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Abstract

Recent developments in sensing technologies have enabled us to examine the nature of human so-
cial behavior in greater detail. By applying an information theoretic method to the spatiotemporal
data of cell-phone locations, Song et al. (2010) found that human mobility patterns are remarkably
predictable. Inspired by their work, we address a similar predictability question in a different kind
of human social activity: conversation events. The predictability in the sequence of one’s conver-
sation partners is defined as the degree to which one’s next conversation partner can be predicted
given the current partner. We quantify this predictability by using the mutual information. We
examine the predictability of conversation events for each individual using the longitudinal data of
face-to-face interactions collected from two company offices in Japan. Each subject wears a name
tag equipped with an infrared sensor node, and conversation events are marked when signals are
exchanged between close sensor nodes. We find that the conversation events are predictable to some
extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on
average. Much of the predictability is explained by long-tailed distributions of inter-event intervals.
However, an indigenous predictability also exists in the data, apart from the contribution of their
long-tailed nature. In addition, an individual’s predictability is correlated with the position in the
static social network derived from the data. Individuals confined in a community in the sense of
an abundance of surrounding triangles tend to have low predictability, and those bridging different
communities tend to have high predictability.

1 Introduction

In recent times, interest in the statistical and dynamical features of human social behavior has been
growing, supplemented by the development of new devices that enables tracking of social data in real
time with increasing precision and duration [1–9]. A recent remarkable finding from the analysis of
spatiotemporal data of cell-phone locations is that human mobility patterns are highly predictable [2,
10, 11], a finding that is in contrast to the classical view. For instance, in epidemic models that
take the mobility of subjects into account, subjects are usually assumed to perform a conventional
random walk from one location to another [12, 13]. However, actual traveling patterns of humans often
deviate from such random walk models, and the displacement distribution follows the power law [2, 14].
Furthermore, the statistics of the next location of the individual is affected by not only the current
location but also the history of the traveling pattern, resulting in approximately 90% predictability of
the mobility patterns [10].
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In this study, we address a similar predictability question for a different component of human social
behavior: conversation events. Conversation events mediate spreading and routing of diverse contents
such as new ideas, opinions, and infectious diseases in social networks [15, 16]. In models describing
these phenomena, it is a norm that each individual possesses a dynamically changing state (e.g.,
opinion A or opinion B in opinion dynamics, and susceptible or infected state in epidemic dynamics).
The law of transition from one state to another is usually assumed to be Markovian, i.e., independent
of the history of the process. The Markovian property, which is a type of unpredictability, is a null
assumption for simulating such dynamics based on a static social network [15, 16].

However, the plausibility of this null assumption is unclear. Imagine the office that you share with
other colleagues in a company. When you have a question about a project, you may talk to your
boss. After this conversation event, you may tend to talk to a particular individual to communicate
the instruction of the boss. During lunchtime, you may chat with your close colleagues in a particular
order that you do not perceive. How predictable is your choice of your next conversation partner given
the current partner?

We examine the predictability of conversation events using two sets of longitudinal data collected
from company offices in Japan. Our data are unique in that they are collected from a relatively
high number of individuals (i.e., approximately 200 individuals) over a long recording period (i.e.,
approximately three months). We adopt an ego-centric network view to examine the sequence of
conversation events for each individual. We find that a conversation event has notable deterministic
components. In other words, the uncertainty about the next partner that you talk with decreases by
28.4% on average, given the identity of the partner you are currently talking with (see Sec. 3.2).

It should be noted that our approach is related to but different from the studies of power-law
interval distributions in conversation events. The interval between successive conversation events for
an individual or a given pair of individuals often follows a power law [1, 4–6, 8, 17–20]. Modeling
studies have revealed implications of these empirical results in contagions [4, 6, 9, 21–25] and opinion
formation [26, 27]. In contrast to conventional models in which the Poisson interval distribution is
assumed, these results indicate that the next conversation time given the previous one is relatively
predictable in that a conversation event in the recent past is a precursor to a burst of events in the near
future. We argue that this bursty nature of the point process largely contributes to the predictability
of conversation events.

We also show that the degree of predictability depends on individuals. Individuals located inside a
network community, i.e., a dense subnetwork loosely connected to other parts of the entire network [28],
quantified in this study via strong links and the clustering coefficient, behave relatively randomly. On
the other hand, individuals that connect different communities by weak links tend to have a high
predictability.

2 Data and Methods

We analyze two sets of face-to-face interaction logs obtained from different company offices using
the Business Microscope system developed by Hitachi, Ltd., Japan [29, 30]. Data set D1 consists of
recordings from N = 163 individuals for 73 days. Data set D2 consists of recordings from N = 211
individuals for 120 days. Each subject wears a name tag strapped around the neck and placed at the
chest, and each name tag contains an infrared module. The infrared modules can communicate with
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each other if they are less than three meters apart. An infrared module only senses the modules situated
within a 120◦ circular sector in front of the name tag, and the system detects conversation events only
when two individuals are facing each other. Communication between modules includes exchanging
the owners’ IDs every 10 seconds. We regard two individuals to be involved in a conversation event
if their infrared modules communicate with each other at least once in a minute. In other words,
the time resolution of the system is equal to one minute. The list of conversation partners and time
stamps is stored in the name tag of each individual and sent to the central database on a daily basis.
The data transfer occurs when the individual leaves work and put the name tag on the gateway device
connected to the individual’s computer [29, 30]. Each data set contains a list of conversation events,
as shown in Fig. 1. A conversation event is specified by the IDs of the two individuals talking with
each other, the date and time at which the dialogue starts, and the duration of the dialogue. We are
not concerned with the content of the dialogue. Data sets D1 and D2 contain 51, 879 and 125, 345
events, respectively.

We investigate the predictability of each individual’s conversation patterns. Our preliminary data
analysis revealed that the timing of conversation events lacks sufficient temporal correlation and is
unpredictable. Therefore, we neglect the timing of conversation events in the data unless otherwise
stated and focus on the partner sequence defined as follows. To generate the partner sequence of
individual 1, we first sift out all the conversation events that involve individual 1 from the entire
data set (Fig. 1(b)). Next, we ignore the time stamp and duration of the conversation events. The
remaining data define the partner sequence, i.e., the chronologically ordered sequence of the IDs of
the conversation partners for individual 1 (Fig. 1(c)). When multiple conversation events involving
individual 1 are initiated in the same minute, we determine their order at random.

To evaluate the predictability of the partner sequence, we calculate three entropy measures, inspired
by those used for the analysis of human mobility patterns [10]. First, we define the random entropy
for individual i as

H0
i ≡ log2 ki, (1)

where ki represents the number of i’s partners for the entire recording. If i chooses the partner with
equal probability 1/ki from all the i’s acquaintances in each conversation event, H0

i quantifies the
degree of randomness. Second, we define the uncorrelated entropy as

H1
i ≡ −

∑
j∈Ni

Pi(j) log2 Pi(j), (2)

where Ni is the set of i’s partners containing ki elements. Pi(j) represents the probability that individ-
ual i talks with individual j in a conversation event for i; the normalization is given by

∑
j∈Ni

Pi(j) = 1.
As compared to H0

i , H1
i accounts for the heterogeneity among Pi(j) (j 6= i). Third, we define the

conditional entropy as
H2

i ≡ −
∑
j∈Ni

Pi(j)
∑
`∈Ni

Pi(`|j) log2 Pi(`|j), (3)

where Pi(`|j) represents the conditional probability that individual i talks with individual ` immedi-
ately after talking with individual j. H2

i measures the second-order correlation in the partner sequence
of i. For each individual, 0 ≤ H2

i ≤ H1
i ≤ H0

i is satisfied. We quantify the predictability of the partner
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sequence by the mutual information as follows:

Ii ≡ H1
i − H2

i =
∑

j,`∈Ni

Pi(`, j) log2

Pi(`, j)
Pi(`)Pi(j)

, (4)

where Pi(`, j) represents the joint probability that individual i talks with individual ` immediately after
talking with individual j. For each individual, 0 ≤ Ii ≤ H1

i is satisfied. Ii quantifies the predictability
of the partner sequence; it is equal to the amount of the information about the next partner that is
earned by knowing the current partner. When the partner sequence lacks a second-order correlation
such that H1

i = H2
i , Ii takes the minimum value 0. In this case, knowing the current partner does

not help predict the next partner at all. When the partner sequence is completely deterministic, i.e.,
the next partner is completely predicted from the current partner such that H2

i = 0, Ii takes the
maximum value H1

i .
Although our prime interest in this study is the temporal properties of partner sequences, we also

analyze the conversation networks (CNs) G1 and G2 constructed by aggregating all the conversation
events in D1 and D2, respectively, over the entire recording. In a CN, the node represents an individual,
and the weight of the link, denoted as wij , represents the number of conversation events between
individuals i and j during the entire recording period. By the definition of the conversation event,
wij = wji (i, j = 1, 2, · · · , N) holds true; the CN is an undirected network. The degree ki of individual i
is equal to the number of js for which wij > 0.

3 Results

3.1 Properties of the CN

We found that both CNs, G1 and G2, are composed of a single connected component. The CN G1 is
visualized in Fig. 2; we will analyze the relation between the CNs and the predictability in Sec. 3.3.
The clustering coefficient [31] of the unweighted versions of G1 and G2 is equal to 0.646 and 0.611,
respectively. The Pearson assortativity coefficient [32] of G1 and G2 is equal to 0.169 and 0.296,
respectively. Therefore, the CNs have typical properties of social networks [33], i.e., high clustering
and positive assortativity.

For the two CNs, we measure the distributions of degree, node strength, and link weight. The
node strength si is the sum of link weights connecting to node i [34, 35], i.e., the total number of
conversation events for individual i, defined as

si ≡
∑
j∈Ni

wij . (5)

The mean and standard deviation of ki of G1 and G2 are equal to 26.07±11.01 and 69.56±29.47 (mean
± standard deviation), respectively. Because two individuals are adjacent if there is at least one
conversation event for a few months, the mean ki of both networks is relatively large. si of G1 and G2

is equal to 636.6±516.7 and 1188.1±622.1, respectively. wij of G1 and G2 is equal to 24.41±53.69 and
17.08 ± 45.77, respectively. The cumulative distribution of the three quantities are shown in Fig. 3.
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3.2 Predictability of partner sequences

We examine the predictability of partner sequences using the entropy measures. Because the estimation
of entropy is notoriously biased when the data size is small, we discard individuals with less than 100
conversation events (i.e., si < 100). There remain 146 and 210 individuals in data sets D1 and D2,
respectively after the thresholding. Because the results for the two datasets are similar, we report the
results for D1 in the following. The results for D2 are given in Appendix A.

The histograms of the three types of entropies for partner sequences are shown in Fig. 4(a). For
all the individuals, H1

i is at least 9.94% smaller than H0
i . This implies that individuals preferentially

select particular partners from their neighbors in the CN.
The values of H1

i and H2
i for each individual are shown in Fig. 4(b). The mutual information

Ii = H1
i − H2

i is positive for all the individuals regardless of the value of H1
i . In general, the finite

size effect decreases H1
i and H2

i by different amounts such that the estimated Ii is generally inherited
with a positive bias [36]. For our data, the positive values of Ii are not an artifact caused by the small
data size. Through a bootstrap test (see Appendix B for details), we confirmed that the empirical
values of Ii are significantly (at 1% level) larger than the values obtained from the bootstrap samples.
In short, the bootstrap samples are randomized partner sequences that destroy temporal correlation
in the data but preserve the original H1

i and account for the portion of Ii derived from the finite size
effect. It should also be noted that we determined the order of partners at random when conversation
events with different partners initiate in the same minute. This randomization does not make Ii larger
because it conserves H1

i and makes H2
i larger than the true value. In fact, the Pearson correlation

coefficient between Ii and the fraction of such overlapping conversation events for individual i (1 ≤
i ≤ N , si ≥ 100) is slightly negative (i.e., −0.0811). In summary, the information about the current
conversation partner gives the information about the next partner; H2

i is, on average, 28.4% smaller
than H1

i .
The predictability present in the data is mainly explained by the bursty activity patterns, i.e.,

long-tailed distributions of the inter-event intervals, which have been observed for various data [1, 4–
6, 8, 17–20]. Our data also possess this feature (see Appendix C for details). Because the inter-event
interval for a given pair of individuals obeys a long-tailed distribution, individual i tends to talk
with individual j within a short period after talking with j. In the remainder of this section, we
show that the predictability is mainly caused by the bursty activity patterns (Fig. 5(a)) and that the
predictability still remains even if we omit the contribution of the burstiness from the partner sequence
(Fig. 5(b)).

We examine the contribution of the bursty activity pattern to the predictability by calculating the
mutual information Iburst

i of the randomized partner sequence. The randomization of the inter-event
intervals between each pair of individuals is realized by swapping inter-event intervals of the original
data within each day in a completely random order (see Appendix D for the precise methods). Due to
the computational cost of the randomization procedure, we obtain the mean and standard deviation
of Iburst

i from 100 randomized partner sequences, instead of estimating the confidential interval of
Iburst
i . The mean Iburst

i accounts for 79.5% of the original Ii on an average (Fig. 5(a)). Because the
randomization procedure preserves the inter-event interval distribution, Fig. 5(a) suggests that a large
Ii is mainly attributed to the bursty activity patterns. It should be noted that Iburst

i is large partly
because the randomizing procedure conserves the timings of the first and last conversation events of
each pair on any day. Therefore, we may be overestimating the contribution of burstiness to Ii.
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The predictability is not solely determined by the bursty activity patterns. To clarify this point,
we calculate the mutual information Imerge

i of the modified partner sequence generated by merging
the consecutive conversation events with the same partner in the original partner sequence into one
event. This merging procedure allows us to eliminate the contribution of the bursty activity pattern
to the predictability. For example, if individual i talks with individual j three times without being
interrupted by other partners, we merge the three conversation events into one. The values of Imerge

i

are shown in Fig. 5(b). To confirm that the positive values of Imerge
i are not an artifact caused by

the small data size, we carry out a bootstrap test for Imerge
i similar to that for Ii. By definition, no

partner ID appears successively in the merged partner sequence. Therefore, we generate the bootstrap
sample of the merged partner sequence by sampling from the merged sequence with replacement under
the condition that the same partner is not consecutively chosen (see Appendix D for details). Imerge

i

is significantly larger than the values obtained from the bootstrap samples. Therefore, the original
partner sequence possesses some predictability even after removing bursts originating from the bursty
nature.

3.3 Variation among the predictabilities of individuals

The predictability, quantified by Ii, depends on individuals. In this section, we investigate the re-
lationship between the predictability of individuals and properties of nodes in the CN. The results
shown in this section are summarized as follows. First, Ii is negatively correlated with node strength
si and with mean node weight defined as wi ≡

∑
j∈Ni

wij/ki (Fig. 6). Second, the CN possesses the
“strength of weak ties” structure (Fig. 7(a)). Third, the individuals bridging different communities
with weak links tend to have large Ii, and those concealed in a single community and surrounded by
strong links tend to have small Ii (Fig. 7(b)).

One may speculate that Ii is strongly affected by the node degree ki because H0
i = log2 ki and H1

i

and H2
i comprise many terms if ki is large. However, ki and Ii are uncorrelated, as shown in Fig. 6(a).

We found that Ii is negatively correlated with si (Fig. 6(b)) and with wi (Fig. 6(c)). We verified using
the bootstrap test that the negative correlation shown in Fig. 6(b) and 6(c) is not because of the finite
sampling size (see Appendix B for details). The correlation shown in Fig. 6 and the following results
do not qualitatively change if we use the normalized mutual information [37] Ii/H1

i (see Appendix E).
We also verified that alternatively defining the link weight by the total duration of the conversation
events for each pair, instead of the total number of the conversation events, does not qualitatively
change the results described in this section (see Appendix F for details).

For a fixed ki, both si and wi decrease with the number of weak links (i.e., the links with small
weight) connected to individual i. This fact leads us to hypothesize that individuals surrounded by
weak links select partners in a relatively deterministic order. According to Granovetter’s theory of the
strength of weak ties, weak links tend to interconnect different communities in a social network and
bring valuable external information to both end nodes, while strong links tend to be intracommunity
links [38]. Therefore, the individuals bridging different communities with weak links may have large
values of Ii.

We first verify the “strength of weak ties” hypothesis in the CN. The network visualized in Fig. 2
appears to be consistent with the hypothesis; weak links tend to connect communities composed of
strong links. To quantify the extent to which a link is engaged in intracommunity connection, we

6



measure the relative neighborhood overlap of a link [39], defined as

Oij =
|Ni ∩Nj |

|Ni ∪Nj | − 2
, (6)

where |·| denotes the number of elements in the set. When Oij = 0, individuals i and j do not
have a common neighbor and the link (i, j) is considered to connect different communities. When
Oij = 1, individuals i and j share all of the neighbors and the link (i, j) is confined in a community.
The “strength of weak ties” hypothesis suggests that Oij is positively correlated with wij [39]. In
Fig. 7(a), Oij averaged over the links with weights smaller than w, denoted as 〈O〉w, is plotted against
the fraction of links with weights smaller than w, denoted as Pcum(w). Because 〈O〉w monotonically
increases with Pcum(w), the CN possesses the “strength of weak ties” property, as in the case of mobile
communication networks [39].

Because weak links are associated with a large Ii (Fig. 6(c)) and intercommunity links (Fig. 7(a)),
individuals with a large Ii are expected to bridge different communities and those with a small Ii are
expected to be shielded inside a community. This concept is consistent with the visual inspection
of Fig. 2. To verify this point, we show that Ii is negatively correlated with a calibrated clustering
coefficient in the following (Fig. 7(b)). Note that, when the clustering coefficient is large, the individual
tends to be inside a community quantified by the abundance of triangles [40]. When it is small, the
individual tends to connect different communities [41, 42].

The clustering coefficient for each node is defined by Ci = (number of triangles including individ-
ual i)/[ki(ki − 1)/2] (0 ≤ Ci ≤ 1, i = 1, 2, · · · , N) [31]. In Fig. 7(b), the Pearson correlation coefficient
between Ii and Ci(wthr) is plotted against wthr, where Ci(wthr) is the local clustering coefficient Ci for
the subgraph of the CN generated by eliminating the links with weights smaller than wthr. We opted
to use Ci(wthr) instead of the weighted clustering coefficient defined for weighted networks [35, 43]
because the latter quantity is, by definition, strongly correlated with si and wi; we already discussed
the negative correlation between Ii and si and between Ii and wi in Fig. 6(b) and 6(c), respectively.
For wthr = 1, Ii and Ci(wthr) are almost uncorrelated. This is because almost all the individuals
have a large Ci regardless of Ii in the original CN G1 (refer to Fig. 2 for a visual confirmation of
this statement). For 2 ≤ wthr ≤ 100, Ii and Ci(wthr) are negatively correlated (squares in Fig. 7(b)).
Therefore, an individual with a large Ii tends to bridge different communities as quantified by the
clustering coefficient. An individual with a small Ii tends to be confined within communities. The
circles in Fig. 7(b) represent the partial correlation coefficient between Ii and Ci(wthr), with ki(wthr)
and si(wthr) fixed. Here, ki(wthr) and si(wthr) are, respectively, the degree and strength of individ-
ual i, calculated after eliminating the links with weights smaller than wthr. Because the Pearson and
partial correlation coefficients behave similarly, the negative correlation between Ii and Ci(wthr) is not
ascribed to the negative correlation between Ii and si (Fig. 6(b)) or between Ii and wi (Fig. 6(c)).

In the closing of this section, we remark the robustness of our results against observation failures.
The wearable tag used in our measurement fails to detect a conversation event if the tag is sealed
behind obstacles such as a desk or partition. For example, suppose that two individuals chat for
five minutes and either of their tags is just under a desk and is undetected in the third minute.
Then, the single conversation event is split into two spurious conversation events, each lasting for two
minutes. To examine the robustness of our results against such observation failures, we repeat the
same set of analysis after filling short intervals between successive conversations between the same
pair of individuals. If individual i has two successive conversation events with individual j and the
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interval between the two events is smaller than m minutes, we merge the two events into one. The
original partner sequence corresponds to m = 0. The number of conversation events decreases with
m. The interpolation reduces wij , si, and wi and conserves ki, H0

i , and Ci. We confirmed that our
findings are reproduced when we interpolate the original data with m = 1 and m = 5 (see Appendix G
for details).

4 Discussion

We have shown that sequences of conversation events have deterministic components. The entropy in
the distribution of the conversation partner of an individual decreases by, on an average, 28.4% for
data set D1 and 34.8% for data set D2, if we know the current partner. Much of the predictability of
conversation events results from the bursty activity patterns. In general, daily and weekly rhythms of
human activity can cause bursty activity patterns [20]. During the night and weekend, the individuals
are out of the office. Therefore, inter-event intervals are usually longer than those within working hours.
Nevertheless, we consider that the effects of such long inter-event intervals on the predictability of
conversation partners is small. This is because the fraction of long inter-event intervals, i.e., those
over five hours, for example, is relatively small, occupying 4.31% in D1 and 2.95% in D2. In addition,
there is no particular reason to believe that the last conversation partner in a day and the first partner
in the next day are specifically correlated. In this study, we did not correct for the effect of the night
and weekend.

The degree of predictability depends on individuals. In particular, we have shown that individuals
connecting different communities in conversation networks behave relatively deterministically. We
quantified the degree to which an individual is confined in communities by the clustering coefficient.
In the context of overlapping community structure, individuals connect different communities when
they belong to multiple overlapping communities [40]. Such individuals tend to be surrounded by
many triangles if we define the community by 3–cliques (i.e., triangles). This apparently contradicts
our results. This contradiction comes from the difference in what we mean by connecting different
communities. We regard individuals as bridging different communities when they are not strongly
bound to any community and they have links to different communities. In this sense, nodes with small
clustering coefficient values connect different communities in networks with hierarchal structure [42,
44]. In general, links bridging different communities have large betweenness centrality values [45].
The clustering coefficient of a node tends to decease with the betweenness centrality [46]. This lends
another support to our view that individuals with small clustering coefficient values tend to connect
different network communities. It should be noted that the “strength of weak ties” property of the
CN and the relationship between Ii and the individuals’ position in the CN are preserved, if we define
the link weight by the total duration of the conversation events for each pair (see Appendix F).

We do not have an access to the contents of dialogs for ethics reasons. Therefore, the understand-
ing of the reason for the correlation between the individual’s position and predictability is limited.
Nevertheless, individuals that own many weak links and connect distinct groups may mediate infor-
mation flows necessary to coordinate tasks involving these groups (e.g., project groups in a company).
Such individuals may control the information flow between the groups in a rigid manner to yield a
large Ii. In contrast, individuals with few weak links may enjoy casual (and perhaps creative) conver-
sations within their own groups to choose the partners in a random manner. Such individuals may
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tend to have a small Ii. It should be noted that our data were obtained in company offices. Roles or
formal positions of individuals in the company may affect Ii and the local abundance of weak links
surrounding the individuals.

Song et al. discovered a remarkable predictability in the mobility patterns of humans [10]. In
terms of the analysis tools, our methods are similar to theirs. We have applied the entropy measures
and the concept of predictability to different types of data sets. In our data, the physical location
of individuals is irrelevant; individuals work in offices in the companies. It should be noted that
although we have not implemented the prediction algorithm, the predictability of the data is implied
by the large mutual information that we observed. This logic parallels that made for human mobility
patterns [10].
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Appendix

A. Results for data set D2

We obtained qualitatively the same results for D2 as those for D1. The results for D2 are shown in
Figs. A1, A2, A3, and A4, which correspond to Figs. 4, 5, 6, and 7 in the main text, respectively.

B. Details of the bootstrap test

To confirm that the large value of the empirically obtained Ii is not because of the small data size, we
carry out a bootstrap test as follows. First, we make a bootstrap sample of a partner sequence with
length si by resampling partners’ IDs from the empirical partner sequence of individual i without
replacement (i.e., shuffling). Then, we use Eq. (4) to calculate the mutual information Îi for the
bootstrap sample. By resampling 5,000 bootstrap partner sequences, we construct the distribution
of Îi, which we denote as p(Îi). On the basis of p(Îi), we carry out a hypothesis test for Ii. The
null hypothesis of the test is that Ii is positive just because of the small data size. The alternative
hypothesis is that Ii is larger than the value expected for unstructured data of a small size. We set
the significance level of the test to 1%. Consequently, the critical region of the null hypothesis is the
half-open interval above the 99 percentile point of p(Îi). In Fig. A5, the results of the bootstrap test
are summarized. Apparently, Ii is above the 99 percentile point (i.e., the upper end of the each error
bar). In fact, for all the individuals in D1 and D2, except individual 14 in D1 and 149 in D2, the null
hypothesis is rejected with a 1% significance level.
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C. Long-tailed behavior of inter-event intervals

Human’s activity patterns are characterized by long-tailed distributions of the inter-event intervals [1,
4–6, 8, 17–20], a feature that is shared by our data. We define the inter-event interval τ as the interval
between the initiation time of two successive conversation events involving a given individual. The
unit of τ is a minute, corresponding to the time resolution of the recording. As shown in Fig. A6(a),
the distribution of τ , denoted by p(τ), for a typical individual in D1 is long-tailed. The tail of the
empirical data (solid line) is much fatter than that of the exponential distribution whose mean is equal
to that of the empirical data (dashed line). The histogram of the coefficient of variation (CV) of p(τ)
on the basis of all the individuals in D1 and the same histogram for D2 are shown in Fig. A6(b).
The value of CV is equal to the ratio of the standard deviation to the mean and is equal to unity for
exponential distribution. Figure A6(b) indicates that the CV of p(τ) is much larger than unity for all
the individuals.

D. Components of the predictability of conversation events

A possible mechanism governing the predictability of the conversation events is the bursty activity
patterns. To examine the effect of long-tailed behavior of p(τ) on the predictability, we carry out a
statistical test based on the shuffling of Ii as follows. Consider the sequence of conversation events of
focal individual i with individual j. If i and j talk four times in a given day and the inter-event intervals
are equal to τ1, τ2, and τ3 in the chronological order, we randomize their order. For example, the inter-
event intervals in the shuffled data are ordered as τ2, τ1, and τ3. We carry out the same randomization
for each day and each partner j. Then, we combine the randomized sequences (i.e., point processes)
for different js into one point process from which we read out the randomized partner sequence for
i. We define Iburst

i as the mutual information for this randomized partner sequence. In Fig. 5(a), the
mean and standard deviation of Iburst

i obtained from 100 randomized partner sequences are shown
for different individuals in D1. The empirical values of Ii (circles) are significantly larger than Iburst

i

for most individuals. However, Iburst
i consistently occupies a large fraction of Ii and increases with

Ii. Therefore, the burstiness is a major cause of the predictability regardless of the value of Ii. The
burstiness is not the only contributor to the predictability. To show this, we examine the reduced
partner sequence generated by merging all the consecutive events with the same partner into one event.
For example, the original partner sequence {2, 3, 3, 6, 4, 4, 3, 3, 3, 2, 6, 2} yields the merged partner
sequence {2, 3, 6, 4, 3, 2, 6, 2}. We calculate the mutual information in the merged partner sequence,
denoted by Imerge

i . Imerge
i measures the predictability of conversation events that does not result from

the burstiness. We do not directly compare Imerge
i with the original Ii because the merging procedure

shortens the length of the partner sequence and the amount of mutual information generally depends
on the length of a sequence. Instead, we carry out a bootstrap test for Imerge

i . By definition, the
partner changes every time in the merged partner sequence. We obtain bootstrap samples respecting
this property as follows. The frequency with which partner j appears in the merged partner sequence of
individual j is denoted by Pmerge

i (j). We select the first partner of i, denoted by `, randomly according
to Pmerge

i (j). The second partner is selected according to Pmerge
i (j)/(1 − Pmerge

i (`)), where j 6= `.
We repeat the same procedure until the generated sequence becomes as long as the merged partner
sequence. Figure 5(b) summarizes the results of the bootstrap test for Imerge

i . Imerge
i is consistently

larger than the values expected for the bootstrap samples for all the individuals. Therefore, the partner
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sequence is predictable to some extent even without the effect of the bursty activity patterns.

E. Use of normalized mutual information

In the field of cluster partitioning, the normalized mutual information Ii ≡ Ii/H1
i is used to quantify

the accuracy of partitioning methods, because the relationship 0 ≤ Ii ≤ 1 is convenient for comparing
different methods [37]. Our main results are qualitatively the same if we replace Ii by Ii (Fig. A7).

F. Alternative definition of the link weight based on the duration of conversation

In the main text, we defined the link weight by the total number of the conversation events for each
pair. An alternative definition is given by the total duration of the conversation events for each pair.
This alternative definition changes wij , si, and wi and conserves ki, H0,1,2

i , and Ii. For the CN where
the link weight is defined by the total duration, we repeat the same set of analysis as that conducted
in Sec. 3.3. As shown in Fig. A8, the change in the definition of the link weight does not affect our
main results. We observed a negative correlation between Ii and si (Fig. A8(a)), that between Ii and
wi (Fig. A8(b)), the “strength of weak ties” property (Fig. A8(c)), and a negative correlation between
Ii and Ci(wthr) (Fig. A8(d)).

G. Robustness against observation failures

To examine the robustness of our results against observation failures, we analyze the data sets after
interpolating short intervals between successive conversations between the same pairs of individuals.
Suppose that individuals i and j talk with each other twice and that i does not talk with anybody
else between the two conversation events with j. We merge the two conversation events into one if
the difference between the ending time of the first event and the starting time of the second event is
less than m minutes.

In Fig. A9, s̃i, H̃1
i , H̃2

i , and Ĩi, which are the quantities calculated for the data obtained with
m = 1, are compared with si, H1

i , H2
i , and Ii, respectively. As expected, s̃i is smaller than si, and

H̃1
i and H̃2

i are generally larger than H1
i and H2

i , respectively. As shown in Fig. A10, the important
properties of the data sets are not changed by the interpolation with m = 1. In other words, a negative
correlation between Ĩi and s̃i (Fig. A10(a)) and that between Ĩi and w̃i (Fig. A10(b)), the “strength
of weak ties” property (Fig. A10(c)), and a negative correlation between Ĩi and Ci(wthr) (Fig. A10(d))
are observed. The results are qualitatively the same for m = 5, as shown in Figs. A11 and A12.
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time stamp               ID1    ID2    duration

2009-01-01 14:13        1        3        1 min

2009-01-01 14:15        1        6        4 min

2009-01-01 14:15        5      26        1 min

2009-01-01 14:18        2        5        1 min

2009-01-01 14:19        1      13        4 min

2009-01-01 14:19        3        4        1 min

2009-01-01 14:24        1      22        1 min

2009-01-01 14:26        1      22        7 min

2009-01-01 14:26        3        6        1 min

time stamp               ID1    ID2    duration

2009-01-01 14:13        1        3        1 min

2009-01-01 14:15        1        6        4 min

2009-01-01 14:19        1      13        4 min

2009-01-01 14:24        1      22        1 min

2009-01-01 14:26        1      22        7 min

.....

.....

{3, 6, 13, 22, 22, ...}

(a) (b)

(c)

Figure 1: Procedure for generating the partner sequence of individual 1. (a) Original data set. (b)
List of conversation events that involve individual 1. (c) Partner sequence of individual 1. The data
set shown in (a) is an artificial one, for the purpose of explanation.
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Figure 2: Visualization of CN G1. For clarity, only the nodes with strengths larger than 100 and the
links among them are drawn. The darkness of the node color represents the value of Ii; a darker node
has a larger Ii. The thickness of the link is proportional to its weight. The links with weights larger
than or equal to (smaller than) the median value (i.e., 5) are drawn by red (blue) lines.

16



0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

k i

cu
m

ul
at

iv
e 

di
st

ri
bu

tio
n G1

G2

(a)

s i

cu
m

ul
at

iv
e 

di
st

ri
bu

tio
n G1

G2

(b)
0 1000 2000 3000

0.0

0.2

0.4

0.6

0.8

1.0

w i j

cu
m

ul
at

iv
e 

di
st

ri
bu

tio
n G1

G2

(c)
100 101 102 103

10−4

10−3

10−2

10−1

100

Figure 3: Cumulative distribution of (a) degree, (b) node strength, and (c) link weight of the CNs.
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Figure 5: Results of the bootstrap test for D1. The circles represent Ii and Imerge
i in (a) and (b),

respectively. The error bars represent the statistics for the bootstrap samples. (a) Results of the
shuffling test. Ii and the error bars are plotted in the ascending order of Ii. The error bars indicate
one standard deviation around the mean of Iburst

i , obtained from 100 shuffled partner sequences. The
ticks at the middle of the error bars indicate the mean. (b) Results of the merging test. Imerge

i and the
confidential intervals (error bars) are plotted in the ascending order of Imerge

i . The lower and upper
ends of the error bars represent 0 and 99 percentile points, respectively. The ticks at the middle of
the error bars indicate the mean.
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Figure 6: Mutual information Ii is plotted against (a) degree ki, (b) node strength si, and (c) average
node weight wi, for D1. The Pearson correlation coefficient R between the plotted quantities is also
shown.
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Figure 7: (a) Averaged neighborhood overlap 〈O〉w as a function of the fraction of links with weights
smaller than w for D1. (b) Pearson correlation coefficient between Ii and Ci(wthr) (squares) and the
partial correlation coefficient between them with ki(wthr) and si(wthr) fixed (circles), for D1. The
horizontal line represents zero correlation.
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Figure A2: Results of the bootstrap tests for D2 on the basis of (a) shuffling and (b) merging of the
partner sequence. See the caption of Fig. 5 for legends.
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Figure A3: Mutual information Ii is plotted against (a) degree ki, (b) node strength si, and (c) average
node weight wi, for D2. The Pearson correlation coefficient R between the plotted quantities is also
shown.
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Figure A4: (a) Averaged neighborhood overlap 〈O〉w as a function of the fraction of links with weights
smaller than w for D2. (b) Pearson correlation coefficient between Ii and Ci(wthr) (squares) and the
partial correlation coefficient between them with ki(wthr) and si(wthr) fixed (circles), for D2.
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Îi

(a)

1 50 100 150 200
0

1

2

3

4

i  in the ascending order of I i

Îi
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Figure A5: Results of the bootstrap test of the finite size effect for (a) D1 and (b) D2. Ii (circles)
and the confidential intervals (error bars) of individuals are plotted in the ascending order of Ii. The
lower and upper ends of the error bars represent 0 and 99 percentile points, respectively. The ticks at
the middle of the error bars indicate the mean.
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Figure A6: (a) Cumulative distribution of the inter-event intervals of a typical individual in D1 (solid
line). The dotted line represents the power-law fit with exponent −1.52, obtained from the maximum
likelihood test [47]. The dashed line represents the exponential distribution with the same mean as
that of the data. (b) Distributions of the CV of p(τ) in D1 and D2.
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Figure A7: Normalized mutual information Ii is plotted against (a) degree ki, (b) node strength si,
and (c) average node weight wi, for D1. The Pearson correlation coefficient R between the plotted
quantities is also shown. (d) Pearson correlation coefficient between Ii and Ci(wthr) (squares) and the
partial correlation coefficient between them with ki(wthr) and si(wthr) fixed (circles).

28



0 1000 2000 3000 4000 5000

0.5

1.0

1.5

2.0

s i

R = − 0.477
(a)

I i

0 50 100 150 200

0.5

1.0

1.5

2.0

w i

R = − 0.5722
(b)

I i

P cum(w)

(c)

<
O

>
w

0.2 0.4 0.6 0.8 1.0

0.30

0.35

0.40

0.45

0 20 40 60 80 100
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

w thr

R I, C(w thr)
R̂I, C(w thr)

(d)

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure A8: Results when the link weight is defined by the total duration of the conversation events
for each pair, for D1. The mutual information Ii is plotted against (a) node strength si and (b)
average node weight wi. The Pearson correlation coefficient R between the plotted quantities is also
shown. (c) Averaged neighborhood overlap 〈O〉w as a function of the fraction of links with weights
smaller than w. (d) Pearson correlation coefficient between Ii and Ci(wthr) (squares) and the partial
correlation coefficient between them with ki(wthr) and si(wthr) fixed (circles).
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Figure A10: Results for the interpolated data with m = 1. We use data set D1. The mutual
information is plotted against (a) node strength and (b) mean weight. (c) Averaged neighborhood
overlap 〈O〉w as a function of the fraction of links with weights smaller than w. (d) Pearson correlation
coefficient (squares) and partial correlation coefficient (circles) between Ii and Ci(wthr).
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Figure A11: Comparison between the interpolated and original data for data sets D1 and D2. (a)
Node strength, (b) uncorrelated entropy, (c) conditional entropy, and (d) mutual information for the
interpolated data with m = 5 are plotted against those without interpolation (i.e., original data sets).
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Figure A12: Results for the interpolated data with m = 5. We use data set D1. See the caption of
Fig. A10 for legends.
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