, (1)

where T > R > P > S and R > (T + S)/2. Equation (1) represents the row player’s payoff.

The payoff to the opponent (column player) is defined likewise; the PD game is symmetric.

Because T > R and P > S, mutual defection is the only Nash equilibrium of the single-shot

PD game.

However, players may continue mutual cooperation for their own benefits in the iterated

PD game [1, 2]. We denote the number of rounds per generation by tmax. Technically, the Nash

equilibrium of the iterated PD game is perpetual mutual defection if the players know tmax

beforehand. The number of rounds is often randomized to avoid this effect [2]. To simplify the

analysis, we assume that the players are unaware of the fixed value of tmax.

Earlier studies identified tit-for-tat, which involves imitating the previous action of the

opponent, as a strong strategy in the iterated PD game when various strategies coexist in a

population [1, 2]. However, later studies showed that tit-for-tat is not robust against error

and that alternative strategies such as generous tit-for-tat [3] and Pavlov [4, 5] are strong

competitors in the iterated PD game with error. A population composed of Pavlov players, for

example, realizes mutual cooperation such that a player gains approximately R per round.

2.2 Reinforcement learning

Intuitively, the ability to learn may seem to be an advantageous trait in the iterated PD game

if the cost of learning is negligible. However, this is generally not the case. A pair of learning

players often ends up with mutual defection unless a learning algorithm is carefully designed

4



[9, 10, 11, 12, 13, 14]. Learning requires trial and error, i.e., the exploration of unknown

behavioral patterns as well as the exploitation of known advantageous behavioral patterns.

Exploratory behavior of a learning player may look just random to opponents, and it is rational

to defect against random-looking players.

To compromise the possibility of mutual cooperation, the simplicity of the learning algo-

rithm, and the biological plausibility of the model as compared to some other learning algo-

rithms, we use a variant of the Bush-Mosteller (BM) reinforcement learning model [32]. This

model modifies the models in the previous literature [33, 11, 13] such that players learn to

mutually cooperate for wide parameter ranges.

In round t, the cooperability of the BM player is given by the probability pt. We update pt

using the results of the single-shot PD game as follows:

pt+1 =


pt + (1− pt)st (action in round t is C, and st ≥ 0),
pt + ptst (action in round t is C, and st < 0),
pt − ptst (action in round t is D, and st ≥ 0),
pt − (1− pt)st (action in round t is D, and st < 0),

(2)

where

st = tanh[β(rt − At)] (3)

and rt ∈ {R, T, S, P} is the payoff to the BM player in round t. In addition, we assume that

the player misimplements the action with a small probability ϵ such that the player in fact

cooperates with probability (1 − 2ϵ)pt + ϵ in round t. Equations (2) and (3) indicate that

the player is satisfied with the current situation if the obtained payoff rt is larger than the

so-called aspiration level At. Otherwise, the player is motivated to flip the action. β controls

the stochasticity in the plasticity of pt. We set β = 3 in the numerical simulations.

The dynamics of the aspiration level are given by

At+1 = (1− h)At + hrt, (4)

where h represents the learning rate. Mutual cooperation is established among the BM players

only after tmax = 100 rounds when β is large and h is small [32]. Unless otherwise stated,

we set the initial condition to p1 = 0, i.e., the BM player defects in round 1. This value of
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p1 is the most adverse to mutual cooperation. The initial condition A1 is a key parameter to

characterize the BM player.

2.3 Evolutionary dynamics

We set the number of players in the population to N = 500. In a single generation, each

player i plays the iterated PD game with tmax = 200 against all the other players. We always

reset pt and At to p1 and A1 when a player starts the iterated PD game with a new opponent.

The single generation payoff ri (∈ [S, T ]) is equal to the summation of the payoff obtained by

playing against N − 1 players, which is divided by (N − 1)tmax.

After the single generation payoffs to all the players are determined, we select two players i

and j with equal probability for strategy update. We use the Fermi rule [34, 35] in which player

i adopts j’s A1 and h values in the next generation with probability 1/
[
1 + exp

(
β̃(ri − rj)

)]
,

and player j adopts i’s parameter values, otherwise. We set β̃ = 1. To account for mutation,

we assume that after strategy update, A1 and h of the adopter are displaced by random small

values obeying the uniform density on [−∆A1 ,∆A1 ] and [−∆h,∆h], respectively. If the displaced

h exceeds 1 or is negative, we reset h to 1 or 0, respectively. However, the resetting seldom

occurs in our evolutionary simulations.

The phenotype of a player in round t is specified by pt and At. It should be noted that pt

and At are not inherited over generations. In other words, the natural selection operates on the

capacity to learn (i.e., h) but not on the acquired behavior (i.e., pt and At). Because we let β

in Eq. (3) to be relatively large to realize mutual cooperation [32], pt is sensitive to the excess

payoff relative to At in the sense that pt is close to 0 or 1 unless rt is close to At. Therefore, pt

is similar to the probability of cooperation conditioned on the outcome of the PD game in the

previous round. Although pt and At are both plastic parameters during the iterated PD game,

we only consider the plasticity of At, which occurs more slowly and steadily as compared to

that of pt, as being subjected to learning. When we use the term learning in the following, we

exclusively refer to that of At, whose learning rate is equal to h.
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3 Results

3.1 Nash equilibria when without learning

To show that learning is necessary for the emergence of cooperation, we start by analyzing

the competition between players that do not learn. With learning rate h equal to zero, the

aspiration level is fixed over rounds (i.e., At = A1, t ≥ 1). For the sake of analysis, we set

β = ∞. Then, Eqs. (2) and (3) imply that the player persists in the current action (i.e.,

(pt, pt+1) = (0, 0) or (1, 1)) if rt − At ≥ 0 and flips the action (i.e., (pt, pt+1) = (0, 1) or (1, 0))

otherwise. When At is fixed, there are five strategies:

• Strategy st1 is defined by At < S. Except for the action misimplemantation, an st1 player

is equivalent to ALLC or ALLD, depending on the action in the first round.

• Strategy st2 is defined by S < At < P . An st2 player does not flip the action unless

rt = S.

• Strategy st3 is defined by P < At < R. An st3 player does not flip the action if mutual

cooperation or unilateral defection is realized. It is equivalent to Pavlov, which is a strong

competitor in the iterated PD game [4, 5].

• Strategy st4 is defined by R < At < T . An st4 player flips the action unless rt = T .

• Strategy st5 is defined by T < At. An st5 player flips the action in every round except

when the player misimplements the action.

In Table 1, the average payoff to a nonlearning (i.e., h = 0) BM player (row player) playing

against another nonlearning BM player (column player) is shown for 0 < ϵ ≪ 1 and tmax = ∞.

For example, st1 playing against st2 obtains (R + 3P + 2S)/6 per round on an average. The

results shown in Table 1 are a subset of those obtained in [36] (see Appendix A for details). Table

1 indicates that st3 is a Nash equilibrium when the five strategies are considered. In particular,

st3 playing against another st3 realizes mutual cooperation and obtains the largest average

payoff per round R. Therefore, a unanimous population composed of st3 players represents a

eusocial situation. Mutual cooperation is not realized by any other combination of two players.
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Table 1 indicates that st2 is also a Nash equilibrium when 3P > R + 2S. In addition,

although st4 is not a Nash equilibrium, a homogeneous population composed of st4 players is

resistant to invasion by st3 in evolutionary situations because st4 gains a larger payoff than st3

does when playing against an st4 opponent.

To test the robustness of the results shown in Table 1, we set β = 3, ϵ = 0.02, and h = 0,

and numerically calculate the payoff averaged over tmax generations to different nonlearning

players with different fixed aspiration levels A1. We also set R = 4, T = 5, S = 0, and

P = 2 in this and the following numerical simulations. The average payoff to a nonlearner

playing against another nonlearner is shown for p1 = 0 and tmax = 200 in Fig. 1. The presented

values are averages over 100 trials for each pair of A1 values. The results shown in Fig. 1 are

qualitatively the same as those shown in Table 1. We also confirmed that the results hardly

change for (p1, tmax) = (0, 2000), (1, 200), and (1, 2000).

3.2 Possibility of mutual cooperation via learning

If h > 0, players different from st3 may adjust At until P < At < R is satisfied such that they

learn to behave as Pavlov. Therefore, learning may play a constructive role in the evolution

of mutual cooperation. In fact, this is not always the case; ϵ > 0 is a necessary condition for

mutual cooperation to evolve.

To explain this point, we set β = 3 and h = 0.1, and numerically examine the behavior of

a pair of BM players. Typical time courses of the aspiration level for a pair of learning players

over rounds without action misimplementation (i.e., ϵ = 0) are shown in Fig. 2(a). Each of the

three pairs with close A1 values represents a pair of st1 (thick lines), st3 (dotted lines), and st5

players (medium lines), respectively. We used different values of A1 for each pair for the clarity

of the figure; making A1 equal for two players does not qualitatively change the results. The

thick lines in Fig. 2(a) indicate that the two st1 players playing with each other are satisfied

with payoff P = 2 obtained by mutual defection. Therefore, their aspiration levels converge to

At = P . The results would be the same if we start from a pair of st2 players or a combination

of an st1 player and an st2 player. A pair of st3 players begin mutual cooperation from the

second round, and their At values converge to R = 4 (dotted lines). Mutual cooperation is
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also realized if the two players are initially either st4 or st5, although some rounds are required

before the players mutually cooperate (medium lines).

Although two learning players having At < P do not end up with mutual cooperation

when ϵ = 0, the action misimplementation (i.e., ϵ > 0) can trigger a shift from mutual de-

fection to mutual cooperation. Artificially generated time courses in the presence of action

implementation are shown in Fig. 2(b) for expository purposes. Until the intended action is

misimplemented (1 ≤ t ≤ 29 in Fig. 2(b)), two players starting with A1 < P keep mutual

defection (thick lines). When At has sufficiently approached P , we assume that one player mis-

implements the action (t = 30). Then, the At values of both players cross P from below within

a couple of rounds such that the players start to behave as Pavlov and mutually cooperate.

The possibility of mutual cooperation through this mechanism is sensitive to the value of h.

Two players starting with A1 < P end up with At > P owing to the action misimplementation

when (P − S)/(T − P ) < (1− h)2 (see Appendix B for derivation). When T = 5, S = 0, and

P = 2, this condition yields 0 < h < 1−
√
2/3 ≈ 0.184 for an arbitrary value of R.

Then, similar to the case of no implementation error (Fig. 2(a)), the At values of the two

players converge to R. The At values also converge to R when we start with a pair of st3

players (dotted lines in Fig. 2(b)) and a pair of st4 or st5 players (medium lines in Fig. 2(b)).

This is because mutual cooperation is stable against action misimplementation; if one player

turns into D by action misimplementation in round t, both players defect in round t + 1 and

cooperate in round t+2, if the actions are not misimplemented in rounds t+1 and t+2. This

event sequence is likely unless ϵ is large.

3.3 Adaptive dynamics

In the evolutionary numerical simulations that we will describe in Sec. 3.4, we allow the initial

aspiration level A1 and learning rate h to mutate (Sec. 2.3). If the distribution of A1 and that

of h for an evolving population are single peaked and sufficiently localized, we can grasp the

evolutionary dynamics for a population by tracking the dynamics of the population averages of

A1 and h, denoted by A1 and h, respectively. In the extreme case in which all the players share

identical values of A1 and h, the instantaneous dynamics of A1 and h are captured by adaptive
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dynamics [37, 38, 39, 40]. Adaptive dynamics reveal the possibility for mutants with a slightly

deviated parameter value to invade a homogeneous resident population. In this section, we

numerically examine two-dimensional adaptive dynamics with respect to A1 and h to foresee

the evolutionary simulations carried out in Sec. 3.4.

In this and the following sections, we set β = 3, p1 = 0, ϵ = 0.02, and tmax = 200 unless

otherwise stated. Consider a homogeneous population of players sharing the parameter values

A1 = A1 and h = h. A mutant player with aspiration level A′
1 and learning rate h′ can invade

the population if

π[s′, s]− π[s, s] > 0 (5)

or

π[s′, s]− π[s, s] = 0 and π[s′, s′]− π[s, s′] > 0, (6)

where s = (A1, h) and s′ = (A′
1, h

′) are the strategies of the resident and mutant players,

respectively, and π[s1, s2] represents the average payoff of strategy s1 when playing with strategy

s2. Equations (5) and (6) are the converse of the condition for s to be ESS. If Eq. (5) or (6)

is satisfied, the homogeneous population comprising strategy s would evolve toward s′. We

numerically calculate π[s′, s] − π[s, s], where s′ = (A1 + 0.2, h), (A1 − 0.2, h), (A1, h + 0.02),

and (A1, h − 0.02). We confine s′ in the neighborhood of s because the amount of mutation

for A1 and h is assumed to be small. Examining π[s′, s]− π[s, s] corresponds to looking at the

discretized adaptive dynamics, i.e., the discretized derivative of π[s′, s] with respect to s′ at

s′ = s.

For various values of A1 and h, π[s′, s] − π[s, s] is shown in Fig. 3. The plotted values

are averages over 104 runs for any s. In Fig. 3(a), s′ = (A1 + 0.2, h) obtains a larger payoff

than s = (A1, h) in the red region. In this region, s′ would invade a homogeneous resident

population of s such that A1 increases. In contrast, s′ obtains a smaller payoff than s does in

the blue region. Figure 3(a) indicates that, if learning is prohibited (i.e., h = 0), the population

starting from A1 = 0, for example, is expected to evolve such that A1 increases, but only up to

A1 ≈ P = 2. Therefore, a population does not evolve from st2 to st3 without learning.

Figure 3(b), which reveals the possibility of invasion by mutant s′ = (A1 − 0.2, h) in the

resident population of s, is a sign flipped version of Fig. 3(a) in most parameter regions.
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Nevertheless, neither the mutants with A′
1 = A1 + 0.2 nor the ones with A′

1 = A1 − 0.2 invade

the resident population (i.e., parameter regions colored in blue in both Figs. 3(a) and 3(b)) for

(A1, h) ≈ (2, 0) and along a bent line passing through (A1, h) ≈ (4, 0) and (A1, h) ≈ (4.3, 0.2).

These regions constitute singular points of the adaptive dynamics and serve as repellers. In

other words, A1 does not pass through ≈ P = 2 for h = 0 and ≈ R = 4 for various values of h

in adaptive dynamics. The observations for h = 0 that the homogeneous population of st2 is

not invaded by st3 mutants, that of st3 is not invaded by st2 or st4 mutants, and that of st4 is

not invaded by st3 mutants, are consistent with the results obtained in Sec. 3.1.

The possibility of invasion by mutant s′ = (A1, h+ 0.02) in the homogeneous population of

s = (A1, h) is shown in Fig. 3(c). The figure suggests that h would increase for a population

of st1 players (i.e., A1 < S = 0). Learning is preferred to nonlearning when A1 < 0 for the

following reason. As shown in Sec. 3.2, when h > 0 and ϵ > 0, At increases until the players

behave as Pavlov to mutually cooperate within a relatively small number of rounds (Fig. 2(b)).

In contrast, the players do not establish mutual cooperation when h = 0 or ϵ = 0, as shown in

Sec. 3.1 (Fig. 2(a)). Figure 3(c) indicates that h increases up to h ≈ 0.15. This value of h is

consistent with the upper bound of h for mutual cooperation to be possible, which was derived

in Sec. 3.2. Based on these results, h is expected to initially increase in evolutionary dynamics

starting with a population of nonlearning st1 players. We refer to the stage of evolutionary

dynamics in which h increases as stage 1. The existence of stage 1 is also supported by Fig. 3(d)

in which the mutant has s′ = (A1, h− 0.02).

After h has increased, Figs. 3(a) and 3(b) imply that A1 increases to cross P = 2. When

h > 0, a larger value of A1 (< P ) is beneficial because fewer rounds are required for such

players to turn to Pavlov (i.e., At > P ). Once A1 exceeds P for a majority of players, they

earn a large average payoff ≈ R through mutual cooperation. We refer to the transition for

learning players from a small A1 corresponding to st1 or st2 to a large A1 corresponding to st3

as stage 2. Figures 3(a) and 3(b) indicate that the difference between π[s′, s] and π[s, s] when

A1, A1 + 0.2 < P , h > 0 is small, presumably because s and s′ are only slightly different in

terms of the number of transient rounds before the entrance to A1 > P . Therefore, we expect

that stage 2 occurs slowly in evolutionary dynamics.
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Although it is a minor phenomenon as compared to stages 1 and 2, a smaller h is more

beneficial on the boundary between st2 and st3 (i.e., At ≈ P = 2), as shown in Figs. 3(c) and

3(d). For expository purposes, time courses of the iterated PD game between an st2 player and

an st3 player are shown in Fig. 3(e). As shown by the solid lines, the initial st3 player flips

to st2 before establishing mutual cooperation if h > 0. In fact, a nonlearning st3 player (i.e.,

h = 0) realizes mutual cooperation with a learning st2 player in earlier rounds (dotted lines)

than a learning st3 player does (solid lines). Therefore, in evolutionary dynamics, h in the

vicinity of At ≈ P is expected to decrease. We refer to this transition as stage 3. It should be

noted that stage 3 occurs in a narrow range of A1 (i.e., A1 < P and A1+0.2 > P in Fig. 3(a)).

Through stages 1, 2, and 3, evolution from a defective population of nonlearning st1 players

to a cooperative population of st3 players is logically possible. In contrast, the emergence of

mutual cooperation is hampered if learning is prohibited.

After stage 3, A1 would not evolve beyond R; A1 ≈ R is a line of repellers in adaptive

dynamics, as already explained in Figs. 3(a) and 3(b). When P < A1 < R (i.e., 2 < A1 < 4),

the mutant’s payoff is indistinguishable from the resident’s payoff unless h is large (Figs. 3(a)–

(d)). Therefore, A1 and h would perform approximately unbiased diffusion. This implies that

h that has decreased via stage 3 may increase again.

When at least one of the two players is st4 or st5, a player with a larger A1 is more

advantageous than the opponent with a smaller A1. This is because the former exploits the

latter in early rounds. Nevertheless, these players do not obtain the average payoff as large as

that for a pair of st3 players, which would start to mutually cooperate from the second round.

Therefore, st3 is stable against invasion by st4 and vice versa.

We predict that the learning rate would not eventually decrease to the small value in evolu-

tionary simulations. In other words, the disadvantage of learning is too small to be evolution-

arily relevant unless the cost of learning is explicitly incorporated.

To assess the robustness of the results obtained from the adaptive dynamics, we reproduced

Figs. 3(a)–(d) with ϵ = 0.05 and ϵ = 0.1. The results for ϵ = 0.05 are qualitatively the same

as those for ϵ = 0.02 (results not shown). The results for ϵ = 0.1 are different in some aspects

from those for ϵ = 0.02 (Fig. 4). Most notably, when ϵ = 0.1, st3 is no longer stable against
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invasion by st2 even without learning (i.e., h = 0). Therefore, mutual cooperation would

not be stable in evolutionary dynamics. In Figs. 5(a) and 5(b), π[s′, s] − π[s, s] is shown for

(s, s′) = ((1.9, 0), (2.1, 0)) and (s, s′) = ((2.1, 0), (1.9, 0)), respectively, for a variety of values

of tmax and ϵ. Figure 5(a) indicates that an st3 mutant does not invade the population of st2

residents for all the examined values of tmax and ϵ. Figure 5(b) indicates that a population of

st3 residents is resistant to invasion by st2 mutants when tmax is large and ϵ (> 0) is small.

Nevertheless, st3 is stable for various values of tmax and ϵ. Because stage 2 is hampered when

ϵ = 0, ϵ must take an intermediate value for the learning-mediated mutual cooperation to

emerge.

3.4 Evolutionary simulations

The results in Sec. 3.3 predict the presence of a learning mediated evolutionary route from

a noncooperative population composed of st1 players to a cooperative population composed

of st3 players. In this section, we carry out direct numerical simulations of the evolutionary

dynamics using a population composed of N = 500 BM players. We initially set h = 0 and

select A1 for each player independently from the uniform density on [S − 1, S]. Therefore, all

the players are initially nonlearning st1. Refer to Sec. 2.3 for details of the numerical setup.

The evolution of h, the total amount of plasticity experienced in a generation, defined

by
∑tmax−1

t=1 |At+1 − At|, r, and the fraction of mutual cooperation for an example run with

∆A1 = 0.05 and ∆h = 0.01 are shown in Fig. 6(a). The average learning rate h and the total

amount of plasticity rapidly increase until the ≈ 3.9×104th round. The payoff and the fraction

of mutual cooperation also increase during this period because st1 players learn to behave as

Pavlov when h > 0. This period corresponds to stage 1 described in Sec. 3.3. Then, the

fraction of mutual cooperation and the total amount of plasticity gradually increase until the

≈ 3.5 × 105th round, corresponding to stage 2. In the ≈ 3.5 × 105th round, an st3 mutant

emerges in the population mostly composed of st2 players and gains a larger payoff than st2

residents do. Then, st3 players rapidly replace st2 players in the population such that r/R and

the fraction of mutual cooperation suddenly increase (Fig. 6(a)). This is because stable mutual

cooperation between st3 players emerges in an early round, whereas that between st2 players
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emerges after ≈ 2/ϵ rounds. The learning rate decreases almost at the same time, corresponding

to stage 3. The time courses of the fractions of st1, st2, st3, st4, and st5 players corresponding to

the run shown in Fig. 6(a) are shown in Fig. 6(b). For example, the fraction of the st1 player is

defined by the fraction of players having A1 < S and any value of h. Figure 6(b) indicates that

the population initially composed of st1 players evolves to that of st3 players. The trajectory

of A1 and h corresponding to the same run is shown in Fig. 6(c). Figure 6(c) is consistent with

the scenario of the evolution of cooperation described in Sec. 3.3. The population evolves from

no cooperation to mutual cooperation via the three stages involving learning. After stage 3, A1

and h diffuse without a recognizable bias, which is also consistent with the results obtained in

Sec. 3.3 (white regions in Figs. 3(a)–(d)). However, it should be noted that the total amount

of plasticity remains small after stage 3.

If we assume an explicit cost of learning, the learning rate decreases after mutual cooperation

is reached. An example time course of A1 and h when a linear cost −ch is added to the single

generation payoff to each player [31] (see [24, 26] for a different implementation of the explicit

learning cost), where c = 1, is shown in Fig. 6(d). The final value of h is smaller than that in

the case without the learning cost (Fig. 6(c)). If we measure the amount of learning by h, the

result shown in Fig. 6(d) is an example of the standard Baldwin effect in which the learning

rate initially increases and then decreases [26, 27, 28, 29, 30].

To examine the robustness of the results, we carry out five runs of numerical simulations

for each of the different parameter sets; we could not carry out more extensive numerical

simulations because of the computational cost. We measure two quantities in each run. The

first quantity is the number of generations necessary for h to exceed 0.1 for the first time. We

call this number the end of stage 1. The second quantity is the number of generations necessary

for A1 to exceed P for the first time. We call this number the end of stage 2. The ends of

stages 1 and 2 for various parameter values are shown in Table 2. Mutual cooperation evolves

via learning (i.e., finite value of the end of stage 2 up to our numerical efforts) in most cases.

When ϵ = 0.05, evolution to mutual cooperation is slower than when ϵ = 0.02. This may be

because learning players having different values of A1 turn into Pavlov (i.e., At > P ) within a

small number of rounds when ϵ is relatively large. Then, the payoff to different learning players
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would differ relatively little to weaken the selection pressure.

4 Discussion

We have shown that reinforcement learning promotes the evolution of mutual cooperation in

a population of players involved in the iterated PD game. Cooperation evolves under some

conditions such as 3P > R+2S, positive but not too large values of ϵ, and tmax that is not too

small. The present study is motivated by previous investigations of the Baldwin effect. Our

results provide an example of the Baldwin effect in the form of a computational model of social

behavior.

The concept of the Baldwin effect is diverse [15, 22, 16]. However, arguably, the most

accepted variant of the Baldwin effect is formulated as a two-stage mechanism [15, 41, 18, 16]. In

stage 1, plasticity increases because plastic individuals are better at finding the optimal behavior

than nonplastic individuals. In stage 2, mutation makes the optimal behavior innate and

decreases the plasticity of individuals. Mutants that play optimally from the outset of their life

without plasticity and resident individuals that acquire the optimal behavior through plasticity

are eventually equally efficient. Nevertheless, because of the cost of learning, the mutants

overwhelm the residents via natural selection. Stage 2 is often called genetic assimilation.

Stage 1 in our model corresponds to stage 1 of the standard Baldwin effect outlined above.

In stage 2 in our model, A1 increases such that the optimal behavior (i.e., mutual cooperation

by turning into st3) becomes innate. Nevertheless, after stage 3 in our model in which the

learning rate rapidly decreases, the learning rate starts to perform a random walk because the

learning cost is marginal in our model (Fig. 5(c)). Therefore, the behavior of our model in

stages 2, 3, and onward does not qualify as stage 2 of the standard Baldwin effect in which the

learning rate decreases. With a modified model with an explicit learning cost, we showed that

the learning rate decreases after stage 3 (Fig. 5(d)). In this case, our model naturally fits the

framework of the Baldwin effect.

In a previous computational model of the Baldwin effect, learning rates remain large when

the optimal behavior dynamically changes owing to environmental fluctuations [24]. In our
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model without an explicit cost of learning, the learning rate remains large for a different reason.

In our model, the optimal parameter set (i.e., A1 and h) does not fluctuate after sufficient

generations. Instead, approximate optimality is realized for various parameter sets, i.e., any

P < A1 < R and h ≥ 0. Therefore, the learning rate performs a random walk to occasionally

visit large values (Fig. 5(c)).

Godfrey–Smith points out three alternative reasons why stage 1 cannot be skipped in the

two-stage mechanism of the Baldwin effect [41]. First, learning may provide a breathing space

by which a population can survive long enough to transit to stage 2. This reason is irrelevant

to our model because our model is not concerned with the survival of the population. The

population size is fixed in our model such that the population always survives. Second, the

preferred state may be accessible for learners but not for nonlearners. Although not explicitly

stated in Godfrey–Smith (2003), this mechanism seems to be relevant to cases in which the

fitness landscape does not depend on the configuration of the population. In our case, however,

the fitness landscape depends on the fractions of the different types of players because the

payoff to a player is affected by the strategies of the other players. Third, evolution may

change the “social ecology” of the population such that learners are more advantageous than

nonlearners, a phenomenon called niche construction in a broad sense. The social ecology

implies a fitness landscape that depends on the configuration of the population. In our model,

the social ecology evolves via learning of players. This third mechanism seems to be relevant

to our model. Suppose a hypothetical population comprising st1 nonlearners except two st1

learners. For a focal st1 learner, the social ecology is such that there is one st1 learner and

N − 2 st1 nonlearners. If ϵ > 0, the focal st1 learner is likely to gain a payoff that is larger

than an st1 nonlearner because the focal player learns to mutually cooperate with the other

st1 learner, whereas an st1 nonlearner does not. The focal st1 learner would not overwhelm st1

nonlearners if the other st1 learner is absent in the social ecology.

The main purpose of this study is to provide an evolutionary model of concrete social

behavior in which learning plays a constructive role. We are not the first to achieve this end.

Suzuki and Arita observed the Baldwin effect in the iterated PD game using different learning

models [31]. In their model, the learning rate is assumed to be binary, and the player’s strategy
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is specified by a look-up table that associates the action to take (i.e., C or D) with the actions

of the previous two rounds of the two players. The entries of the look-up table dynamically

change when the plasticity is in operation. They also considered the effects of meta learning in

which the player adapts how to update each entry of the look-up table. The main contribution

of the present work relative to theirs is to provide a much simpler model that may be amenable

to real animals and facilitates a mechanistic understanding of evolutionary dynamics by the

numerically calculated adaptive dynamics. Apart from the fixed parameters common to all the

individuals, our players only have two parameters that are plastic within a generation, pt and

At, and two parameters inherited across generations, A1 and h. The results obtained from the

adaptive dynamics predict those of direct evolutionary numerical simulations and provide an

intuitive reason why learning promotes the emergence of mutual cooperation. The combination

of adaptive dynamics and evolutionary simulations may also be useful for analyzing the Baldwin

effect in different models.
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Appendix A: Payoff to nonlearning BM players

Nowak et al. (1995) analyzed iterated matrix games between a pair of players that select an

action (i.e., C or D) in response to the actions of the two players in the previous round. There

are four combinations of the actions of the two players in the previous round, i.e., (C, C), (C,

D), (D, C), and (D, D). Because a player assigns C or D to each of these possible outcomes in

the previous round, there are 16 strategies Si (0 ≤ i ≤ 15). In fact, st1, st2, st3, st4, and st5

in the present study are equivalent to S12, S8, S9, S1, and S3 in [36], respectively.

By calculating the steady state of the Markov chain with four states R, T , S, and P , Nowak
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et al. (1995) calculated the average payoff to focal player Si playing against the opponent Sj

(0 ≤ i, j ≤ 15) under a small probability of error in action implementation. Their assumption

for the action misimplementation is slightly different from ours. We assumed that ϵ is the

probability that each player independently misimplements the action, whereas only one of the

two players may misimplement the action in a round in their model. Nevertheless, our model

is equivalent to theirs in the limit ϵ → 0 if we set ϵ′ = 2ϵ(1− ϵ), where ϵ′ is the probability of

action misimplementation in the sense of Nowak et al. (1995). Therefore, our results shown in

Table 1 are a corollary of their results.

Appendix B: Upper bound of h for st2 players to turn

into Pavlov

Given β = ∞, 0 < ϵ ≪ 1, h > 0, and A1 < P , At of the two players, denoted by X and Y,

are sufficiently close to P when one player, which we assume to be Y without loss of generality,

misimplements the action to select C for the first time in round t ∝ 2/ϵ. Without any further

action misimplementation, X keeps D and Y flips to D in round t+1 because A
(Y)
t+1 < P < A

(X)
t+1.

In round t + 2, X flips to C and Y keeps D. Therefore, we obtain A
(X)
t+3 = hS + (1 − h)A

(X)
t+2,

A
(X)
t+2 = hP + (1 − h)A

(X)
t+1, A

(X)
t+1 = hT + (1 − h)A

(X)
t , and A

(X)
t ≈ P . Combining the four

equations, we obtain

A
(X)
t+3 = (T − P )h3 − 2(T − P )h2 + (T + S − 2P )h+ P. (7)

Using T > P > S and 0 < h ≤ 1, we obtain the condition for X to become Pavlov in round

t+ 3 as A
(X)
t+3 > P , i.e.,

(1− h)2 >
P − S

T − P
. (8)

The condition for Y to become Pavlov in round t+ 3 is given by A
(Y)
t+3 > P , i.e.,

(1− h)2 <
T − P

P − S
. (9)

Equation (8) implies Eq. (9) because (P − S)/(T − P ) > 0 and h > 0. Therefore, the two

players become Pavlov in round t+ 3 if Eq. (8) holds true.
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We assume that Eq. (8) is violated. If Eq. (9) is also violated, we obtain A
(X)
t′ , A

(Y)
t′ ≤

P (t′ ≥ t+ 3) such that the two players mutually defect until the occurrence of another action

misimplementation. If Eq. (9) is satisfied, the two players mutually defect in round t + 3.

Because r
(Y)
t+2 = r

(X)
t = T, r

(Y)
t+3 = r

(X)
t+1 = P , and A

(Y)
t+2 < P , we obtain P < A

(Y)
t+4 < A

(X)
t+2.

Because r
(X)
t+2 = r

(Y)
t = S, r

(X)
t+3 = r

(Y)
t+1 = P , and A

(X)
t+2 > P , we obtain A

(Y)
t+2 < A

(X)
t+4 < P . These

two inequalities indicate that X and Y behave as st3 and st2 in round t + 5, respectively. By

repeating the same procedure with X and Y swapped, we obtain

A
(Y)
t+2 < A

(Y)
t+6 < P < A

(X)
t+6 < A

(X)
t+2. (10)

Therefore, we obtain

A
(Y)
t+2 < A

(Y)
t+2+4i < P < A

(X)
t+2+4i < A

(X)
t+2 (i ≥ 1), (11)

by induction. Equation (11) implies that the two players do not realize mutual cooperation if

Eq. (8) is violated.

Therefore, an upper bound of h for a pair of st2 players to turn into Pavlov is given by

solving Eq. (8) with equality.
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Figure 1: Average payoff to a nonlearning BM player (row player) playing against an opponent

nonlearning BM player (column player). We set β = 3, p1 = 0, ϵ = 0.02, h = 0, tmax = 200,

R = 4, T = 5, S = 0, and P = 2.
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Figure 2: Behavior of a pair of learning players. We set β = 3, p1 = 0, and h = 0.1. (a)

Example time courses of the aspiration level for a pair of players when ϵ = 0. The horizontal

lines represent At = P = 2 and At = R = 4. We set A1 for the two players to −1 and −0.5

(thick lines), 2.5 and 3 (dotted lines), and 5.5 and 6 (medium lines). (b) Example time courses

of the aspiration level when ϵ = 0.02. We set A1 as in (a). For each pair, one of the two players

is assumed to misimplement the action in round 30 (thick lines and dotted lines) or 7 (medium

lines).

25



-0.1

-0.05

 0

 0.05

 0.1
(a)

-1  0  1  2  3  4  5  6
A1

 0

 0.05

 0.1

 0.15

 0.2

h

-0.1

-0.05

 0

 0.05

 0.1

(b)

-1  0  1  2  3  4  5  6
A1

 0

 0.05

 0.1

 0.15

 0.2

h

-0.1

-0.05

 0

 0.05

 0.1

(c)

-1  0  1  2  3  4  5  6
A1

 0

 0.05

 0.1

 0.15

 0.2

h

-0.1

-0.05

 0

 0.05

 0.1

(d)

-1  0  1  2  3  4  5  6
A1

 0

 0.05

 0.1

 0.15

 0.2

h

-0.1

-0.05

 0

 0.05

 0.1

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0  5  10  15  20

At

t

(e)

Figure 3: Discretized adaptive dynamics when ϵ = 0.02. Plotted is π[s′, s] − π[s, s], where

s = (A1, h) and (a) s′ = (A1 + 0.2, h), (b) s′ = (A1 − 0.2, h), (c) s′ = (A1, h + 0.02), and (d)

s′ = (A1, h−0.02). (e) Example time courses of a pair of players having (A1, h) = (1.7, 0.1) and

(A1, h) = (2.2, 0.1) (solid lines), and (A1, h) = (1.7, 0.1) and (A1, h) = (2.2, 0) (dotted lines).

The horizontal line indicates At = P = 2. We set β = 3, p1 = 0, and tmax = 200.
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Figure 4: Discretized adaptive dynamics when ϵ = 0.1. Plotted is π[s′, s] − π[s, s], where

s = (A1, h) and (a) s′ = (A1 + 0.2, h), (b) s′ = (A1 − 0.2, h), (c) s′ = (A1, h + 0.02), and (d)

s′ = (A1, h− 0.02).
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Figure 5: Effects of tmax and ϵ on the adaptive dynamics when A1 ≈ P and h = 0. We

set β = 3 and p1 = 0. (a) π[(2.1, 0), (1.9, 0)] − π[(1.9, 0), (1.9, 0)]. (b) π[(1.9, 0), (2.1, 0)] −
π[(2.1, 0), (2.1, 0)].
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Figure 6: Evolutionary dynamics in a population composed of BM players. We set β = 3,

p1 = 0, ϵ = 0.02, and tmax = 200. (a) Time course of h,
∑tmax−1

t=1 |At+1 − At|/20, r/R, and the

fraction of mutual cooperation. (b) Time course of the fraction of initially st1, st2, st3, st4, and

st5 players in the run shown in (a). (c) Sample trajectory of the population averages A1 and h

in the run shown in (a). (d) Sample trajectory of A1 and h under a linear cost of learning.
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Table 1: Average payoff to a nonlearning player (row player) playing against an opponent

nonlearning player (column player). We set β = ∞, 0 < ϵ ≪ 1, and tmax = ∞.

st1 st2 st3 st4 st5

st1 R+T+S+P
4

R+2S+3P
6

R+T+S+P
4

T+2S+P
4

R+T+S+P
4

st2 R+2T+3P
6

P R+2T+2P
5

T+P
2

T+P
2

st3 R+T+S+P
4

R+2S+2P
5

R R+S+P
3

R+T+S+P
4

st4 2T+S+P
4

S+P
2

R+T+P
3

R+P
2

R+P
2

st5 R+T+S+P
4

S+P
2

R+T+S+P
4

R+P
2

R+T+S+P
4
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Table 2: Number of generations necessary for the evolution of mutual cooperation.

ϵ ∆A1 ∆h run
end of stage 1 end of stage 2

(×102) (×102)

1 265 3153

2 210 1718

0.02 0.05 0.01 3 263 4333

4 285 3780

5 260 5833

1 368 3478

2 343 3215

0.05 0.05 0.01 3 280 12895

4 235 9760

5 270 5408

1 223 5145

2 250 5743

0.01 0.05 0.01 3 275 2948

4 270 2679

5 308 2383

1 243 3283

2 258 3548

0.02 0.02 0.01 3 255 16955

4 218 12818

5 223 > 2× 105

1 573 2133

2 530 4025

0.02 0.05 0.005 3 540 3325

4 820 4818

5 600 3218
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