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Abstract

Self-organization of agglomeration patterns for core–periphery models in

new economic geography is investigated through dual viewpoints of central

place theory and group-theoretic bifurcation theory. A system of uniformly-

distributed places is modeled by a finite hexagonal lattice with periodic bound-

aries. Possible agglomeration patterns on this lattice predicted by group-

theoretic bifurcation theory are hexagonal distributions of various sizes. The

existence of the hexagonal distributions for the hexagonal lattice is ensured

and their stability is investigated by the comparative static bifurcation anal-

ysis with respect to transport costs. These distributions are the ones which

were envisaged by central place theory in economic geography based on a

normative and geometrical approach, and were also inferred to emerge by

Krugman (1996) in new economic geography for a core–periphery model in

two dimensions.
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1 Introduction

Self-organization of hexagonal population distributions1 from a uniformly inhab-
ited state was envisioned by central place theory in economic geography based on a
normative and geometrical approach. In new economic geography, it was inferred
to emerge by Krugman (1996) [29] for core–periphery models in two dimensions.
In this paper, we show the existence of such distributions for these models theoreti-
cally and demonstrate their existence computationally based on an interdisciplinary
study synthesizing three independent mainstreams: central place theory, new eco-
nomic geography, and group-theoretic bifurcation theory.

In central place theory of economic geography,2 self-organization of hexagonal
market areas of three kinds shown in Fig. 1 was proposed by Christaller (1966) [9]
based on market, traffic, and administrative principles. The ten smallest hexagons
were presented as fundamental sizes of market areas by Lösch (1954) [30]. The
assemblage of hexagonal market area with different sizes is expected to produce
hierarchical hexagonal distributions of the population of places (cities, towns, vil-
lages, etc.). This theory is accepted by geographers to present a deductive base for
the study of patterns of location. Yet it is based on a normative and geometrical
approach, and is not derived from market equilibrium conditions.3

In new economic geography, based on a full-fledged general equilibrium ap-
proach, Krugman (1991) [27] developed a core–periphery model, and demon-
strated that bifurcation serves as a catalyst to engender agglomeration of popu-
lation out of uniformly distributed state. This model expressed the microeconomic
underpinning of the spatial economic agglomeration, introduced the Dixit–Stiglitz
(1977) [14] model of monopolistic competition into spatial economics, and pro-
vided a new framework to explain interactions occurring among increasing returns,
transportation costs, and factor mobility. Thereafter, new economic geography
models sprung up worldwide, as reviewed in several books, such as Fujita et al.
(1999) [18], Brakman et al. (2001) [7], Baldwin et al. (2003) [3], and Combes et
al. (2008) [11].

Agglomeration patterns vary with models and with spatial configurations:

• The two-city model is studied extensively by virtue of its analytical tractabil-
ity. Two identical symmetric cities are in a stable state with high transport
costs, and when the costs are reduced to a certain level, a bifurcation triggers
a concentration to a single city by breaking the symmetry. The tomahawk
bifurcation that triggers a spontaneous concentration was observed, e.g., in
Krugman (1991) [27] and Fujita et al. (1999) [18] for the Krugman model,
and in Forslid and Ottaviano (2003) [16] for an analytically solvable model.
A stable non-trivial equilibrium branching from a supercritical pitchfork was
observed by Pfl̈uger (2004) [35] for a simple, analytically-solvable model.

1See, e.g., Clarke and Wilson (1985) [10] and Munz and Weidlich (1990) [33] for early studies

of self-organizing patterns in geography and regional science.
2For books and reviews on central place theory, see, for example, Lösch (1954) [30], Isard (1975)

[26], Beavon (1977) [4], and Dicken and Lloyd (1990) [12].
3Fujita et al. (1999, p.27) [18] stated “Unfortunately, as soon as one begins to think hard about

central place theory one realizes that it does not quite hang together as an economic model.· · ·
Christaller suggested the plausibility of a hierarchical structure; he gave no account of how individual

actions would produce such a hierarchy· · · ”
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(a)k = 3 system (b) k = 4 system

(c) k = 7 system

Figure 1: Three systems predicted by Christaller (the area of a circle indicates the

size of population)

Yet economic agglomerations, in reality, can take place at more than two lo-
cations, as stated by Behrens and Thisse (2007) [5],4 and as corroborated by
empirical evidence (Bosker et al., 2010 [6]).

• Racetrack economy, which represents a system of initially identical places
that spread uniformly around the circumference of a circle, has come to be
utilized as a spatial platform. A numerical simulation including 12 symmet-
ric cities of equal size revealed that the symmetric equilibrium often becomes
unstable (Krugman, 1993 [28]). Fujita et al. (1999) [18] identified the emer-
gence of several spatial frequencies by a local analysis (linearized eigen-
problem) of the racetrack economy. Picard and Tabuchi (2010) [36] studied
agglomeration to a finite number of places or atomic cities. A characteristic
process of spatial agglomeration, calledspatial period-doubling bifurcation
cascade, was observed for 2k places (k is a positive integer) in Tabuchi and
Thisse (2011) [41], Akamatsu et al. (2009) [1], and Ikeda et al. (2010) [23].
In this cascade, 2k identical places undergo a sequence of concentrations into
2k−1 identical places, 2k−2 identical places,. . ., en route to the emergence of
complete agglomeration into a single place, megalopolis.

4Behrens and Thisse (2007; pp.461–462) [5] stated: “in multi-regional systems the so-called

‘three-ness effect’ enters the picture and introduces complex feedbacks into the models, which sig-

nificantly complicates the analysis. Dealing with these spatial interdependencies constitutes one of

the main theoretical and empirical challenges NEG and regional economics will surely have to face

in the future.”
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However, the hexagonal patterns in central place theory have yet to be found for
core–periphery models as stated by Krugman (1996; p.91) [29], based on the study
of a racetrack economy, as:

I have demonstrated the emergence of a regular lattice only for a one-
dimensional economy, but I have no doubt that a better mathematician
could show that a system of hexagonal market areas will emerge in
two dimensions.

A clue for a mathematical procedure for this purpose can be found in nonlinear
mathematics and physics, in which the emergence of patterns out of uniformity has
been treated as an important subject, called pattern formation. Sattinger (1978) [38]
elucidated the mechanism of the self-organization of hexagonal patterns by group-
theoretic bifurcation analysis under a simplifying assumption that solutions are
doubly periodic with respect to a hexagonal lattice. Hexagonal bifurcating patterns
were found by the analysis on the hexagonal lattice (Buzano and Golubitsky, 1983
[8]).

An attempt to explain the mechanism of the self-organization of Lösch’s ten
smallest hexagons in light of group-theoretic bifurcation theory was conducted by
Ikeda et al. (2011) [25]. As a spatial platform, a rhombic domain with periodic
boundaries comprising uniformly distributedn × n places that are connected by
roads of the same length forming a finite hexagonal lattice was employed. This
is based on the so calledinfinite-periodic-domain approximationwhich assumes
that the finite lattice is periodically repeated spatially to cover an infinite two-
dimensional domain (Ikeda and Murota, 2010, Chapter 14 [24]). Lösch’s ten
hexagonal distributions are guaranteed to be existent by equivariant bifurcation
analysis, and some of them are obtained by computational analysis for the FO
model (Forslid and Ottaviano, 2003 [16]) that replaces the production function of
Krugman with that of Flam and Helpman (1987) [15]. Thus the mathematical
mechanism for the self-organization of hexagonal patterns has been untangled.

The objective of this paper is to demonstrate the emergence of hexagonal pop-
ulation distributions of Christaller’sk = 3, 4, 7 systems for core–periphery models
on the hexagonal lattice. The mathematical results in Ikeda et al. (2011) [25] are, in
principle, applicable to core–periphery models of various kinds. Yet the occurrence
and non-occurrence of bifurcations that engender hexagonal patterns of interest are
dependent on individual cases for individual models and must be investigated for
each case. To show the model independence of the existence of hexagonal distribu-
tions, we employ core–periphery models of two kinds that are readily formulated
for a system of cities (Section 2): (a) the aforementioned FO model and (b) the
Pf model by Pfl̈uger, 2004 [35] that replaces, in addition to the production func-
tion, the utility function of Krugman with that of the international trade model of
Martin and Rogers (1995) [31]. In the computational analysis conducted in this
paper (Section 4), the two models turn out to display quantitatively different but
qualitatively identical behaviors. Hexagonal distributions of population that give
Christaller’s three systems in Fig. 1 are found to emerge by computational bifurca-
tion analysis for a system of 42× 42 places, and the stability of these distributions
is investigated. It is a topic for future to deal with other important core–periphery
models to further investigate the model independence.
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The economic and geographical implications of the resulting hexagonal dis-
tributions are investigated for Christaller’sk = 3, 4, 7 systems. The ratio of the
number of first-level centers with the largest population to that of the second-level
centers with the second largest population is studied on the basis of central place
theory. The dependence of stability of solutions on the transport cost is highlighted
as the economic implication drawn through the present study. Consequently, this
paper presents a step toward uniting central place theory and core–periphery mod-
els in light of group-theoretic bifurcation theory.

This paper is organized as follows: The two core–periphery models are pre-
sented in Section 2. A system of places that is uniformly spread on an infinite
hexagonal lattice in two dimensions is modeled, and its bifurcation mechanism
producing hexagonal distributions is predicted by group-theoretic bifurcation the-
ory in Section 3. Computational bifurcation analysis of the hexagonal lattice is
conducted in Section 4 to find bifurcated patterns that represent Christaller’s hexag-
onal market areas. Details of the equivariant bifurcation analysis are presented in
the Appendix.
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2 Core–periphery models

In the present study, we use two analytically-solvable core–periphery models that
are readily formulated for a system of places:

i) FO model (Forslid and Ottaviano, 2003 [16]) that replaces the production
function of Krugman with that of Flam and Helpman (1987) [15].

ii) Pf model (Pfl̈uger, 2004 [35]) that replaces, in addition to the production
function, the utility function of Krugman with that of the international trade
model of Martin and Rogers (1995) [31].

After presenting basic assumptions in§2.1, we describe the short-run equilibrium
in §2.2, and define the long-run equilibrium in§2.3.

2.1 Basic assumptions

The economy is composed ofK regions (labeledi = 1, . . . ,K), two factors of
production (skilled and unskilled labor), and two sectors (agriculture A and manu-
facturing M). There areH skilled andL = K unskilled workers, who consume two
final goods, namely, horizontally differentiated M-sector goods and homogeneous
A-sector goods, and supply one unit of his type of labor inelastically. Skilled work-
ers are mobile across regions. The number of skilled workers in regioni is denoted
by hi , and the equality

H =
K∑

i=1

hi (1)

is satisfied. Unskilled workers are immobile and equally distributed across all
places with the unit density (i.e.,L = 1 × K). Hence the population in placei
is equal tohi + 1.

PreferencesU over the M- and A-sector goods are identical across individuals.
The utility of an individual in placei is

[FO model5] U(CM
i ,C

A
i ) = µ ln CM

i + (1− µ) ln CA
i (0 < µ < 1), (2a)

[Pf model] U(CM
i ,C

A
i ) = µ ln CM

i +CA
i (µ > 0), (2b)

whereµ is a constant parameter,CA
i is the consumption of the A-sector product in

placei, andCM
i is the manufacturing aggregate in placei and is defined as

CM
i ≡

∑
j

∫ n j

0
q ji (ℓ)

(σ−1)/σdℓ


σ/(σ−1)

,

whereq ji (ℓ) is the consumption in placei of a varietyℓ ∈ [0, n j ] produced in
place j, n j is the continuum range of varieties produced in placej, often called the

5We take logarithms of the Forslid and Ottaviano (2003) [16] type (i.e., Cobb–Douglas-type)

utility function to facilitate the analysis. This transformation has no influence on the properties of

the model.

6



number of available varieties, andσ > 1 is the constant elasticity of substitution
between any two varieties. The budget constraint is given as

pA
i CA

i +
∑

j

∫ n j

0
p ji (ℓ)q ji (ℓ)dℓ = Yi , (3)

wherepA
i is the price of A-sector goods in placei, p ji (ℓ) is the price of a varietyℓ

in placei produced in placej andYi is the income of an individual in placei. The
incomes (wages) of the skilled worker and the unskilled worker are represented,
respectively, bywi andwL

i .
An individual in placei maximizes (2) subject to (3). This yields the following

demand functions:

[FO model] CA
i = (1− µ) Yi

pA
i

, CM
i = µ

Yi

ρi
, q ji (ℓ) = µ

pA
i ρ
σ−1
i Yi

p ji (ℓ)σ
, (4a)

[Pf model] CA
i =

Yi

pA
i

− µ, CM
i = µ

pA
i

ρi
, q ji (ℓ) = µ

pA
i ρ
σ−1
i

p ji (ℓ)σ
, (4b)

whereρi denotes the price index of the differentiated product in placei, which is

ρi =

∑
j

∫ n j

0
p ji (ℓ)

1−σdℓ


1/(1−σ)

. (5)

Since the total income and population in placei arewihi+wL
i andhi+1, respectively,

we have the total demandQ ji (ℓ) in placei for a varietyℓ produced in placej:

[FO model] Q ji (ℓ) = µ
pA

i ρ
σ−1
i

p ji (ℓ)σ
(wihi + wL

i ), (6a)

[Pf model] Q ji (ℓ) = µ
pA

i ρ
σ−1
i

p ji (ℓ)σ
(hi + 1). (6b)

The A-sector is perfectly competitive and produces homogeneous goods under
constant returns to scale technology, which requires one unit of unskilled labor
in order to produce one unit of output. For simplicity, we assume that the A-
sector goods are transported freely between places and that they are chosen as the
numéraire. These assumptions mean that, in equilibrium, the wage of an unskilled
workerwL

i is equal to the price of A-sector goods in all places (i.e.,pA
i = wL

i = 1
for eachi = 1, . . . ,K).

The M-sector output is produced under increasing returns to scale technol-
ogy and Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input re-
quirement ofα units of skilled labor and a marginal input requirement ofβ units
of unskilled labor. Given the fixed input requirementα, the skilled labor market
clearing implies that, in equilibrium, the number of firms in placei is determined
by ni = hi/α. An M-sector firm located in placei chooses (pi j (ℓ) | j = 1, . . . ,K)
that maximizes its profit

Πi(ℓ) =
∑

j

pi j (ℓ)Qi j (ℓ) − (αwi + βxi(ℓ)) ,

7



wherexi(ℓ) is the total supply. The transportation costs for M-sector goods are
assumed to take the iceberg form. That is, for each unit of M-sector goods trans-
ported from placei to place j , i, only a fraction 1/ϕi j < 1 arrives. Consequently,
the total supplyxi(ℓ) is given as

xi(ℓ) =
∑

j

ϕi j Qi j (ℓ). (7)

To put it concretely, we define the transport costϕi j between the two placesi and j
as

ϕi j = exp(τDi j ), (8)

whereτ is the transport parameter andDi j represents the shortest distance between
placesi and j.

Since we have a continuum of firms, each firm is negligible in the sense that
its action has no impact on the market (i.e., the price indices). Therefore, the first-
order condition for profit maximization gives

pi j (ℓ) =
σβ

σ − 1
ϕi j . (9)

This expression implies that the price of the M-sector product does not depend on
varietyℓ, so thatQi j (ℓ) andxi(ℓ) do not depend onℓ. Therefore, we describe these
variables without the argumentℓ. Substituting (9) into (5), we have the price index

ρi =
σβ

σ − 1

1α∑
j

h jd ji


1/(1−σ)

, (10)

whered ji = ϕ
1−σ
ji is a spatial discounting factor between placesj and i; from (6)

and (10),d ji is obtained as (p ji Q ji )/(pii Qii ), which means thatd ji is the ratio of
total expenditure in placei for each M-sector product produced in placej to the
expenditure for a domestic product.

2.2 Short-run equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial
distribution (h = (hi) ∈ RK) is assumed to be given. The short-run equilibrium
conditions consist of the M-sector goods market clearing condition and the zero-
profit condition because of the free entry and exit of firms. The former condition
can be written as (7). The latter condition requires that the operating profit of a
firm is absorbed entirely by the wage bill of its skilled workers:

wi(h, τ) =
1
α

∑j

pi j Qi j (h, τ) − βxi(h, τ)

 . (11)

Substituting (6), (7), (9), and (10) into (11), we have the short-run equilibrium
wage:

[FO model] wi(h, τ) =
µ

σ

∑
j

di j

∆ j(h, τ)
(w j(h, τ)h j + 1), (12a)

[Pf model] wi(h, τ) =
µ

σ

∑
j

di j

∆ j(h, τ)
(h j + 1), (12b)

8



where∆ j(h, τ) ≡
∑

k dk jhk denotes the market size of the M-sector in placej.
Consequently,di j/∆ j(h, τ) defines the market share in placej of each M-sector
product produced in placei.

The indirect utilityvi(h, τ) is obtained by substituting (4), (10), and (12) into
(2):6

[FO model] vi(h, τ) = Si(h, τ) + ln[wi(h, τ)], (13a)

[Pf model] vi(h, τ) = Si(h, τ) + wi(h, τ), (13b)

where
Si(h, τ) ≡ µ(σ − 1)−1 ln∆i(h, τ).

2.3 Adjustment process and long-run equilibrium

In the long run, the skilled workers are inter-regionally mobile. They are assumed
to be heterogeneous in their preferences for location choice. That is, the indirect
utility for an individuals in placei is expressed as

v(s)
i (h, τ) = vi(h, τ) + ϵ

(s)
i .

In this equation,ϵ(s)i , which is distributed continuously across individuals, denotes
the utility representing the idiosyncratic taste for residential location.

We present the dynamics of the migration of the skilled workers to define the
long-run equilibrium. We assume that at each time periodt, the opportunity for
skilled workers to migrate emerges according to an independent Poisson process
with arrival rateλ. That is, for each time interval [t, t+dt), a fractionλdt of skilled
workers have the opportunity to migrate. Given an opportunity at timet, each
worker chooses the place that provides the highest indirect utilityv(s)

i (h, τ), which
depends on the current distributionh = h(t). The fraction of skilled workers who
choose placei under distributionh is Pi(v(h), τ), where

Pi(v, τ) = Pr[v(s)
i > v(s)

j , ∀ j , i].

Therefore, we have

hi(t + dt) = (1− λdt)hi(t) + λdtHPi(v(h(t)), τ).

By normalizing the unit of time so thatλ = 1, we obtain the following adjustment
process:

ḣ(t) = F(h(t), τ) ≡ HP(v(h(t)), τ) − h(t), (14)

whereḣ(t) denotes the time derivative ofh(t), andP(v(h), τ) = (Pi(v(h), τ)). For
the specific functional form ofPi(v, τ), we use the logit choice function:

Pi(v, τ) ≡
exp[θvi ]∑
j exp[θv j ]

, (15)

6We ignore the constant terms, which have no influence on the results below.
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whereθ ∈ (0,∞) is the parameter denoting the inverse of variance of the idiosyn-
cratic tastes. This implies the assumption that the distributions of (ϵ(s)i )’s are Gum-
bel distributions, which are identical and independent across places (e.g., McFad-
den, 1974 [32]; Anderson et al., 1992 [2]). The adjustment process described by
(14) and (15) is the logit dynamics, which has been studied in evolutionary game
theory (e.g., Fudenberg and Levine, 1998 [17]; Hofbauer and Sandholm, 2007 [22];
Sandholm, 2010 [37]).

Next, we define the long-run equilibrium, which is a stationary point of the
adjustment process of (14).

Definition 2.1. The long-run equilibrium is defined as the distributionh∗ that sat-

isfies

F(h∗, τ) ≡ HP(v(h∗), τ) − h∗ = 0. (16)

The heterogeneous worker case includes the conventional homogeneous worker
case. Indeed, whenθ → ∞, the condition given in (16) reduces to that for the ho-
mogeneous worker case:V∗ − vi(h∗, τ) = 0 if h∗i > 0,

V∗ − vi(h∗, τ) ≥ 0 if h∗i = 0,

whereV∗ denotes the equilibrium utility.

10



3 System of places on a finite hexagonal lattice and their

bifurcation

A finite hexagonal lattice is introduced as the spatial platform of the core–periphery
models presented in Section 2. Christaller’s hexagonal distributions are reviewed
in §3.1 based on Christaller (1966) [9] and Dicken and Lloyd (1990) [12]. After
introducing the hexagonal lattice in§3.2, we prescribe two-dimensional period-
icity and hexagonal distributions in§3.3, and study possible bifurcations of the
hexagonal lattice in§3.4.

3.1 Christaller’s hexagonal distributions: review

In central place theory, a completely homogeneous infinite two-dimensional land
surface is introduced based on the several simplifying assumptions. The assump-
tions are summarized as:

(i) The land surface is completely flat and homogeneous in every aspect. It is,
in technical terms, anisotropicplain.

(ii) Movement can occur in all directions with equal ease and that there is only
one type of transportation.

(iii) The plain is limitless or unbounded, so that we do not have to deal with the
many complexities that tend to occur at boundaries.

(iv) The population is spread evenly over the plain.

When there are a number of productions of the same good on that homoge-
neous plain, the best solution that provides maximum coverage from a minimum
number of supply points is a uniform hexagonal lattice of production centers. For
production of bundles of goods, there appear many levels in the hierarchy of central
places. Dicken and Lloyd (1990, pp.28) [12]) stated:

Christaller’s model, then, implies a fixed relationship between each
level in the hierarchy. This relationship is known as ak value (k
meaning a constant) and indicates that each center dominates a dis-
crete number of lower-order centers and market areas in addition to its
own.

The hexagonal market areas of three kinds shown in Fig. 1 are calledk = 3 sys-
tem, k = 4 system, andk = 7 system, which are respectively based on market,
traffic, and administrative principles (Christaller, 1966, pp.74–77 [9]; Dicken and
Lloyd, 1990, Chapter 1 [12]). Thek value has a geometrical implication in that√

k is proportional to the distanceT between the first-level centers with the largest
population. We, accordingly, has a key formula

T/d =
√

k, (k = 3,4,7), (17)

whered is the distance between two neighboring places. The spatial periodT
represents the radius of hexagons.

11



A hierarchy of places with different levels exists in the market area governed by
the highest-level (first-level) center with the largest population. Such a hierarchy
is often called, the first-level center, the second-level center, and so on.7 When
only the first-level and the second-level centers are existent, it is called two-level
hierarchy. It is calledNmax-level hierarchy when up to theNmax-th hierarchy is
existent.

The numberN j of the j-th level centers dominated by the first level center is
given as (Christaller, 1966, p.67 [9]):

N1 : N2 : N3 : · · · = 1 : 2 : 6 : 18 : 54 : 162· · · for k = 3 system,

and as (Dicken and Lloyd, 1990, Chapter 1 [12]):

N1 : N2 : N3 : · · · = 1 : 3 : 12 : 48 : 192· · · for k = 4 system.

It is possible to arrive at a pertinent recurrence formula

N1 = 1, N j = k j−1 − k j−2, ( j = 2,3, . . . ,Nmax; k = 3,4,7). (18)

In this paper, we deal only with two-level hierarchy withNmax = 2.

3.2 Hexagonal lattice

The infinite two-dimensional domain that is used in central place theory is incom-
patible with a naive analysis for the core–periphery models, which are formulated
for a finite number of places in a finite domain. As a remedy, we introduce a fi-
nite hexagonal lattice8 with periodic boundaries comprising a system of uniformly
distributedn × n places. A place is allocated at each node of then × n hexagonal
lattice, expressed by

p= n1ℓ1 + n2ℓ2, (n1, n2 = 1, . . . ,n),

whereℓ1 = (d, 0)⊤ and ℓ2 = (−d/2, d
√

3/2)⊤ are oblique basis vectors. Two
neighboring places are connected by a straight road with the nominal lengthd. See
Fig. 2(a) for an example of 4× 4 hexagonal lattice.

To express the infiniteness, we impose periodic boundary conditions9 for the
hexagonal lattice, and then this lattice can be repeated spatially to cover an infinite
two-dimensional domain. See Fig. 2(b) for an example ofn = 4 to illustrate how
the places at the boundaries are connected by roads. By virtue of these bound-
aries, every place in the hexagonal lattice is surrounded by the same hexagonal
transportation network. The lattice can satisfy Assumptions (i), (ii), and (iii) in

7Such a hierarchy is also called metropolis, city, town, village, hamlet; or A-level center, B-level

center, C-level center, and so on.
8There exist planar lattices of five kinds, rhombic, square, hexagonal, rectangular, and oblique

(Golubitsky and Stewart, 2002 [20]). The hexagonal lattice (net of hexagons) is said to be superior

to the square lattice (L̈osch, 1954, pp.133–134 [30]), and is often calledbasic lattice(Beavon 1977,

p.83, [4]).
9By the assumption of periodic boundaries, the finite lattice is periodically repeated spatially to

cover an infinite two-dimensional domain.
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(a) 4× 4 hexagonal lattice (b) Spatially repeated 4× 4 hexagonal lattices

Figure 2: A system of places in a 4× 4 hexagonal lattice with periodic boundaries

§3.1 in a discretized sense. Assumption (iv) can be satisfied since the uniformly
distributed population

h1 = · · · = hn2 = 1/n2 (19)

of the skilled workers is the pre-bifurcation solution to the governing equation (16)
for any value of the transport parameterτ, and this solution is shown to be stable for
very large values ofτ associated with primitive state of urbanization in Section 4.
The hexagonal lattice, accordingly, might be touted as a discretized counterpart of
the isotropic plain in central place theory.

3.3 Two-dimensional periodicity and hexagonal distributions

If the population distribution of a system of places (i.e., a subset of nodes) has
two-dimensional periodicity, then we can set a pair of independent vectors

(t1, t2), (20)

called the spatial period vectors, such that the system remains invariant under the
translations associated with these vectors. The spatial periods (T1,T2) are defined
asTi = ∥t i∥ (i = 1, 2).

Among possible doubly-periodic distributions, we specifically examine a hexag-
onal distribution that is described by

t1 = αℓ1 + βℓ2, t2 = −βℓ1 + (α − β)ℓ2, (α, β ∈ Z), (21)

for which T1 = T2(≡ T) is satisfied and the angle betweent1 and t2 is 2π/3. The
associated normalized spatial period is given by

T/d =
√

(α − β/2)2 + (β
√

3/2)2 =
√
α2 − αβ + β2. (22)

We consider a positive integer

k = α2 − αβ + β2,

13
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=

(a) Uniform distribution (k = 1) (b) k = 3 system

(c) k = 4 system (d) k = 7 system

Figure 3: Hexagonal distributions on the hexagonal lattice (Area of the circle rep-

resents the size of population)

which can take some specific integer values, such as 1, 3, 4, 7,. . . , and rewrite the
normalized spatial period in (22) as

T/d =
√

k (k = 1,3,4,7, . . .), (23)

which lies in the range 1≤ T/d ≤ n and take some specific values, such as
√

1,√
3,
√

4,
√

7, . . . .
The hexagonal distribution fork = 1 corresponds to the uniform distribution in

(19) (Fig. 3(a)), and those for otherk values ask = 3, 4, 7,. . . systems. The values
of (α, β) for these systems are not unique in general but are given, for example, as

(α, β) =


(1,0) : uniform distribution (k = 1),
(2,1) : k = 3 system,
(2,0) : k = 4 system,
(3,1) : k = 7 system.

We are particularly interested in the three systems associated withk = 3, 4, and 7,
which correspond to Christaller’sk = 3, 4, and 7 systems, as depicted in Fig. 3(b)–
(d). These three systems are observed in computational bifurcation analysis in
Section 4.

14



3.4 Bifurcating patterns on the hexagonal lattice

Bifurcating patterns on then × n hexagonal lattice were studied by equivariant
bifurcation theory in Ikeda et al. (2011) [25] to obtain possible hexagonal patterns
of agglomeration. The results of this study related to Christaller’sk = 3, 4, and 7
systems are presented briefly here (see the Appendix for theoretical details).

It is to be noted first that the uniformly distributed population solutionh1 =

· · · = hn2 = 1/n2 of the skilled workers in (19) is the simplest hexagonal distribu-
tion. This solution is existent for any value of the transport parameterτ, which is
the bifurcation parameter, and serves as the pre-bifurcation solution. There exist
bifurcated solutions of various kinds branching from various bifurcation points on
the uniformly distributed state. Bifurcations producing Christaller’sk = 3, 4, and 7
systems are existent for some specific values of the sizen of the lattice and the mul-
tiplicity M of the bifurcation point.10 These bifurcations are characterized by the
(normalized) spatial periodT/d and the spatial period vectors (t1, t2) as expounded
in Proposition 3.1 below. This proposition turns out to be of great assistance in the
computational analysis in Section 4.

Proposition 3.1. (i) The size n of the lattice and the multiplicity M of the bi-

furcation point that can potentially engender k= 3, 4, and7 systems from

uniformly distributed state are given by

(n,M) =


(3m,2) k = 3 system,

(2m,3) k = 4 system,

(7m,12) k = 7 system,

(24)

where m= 1,2, . . . .

(ii) The lattice admits all of these three systems as bifurcated solutions only if

the lattice size n is a multiple of 42, i.e.,

n = 42m (m= 1,2, . . .).

(iii) The bifurcated solutions for k= 3, 4, and7 systems have the spatial period

T/d =
√

k, (k = 3,4,7), (25)

in agreement with (17), and have the spatial period vectors

(t1, t2) =


(2ℓ1 + ℓ2,−ℓ1 + ℓ2), k = 3 system,

(2ℓ1,2ℓ2), k = 4 system,

(3ℓ1 + ℓ2,−ℓ1 + 2ℓ2), k = 7 system.

�
By Proposition 3.1(iii), we see that the spatial period becomes

√
k-times as large

as the unit spatial period for the uniformly populated state.

10At a bifurcation point of the governing equation of the lattice, there areM (≥ 1) zero eigen-

values of the Jacobian matrix∇F(h, τ) ≡ (∂Fi(h, τ)/∂hj) of the governing equationF(h∗, τ) ≡
HP(v(h∗), τ) − h∗ = 0 in (16). The numberM is calledmultiplicity, and plays a key role in the

classification of bifurcation points.
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4 Computationally obtained hexagonal distributions

We examine spatial agglomeration patterns of the population of skilled workers
among a system of places that spread uniformly on then×n hexagonal lattice by the
comparative static bifurcation analysis on the governing equation (16) with respect
to transport costs. As core–periphery models, the FO model and the Pf model
are used (Section 2). Direct bifurcations from uniformly distributed population
that produce hexagonal distributions for Christaller’sk = 3, 4, and 7 systems are
respectively investigated in§4.1–§4.3. Dependence of stability of solutions on the
transport cost is studied in§4.4.

We use the following parameter values:

• The lengthd of the road connecting neighboring places isd = 1/n (§3.2).

• The parameterµ of the utility function isµ = 0.4 (§2.1).

• The constant elasticityσ of substitution between any two varieties isσ = 5.0
(§2.1).

• The total numberH of skilled workers is chosen asH = 42 (§2.1).

• The inverseθ of variance of the idiosyncratic tastes isθ = 1000 (§2.3).

Recall that the hexagonal distributions fork = 3, 4, and 7 systems appear, via
direct bifurcations, only for specific values ofn (Proposition 3.1(i) in§3.4). We
elaborately setn = 42, which is the minimum value ofn that can engender all of
k = 3, 4, and 7 systems (Proposition 3.1(ii)).

Recall that the uniformly distributed populationh1 = · · · = hn2 = 1/n2 in
(19) of the skilled workers is the pre-bifurcation solution to the governing equation
(16) that exists for any value of the transport parameterτ. The comparative static
bifurcation analysis on the governing equation (16) with respect to transport costs
is conducted for the system of 42× 42 hexagonal lattice as follows:

• Eigenanalysis of the Jacobian matrix∇F(h, τ) ≡ (∂Fi(h, τ)/∂h j) of the ad-
justment process of (14) is conducted on the uniform population solution
to check the stability of this solution and to find bifurcation points on this
solution.

• Bifurcated solutions branching from the uniform population distribution are
obtained and their stability is investigated by the eigenanalysis.

Figure 4 depicts solution curves (the maximum populationhmax versus the trans-
port parameterτ curves) for the FO and Pf models obtained in this manner, where
hmax = max(h1, . . . ,hK) (K = 42× 42). The uniform population solution corre-
sponds to the horizontal line OO′ at hmax = H/n2 = 1/42≈ 0.024, which is stable
during OA (shown by the solid line). On the line OO′, a number of bifurcation
points with the multiplicityM = 2, 3, 4, 6, or 12 are existent. Among these bifur-
cation points, we specifically examine the direct bifurcations from the following
three bifurcation points:

• Bifurcation point A withM = 2 engenderingk = 3 system.

• Bifurcation point C withM = 3 engenderingk = 4 system.

• Bifurcation point B withM = 12 engenderingk = 7 system.
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4.1 k = 3 system

We deal with the FO model first. As can be seen from Fig. 4(a), a bifurcated curve
ADE branched at the double bifurcation point A (M = 2) on the line OO′ for the
uniform population. The curve ADE lost stability at the onset of bifurcation,11

remained unstable during AD, regained stability at D, and remained stable during
DE. Along the curve ADE,hmax increased from 0.024 to 0.071, wherehmax = 0.024
corresponds to the uniformly distributed state.

The progress of agglomeration observed on the bifurcated curve ADE is shown
in Fig. 5(a) for three different stages: bifurcation point A (hmax = 0.029), unstable
curve AD (hmax = 0.040), and stable curve DE (hmax = 0.071). The area of a circle
indicates the size of the population at the associated place. In view of the sizes of
population, these places are classified into:

• The first-level centers (denoted by the large circle).

• The second-level centers (denoted by the small circle).

hmax is equal to the population at a first-level center. We can observe the progress
of agglomeration:

• At bifurcation point A (hmax = 0.029), the population is uniformly dis-
tributed, and there is no distinction between the-first and the second level
centers.

• For unstable curve AD (hmax = 0.040), the difference of the first-level centers
and second-level ones emerges.

• For stable curve DE (hmax = 0.071), the population at the second-level cen-
ters almost disappears to realize a distinctive domination of the first-level
centers over the second-level centers.

Each first-level center is surrounded by six regular-hexagonal second-level cen-
ters to display a two-dimensional core–periphery pattern. On each straight line
along the hexagonal grid, we can observe repetitions of one first-level center and
two second-level centers. This pattern is different from the pre-existing core–
periphery patterns:

• For the two-city model, by bifurcation, a place grows to the first-level center
and another place shrinks to the second-level center (e.g., Krugman, 1991
[27] and Fujita et al., 1999 [18] for the Krugman model).

• In the racetrack economy, after the spatial period doubling bifurcation, the
first-level center and the second-level center appear alternately on the circle,
and each first-level center is surrounded by two neighboring second-level
centers (Tabuchi and Thisse, 2011 [41], Akamatsu et al., 2009 [1], and Ikeda
et al., 2010 [23]).

Such difference indicates the importance of the study of two-dimensional core–
periphery patterns.

11Such loss of stability at the onset of bifurcation is widely observed for the two-city model of

core–periphery models (e.g., Krugman, 1991 [27] and Fujita et al., 1999 [18] for the Krugman

model).
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Figure 4: Solution curves (the maximum populationhmax versus the transport pa-

rameterτ curves) for the system of 42× 42 places computed for the FO and Pf

models (Solid curve: stable, dashed curve: unstable;M is the multiplicity of the

bifurcation point)
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−→ −→

Bifurcation point A Unstable curve AD Stable curve DE

(hmax = 0.024) (hmax = 0.040) (hmax = 0.071)

(a)k = 3 system

−→ −→

Bifurcation point C Unstable curve CF Stable curve FG

(hmax = 0.024) (hmax = 0.034) (hmax = 0.095)

(b) k = 4 system

−→ −→

Bifurcation point B Unstable curve BH Stable curve HI

(hmax = 0.024) (hmax = 0.053) (hmax = 0.167)

(c) k = 7 system

Figure 5: Change of population distributions observed along the bifurcated curves

for k = 3, 4, and 7 systems for the FO model (the area of a circle represents the

size of population of the associated place)
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↗ k = 3 system (ADE)

→ k = 4 system (CFG or CC′)

↘ k = 7 system (BHI)

Figure 6: Enlargement of market areas for the first-level centers observed on the

bifurcated curves associated withk = 3, 4, 7 systems (Hexagon drawn by the

dashed lines denotes the market area)

The first-level centers, which are evenly scattered and are equidistant from each
other with the distance

√
3d, form regular hexagons with the radius of

√
3d. This

distribution, accordingly, is thek = 3 system with the (normalized) spatial period
T/d =

√
3 in Fig. 3(b) ((25) in Proposition 3.1(iii)). The bifurcation at A is the

spatial period
√

3-times bifurcation associated with

T/d : 1 →
√

3
(t1, t2) : (ℓ1, ℓ2) → (2ℓ1 + ℓ2,−ℓ1 + ℓ2)
curve : OO′ → ADE

Two neighboring first-level centers are connected by two kinked roads each of
which passes a second-level center at the kink (Fig. 5(a)). Such formation of zigzag
road between the two neighboring first-level centers is inferred in central place
theory (Christaller, 1966, p.73, [9]).

The market area, in the sense of Remark 4.1 below, of a first-level center is the
regular hexagon with the radius ofd depicted at the upper right of Fig. 6 by the
dashed lines. Each of the six second-level center is shared by three neighboring
market areas; accordingly, 6/3 = 2 second-level centers, in effect, belong to the
market area. Hence the ratio of the numberN1 of the first-level centers to the
numberN2 of the second-level centers is equal toN1 : N2 = 1 : 2 in agreement
with the formula (18) fork = 3 of central place theory. Consequently, commonality
exists between the computed population distribution for the core–periphery models
and the prediction by central place theory, although they are based on different
underpinnings.

Next, we shift eyes on the Pf model. Although the solution curves in Fig. 4(a)
and (b) for the FO and Pf models showed differences in the shapes of the curves and
locations of bifurcation points, the discussion above turned out to be applicable to
the Pf model as well. In particular, the emergence of thek = 3 system is a general
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phenomenon that is independent of individual models. Such model independence
is also demonstrated fork = 4 system in§4.2 and fork = 7 system in§4.3.

Remark 4.1. We consider a Voronoi decomposition (Okabe et al., 2000 [34]) of

the two-dimensional domain for a system of first-level centers. Then the domain is

decomposed into a set of identical hexagons. Each hexagon contains the first-level

center at its center and six second-level centers surrounding the first-level center.

Since the first-level center has the maximum market share to each of the second-

level center, this hexagon can be regarded as the market area of the first-level center.

It is to be noted, however, that for core–periphery models, the concept of market

area is fictitious because the degrees of freedom are allocated only at the nodes of

the hexagonal lattice. Yet, in this paper, this concept is used for convenience in the

description of the progress of agglomeration. �

4.2 k = 4 system

For both models, bifurcated curves fork = 4 system branched at the triple bifur-
cation point C (M = 3) on the line OO′ for the uniform population (Fig. 4(a) and
(b)). The bifurcated curve CFG of the FO model was unstable just after bifurcation
(CF), and became stable during FG. The bifurcated curve CC′ of the Pf model was
unstable throughout.

The progress of agglomeration observed on these bifurcated curves is shown
in Fig. 5(b) for the FO model. (The Pf model displayed similar progress of ag-
glomeration, but different stability.) Each first-level center is surrounded by six
regular-hexagonal second-level centers. We can see straight lines of two kinds
along the hexagonal grid. Some straight lines pass only second-level center. On
each straight line passing first-level centers along the hexagonal grid, we can ob-
serve alternating of a first-level center and a second-level center, as is the case for
the racetrack economy after the spatial period doubling bifurcation (Tabuchi and
Thisse, 2011 [41], Akamatsu et al., 2009 [1], and Ikeda et al., 2010 [23]). Thus
this agglomeration pattern can be touted as a two-dimensional counterpart of the
spatial period doubling bifurcation in the racetrack economy.

The first level centers, which are evenly scattered and are equidistant from each
other with the distance

√
4d, form regular hexagons with the radius of

√
4d. This

distribution, accordingly, is thek = 4 system with the (normalized) spatial period
T/d =

√
4 in Fig. 3(c) ((25) in Proposition 3.1(iii)). The bifurcation at C is the

spatial period doubling bifurcation

T/d : 1 → 2
(t1, t2) : (ℓ1, ℓ2) → (2ℓ1,2ℓ2)
curve : OO′ → CFG or CC′

Although the bifurcated curves for the FO and Pf models have different stability, a
bifurcated solution with the population distribution for thek = 4 system branched
at the bifurcation point C in each model. The emergence of thek = 4 system,
accordingly, is a general phenomenon that is independent of individual models.

Two neighboring first-level centers are connected by a straight road that passes
a second-level center (Fig. 5(b)). This configuration agrees with Christaller’s traffic
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principle for k = 4: “The traffic principle states that the distribution of central
places is most favorable when as many important places as possible lie on one
traffic route between two important towns, the route being as straightly and as
cheaply as possible.” (Christaller, 1966, p.74, [9]).

The market area, in the sense of Remark 4.1 above, of a first-level center is the
regular hexagon depicted at the middle right of Fig. 6 by the dashed lines. Since
each of the six second-level centers is shared by two neighboring market areas,
6/2 = 3 second-level centers, in effect, exist in the market area. Hence the ratio
of the numberN1 of the first-level centers to the numberN2 of the second-level
centers is equal toN1 : N2 = 1 : 3 in agreement with the formula (18) fork = 4 of
central place theory.

4.3 k = 7 system

For both models, a bifurcated curve BHI branched at the bifurcation point B of the
multiplicity M = 12 on the line OO′ for the uniform population. The curve BHI
lost stability at the onset of bifurcation, remained unstable during BH, regained
stability at H, and remained stable during HI.

The progress of agglomeration observed on the bifurcated curve BHI is shown
in Fig. 5(c) for the FO model. (The Pf model displayed similar progress of agglom-
eration.) Each first-level center is surrounded by six regular-hexagonal second-
level centers. On each straight line along the hexagonal grid, we can observe repe-
titions of a first-level center and six second-level centers.

The first level centers, which are evenly scattered and are equidistant from each
other with the distance

√
7d, form tilted regular hexagons with the radius of

√
7d.

The emergence of such tilted hexagons is most phenomenal in the present study.
This distribution, accordingly, is thek = 7 system with the (normalized) spatial
periodT/d =

√
7 in Fig. 3(d) ((25) in Proposition 3.1(iii)). The bifurcation at B is

the spatial period
√

7-times bifurcation

T/d : 1 →
√

7
(t1, t2) : (ℓ1, ℓ2) → (3ℓ1 − ℓ2,−ℓ1 + 2ℓ2)
curve : OO′ → BHI

Although the solution curves in Fig. 4 for the FO and Pf models are apparently
different, a bifurcated solution with the population distribution for thek = 7 system
branched at the bifurcation point B in each model.

For the bifurcated curve BHI, the market area (Remark 4.1) of a first-level
center is the regular hexagon depicted at the lower right of Fig. 6 by the dashed
lines. Since the six second-level centers are entirely within the market area of the
first-level center, the ratio of the numberN1 of the first-level centers to the number
N2 of the second-level centers is equal toN1 : N2 = 1 : 6. This agrees with
Christaller’s administrative principle fork = 7 system: “The ideal of such a spatial
community has the nucleus as the capital (a central place of a higher rank), around
it, a wreath of satellite places of lesser importance, and toward the edge of the
region a thinning population density—and even uninhabited areas.” (Christaller,
1966, p.77 [9]). It is restated, for short, by Dicken and Lloyd (1990, Chapter 1)
[12] as “Lower-order centers are entirely within the hexagon of the higher-order
center.”
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4.4 Dependence of stability of solutions on the transport cost

Up to now, we have investigated the emergence of Christaller’sk = 3, 4, 7 systems.
We now examine stable solutions, and investigate their dependence on the transport
cost. As shown in Fig. 4, when the value of transport parameterτ is very large, the
uniform population solution is the only stable solution and the solution curves for
k = 3, 4, 7 systems are non-existent. When the transport parameterτ decreases,
the uniform population solution becomes unstable at the bifurcation point A, and
we can have the following rough observation for stable solutions of those systems:

• For the FO model, first the solutions fork = 3 system become stable at the
point D, next those fork = 7 system become stable at the point H, and last
those fork = 4 system become stable at the point F.

• For the Pf model, first the solutions fork = 3 system become stable at the
point D, next those fork = 7 system become stable at the point H, and those
for k = 4 system remain unstable throughout.

The solution curves for thek = 3 system, accordingly, are stable for largerτ values,
but those for thek = 7 system are stable for smaller ones. The mechanism of
such dependence of the stability on the transport cost might be explained from a
standpoint of the tradeoff between transport costs and economies of scale:

• When the transport cost is high, the merit of the reduction of the transport
cost becomes predominant in comparison with the merit of economies of
scale. For this reason, thek = 3 system with a smaller market area is more
efficient than thek = 7 system with a larger market area that demands more
transport cost.

• When the transport cost is relatively small, the merit of economies of scale
becomes predominant; accordingly, thek = 7 system with a larger market
area is more efficient than thek = 3 system with a smaller market area.

Thus the dependence of the stability on the transport cost has economic necessity.
The curves fork = 3 andk = 7 systems are stable for wide range of the

transport cost for both models. On the other hand, those for thek = 4 system are
stable for relatively short range for the FO model, and unstable throughout for the
Pf model. Such features are dependent on models, their parameter values, and the
modeling of the transport cost in (8). It is a topic in future to untangle the economic
mechanism of such stability by thorough studies of other important core–periphery
models.
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5 Conclusion

For a two-dimensional system modeled by core–periphery models of two kinds,
self-organization of hexagonal population distributions for Christaller’s three sys-
tems in central place theory is predicted by group-theoretic bifurcation theory, and
their existence is verified and their stability is investigated by computational bi-
furcation analysis. It demonstrates inherent model-independent capability of the
core–periphery models to express those systems provided with pertinent spatial
platforms. Moreover, it confirms the prediction by Krugman (1996) [29] of the
emergence of a system of hexagonal market areas in two dimensions, thereby
paving the way for cross-fertilization between central place theory and new eco-
nomic geography.

The agglomeration patterns fork = 3 system andk = 7 system are different
from the pre-existing core–periphery patterns for the two-city model and racetrack
economy. In contrast, the agglomeration pattern fork = 4 system can be touted
as a two-dimensional counterpart of the spatial period doubling bifurcation in the
racetrack economy. Such difference and similarity indicate the importance of the
study of two-dimensional core–periphery patterns.

In central place theory, the three systems are explained based on market, traffic,
and administrative principles. In contrast, the present analysis using the core–
periphery models based on microeconomic underpinning engenders a hierarchy of
different levels of centers without resort to these principles. The results obtained
using central place theory must be reconsidered in light of economic geographical
modeling to extend the horizon of core–periphery models.

Dependence of stability of solutions on the transport cost is investigated in view
of economics of scales: When the transport cost is high, thek = 3 system with a
smaller market area is more efficient than thek = 7 system. When it is small, the
k = 7 system with a larger market area is more efficient. Thus the dependence of
the stability on the transport cost has economic necessity.

Bifurcations are highlighted as a catalyst to break uniformity to engender the
patterns. Group-theoretic bifurcation theory has displayed its usefulness to pre-
dict possible agglomeration patterns among a system of places in two dimensions,
often associated with successive elongation of spatial periods. Information about
symmetries of bifurcated solutions offered by this theory is important in choosing
a bifurcation point that produces hexagonal distributions of interest.
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A Group-theoretic bifurcation analysis on then×n hexag-

onal lattice

In this Appendix, the mathematical aspects are given as an adaptation of Ikeda et
al. (2011) [25]. Groups expressing the symmetry of then × n hexagonal lattice
are presented in§A.1. Group-theoretic bifurcation analysis for the core–periphery
models is conducted in§A.2. Bifurcations that produce hexagonal distributions for
Christaller’sk = 3, 4, and 7 systems are studied in§A.3.

A.1 Groups expressing the symmetry

For the study of the agglomeration pattern of population distribution on then × n
hexagonal lattice, we use group-theoretic bifurcation theory: an established math-
ematical tool for investigating pattern formation. In this theory, the symmetries
of possible bifurcated solutions are determined with resort to the group that labels
the symmetry of the system. Hence the first step of the bifurcation analysis is to
identify the underlying group.

A.1.1 Symmetry of then× n hexagonal lattice

Symmetry of then×n hexagonal lattice is characterized by invariance with respect
to:

• r: counterclockwise rotation about the origin at an angle ofπ/3.

• s: reflectiony 7→ −y.

• p1: periodic translation along theℓ1-axis (i.e., thex-axis).

• p2: periodic translation along theℓ2-axis.

Consequently, the symmetry of the hexagonal lattice is described by the group

G = ⟨r, s, p1, p2⟩, (A.1)

where⟨· · · ⟩ denotes a group generated by the elements therein, with the fundamen-
tal relations given by

r6 = s2 = (rs)2 = p1
n = p2

n = e,
rp1 = p1p2r, rp2 = p−1

1 r, sp1 = p1s, sp2 = p−1
1 p−1

2 s, p2p1 = p1p2,

wheree is the identity element. Each element ofG can be represented uniquely in
the form of

slrmp1
i p2

j , i, j ∈ {0, . . . , n− 1}; l ∈ {0,1}; m ∈ {0,1, . . . , 5}.

(For group theory, see Serre, 1977 [40].)
The groupG contains the dihedral group⟨r, s⟩ ≃ D6 and cyclic groups⟨p1⟩ ≃

Zn and⟨p2⟩ ≃ Zn as its subgroups. Moreover, it has the structure of semidirect
product of D6 by Zn × Zn, which is denoted as

G = D6 +̇ (Zn × Zn). (A.2)

This means, in particular, that⟨p1, p2⟩ is a normal subgroup ofG.
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A.1.2 Subgroups

Among many subgroups ofG = ⟨r, s, p1, p2⟩ = D6 +̇ (Zn×Zn), we are interested in
those subgroups expressing the hexagons for Christaller’sk = 3, 4, and 7 systems.
Such subgroupsG′ are represented as the semidirect product of a subgroupG′local
of D6 by a subgroupG′transof Zn × Zn; i.e.,

G′ = G′local +̇G′trans. (A.3)

It should be clear thatG′local represents the local symmetry andG′trans the transla-
tional symmetry. The local symmetry is given by

G′local =

{
⟨r, s⟩ for k = 3, 4,
⟨r⟩ for k = 7,

and the translational symmetry by

G′trans= ⟨pα1 pβ2, p
−β
1 pα−β2 ⟩ =


⟨p2

1p2, p−1
1 p2⟩ for k = 3 system,

⟨p2
1, p

2
2⟩ for k = 4 system,

⟨p3
1p2, p−1

1 p2
2⟩ for k = 7 system.

See Table A.1. Accordingly, the subgroups for Christaller’sk = 3, 4, 7 systems are

G′ = G′local +̇G′trans=


⟨r, s⟩ +̇ ⟨p2

1p2, p−1
1 p2⟩ for k = 3 system,

⟨r, s⟩ +̇ ⟨p2
1, p

2
2⟩ for k = 4 system,

⟨r⟩ +̇ ⟨p3
1p2, p−1

1 p2
2⟩ for k = 7 system.

(A.4)

From the translational symmetry we can derive a compatibility condition on
the sizen of the hexagonal lattice for a specifiedk value. For example,

• For k = 3 with (α, β) = (2, 1), we have (p2
1p2) × (p−1

1 p2)−1 = p3
1, which

represents a translation in the direction of theℓ1-axis at the length of 3d;
accordingly,n must be a multiple of 3. The spatial period vectors are given
by (t1, t2) = (2ℓ1 + ℓ2,−ℓ1 + ℓ2). The spatial period elongates asT/d = 1→√

3 (=
√

k).

• For k = 4 with (α, β) = (2,0), the symmetry ofp2
1 and p2

2 implies thatn is
a multiple of 2. The spatial period vectors are given by (t1, t2) = (2ℓ1, 2ℓ2).
The spatial period elongates asT/d = 1→

√
4 (=
√

k).

• For k = 7 with (α, β) = (3,1), we have (p3
1p2)2 × (p−1

1 p2
2)−1 = p7

1, from
which follows thatn is a multiple of 7. The spatial period vectors are given
by (t1, t2) = (3ℓ1 + ℓ2,−ℓ1 + 2ℓ2). The spatial period elongates asT/d =
1→

√
7 (=
√

k).

A.2 Exploiting symmetry of core–periphery models by group-theoretic
bifurcation theory

For investigation of the patterns of the bifurcated solutions, it is crucial to formulate
the symmetry that is inherent in the governing equation in (16):

F(h, τ) = HP(h) − h = 0. (A.5)
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Table A.1: The values of (α, β), tilted angleφ, local and translational symmetries,

and compatiblen for Christaller’sk = 3, 4, and 7 systems

Tilted Local Translational Lattice size
k (α, β) angle symmetry symmetry n

φ G′local G′trans (m= 1, 2, . . .)

3 (2,1) π/6 ⟨r, s⟩ ⟨p2
1p2, p−1

1 p2⟩ 3m

4 (2,0) 0 ⟨r, s⟩ ⟨p2
1, p

2
2⟩ 2m

7 (3,1) 0.106π ⟨r⟩ ⟨p3
1p2, p−1

1 p2
2⟩ 7m

In group-theoretic bifurcation theory, the symmetry of the equation for the system
of n× n places on the hexagonal lattice is described as

T(g)F(h, τ) = F(T(g)h, τ), g ∈ G, (A.6)

in terms of an orthogonal matrix representationT of groupG = ⟨r, s, p1, p2⟩ in
(A.1) on theK-dimensional spaceRK . The condition (or property) (A.6) is called
the equivariance ofF(h, τ) to G. The most important consequence of the equivari-
ance (A.6) is that the symmetries of the whole set of possible bifurcated solutions
can be obtained and classified.

In our study of a system ofn× n places in the hexagonal lattice, each element
g of G acts as a permutation of place numbers (1, . . . ,K) for K = n2 and hence
eachT(g) is a permutation matrix. Then we can show the equivariance (A.6) to
G = ⟨r, s, p1, p2⟩ of the core–periphery models as below.
Proof. By expressing the action ofg ∈ G asg : i 7→ i∗ for place numbersi andi∗,
we havevi(T(g)h, τ) = vi∗(h, τ) andPi(T(g)h, τ) = Pi∗(h, τ) by (15) for anyg ∈ G.
Therefore, we have

Fi(T(g)h, τ) = HPi(T(g)h, τ) − hi∗

= HPi∗(h, τ) − hi∗

= Fi∗(h, τ).

This proves the equivariance (A.6). �
According to group-theoretic bifurcation theory the (bifurcation) analysis pro-

ceeds as follows. Consider, to be specific, a critical point (hc, τc) of multiplicity
M (≥ 1), at which the Jacobian matrix ofF hasM zero eigenvalues.

With the use of a standard procedure called theLiapunov–Schmidt reduction
with symmetry(Sattinger, 1979 [39]; Golubitsky et al., 1988 [21]), the full system
of equations (A.5) is reduced, in a neighborhood of (hc, τc), to a system ofM
equations (called bifurcation equations)

F̃(w, τ̃) = 0 (A.7)

in w ∈ RM, whereF̃ : RM × R → RM is a function and̃τ = τ − τc denotes the
increment ofτ. In this reduction process the equivariance of the full system, which
is formulated in (A.6), is inherited by the reduced system (A.7) in the following
form:

T̃(g)F̃(w, τ̃) = F̃(T̃(g)w, τ̃), g ∈ G, (A.8)
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Table A.2: NumberNd of d-dimensional irreducible representations of D6 +̇ (Zn ×
Zn)

n \ d 1 2 3 4 6 12

N1 N2 N3 N4 N6 N12

6m 4 4 4 1 2n− 6 (n2 − 6n+ 12)/12

6m± 1 4 2 0 0 2n− 2 (n2 − 6n+ 5)/12

6m± 2 4 2 4 0 2n− 4 (n2 − 6n+ 8)/12

6m± 3 4 4 0 1 2n− 4 (n2 − 6n+ 9)/12

whereT̃ is the subrepresentation ofT on theM-dimensional kernel space of the
Jacobian matrix. It is this inheritance of symmetry that plays a key role in deter-
mining the symmetry of bifurcating solutions.

The reduced equation (A.7) is to be solved forw asw = w(̃τ), which is often
possible by virtue of the symmetry of̃F described in (A.8). Since (w, τ̃) = (0, 0)
is a singular point of (A.7), there can be many solutionsw = w(̃τ) with w(0) = 0,
which gives rise to bifurcation. Eachw uniquely determines a solutionh of the full
system (A.5).

The symmetry ofh is represented by a subgroup ofG defined by

Σ(h; G,T) = {g ∈ G | T(g)h = h}, (A.9)

called the isotropy subgroup ofh. The isotropy subgroupΣ(h) can be computed in
terms of the symmetry of the correspondingw as

Σ(h; G,T) = Σ(w; G, T̃), (A.10)

where
Σ(w; G, T̃) = {g ∈ G | T̃(g)w = w}. (A.11)

The relation (A.10) enables us to determine the symmetry of bifurcated solutions
h through the analysis of bifurcation equations inw.

A.3 Theoretically predicted hexagonal distributions

Possible bifurcated solutions of the governing equation (A.5) for uniformly dis-
tributed population solution representing hexagonal distributions are predicted by
group-theoretic bifurcation theory.

The multiplicity M of critical points (i.e., the dimension of the kernel space of
the Jacobian matrix ofF in (A.5) at bifurcation points) is generically either 1, 2,
3, 4, 6, or 12, which is a natural consequence of the group-theoretic fact that the
dimensiond of an irreducible representation of the groupG is eitherd = 1, 2, 3,
4, 6, or 12. The numbersNd of thed-dimensional irreducible representations are
listed in Table A.2.

We present a possible bifurcation mechanism that can produce hexagonal dis-
tributions of population of skilled workers associated with Christaller’sk = 3, 4,
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and 7 systems expressed by the subgroups in (A.4). The main message is that such
bifurcated solutions do exist, and therefore these systems can be understood within
the framework of group-theoretic bifurcation theory. The hexagonal distributions
for Christaller’sk = 3, 4, and 7 systems emerge from bifurcation points of mul-
tiplicity M = 2, 3, 12, respectively, but not ofM = 1, 4, 6. It is mentioned in
particular that the distributions for Christaller’sk = 7 system are associated with
“simple hexagons” in Dionne, Silber, and Skeldon (1997) [13].

A.3.1 Analysis by equivariant branching lemma

The emergence of Christaller’s hexagons is proved by applying the equivariant
branching lemma to the bifurcation equatioñF(w, τ̃) in (A.7); see, e.g., Golubit-
sky, Stewart, and Schaeffer (1988) [21] for this lemma. Recall that bifurcation
equation is associated with an irreducible representation ofG and that the isotropy
subgroupΣ(h) in (A.9) expressing the symmetry of a bifurcated solutionh is iden-
tical with the isotropy subgroupΣ(w) in (A.11) of the corresponding solutionw for
the bifurcation equation, i.e.,Σ(h) = Σ(w) as shown in (A.10). A subgroupΣ is
said to be an isotropy subgroup ifΣ = Σ(h) for someh.

The analysis based on the equivariant branching lemma proceeds as follows:

• Specify an isotropy subgroupΣ of G for the symmetry of a possible bi-
furcated solution as well as an irreducible representationT̃ of G that can
possibly be associated with the bifurcation point.

• Obtain the fixed-point subspace Fix(Σ) for the isotropy subgroupΣ with re-
spect to the irreducible representationT̃, where

Fix(Σ) = {w ∈ RM | T̃(g)w = w for all g ∈ Σ}. (A.12)

• Calculate the dimension dim Fix(Σ) of this subspace.

• If dim Fix(Σ) = 1, a bifurcated solution with symmetryΣ is guaranteed to
exist generically by the equivariant branching lemma. If dim Fix(Σ) = 0, a
bifurcated solution with symmetryΣ is non-existent. If dim Fix(Σ) ≥ 2, no
definite conclusion can be reached by the equivariant branching lemma.

Isotropy subgroups with dim Fix(Σ) = 1 are calledaxial subgroupsand the asso-
ciated spatially doubly periodic solutions are calledaxial planforms(Golubitsky,
Dionne, and Stewart, 1994 [19]).

In our present analysis, we employ the above procedure withΣ = G′ for each
G′ in (A.4) and for each irreducible representationT̃ of G; note that eachG′, repre-
senting the symmetry of a Christaller’s hexagon, is an isotropy subgroup. Since the
dimension of̃T is eitherd = 1, 2, 3, 4, 6, or 12, the multiplicityM of the critical
point is generically either 1, 2, 3, 4, 6, or 12. The equivalent branching lemma
applies only if dim Fix(Σ) = 1. Fortunately, it will turn out (see§A.3.2 to§A.3.4)
that, in all cases of our interest in (A.4), we have dim Fix(Σ) ≤ 1 and therefore we
can always rely on the equivalent branching lemma to determine the existence or
nonexistence of bifurcated solutions for Christaller’s hexagons.
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A.3.2 k = 3 system

Whenn is a multiple of 3, hexagons for Christaller’sk = 3 system appear gener-
ically as a branch from a bifurcation point that is associated with the irreducible
representation given by

T(r) =

[
1 0
0 −1

]
, T(s) =

[
1 0
0 1

]
, T(p1) = T(p2) =

[
cos 2π/3 − sin 2π/3
sin 2π/3 cos 2π/3

]
.

(A.13)
This is one of the four two-dimensional irreducible representations of D6 +̇ (Zn ×
Zn) = ⟨r, s, p1, p2⟩ (Table A.2). Since this is two-dimensional, the multiplicity of
the bifurcation point isM = 2.

The general procedure in Section A.3.1 is applied to

Σ = ⟨r, s, p2
1p2, p

−1
1 p2⟩ = ⟨r, s⟩ +̇ ⟨p2

1p2, p
−1
1 p2⟩, (A.14)

which describes the symmetry of the hexagon for Christaller’sk = 3 system in
Fig. 3(b). The fixed-point subspace Fix(Σ) with respect toT̃ = T in (A.13) is
a one-dimensional subspace ofR2 spanned by (1, 0)⊤. Then, by the equivariant
branching lemma, there exists a bifurcated path with the symmetry of (A.14).

This is a hexagonal distribution with the spatial period vectors

(t1, t2) = (2ℓ1 + ℓ2,−ℓ1 + ℓ2),

which corresponds to (α, β) = (2, 1) in (21). The symmetriesp2
1p2 andp−1

1 p2 are
apparent from this expression. The spatial period elongates asT/d = 1→

√
3, in

agreement with central place theory ((17) fork = 3).

A.3.3 k = 4 system

Whenn is a multiple of 2, hexagonal patterns for thek = 4 system are predicted
using group-theoretic bifurcation analysis to branch from a bifurcation point that
is associated with the irreducible representation ofG given as

T(r) =

 0 1 0
0 0 1
1 0 0

 , T(s) =

 1 0 0
0 0 1
0 1 0

 ; (A.15)

T(p1) =

 1 0 0
0 −1 0
0 0 −1

 , T(p2) =

 −1 0 0
0 1 0
0 0 −1

 . (A.16)

This corresponds to one of the four three-dimensional irreducible representations
of D6 +̇ (Zn × Zn) = ⟨r, s, p1, p2⟩ (Table A.2). Since this is three-dimensional, the
multiplicity of the bifurcation point isM = 3.

The general procedure in Section A.3.1 is applied to

Σ = ⟨r, s, p2
1, p

2
2⟩ = ⟨r, s⟩ +̇ ⟨p2

1, p
2
2⟩ ≃ D6 +̇ (Zn/2 × Zn/2), (A.17)

which expresses the symmetry of the hexagon for Christaller’sk = 4 system in
Fig. 3(c). The fixed-point subspace Fix(Σ) with respect tõT = T in (A.15) and
(A.16) is a one-dimensional subspace ofR3 spanned by (1, 1, 1)⊤. Then, by the
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equivariant branching lemma, there exists a bifurcated path with the symmetry of
(A.17).

This is a hexagonal distribution with the spatial period vectors

(t1, t2) = (2ℓ1, 2ℓ2),

which corresponds to (α, β) = (2,0) in (21). The symmetriesp2
1 andp2

2 are apparent
from this expression. The spatial period elongates asT/d = 1→

√
4, in agreement

with central place theory ((17) fork = 4).

A.3.4 k = 7 system

When n is a multiple of 7, hexagonal patterns fork = 7 system are predicted
to branch by group-theoretic bifurcation analysis for the group D6+̇(Zn × Zn) at
a bifurcation point associated with a 12-dimensional irreducible representation.
Since this is 12-dimensional, the multiplicity of the bifurcation point isM = 12.
There is a bifurcated solution with the symmetry (Ikeda et al., 2011 [25])

⟨r, p3
1p2, p

−1
1 p2

2⟩ = ⟨r⟩+̇⟨p3
1p2, p

−1
1 p2

2⟩ = ⟨r⟩+̇⟨p3
1p2, p

7
1⟩ ≃ C6+̇(Zn×Zn/7). (A.18)

By (A.4), this solution is associated with the tilted hexagon fork = 7 system in
Fig. 3(d). The emergence of this solution is also demonstrated in the computational
bifurcation analysis forn = 42 in§4.3.

This is a hexagonal distribution with the spatial period vectors

(t1, t2) = (3ℓ1 + ℓ2,−ℓ1 + 2ℓ2),

which corresponds to (α, β) = (3, 1) in (21). The symmetriesp3
1p2 andp−1

1 p2
2 are

apparent from this expression. The spatial period elongates asT/d = 1→
√

7, in
agreement with central place theory ((17) fork = 7).

31



References

[1] T. Akamatsu, Y. Takayama, K. Ikeda, Spatial discounting, Fourier, and race-
track economy: A recipe for the analysis of spatial agglomeration models,
Preprint:MPRA Paper21738, University Library of Munich, Germany, 2009.

[2] S. P. Anderson, A. de Palma, J. F. Thisse,Discrete Choice Theory of Product
Differentiation, MIT Press, 1992.

[3] R. Baldwin, R. Forslid, P. Martin, G. Ottaviano, F. Robert-Nicoud,Economic
Geography and Public Policy, Princeton University Press, 2003.

[4] K. S. O. Beavon,Central Place Theory: A Reinterpretation, Longman, 1977.

[5] K. Behrens, J.-F. Thisse, Regional economics: A new economic geography
perspective.Regional Science and Urban Economics37(4) (2007) 457–465.

[6] M. Bosker, S. Brakman, H. Garretsen, M. Schramm, Adding geogra-
phy to the new economic geography: bridging the gap between theory
and empirics.Journal of Economic Geography10 (2010) 793–823; doi:
10.1093/jeg/lbq003.

[7] S. Brakman, H. Garretsen, C. van Marrewijk,The New Introduction to Geo-
graphical Economics, Cambridge University Press; 2nd ed., 2009.

[8] E. Buzano, M. Golubitsky, Bifurcation on the hexagonal lattice and the planar
Bénard problem.Philosophical Transactions of the Royal Society of London
A 308 (1983) 617–667.

[9] W. Christaller,Central Places in Southern Germany, Prentice Hall, 1966.

[10] M. Clarke, A. G. Wilson, The dynamics of urban spatial structure: The
progress of a research programme,Transactions of the Institute of British
Geographers, New Series10(4) (1985) 427–451.

[11] P. P. Combes, T. Mayer, J. F. Thisse,Economic Geography: The Integration
of Regions and Nations, Princeton University Press, 2008.

[12] P. Dicken, P. E. Lloyd,Location in Space: Theoretical Perspectives in Eco-
nomic Geography, 3rd ed., Harper Collins, 1990.

[13] B. Dionne, M. Silber, A. C. Skeldon, Stability results for steady, spatially,
periodic planforms,Nonlinearity10 (1997) 321–353.

[14] A. Dixit, J. Stiglitz, Monopolistic competition and optimum product diversity,
American Economic Review67 (1977) 297–308.

[15] H. Flam, E. Helpman, Industrial policy under monopolistic competition,
Journal of International Economics22 (1987) 79-102.

[16] R. Forslid, G. I. P. Ottaviano, An analytically solvable core-periphery model,
Journal of Economic Geography3 (2003) 229–340.

32



[17] D. Fudenberg, D. K. Levine,The Theory of Learning in Games, MIT Press,
1998.

[18] M. Fujita, P. Krugman, A. J. Venables,The Spatial Economy: Cities, Regions,
and International Trade, MIT Press, 1999.

[19] M. Golubitsky, B. Dionne, I. Stewart, Coupled-cells, wreath products and di-
rect products, in:Dynamics, Bifurcations, Symmetry, ed. P. Chossat (Kluwer,
Dordrecht) 127–138, 1994.

[20] M. Golubitsky, I. Stewart,The Symmetry Perspective, Birkhäuser Verlag,
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