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Algorithms for Finding a Maximum Non-k-linked Graph∗

Yusuke Kobayashi† Yuichi Yoshida‡

Abstract

A graph with at least 2k vertices is said to be k-linked if for any ordered k-tuples
(s1, . . . , sk) and (t1, . . . , tk) of 2k distinct vertices, there exist pairwise vertex-disjoint paths
P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k. For a given graph G, we consider
the problem of finding a maximum induced subgraph of G that is not k-linked. This problem
is a common generalization of computing the vertex-connectivity and testing the k-linkedness
of G, and it is closely related to the concept of H-linkedness. In this paper, we give the
first polynomial-time algorithm for the case of k = 2, whereas a similar problem that finds a
maximum induced subgraph without 2-vertex-disjoint paths connecting fixed terminal pairs
is NP-hard. For the case of general k, we give an (8k−2)-additive approximation algorithm.
We also investigate the computational complexities of the edge-disjoint case and the directed
case.

Key Words: k-linkedness, H-linkedness, disjoint paths, connectivity

1 Introduction

A graph is said to be k-linked if it has at least 2k vertices and for any ordered k-tuples (s1, . . . , sk)
and (t1, . . . , tk) of 2k distinct vertices, there exist pairwise vertex-disjoint paths P1, . . . , Pk such
that Pi connects si and ti for i = 1, . . . , k. The k-linkedness has been well-studied by many graph
theorists, and there are many results on relationships between the k-linkedness and the vertex-
connectivity of graphs [1, 8, 10, 14, 21]. From the algorithmic point of view, the k-linkedness
has attracted attention because of similarities with the vertex-disjoint paths problem, which is
one of the most important problems in computer science and algorithmic graph theory. In the
vertex-disjoint paths problem, we are given a graph G and 2k distinct vertices s1, . . . , sk, t1, . . . , tk
called terminals, and the objective is to find pairwise vertex-disjoint paths P1, . . . , Pk such that
Pi connects si and ti for i = 1, . . . , k. With the terminology of the vertex-disjoint paths problem,
a graph is k-linked if and only if the vertex-disjoint paths problem has a solution for any choice
of 2k terminals. In this paper, we consider the problem of finding a minimum number of vertices
whose removal makes the graph non-k-linked, which can be stated as follows.

Max Non-k-Linked Induced Subgraph

Input. A graph G = (V,E).

Problem. Find a vertex set V0 ⊆ V with maximum cardinality such that G[V0] (the subgraph
induced by V0) is not k-linked.

∗An extended abstract of this paper appears in ESA 2011.
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‡School of Informatics, Kyoto University, and Preferred Infrastructure, Inc. Supported by MSRA Fellowship
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We mainly discuss the case of k = 2, which is interesting because of its relation to the
problem of finding a maximum planar induced subgraph. By a classical result on the 2 vertex-
disjoint paths problem [18], it is well-known that the graph is not 2-linked if and only if it cannot
be embedded in a plane up to “3-separations” (see Theorem 3.2 for the precise statement). That
is, the non-2-linkedness is a similar concept to the planarity. The problem of finding a maximum
planar induced subgraph is an important problem in theoretical computer science, because it
amounts to computing a measure for non-planarity of graphs (see e.g. [2, 15]). Max Non-2-Linked
Induced Subgraph can also be regarded as a problem of computing a measure for non-planarity
of graphs, which is one of our motivations for studying Max Non-k-Linked Induced Subgraph.
As we will describe later, we show that Max Non-2-Linked Induced Subgraph can be solved in
polynomial time (Theorem 3.1). This result is surprising because most of all natural problems
of computing measures for non-planarity, such as finding a maximum planar (induced) subgraph
or computing the minimum number of crossings in an embedding in a plane, are known to be
NP-hard (see [15]).

Max Non-k-Linked Induced Subgraph is motivated also by the concept of H-linkedness that
has been studied [4, 6, 11, 12, 13] as a common generalization of the graph connectivity and
the k-linkedness. For a multigraph H, an H-subdivision in a graph G is a pair of mappings
f : V (H) → V (G) and g : E(H) → P, where P is the set of paths in G, such that:

1. f(u) ̸= f(v) for all distinct u, v ∈ V (H),

2. g(uv) is a path connecting f(u) and f(v) in G for uv ∈ E(H), and the paths are internally
disjoint.

For a multigraph H, a graph G is H-linked if every injective mapping f : V (H) → V (G) can be
extended to an H-subdivision in G. This is a generalization of the notions of k-linkedness and
k-connectivity, because the H-linkedness is equivalent to the k-linkedness when H is a matching
with k edges, and it is equivalent to the k-connectivity when H consists of k + 1 vertices and
one edge.

For a multigraph H (or an integer k, respectively), determining whether a given graph G
is H-linked (resp. k-linked) or not is a natural algorithmic problem. When a multigraph H
(resp. an integer k) is fixed, Robertson and Seymour [16] gave a polynomial-time algorithm for
this problem based on their seminal work on graph minor project, which spans 23 papers and
gives several deep and profound results in discrete mathematics. On the other hand, when H
or k is a part of the input, no polynomial-time algorithm is known for the problem. Thus,
determining the H-linkedness for non-fixed multigraphs H is an interesting open problem.

Our second motivation for Max Non-k-Linked Induced Subgraph comes from the fact that it
is a special case of the problem of determining the H-linkedness. More precisely, Max Non-k-
Linked Induced Subgraph is equivalent to the case when H is a union of a matching of size k and
l distinct vertices, i.e., H has 2k+ l vertices and k edges. Let us emphasize that k and/or l are a
part of the input throughout this paper, and so this problem setting is completely different from
the case when H is fixed. Note that when k = 1, determining the H-linkedness is equivalent
to testing the vertex-connectivity of an input graph. On the other hand, the polynomial-time
solvability of the case of k = 2, which corresponds to Max Non-2-Linked Induced Subgraph, is
non-trivial.

We can also consider the edge-disjoint version. We say that a graph G is weakly k-linked if for
any ordered k-tuples (s1, . . . , sk) and (t1, . . . , tk) of 2k vertices (not necessarily distinct), there
exist pairwise edge-disjoint paths P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k.

Max Weakly Non-k-Linked Subgraph

2



Input. A graph G = (V,E).

Problem. Find an edge set E0 ⊆ E with maximum cardinality such that the subgraph G0 =
(V,E0) is not weakly k-linked.

Note that we find an edge set E0 in this problem, whereas we find a vertex set V0 inMax Non-
k-Linked Induced Subgraph. This problem setting is natural because the weakly k-linkedness is
closely related to the edge-connectivity rather than the vertex-connectivity. When k = 1, Max
Weakly Non-k-Linked Subgraph is equivalent to computing the edge-connectivity of an input
graph, that is, the edge-connectivity is c if and only if the optimal value is |E| − c. Thus,
this problem is a generalization of computing the edge-connectivity and testing the weakly k-
linkedness. We also note that in the same way as the relationship between Max Non-k-Linked
Induced Subgraph and the H-linkedness, Max Weakly Non-k-Linked Subgraph is related to the
concept of H-immersion studied in [3, 17].

Related work: Many graph theorists are interested in how much connectivity is necessary to
ensure that a graph is k-linked [1, 8, 10, 14, 21]. It is shown (implicitly) in [21] that, every
10k-connected graph is k-linked, which is the currently best bound. Similar results are known
for the edge-disjoint case, that is, it is shown in [7] that every (k + 2)-edge-connected graph is
weakly k-linked. In the same way as the k-linkedness, the main interest on the H-linkedness
goes to sufficient conditions for graphs to be H-linked [4, 6, 11, 12, 13].

The k-linkedness is closely related to the vertex-disjoint paths problem with k terminal pairs
(k-vertex-disjoint paths problem). When k is a part of the input of the problem, this is one
of Karp’s NP-complete problems [9]. In 1980, it was shown that the 2-vertex-disjoint paths
problem is solvable in polynomial time [18, 20, 22]. In particular, the following characterization
is shown for the existence of the 2-vertex-disjoint paths.

Theorem 1.1 ([18]). Let G = (V,E) be a graph and let s1, t1, s2, t2 be distinct terminals. The
2-vertex-disjoint paths problem has no solution if and only if there exists a partition U,A1, . . . , Al

(l ≥ 0) of V with s1, t1, s2, t2 ∈ U such that

(1) for 1 ≤ i, j ≤ l with i ̸= j, N(Ai) ∩Aj = ∅,

(2) for 1 ≤ i ≤ l, |N(Ai)| ≤ 3 and G[Ai] is connected, and

(3) if G′ is the graph obtained from G by deleting Ai and adding new edges joining every
pair of distinct vertices in N(Ai) for every i, then G′ can be embedded in a plane so that
s1, s2, t1, t2 are on the outer boundary of G′ in this order.

The characterization will be used in our argument. On the other hand, the 2-vertex-disjoint
paths problem (or the 2-edge-disjoint paths problem) in digraphs, in which we find directed
paths P1, P2 such that Pi is from si to ti for i = 1, 2, was shown to be NP-hard [5].

For fixed k, Robertson and Seymour [16] gave a polynomial-time algorithm for the k-vertex-
disjoint (edge-disjoint) paths problem based on their graph minor theory. When k is fixed, by
solving the k-vertex-disjoint (or edge-disjoint) paths problem for every choice of the terminals,
the k-linkedness (resp. the weakly k-linkedness) of an input graph can be tested in polynomial
time. Similarly, for any fixed multigraph H, we can determine whether an input graph is H-
linked or not in polynomial time. We emphasize here that this algorithm runs in polynomial
time only when H is fixed.

Our contributions: In this paper, we consider algorithms for Max Non-k-Linked Induced Sub-
graph and the corresponding edge-disjoint version (Max Weakly Non-k-Linked Subgraph). We
summarize our results in Table 1.
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Table 1: Our results on the problems

Problems Vertex-disjoint case Edge-disjoint case

Max Non-2-Linked Induced Subgraph P (Thm. 3.1) P (Cor. 2.4)

Max 2-VDP-free Induced Subgraph NP-hard (Thm. 4.1) P (Thm. 2.3)

Max Non-k-Linked Induced Subgraph OPT− 8k + 2 (Cor. 5.4) OPT− 2 (Cor. 5.2)

First, we show that Max Non-2-Linked Induced Subgraph can be solved in polynomial time
(Theorem 3.1), which is one of the main results in this paper. This problem corresponds to
the H-linkedness, where H consists of two edges and some isolated vertices. This is the first
non-trivial case in which the H-linkedness can be determined in polynomial time when H is
not fixed. We also give a polynomial-time algorithm for Max Weakly Non-2-Linked Subgraph
(Corollary 2.4).

We now give some remarks on proof techniques for Theorem 3.1 and Corollary 2.4. A natural
approach to solve Max Non-2-Linked Induced Subgraph is to consider the problem of finding a
maximum vertex set whose inducing subgraph contains no two vertex-disjoint paths connecting
fixed terminal pairs. We call it Max 2-VDP-free Induced Subgraph, whose formal description is
as follows.

Max 2-VDP-free Induced Subgraph

Input. A graph G = (V,E) and distinct terminals s1, t1, s2, t2 ∈ V .

Problem. Find a vertex set V0 ⊆ V with maximum cardinality such that {s1, t1, s2, t2} ⊆ V0

and the vertex-disjoint paths problem with terminal pairs (s1, t1) and (s2, t2) has no
solution in G[V0].

We can easily see that by solving Max 2-VDP-free Induced Subgraph for every choice of the
terminals s1, t1, s2, t2, we obtain a solution of Max Non-2-Linked Induced Subgraph. However,
we show that Max 2-VDP-free Induced Subgraph is NP-hard (Theorem 4.1), which suggests that
this reduction does not work for solving Max Non-2-Linked Induced Subgraph. Therefore, we
need another approach to Max Non-2-Linked Induced Subgraph.

In the same way as Max 2-VDP-free Induced Subgraph, we consider the edge-disjoint version
of the problem, which we call Max 2-EDP-free Subgraph.

Max 2-EDP-free Subgraph

Input. A graph G = (V,E) and terminals s1, t1, s2, t2 ∈ V .

Problem. Find an edge set E0 ⊆ E with maximum cardinality such that the edge-disjoint
paths problem with terminal pairs (s1, t1) and (s2, t2) has no solution in the subgraph
G0 = (V,E0).

We give a polynomial-time algorithm for this problem (Theorem 2.3), and consequently, we
show the polynomial solvability of Max Weakly Non-2-Linked Subgraph (Corollary 2.4). Since
most problems on vertex-disjoint paths and their corresponding edge-disjoint versions are equiv-
alent with respect to their polynomial solvability, it is interesting to note that Max 2-EDP-free
Subgraph is solvable in polynomial time, whereas Max 2-VDP-free Induced Subgraph is NP-hard.

Second, for general k, we show that there exists an (8k−2)-additive approximation algorithm
for Max Non-k-Linked Induced Subgraph (Corollary 5.4) by using a known sufficient condition
for a graph to be k-linked, that is, our algorithm finds a feasible solution V0 whose cardinality
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is at least the optimum value minus 8k − 2. Similarly, for general k, we give a 2-additive
approximation algorithm for Max Weakly Non-k-Linked Subgraph (Corollary 5.2).

Finally, we also consider the directed versions of these problems. It is well-known that
the directed versions of Max 2-VDP-free Induced Subgraph and Max 2-EDP-free Subgraph are
NP-hard [5]. By observing that the weakly k-linkedness is equivalent to the k-connectivity for
digraphs, we see that Directed Max Weakly Non-k-Linked Subgraph can be solved in polynomial
time for general k. On the other hand, based on the arguments in [23], we show that Directed
Max Non-k-Linked Induced Subgraph is NP-hard even when k = 2 (Theorem 6.2).

Notation: In this paper, we use the following notations. Let G = (V,E) be a graph with a
vertex set V and an edge set E. For a vertex set X ⊆ V , let δG(X) be the set of edges between
X and V \ X, and such an edge set is called a cut. Let NG(X) denote the set of vertices in
V \X that are adjacent to X. We simply denote δ(X) and N(X) if no confusion may arise. For
X ⊆ V , the subgraph induced by X is denoted by G[X], and the graph G[V \X] is denoted by
G−X. For an edge set F ⊆ E, let G−F = (V,E \F ) and let G/F denote the graph obtained
from G by contracting all edges in F . For s, t ∈ V , a cut δ(X) is called an s-t cut if exactly
one of s and t is contained in X, and a vertex set X is called an s-t vertex cut if s and t are
contained in different connected components of G−X.

Organization: The rest of this paper is organized as follows. In Section 2, we deal with the
edge-disjoint case and give polynomial-time algorithms for Max 2-EDP-free Subgraph and Max
Weakly Non-2-Linked Subgraph. In Section 3, we give a polynomial-time algorithm for Max
Non-2-Linked Induced Subgraph, which is the main part of this paper. In Section 4, we show
the NP-hardness of Max 2-VDP-free Induced Subgraph. In Section 5, we give approximation
algorithms for Max Non-k-Linked Induced Subgraph and Max Weakly Non-k-Linked Subgraph for
general k. In Section 6, we discuss the directed variants.

2 Weakly 2-linkedness of Graphs

In this section, we show that Max 2-EDP-free Subgraph and Max Weakly Non-2-Linked Subgraph
can be solved in polynomial time.

First, we consider Max 2-EDP-free Subgraph. Let G = (V,E) be a graph, and fix terminal
pairs (s1, t1) and (s2, t2). In this section, 2 edge-disjoint paths mean 2 edge-disjoint paths with
respect to those terminals, and a graph is said to be 2-EDP-free if it does not have 2 edge-disjoint
paths.

We now give an upper bound on the number of edges we must remove to make G 2-EDP-free.
Let C1, C2 be minimum cuts separating s1 from t1 and s2 from t2, respectively. It is easy to see
that G becomes 2-EDP-free after removing C1 or C2. Let C12, C

′
12 be minimum cuts separating

{s1, s2} from {t1, t2} and {s1, t2} from {t1, s2}, respectively. Let F12 (resp., F ′
12) be an edge set

obtained from C12 (resp., C ′
12) by discarding an edge. It is also easy to see that G becomes 2-

EDP-free after removing F12 or F
′
12. This motivates us to define c = min{|C1|, |C2|, |F12|, |F ′

12|},
and let F be the edge set that attains the minimum. When c = 0, we say that G violates the
cut condition. Clearly, c is the upper bound on the number of edges we must remove to make
G 2-EDP-free. Now, we show that the converse also holds when c ≥ 4.

Theorem 2.1. If c ≥ 4, G \ F is an optimal solution for Max 2-EDP-free Subgraph.

To prove Theorem 2.1, We use the following theorem by Seymour [18] on the feasibility of
the 2-edge-disjoint paths problem.
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Theorem 2.2 ([18]). Let G = (V,E) be a graph and let s1, t1, s2, t2 be terminals. Then, the
2-edge-disjoint paths problem has no solution if and only if it violates the cut condition or there
exists an edge set E′ ⊆ E such that

(1) each vertex of G/E′ has degree at most 3,

(2) terminals of G/E′ are distinct, and have degree at most 2,

(3) G/E′ can be embedded in a plane so that s1, s2, t1, t2 are on the outer boundary of G/E′

in this order.

Proof of Theorem 2.1. Since we have seen that G−F is a solution for Max 2-EDP-free Subgraph,
it suffices to show that it is optimal. Assume that there exists an edge set F ′ ⊆ E with |F ′| ≤ c−1
such that G− F ′ is 2-EDP-free for terminal pairs (s1, t1) and (s2, t2).

Since G− F ′ satisfies the cut condition, there exists an edge set E′ ⊆ E \ F ′ satisfying the
three conditions of Theorem 2.2. Let G′ = (G − F ′)/E′, and let S1, T1, S2, T2 be connected
subgraphs of G that correspond to s1, t1, s2, t2 in G′, respectively. Note that, since s1, t1, s2, t2
are distinct in G′, the subgraphs S1, T1, S2, T2 are disjoint. By the condition (2), we have
δG−F ′(S1) ≤ 2, δG−F ′(T1) ≤ 2, δG−F ′(S2) ≤ 2, and δG−F ′(T2) ≤ 2. On the other hand,
since the size of a minimum si-ti edge cut is at least c for i = 1, 2, we have δG(S1) ≥ c,
δG(T1) ≥ c, δG(S2) ≥ c, and δG(T2) ≥ c. Observing that removing |F ′| edges decreases the
value δG(S1) + δG(T1) + δG(S2) + δG(T2) by at most 2|F ′|, we have 4c − 8 ≤ 2|F ′|. This
contradicts that |F ′| ≤ c− 1 and c ≥ 4.

Theorem 2.3. Max 2-EDP-free Subgraph is solvable in polynomial time.

Proof. First, we compute c and F using any polynomial-time algorithm for the minimum cut
problem. If c ≥ 4, by Theorem 2.1, G−F is an optimal solution. If c ≤ 3, for every set F ′ of at
most c edges, we test whether G−F ′ is 2-EDP-free, which can be done in polynomial time.

Corollary 2.4. Max Weakly Non-2-Linked Subgraph is solvable in polynomial time.

Proof. We solve Max 2-EDP-free Subgraph for each terminal pairs (s1, t1) and (s2, t2), and we
take the maximum of them.

3 2-linkedness of Graphs

This section is devoted to proving the following theorem.

Theorem 3.1. Max Non-2-Linked Induced Subgraph is solvable in polynomial time.

Since we consider vertex-disjoint paths in this section, we assume that all graphs are simple.
By Theorem 1.1, we immediately see the following theorem.

Theorem 3.2. A graph G = (V,E) is not 2-linked if and only if there exists a partition
U,A1, . . . , Al (l ≥ 0) of V such that

(1) for 1 ≤ i, j ≤ l with i ̸= j, N(Ai) ∩Aj = ∅,

(2) for 1 ≤ i ≤ l, |N(Ai)| ≤ 3 and G[Ai] is connected, and

(3) if G′ is the graph obtained from G by deleting Ai and adding new edges joining every pair
of distinct vertices in N(Ai) for every i = 1, . . . , l, then G′ can be embedded in a plane so
that the boundary of some face contains at least four vertices.
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We note that, from the conditions (1) and (2), A1, . . . , Al must induce connected components
in G− U .

First, we observe that if a graph G′ is not 3-connected, there exist two vertices x and y
separated by a vertex cut {v1, v2} of size two. Then, we can easily see that G′ is not 2-linked by
setting U = {x, y, v1, v2} in Theorem 3.2. Suppose that |V | ≥ 4 and the vertex-connectivity of
the input graph G is c ≥ 2. By the above observation, we can make G non-2-linked by removing
at most c− 2 vertices. Thus, it suffices to give algorithms for finding a vertex set X ⊆ V with
|X| ≤ c− 3 such that G−X is not 2-linked. We consider the cases |X| ≤ c− 4 and |X| = c− 3
in Sections 3.1 and 3.2, separately (see Propositions 3.3 and 3.9).

We note that when c is bounded by a fixed constant, the problem can be solved in polynomial
time by enumerating all possible vertex sets X. Thus, in what follows, we suppose that c is
sufficiently large (e.g. c ≥ 50).

3.1 Finding a vertex set X with |X| ≤ c− 4

Suppose that G−X is not 2-linked for some vertex set X ⊆ V with |X| ≤ c− 4. In this case,
G −X is 4-connected, and hence by Theorem 3.2, G −X is not 2-linked if and only if G −X
can be embedded in a plane so that the boundary of some face contains at least four vertices.

We observe that G − X contains a vertex v of degree at most five when G − X is planar,
which implies that dG(v) ≤ c+ 1. Recall that we have assumed that G is simpe. On the other
hand, since G is c-connected, the degree of v in G is at least c, and |NG(v) ∩X| ≥ c− 5. With
this observation, we can find all possible vertex sets with at most c − 4 vertices by executing
the following procedure:

For every v ∈ V with degree at most c+1, and for every vertex set X with |X| ≤ c−4
and |NG(v) ∩X| ≥ c− 5, test the 2-linkedness of G−X.

Since the number of the choices of X is at most n ·
(
c+1
c−5

)
· n = O(n8), this procedure can be

done in polynomial time, and we have the following proposition.

Proposition 3.3. We can enumerate all vertex sets X such that G − X is not 2-linked and
|X| ≤ c− 4 in polynomial time.

3.2 Finding a vertex set X with |X| = c− 3

In this subsection, we give an algorithm for finding a vertex set X such that |X| = c − 3
and G − X is not 2-linked. If there exists a vertex set X with |X| ≤ c − 3 such that G − X
can be embedded in a plane so that the boundary of some face contains at least four vertices,
then such a set X can be found in polynomial time in the same way as Section 3.1. Thus, it
suffices to consider the case when there exist a positive integer l and a partition U,A1, . . . , Al

of V \X satisfying the conditions of Theorem 3.2. Note that, since |X| = c− 3, we must have
NG−X(Ai) = 3 for every i. The main idea behind our algorithm is to guess a vertex r ∈ A1

and a set of three vertices W = NG−X(A1) and then check whether a required partition exists
under this condition.

Case 1: When |U | ≤ 6
First, we find a vertex set X and a partition U,A1, . . . , Al of V \X with |U | ≤ 6. We note

that an algorithm in this part can be applied even if |U | is more than six but bounded by a
fixed constant. In order to find such vertex sets, we consider the following subproblem.

Problem A
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U AS
1
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r
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Figure 1: An example of Case 1.

Input. A c-connected graph G = (V,E), a vertex set U , a vertex r ∈ V \U , and a set of three
vertices W ⊆ U .

Problem. Find a vertex set X ⊆ V \ (U ∪ {r}) with |X| = c − 3 satisfying the following
conditions: V \X can be partitioned into U,A1, . . . , Al (l ≥ 1) such that they satisfy the
conditions of Theorem 3.2, r ∈ A1, and NG−X(A1) = W .

Lemma 3.4. Problem A is solvable in polynomial time.

Proof. If |U | ≤ 3, then the graph G′ defined as in the condition (3) in Theorem 3.2 has at most
three vertices, which violates the condition (3). Hence, a desired set X obviously does not exist.
Suppose that |U | ≥ 4. We compute a minimum vertex cut separating U \W and r in G−W .
Among them, let S ⊆ V be the minimum vertex cut such that the connected component of
G − W − S containing r is maximum. Let AS

1 be the vertex set of the connected component
containing r. If |S| ≥ c − 2, then we can conclude that the required X does not exist. Thus,
since G is c-connected, we may assume that |S| = c− 3 and S ∪W is a minimum vertex cut of
G.

In this case, let X = S and A1 = AS
1 , and define A2, . . . , Al as the vertex sets of the

connected components of G − S − U − AS
1 . Let P be the partition U,AS

1 , A2, . . . , Al of V \ S.
If P satisfies the conditions of Theorem 3.2, then X = S is a desired set. Now we show the
following claim, which says that we do not have to consider other sets.

Claim 3.5. If X = S is not a solution of Problem A, then there exists no solution.

Proof of the claim. Assume that S is not a solution of Problem A, but X ′ ⊆ V \ (U ∪ {r}) is a
solution. Since G is c-connected and |X ′| = c−3, X ′ is a minimum vertex cut separating U \W
and r. Let A′

1 be the vertex set of the connected component of G−W −X ′ containing r, and
define A′

2, . . . , A
′
l′ as the vertex sets of the connected components of G−X ′−U −A′

1. Let P ′ be
the partition U,A′

1, A
′
2, . . . , A

′
l′ of V \X ′. Since X ′ is a solution of Problem A, P ′ satisfies the

conditions of Theorem 3.2. Note that, by the maximality of A1, G−X ′−U−A′
1 = G[A′

2∪· · ·∪A′
l′ ]

contains G− S − U −AS
1 = G[A2 ∪ · · · ∪Al] as a subgraph (see Fig. 1).

Since S is not a solution, the partition P violates the conditions of Theorem 3.2. Assume that
|NG−S(Ai)| ≥ 4 for some i = 2, 3, . . . , l. Since Ai is contained in A′

j for some j ∈ {2, 3, . . . , l′},
we have |NG−X′(A′

j)| ≥ |NG−S(Ai)| ≥ 4, which contradicts that the partition P ′ satisfies the
conditions of Theorem 3.2.

Therefore, |NG−S(Ai)| = 3 for every i = 2, 3, . . . , l, and P violates the condition (3) if we
apply Theorem 3.2 to G−S. That is, the graph GS obtained by the operations in the condition
(3) is either a non-planar graph or a planar graph whose every face has three vertices. On the
other hand, for any i = 2, 3, . . . , l, NG−S(Ai) ⊆ NG−X′(A′

j) holds for some j ∈ {2, 3, . . . , l′}.
Thus, if we apply Theorem 3.2 to G − X ′, then either the partition P ′ violates the condition
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(2), or the graph G′ defined as in the condition (3) contains GS as a subgraph and V (G′) =
U = V (GS). This means that the partition P ′ violates the conditions of Theorem 3.2, which
contradicts the assumption.

By this claim, in order to solve Problem A, it suffices to test whether X = S is a desired
set or not, which can be done in polynomial time.

We can find a solution X and a partition U,A1, . . . , Al of V \ X with |U | ≤ 6 by solving
Problem A for every choice of U, r and W , which can be done in polynomial time by Lemma 3.4.

Case 2: When |U | ≥ 7
Second, we find a solution X and a partition U,A1, . . . , Al of V \X with |U | ≥ 7. To find

such a solution, we consider the following subproblem.

Problem B

Input. A c-connected graph G = (V,E), a vertex r, a set of three vertices W ⊆ V , and a set
of four vertices Ũ ⊆ V such that r,W, Ũ are disjoint.

Problem. Find a vertex set X ⊆ V \ ({r} ∪W ∪ Ũ) with |X| = c− 3 satisfying the following
conditions: V \X can be partitioned into U,A1, . . . , Al (l ≥ 1) such that they satisfy the
conditions of Theorem 3.2, r ∈ A1, W ⊆ U , Ũ ⊆ U and NG−X(A1) = W .

Lemma 3.6. Problem B is solvable in polynomial time.

Proof. We compute minimum vertex cuts separating Ũ and r in G − W . Among them, let
S ⊆ V be the minimum vertex cut such that the connected component of G−W −S containing
r is maximum. Let AS

1 be the vertex set of the connected component containing r. If |S| ≥ c−2,
then we can conclude that such X does not exist. Thus, we may assume that |S| = c− 3. Let
G′ = G−W − S −AS

1 . We consider the following two cases separately.

Case 2-1: When G′ is not planar
When G′ is not planar, we show the following claim.

Claim 3.7. Every solution X of Problem B contains at least c− 10 vertices of S.

Proof of the claim. Assume that a solution X of Problem B satisfies that |X ∩ S| ≤ c − 11.
Then, there exists a set of eight vertices Y ⊆ S \X. Since |W ∪(S \Y )| = c−8, G−W −(S \Y )
is 8-connected. Thus, for every pair of vertices v1, v2 ∈ V (G′), there exist eight internally
vertex-disjoint paths P1, . . . , P8 in G−W − (S \ Y ).

On the other hand, since X is a minimum vertex cut separating Ũ and r in G −W , every
vertex of X is contained in S ∪ AS

1 by the maximality of AS
1 (see Fig. 2). Thus, if a path Pi

intersects with X, then Pi contains at least two vertices of Y . Hence, at least four paths of
P1, . . . , P8 do not intersect with X, which means that there is no cut of size three in G − X
separating v1 and v2.

This means that U contains all vertices of G′ when we consider the partition of V \X, which
contradicts the planarity of the graph G[U ].

By this claim, when G′ is not planar we can find all solutions of Problem B. That is, for
every vertex set X ⊆ V with |X| = c− 3 and |X ∩ S| ≥ c− 10, we test whether X is a solution
of Problem B or not by using an algorithm for the 2-vertex-disjoint paths problem. Since the
number of choices of X is at most n7 ·

(
c−3
c−10

)
= O(n14), this procedure can be done in polynomial

time.

Case 2-2: When G′ is planar
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G′
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1

r

S

W

X

Ũ

Figure 2: An example of Case 2-1.

G′

AS
1

r

S

W

X

Ũ

xi

Figure 3: An example of Case 2-2.

When G′ is planar, at least four vertices of G′ have degree at most six since the average
degree of all vertices in a planar graph is at most six. Note that every vertex has degree at
most six when G′ has at most seven vertices. Let x1, x2, x3, x4 be vertices of G′ with degree at
most six.

For i = 1, . . . , 4, since the degree of xi is at least c and NG(xi) ∩ AS
1 = ∅, it holds that

|NG(xi)∩S| ≥ c−6−|W | = |S|−6. Let S0 =
∩

iNG(xi)∩S. Then, we have |S0| ≥ |S|−6 ·4 =
c− 27. Now we show the following claim.

Claim 3.8. Every solution X of Problem B contains at least |S0| − 3 vertices of S0.

Proof of the claim. Assume that a solution X of Problem B satisfies that |X ∩ S0| ≤ |S0| − 4.
Then, there exists a set of four vertices Y = {y1, y2, y3, y4} in S0 \X. By definition, xi and yj
are connected by an edge for any i, j ∈ {1, 2, 3, 4}, that is, they form a complete bipartite graph
K4,4 (see Fig. 3).

Since |W ∪ (S \ Y )| = c − 4, G − W − (S \ Y ) is 4-connected, and hence, there exists no
vertex cut of size three in G − X separating the K4,4 and Ũ . Note that every vertex of X is

contained in S ∪ AS
1 by the maximality of AS

1 since X is a minimum vertex cut separating Ũ
and r in G−W . Therefore, the K4,4 is contained in U in the partition, which contradicts the
planarity of G[U ].

By this claim, when G′ is planar we can find all solutions of Problem B. That is, for every
vertex set X ⊆ V with |X| = c − 3 and |X ∩ S0| ≥ |S0| − 3, we test whether X is a solution
of Problem B or not by using an algorithm for the 2-vertex-disjoint paths problem. Since the
number of the choices of X is at most nc−|S0| ·

( |S0|
|S0|−3

)
= O(n30), this procedure can be done in

polynomial time.

By combining Cases 2-1 and 2-2, we complete the proof of Lemma 3.6.

We can find a solution X and a partition U,A1, . . . , Al of V \ X with |U | ≥ 7 by solving
Problem B for every choice of r,W and Ũ , which can be done in polynomial time by Lemma 3.6.

Thus, by Cases 1 and 2, we have the following proposition.

Proposition 3.9. We can find a vertex set X such that G−X is not 2-linked and |X| = c− 3
in polynomial time (if one exists).

4 NP-Hardness of Max 2-VDP-free Induced Subgraph

Theorem 4.1. Max 2-VDP-free Induced Subgraph is NP-hard.
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Figure 4: The graph G′ obtained from G by the reduction. For each edge uv in G, there is an
edge pu,1pv,1 in G′ (edges may be added among empty vertices).

Proof. We show that Vertex Cover can be reduced to Max 2-VDP-free Induced Subgraph. Note
that Vertex Cover is an NP-hard problem, in which we are given a simple graph G = (V,E) and
the objective is to find a vertex set X ⊆ V with minimum cardinality such that every edge in
E is incident to at least one vertex in X. Suppose that we are given an instance G = (V,E)
of Vertex Cover, where V = {1, . . . , n}. We construct a new graph G′ = (V ′, E′) as follows (see
Fig. 4):

V ′ = {s1, t1, s2, t2} ∪ {pi,j , qi,j | i, j ∈ {1, . . . , n}},
E′ = {pi,jqi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n} ∪ {pi+1,jqi,j | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n}

∪{pi,jpi,j+1, qi,jqi,j+1 | 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1}
∪{s1p1,j , t1qn,j | 1 ≤ j ≤ n} ∪ {s2qi,1, qi,nt2, | 1 ≤ i ≤ n}
∪{pu,1pv,1 | u, v ∈ V, uv ∈ E}.

We show that, for a positive integer k ≤ n− 1, G has a vertex cover of size k if and only if Max
2-VDP-free Induced Subgraph in G′ has a feasible solution of size |V ′| − k.

Suppose that G = (V,E) has a vertex cover X with |X| = k. If we remove the vertex set
X ′ = {pv,1 | v ∈ X} ⊆ V ′ from G′, then the obtained graph is 2-VDP-free (i.e., it does not
have 2 vertex-disjoint paths) by the planarity of G′ −X ′. This means that V ′ \X ′ is a feasible
solution of Max 2-VDP-free Induced Subgraph whose size is |V ′| − k.

Conversely, suppose that Max 2-VDP-free Induced Subgraph in G′ has a feasible solution of
size |V ′| − k, that is, there exists a vertex set X ′ ⊆ V ′ with |X ′| = k such that G′ − X ′ is
2-VDP-free. First, we note that |X ′| ≤ n − 1 since the graph obtained from G′ by removing
p1,1, . . . , pn−1,1 clearly avoids 2 vertex-disjoint paths. Define X ⊆ V by

X = {v ∈ V | X ′ ∩ {pv,1, . . . , pv,n, qv,1, . . . , qv,n} ̸= ∅}.

We now show that X is a vertex cover of G. In order to derive a contradiction, assume that
there exist u, v ∈ V such that u < v, uv ∈ E, X ′ ∩ {pu,1, . . . , pu,n, qu,1, . . . , qu,n} = ∅ and
X ′∩{pv,1, . . . , pv,n, qv,1, . . . , qv,n} = ∅. Since |X ′| ≤ n−1, G′−X ′ contains a path Ps from s1 to
pu,1 and a path Pt from pv,1 to t1 which are both not intersecting with {qu,1, . . . qu,n}. This means
that G′ contains two vertex-disjoint paths P1 = Ps∪{pu,1qv,1}∪Pt and P2 = (s2, qu,1, . . . qu,n, t2),
which contradicts the definition of X ′. By the above argument, G contains a vertex cover X of
size at most k.
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Therefore, Vertex Cover in G can be reduced to Max 2-VDP-free Induced Subgraph in G′,
which shows the NP-hardness of Max 2-VDP-free Induced Subgraph.

5 Weakly k-linkedness and k-linkedness of Graphs

In this section, we show that there exist polynomial-time approximation algorithms for Max
Weakly Non-2-Linked Subgraph and Max Non-2-Linked Induced Subgraph with constant additive
error. The following lemma is useful to connect weakly linkedness and connectivity.

Lemma 5.1 ([7]). A graph is weakly k-linked if it is (k + 2)-edge-connected.

Corollary 5.2. There exists a polynomial-time algorithm that finds a feasible solution of Max
Weakly Non-k-Linked Subgraph whose cardinality is at least the optimal value minus two.

Proof. Let G be an input graph and c be the size of a minimum edge cut of G. From Lemma 5.1,
we must remove at least max(c− k − 2, 0) edges to make G weakly non-k-linked. However, we
can make G weakly non-k-linked by removing max(c − k, 0) edges from a minimum edge cut.
Thus, the claim holds.

A lemma similar to Lemma 5.1 holds for linkedness.

Lemma 5.3 ([21]). A graph is k-linked if it is 10k-vertex-connected.

Corollary 5.4. There exists a polynomial-time algorithm that finds a feasible solution of Max
Non-k-Linked Induced Subgraph whose cardinality is at least the optimal value minus 8k − 2.

Proof. If a graph contains a vertex cutX of size at most 2k−2, then we can choose s1, . . . , sk, t1, . . . , tk
such that X = {s2, . . . , sk, t2, . . . , tk} and s1 and t1 are contained in different components of
G − X, which means that the graph is not k-linked. Thus, every k-linked graph is 2k − 1
connected.

Let G be an input graph and c be the size of a minimum vertex cut of G. From Lemma 5.3,
we must remove at least max(c − 10k, 0) vertices to make G non-k-linked. However, by the
observation above, we can make G non-k-linked by removing max(c− 2k+2, 0) vertices from a
minimum vertex cut. Thus, the claim holds.

6 k-linkedness and Weakly k-linkedness of Digraphs

In this section, we consider the directed versions of Max Non-k-Linked Induced Subgraph and
Max Weakly Non-k-Linked Subgraph, which we call Directed Max Non-k-Linked Induced Subgraph
and Directed Max Weakly Non-k-Linked Subgraph, respectively. We can easily solve Directed Max
Weakly Non-k-Linked Subgraph with the aid of the following lemma.

Lemma 6.1 ([19]). For any integer k ≥ 1, a digraph is weakly k-linked if and only if it is
k-arc-connected.

Thus, given a digraph G and an integer k, by computing a minimum arc-cut C of G and
discarding max(|C| − k + 1, 0) arcs among them, we have an optimal solution.

Thomassen [23] showed that the directed version of 2-vertex-disjoint paths problem in k-
connected digraphs is NP-hard for any constant k as a generalization of the result of [5]. Ap-
pealing to this result, we can easily show that Directed Max Non-k-Linked Induced Subgraph is
NP-hard. For completeness, we give the proof in the following.

Theorem 6.2. Directed Max Non-k-Linked Induced Subgraph is NP-hard even if k = 2.
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Figure 5: The graph G′

Proof. We show that the directed 2-vertex-disjoint paths problem in 2-connected digraphs can
be reduced to Directed Max Non-2-Linked Induced Subgraph. Suppose that we are given an
instance of the directed 2-vertex-disjoint paths problem, which consists of a 2-connected digraph
G = (V,E) and its four distinct vertices s1, t1, s2, and t2. We define a new digraph G′ = (V ′, E′)
(see Fig. 5) by

V ′ = V ∪ {x1, x2, y1, y2}
E′ = E ∪ {(xi, yj), (yj , xi) | i, j ∈ {1, 2}}

∪ {(v, x1), (v, y1) | v ∈ V } ∪ {(x2, v), (y2, v) | v ∈ V }
∪ {(x1, s1), (t1, x2), (y1, s2), (t2, y2)}.

Now we show that G′ is 2-linked if and only if G contains two disjoint paths P1 and P2 such
that Pi is a path from si to ti for i = 1, 2.

Let s′1, t
′
1, s

′
2, t

′
2 be four distinct vertices of G′ and consider whether G′ has two disjoint

paths P ′
1 and P ′

2 such that P ′
i is a path from s′i to t′i for i = 1, 2. If {(s′1, t′1), (s′2, t′2)} ̸=

{(x1, x2), (y1, y2)}, then we can see that G′ always has desired disjoint paths P ′
1 and P ′

2 as
follows.

Case 1. Suppose that {x1, x2, y1, y2} ∩ {s′1, t′1, s′2, t′2} = ∅. In this case, G′ contains desired
disjoint paths P ′

1 = (s′1, x1, y2, t
′
1) and P ′

2 = (s′2, y1, x2, t
′
2).

Case 2. Suppose that 1 ≤ |{x1, x2, y1, y2} ∩ {s′1, t′1, s′2, t′2}| ≤ 3. In this case, by alternating
(s′1, t

′
1) and (s′2, t

′
2) if necessary, we can take a dipath P ′

1 from s′1 to t′1 such that |V (P ′
1)∩V | ≤ 1

and s′2, t
′
2 ̸∈ V (P ′

1). Since G is 2-connected, there exists a dipath P ′
2 from s′2 to t′2 in G′−V (P ′

1).

Case 3. Suppose that {x1, x2, y1, y2} = {s′1, t′1, s′2, t′2}. When {(s′1, t′1), (s′2, t′2)} ̸= {(x1, x2), (y1, y2)},
we can easily take desired disjoint paths P ′

1 and P ′
2 in G′.

Thus, in order to determine the 2-linkedness of G′, it suffices to consider the 2-vertex-disjoint
paths problem in G′ in which the terminals s′1, t

′
1, s

′
2, and t′2 satisfy that {(s′1, t′1), (s′2, t′2)} =

{(x1, x2), (y1, y2)}. In this case, G′ has desired disjoint paths P ′
1 and P ′

2 if and only if G
contains two disjoint paths P1 and P2 such that Pi is a path from si to ti for i = 1, 2. This
means that the directed 2-vertex-disjoint paths problem in 2-connected digraphs can be reduced
to Directed Max Non-2-Linked Induced Subgraph which completes the proof.
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