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Abstract

In combinatorial studies of the Kronecker form of matrix pencils, two
linear-algebraic characteristics have been featured: degrees of subdetermi-
nants and ranks of expanded matrices. This paper shows the Legendre dual-
ity between the two and their combinatorial counterparts for matroid pencils,
which serve as upper bounds on the corresponding linear-algebraic quanti-
ties. Tightness of one of the combinatorial bounds is shown to be equivalent
to that of the other. A dfticient condition for the tightness is given, and
its application to electric networks is indicated. Furthermore, the proposed
approach is extended to mixed matrix pencils.
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1 Introduction

A matrix pencil, i.e., a polynomial matrix of the forgA+ B with an indeterminate
variables, is a fundamental linear-algebraic concept used in many application areas
including electric network theory, control theory, and numerical analysis. A matrix
pencil can be brought to a block-diagonal canonical form, known as the Kronecker
form [6].

Besides numerical methods [1, 2, 3, 24, 25] to compute the Kronecker form, a
number of combinatorial methods have been proposed [8, 10, 11,12, 13, 16, 18, 19]
to determine the structural indices, in particular, the indices of nilpotency, in the



Kronecker form. The combinatorial methods share a common feature that, under
certain genericity assumptions on the matriéesnd B, the structural indices are
expressed in terms of combinatorial objects, like matchings and linkings.

Technically, however, two ffierent approaches can be distinguished in com-
binatorial methods. The first approach, initiated by Murota [16] and pursued by
[8, 10, 13, 18, 19], uses maximum degrees of subdeterminants of specified or-
ders, denotedy in this paper. Combinatorial properties inherent in the degrees
of subdeterminants are discussed in terms of valuated bimatroids in [17] and [19,
Chapter 5]; see Section 3.2 for valuated bimatroids. The second approach, initiated
by Iwata—Shimizu [11] and pursued by [12], uses ranks of the expanded matrices,
denotedl in this paper. As a combinatorial abstraction along this approach, Iwata
[9] studies a pair of linking systems [23] (or bimatroids [14]) under the name of
matroid pencils. In particular, a combinatorial counterpamaf introduced for
matroid pencils; see Section 4.1. The two characterissicand 6y, have so far
been considered rather independently, and no explicit statement about their rela-
tionship has been made in the literature.

This paper is to shed a new light on combinatorial studies of matrix pencils by
featuring the discrete Legendre transformation as a methodological pivot. While
technical issues are detailed in Remark 2.1 in Section 2.2, the fundamental con-
struction of the discrete Legendre transformation is as follows. For an integer se-
guence ) in general, the discrete Legendre (concave) transformaig another
integer sequencgy) defined bysy = mfin (a¢ — k£), which isconcaven the sense

thatBk-1 + Bk+1 < 2B for all k. The discrete Legendre (convex) transformgy
is a sequenceyf) given byyy = m[ax(Bg + k¢), which isconvexin the sense that

vk-1 + Yk+1 = 2yk for all k. If (ay) is convex, theny) coincides with §x). There-
fore, the discrete Legendre transformation establishes a one-to-one correspondence
between convex and concave integer sequences.

In this paper we start with an easy observation tbg, 52, - - - ) and @p, 01, 62, - - - )
for a matrix pencil are mutually dual sequences with respect to the discrete Legen-
dre transformation (see Proposition 2.2 for a precise statement). By introducing a
combinatorial counterpart of for matroid pencils in addition to the combinatorial
counterpart of), considered in [9], we extend this Legendre duality to a matroid
pencil. For a given matrix penc8A+ B, we may associate a matroid pencil in
a natural way, andy and gy for sA+ B are upper-bounded by their combinato-
rial counterparts, saﬁk andéy for the associated matroid pencil. It is shown that
Sk = ok for all kif and only if 6 = 6 for all k (cf. Theorem 5.4), and that this is the
case ifA or Bis a generic matrix (cf. Theorem 5.5). For a generic matrix pencil, of
which bothA andB are genericgy is obviously tight for allk (see, e.g., [19, The-
orem 6.2.2]), and hence we can derive the tightnesk,aéstablished in [11], as
an immediate corollary of our result. Our result also has a significant implication
in combinatorial methods [7, 22] for electric networks. The Legendre duality is
extended to the combinatorial bounds for mixed matrix pencils, providing a novel
insight into the methods of Murota [18] and lwata—Takamatsu [12].



This paper is organized as follows. Section 2 describes the Kronecker form of
matrix pencils, and Section 3 explains matroid-theoretic concepts such as bima-
troids and valuated bimatroids as preliminaries. Sections 4 and 5 present the main
ideas of this paper, the former dealing with the combinatorial analogugsawid
Ok for matroid pencils and the latter discussing the relationship between the linear-
algebraic quantities and their combinatorial counterparts. Section 6 indicates a
possible application to electric networks. Section 7 describes the existing meth-
ods for mixed matrix pencils, and Section 8 shows the extension of the Legendre
duality approach to mixed matrix pencils.

2 Matrix Pencils

Let D(s) = sA+ B be amatrix penci] which means thaf and B are constant
matrices of the same size, ants an indeterminate variable. We assume )
is anmx n matrix of rankr. A matrix pencilD(s) = sA+ B is said to baegularif
it is square and dé(s) is a nonvanishing polynomial ig it is strictly regularif
both A andB are nonsingular.

2.1 Kronecker canonical form

A matrix pencil can be brought to a canonical block-diagonal form, known as the
Kronecker formthrough a strict equivalence transformation, i.e., a transformation
UD(s)V with constant nonsingular matricesandV.

For positive integerp andu, we define @ x p matrix K, (s) and au x p matrix
N,(s) as

1 0 0 ] s O 0

0 s 1 0 1 s .o

Ko() = o> Nu(®=|: - - 0
: . s 1 : .1 s
0 -~ -~ 0 s| 0 -~~~ -~ 0 1|

For a positive integes,, we define az x (¢ + 1) matrixL.(s) as

s 1 0 --- 0
Lo(s) = 0 s 1 o ’

T |

0O --- 0 s 1

and, for a positive integer, we define amif{+1)xn matrixU,(s) to be the transpose
of L,(s).

The following is the theorem for the Kronecker form. See [6, Chapter XII] and
[19, Chapter 5] for proofs.



Theorem 2.1(Kronecker, WeierstrassFor a matrix pencil [¥s) there exist non-
singular constant matrices U and V such that

UD(s)V = block-diag H,; Ky, (S), -+, Ky (S); Nuy(9), - -+, Ny (9);
le(s)e ) Lsp(s); Ufll(s)’ T Uﬂq(s))’ (1)

wherepr > --->pc> Ly >-->pug>L,e1>--->2gp21,m>-->ng>1,
and H, is a strictly regular matrix pencil of size. The numbers c, d, p, @,
PLs---sPcs M1s- - Hds €1, - - -, Ep, N1, - - -, g, A€ UNiquely determined.

In this paper we are particularly interestedu . .., uq, which we call the
indices of nilpotencyNote thaip; for sA+ B is equal tqu; for sB+ A and hence all
the arguments of this paper, developeddgtranslate to those far.

2.2 Characterizations of the indices

In combinatorial studies of the Kronecker canonical form, twifedent character-
izations of the indices of nilpotenqy, have been employed. They are described
here with an observation about their relationship.

Fork=0,1,2 --- we denote by the highest degree ismof a minor (subde-
terminant) of ordek of D(s) = sA+ B:

Ok = 0k(SA+ B) = maxdeg,detD[X, Y] | [X| = |Y| = k], 2
whereD[X, Y] denotes the submatrix @ with row setX and column seY; we
putép = 0, anddk = —co for k > r or k < 0. It holds that

d
sk=k= > m  (0<ks<r) (3)

i=r—k+1

In particular,6x = kif 0 < k <r —d. The identity (3), characterizing in terms
of 6k, forms the basis of combinatorial studieg®¥ia i initiated by Murota [16]
and pursued by [8, 10, 13, 18, 19]. The sequerdgki¢ concave:

Ok_1 + Okp1 < 20k l<k<r-12) (4)

The second characterization @f refers to larger matrices, callekpanded
matrices For a positive integek, let @ be akmx kn matrix defined by

A O -+ - O]

B A

O=0sA+B)=| 0 B 5)

w >
>0 O

0o ... O
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We denote the rank @y(sA+ B) by 6k = k(SA+ B), wherefy = 0 andfg = —co
for k < 0. It holds that

d

O = kr — Z mink, ) (k> 0). (6)

i=1
The sequence qf; determines the sequencef and vice versa. The identity
(6), characterizing; in terms ofé, forms the basis of combinatorial studies.f
via 6 initiated by Iwata—Shimizu [11] and pursued by [12]. The sequeagaq
convex:
Ok_1 + Oke1 = 26k (k> 1). @)

The relationship between the two expressions (3) and (6) can be identified as
the discrete Legendre transformation (see Remark 2.1 below). This is an easy
observation, but no explicit statement seems to have been made in the literature of
combinatorial analysis of the Kronecker form.

Proposition 2.2. For 6k = 6k(SA+ B) and8x = 6k(SA+ B) we have

Sk = min (61— kO) (O<k<r), (8)
>
Ors1 = max(dx + k¢) (¢=0). 9)
O<k<r

Proof. Sincedy is concave and, is convex, the two expressions (8) and (9) are
equivalent; see Remark 2.1 below. The latter expression (9) can be verified as
follows. For¢ > 0 letk = k(¢) be the minimum index such thaf_x > £+ 1 >
Ur_k+1, Whereug = +o0. Using (3) we obtain

d d
max(Gic + ke) = mkax[k(é’+ 1)~ > M] =k(+1)- Z i,
i=r—k+1 i=r—k+1
in which
d d d .
D= )0 min@+ L) =) min€+ 1) - (r =K+ 1).
i=r—k+1 i=r—k+1 i=1
Therefore,
d
max(dy +kt) = r(¢ +1) - Do min(e + 1,5) = 041,
i=1

where the last equality is due to (6). |

Combinatorial (or matroid-theoretic) analogues of the linear-algebraic charac-
teristics above will be considered in Section 4 as the main topic of this paper, and
the relationship between linear-algebraic quantities and combinatorial quantities is
discussed in Section 5 in terms of the Legendre duality. This approach is followed
by an extension to mixed matrix pencils in Section 8.

5



Remark 2.1. The discrete Legendre transformation is explained here in a way
suitable for this paper; see [20] for details. A (discrete) funcfior?Z — Z U {+oo}
is calledconvexf

f(x—1)+ f(x+1)> 2f(x) forall x e Z.
A functiong : Z — 7Z U {—oo} is calledconcavdf

gy-1+9(y+1)<29(y) forall ye Z.

For a functionf : Z — Z U {+o0} in general, convex or not, the discrete
Legendre (concave) transform bis a functionf® : Z — Z U {—oo} defined by

f°(y) = inf{f(x) - xy| xeZ}  (yeZ), (10)

where it is assumed thd{x) € Z (i.e., finite-valued) for somg € Z. The function
f° is concave. For a functiog: Z — Z U {—oo} in general, the discrete Legendre
(convex) transform of is a functiong® : Z — Z U {+oco} defined by

g°(x) = supg(y) + xylye Z}  (xeZ), (11)

where it is assumed thgty) € Z (i.e., finite-valued) for someg € Z. The function
g* is convex. For a convex functiohand a concave functiogpwe have

()=t @) =9 (12)

Hence the discrete Legendre transformation establishes a one-to-one correspon-
dence between convex and concave integer-valued discrete functions.

An integer sequencerf) indexed byk € K can be identified with a discrete
functionK — Z. Furthermore, it can be identified with :"Z — Z U {+oo} by
defininga = +co outsideK, or alternatively, witha™: Z — Z U {—co} by defining
a = —oo outsideK. In this paper we identify&, 1, - - - , §;) with a functiong :

7 — 7 U {—c0} byg(k) = 6 fork =0,1,...,r,and @o,01,02,--- ) with f : Z —
7 U {+0co} by f(K) = 61 for k > —1. Then, (8) is the form of = f° and (9) is
f = g°, wheregp = 0 is a tacit understanding. |

3 Bimatroids and Valuated Bimatroids

This section introduces basic concepts that we need for the matroid-theoretic con-
structions in this paper.



3.1 Bimatroids

The concept of bimatroids was introduced first by Schrijver [23] under the name
of linking system, and by Kung [14] under the name of bimatroid.

A bimatroid (or linking systemis a tripleL = (S, T,A), whereS andT are
disjoint finite sets, and\ is a nonempty subset of2< 2T such that (L-1)—(L-3)
below are satisfied:

(L-1) If (X,Y) € A andx € X, then there existy € Y such that
X=XY-y)eA;

(L-2) If (X,Y) € A andy € Y, then there existx € X such that
X=XxXY-Yy) eA;

(L-3) If (Xi,Y;) € A (i =1,2), then there exisK € SandY C T such
thatX,Y) e A, X1 S XCX3UXy, YaCYC YUY,

whereX — x is a short-hand notation fof \ {x}. We callS therow setandT the
column sebf L. A member K, Y) of A is called alinked pair. It follows from
(L-1) and (L-2) that@, 0) € A and thatX| = |Y| for any linked pairK,Y) € A. The
maximum size of a linked pair ih is referred to as theank of L. We sometimes
write (X,Y) e L tomean K, Y) € A.

For two bimatroids.; = (S, Ti,Ai) (i = 1,2), theunionof L1 andL, is a
bimatroidL, Vv Ly = (Sl US,, T1UTy, A1V A2) with

A1V Az = {(X1UXz,YiIUY) |

(Xl,Yl) € Aq, (Xz, Y2) €Ny, X1NX2=0, Y1NY2 =0}

It is mentioned tha%; N S, # 0 andT; N T2 # 0 in general.

Remark 3.1. A canonical example of a bimatroid arises from a matrix. Adte

a matrix over a field, with row s& and column seT. DefineA to be the family
of all pairs (X, Y) € 25 x 2T such thatX| = |Y| and the corresponding submatrix
Al X, Y] is nonsingular. Theng, T, A) is a bimatroid, which we denote ty(A). n

Remark 3.2. Another bimatroid arises from a matrix. LAtbe a matrix over a
field, with row setS and column sef. Define A to be the family of all pairs
(X,Y) € 25 x 2T such thaiX| = |Y| and the corresponding submatéX, Y] is
term-nonsingular, which means that there exists a one-to-one mappiXg— Y
such that thei(o(i))-entry of Ais nonzero for all € X. In other words, X, Y) € A

if and only if a perfect matching exists betweXrandY in the associated bipartite
graph 6, T; E), whereE = {(i, j) | (i, j)-entry of Ais nonzer¢. Then 5, T,A) is a
bimatroid, which we denote b@(A). Every linked pair inL (A) is a linked pair in
G(A), which we denote ak(A) < G(A) by abuse of notation. We havgA) =
G(A) if Ais a generic matrix, i.e., if the nonzero entriesffare independent
parameters. N



Remark 3.3. A bimatroid union corresponds roughly to a matrix sum. Consider
C = A+ B, and an expansion of its subdeterminant:

detC[X,Y] = ) +detA[l,J]- detB[X\1,Y\ J]. (13)
1eX,JcY
If detC[X, Y] # 0, there exists a pait (J) such that def\[l, J] # 0 and deB[X \
I,Y\ J] # O; the converse is also true provided no cancellation occurs among
nonzero terms in the summation. Therefore, every linked pair(f+ B) is a
linked pair inL (A) v L(B), which we denote as

L(A+B) ¢ L(A) v L(B). (14)
In particular we have
rankL (A + B) < rank L (A) v L(B)). (15)

Furthermore, we havie(A + B) = L(A) v L(B) in a situation that guarantees no-
cancellation in (13). N

3.2 Valuated bimatroids

As a variant of valuated matroids of Dress—Wenzel [4, 5] the concept of valuated

bimatroids was introduced by Murota [17]; see [19, Chapter 5] for an exposition.
Let (S, T,A) be a bimatroid of rank. A function f : A — R is called

a valuated bimatroidf (VB-1) and (VB-2) below hold for any X,Y) € A and

(X, Y") € A:

(VB-1) Foranyx e X'\ X, either (al) or (b1) (or both) holds, where
(al) there existy’ € Y” \ Y such that
FOXY)+ f(XLY) < f(X+ X, Y+Y)+ (X =X, Y —Y),
(b1) there existx € X \ X’ such that
FXY)+ f(X,Y) < f(X=x+ X, Y)+ f(X' =X + X Y).
(VB-2) Foranyye Y \Y’, either (a2) or (b2) (or both) holds, where
(a2) there existg € X \ X’ such that
FXY)+ f(XLY) < f(X=xY=-y)+ f(X'+ XY +Y),
(b2) there existy’ € Y’ \ Y such that
FXY)+ f(XL,Y)< (XY =-y+Y)+ T(X,Y =y +Y).

HereX — x, X+ X andX — x + X’ are short-hand notations f&t\ {x}, X U {X'} and
(X\ {x}) U {X'}, respectively.
Foranyp:S — Randqg: T — R, define a functiorf,q : A — R by

fag(X Y) = O Y) = > p(0) = > a(y). (16)

xeX yeY



If fis a valuated bimatroid, thefyq is also a valuated bimatroid. Denote by
argmaxfyq the set of maximizers offyg.

Proposition 3.1. Let (S, T, A) be a bimatroid. A function f A — R is a valuated
bimatroid if and only ifargmaxf,q forms a bimatroid for everyp, ).

Proof. Since §,T,A) is a bimatroid,8 = (XU Y | (S\ X, Y) € A} is the basis
family of a matroid. Therw : 8 — R defined byw(X U Y) = f(S\ X Y) is a
valuated matroid if and only if is a valuated bimatroid [19, Section 5.2.5]. The
assertion forf is a straightforward translation of the corresponding statement for
w; see [19, Theorem 5.2.26]. O

To consider the maximurh-value over linked pairsX, Y) of a specified siz&
we define

ok =maxfX,Y)| IX =|YI=k, (XY)eA} (O<k<r). a7)
Proposition 3.2([17]; also [19, Theorem 5.2.13])The sequenc&y) defined by
(17)is concave, i.egk-1 + Ok+1 < 20k for each k withl <k <r — 1. ]

A union operation can be defined for valuated bimatroids compatibly with the
bimatroid union. The functiori; v f, below is called theinionof f; and fs.

Proposition 3.3([19, Theorem 5.2.24])For two valuated bimatroids; f Aj —» R
(i = 1,2), the function f v f, : A1 vV A, — R defined by
(fl \Y fz)(x, Y) = max{ fl(X]_, Y]_) + fz(Xz, Y2) | (X]_, Yl) (S Al, (Xz, Yz) € Az,
XtuXo=X, YiuYo=Y, XiNXo=0, Y1NYy =0}

for (X,Y) € A1 v Az is a valuated bimatroid. ]

Remark 3.4. A canonical example of a valuated bimatroid arises from a polyno-
mial matrix. LetD(s) be a polynomial matrix in variabls with coeficients from
a field, and_(D) = (S, T, A) be the associated bimatroid (cf. Remark 3.1). Define
f:A— Zbyf(XY)=degdetD[X Y]. Thenf is a valuated bimatroid. "

4 Valuated Bimatroids Associated with Matroid Pencils

4.1 Matroid pencils

A matroid pencilis a pair of bimatroids having the rgeolumn sets in common,
which was introduced by Iwata [9] as a combinatorial abstraction of matrix pencils.
A matroid pencil A,B) with A = (S,T,A) andB = (S, T, E) is also denoted as

9



(S, T; A, E), and the rank ofA, B) is defined as the rank & v B, to be denoted
byr.

A combinatorial counterpart of the expanded ma®ixin (5) can be defined
as follows. For a positive integgr let S; andT; be disjoint copies of andT,
respectively. Furthermore, lét; = (Sj,Tj,Aj) andBj = (Sj;1,T},Ej) be the
copies ofA andB, respectively. For each positive intedeiconsider the union

Ok = Ok(A,B)=A1vVB1 VAV -V Bk VA (18)
and denote the rank @iy (A, B) by 6k = 6k(A, B), wheregy = 0.

Proposition 4.1([9]). The sequenc& = 6k(A, B) has the following properties.
(i) Ok_1+ 6ki1 > 26k for every k> 1 (convexity).
(i) O <6ks1—6k <r forevery k> 0.
(i) Okr1— 6k =r forevery k>r. [

Theorem 4.2([9]). For 6k = 6k(A, B) associated with a matroid pendif\, B)
(S, T; A, E), we have

0 = maxkiX| + (k=X | (X Y) e A, (X, V) e E,XNX=0,YNY =0}

[

4.2 Associated valuated bimatroids
Given a matroid pencil4, B) = (S,T; A, ), we define two functiond = fap) :

AVE—-Randg=gap):AVE—-Rby
fXY) = max|X|| (X, ¥)eA, (X\X, Y\Y)eE, XCX YTV}, (19)
gXY) = max|X| | (X,Y)eZ, (X\X, Y\Y)eA, XCX YCY}. (20)

We then have

f(X,Y) <X, g(xX,Y) <X (21)

It is also noted thaga g)(X,Y) = fr.A)(X,Y). See Remark 4.1 below for a moti-
vation of the definition (19).

Proposition 4.3. The functions f= f(a g) and g= g(a ) associated with a matroid
pencil (A, B) are valuated bimatroids.

Proof. Define a functionf; : A — R by f1(X,Y) = |X| for (X,Y) € A, and another
function f, : E — R by fo(X,Y) = 0 for (X,Y) € E. Both f; and f, are valuated
bimatroids. Moreover, the functioh in (19) coincides with the unioriy Vv fz,
which is a valuated bimatroid by Proposition 3.3. The assertiog folows from
the above argument, singg g) = fg.a)- o

10



Denote byP the set of matroid pencil#\( B), and byV the set of pairsf, g)
of valuated bimatroids that are defined on a common bimatroid and satisfy (21).
Proposition 4.3 shows that a mappivig £ — <V can be defined by : (A,B) —
(fiaB). 9a.B))-

Conversely, suppose that we are given valuated bimatifoatsdg on a com-
mon bimatroid, with row se$ and column seT, such that (21) holds for every
linked pair (X, Y). By defining

At

{(XY) X Y) =X}, (22)
{(XY) 19X Y) = X, (23)

[1]

g

we obtain a matroid pencilA;B) = (S, T; Af,Zg), as shown in Proposition 4.4
below. This means that a mappifg: vV — % can be defined by : (f,g) —

Proposition 4.4. (S, T; A, Eg) is @ matroid pencil for anyf,g) € V.

Proof. By (21) and (22) A coincides with the set of maximizers 6€X, Y) — |X],
which is equal, in the notation of (16), thq(X,Y) with p(x) = 1 (x € S) and
aly) =0 (ye T). Hence §, T, Af) is a bimatroid by Proposition 3.1. Similarly for
Eg. O
The following theorem shows th&to V : £ — P is the identity mapping.
This implies, in particular, tha¥ : £ — <V is an injection and the representation

of (A,B) € P by (f,g) € V is faithful. Note, however, thaf is not necessarily a
surjection; see Remark 4.2.

Theorem 4.5. For a matroid penciA,B) = (S, T; A, E), we have

[1]

A¢$B)=<A, =gaB) —

Proof. Put f = fap). By the definition off in (19) we see:f(XY) = X &
(X,Y) € A. On the other hand, the definition Af in (22) shows: X, Y) € A; &
f(X,Y) = |X|. Hence followsAs = A. Similarly for =. O

Remark 4.1. The functionf in (19) is a combinatorial counterpart of the degree
of subdeterminants. Consider a matrix pemxis) = sA+ B, and an expansion of
its determinant:

detD[X, Y] = Z +9'' detA[l, J] - detB[X \ I, Y\ J]. (24)
1EX,JcY

If A = L(A) andB = L(B) are the bimatroids associated with the matriées
and B via nonsingular submatrices (cf., Remark 3.80X,Y) = f°(X,Y) defined

11



in (19) for (A,B) = (L(A),L(B)) coincides with the maximum degree of a term
appearing on the right-hand side of (24). Af = G(A) andB = G(B) are the
bimatroids associated with the matric®sndB via term-nonsingular submatrices
(cf., Remark 3.2),f(X,Y) = f9(X,Y) defined in (19) for A,B) = (G(A), G(B))
coincides with the maximum degree of a term appearing in the expansion

detD[X, Y] = > >+ [ [ Ali,o()] [ | Bli. (i), (25)

o 1cX i€l ieX\I

whereo runs over all one-to-one correspondences betweandY. Therefore,
deg detD[X, Y] < fB(X,Y) < f9(X,Y) (26)

in general, and the equality holds if no cancellation occurs among nonzero terms
in the summations. It is mentioned thB#(X, Y) can be evaluated by solving a
weighted bipartite matching problem, ah8i(X, Y) by solving a weighted matroid
unioryintersection problem. |

Remark 4.2. Not every member ol corresponds to a member®f A necessary
condition for (f, g) to be contained in the image ¥f: £ — YV is that

fOCY) +a(XY) > X (27)

for all (X,Y). To see this, letX,Y) be a maximizer in (19) withf (X, Y) = |X].
Since K\ X, Y\Y) e Zand X,Y) € A, we haveg(X, Y) > |X \ X| by (20). Hence
follows (27). It is left for the future to identify necessary andimient conditions
for (f, g) to lie in the image oWV. n

4.3 Indices of nilpotency

Fork=0,1,...,r we define
ok = 0k(A,B) =maxf(X,Y)| X =YY=k, (X,Y)e AV E} (28)

wheref = f(a g) is defined by (19). This serves as a combinatorial counterpart of
ok(sA+ B) for a matrix pencilsA+ B defined in (2); see Remark 4.1.

Proposition 4.6. The sequencé = 6k(A, B) is concave, i.edk_1 + dkr1 < 26k for
eachkwithl <k<r -1

Proof. Since f is a valuated bimatroid by Proposition 4.3, the assertion follows
from Proposition 3.2. O
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The two sequencek anddy associated with a matroid pencll (B) are equiv-
alent through the discrete Legendre transformation, which is stated in Theorem 4.7
below. This is a combinatorial counterpart of Proposition 2.2 for a matrix pencil.

Theorem 4.7. For éx = 6k(A,B) and 6k = 6k(A, B) associated with a matroid
pencil (A, B), we have

b = min@ra-k)  (O<ks<n), (29)
01 = max(k+kd)  (£=0). (30)
O<ksr

Proof. Sincedy is concave by Proposition 4.6 afdis convex by Proposition 4.1,
the two expressions (29) and (30) are equivalent; see Remark 2.1 in Section 2.2.
The latter expression (30) can be verified as follows.

ml?x(ék + kf)
= mlflxrp&x{f(X,Y) +kIXI =Y =k (XY)eAVE)
= n)lan{f(x, Y)+ X[ | (X, Y) e AV E}

=max|X| + XU X | (X, ¥) e A, (X,Y) € 5, XN
=maxX{(f + )X+ X | (X, Y) e A, (X,¥V) €5, X

Il
=

0,YN
X=0,Y

}

X
n = 0).

Y
n

<1

This is equal t@,,1 by Theorem 4.2. O

Proposition 4.1, Proposition 4.6 and Theorem 4.7 imply the existence of some
integersu; > --- = ug = 1, uniquely determined, such that

ok = k- Z g (O0<k<r), (31)
i=r—k+1
d

o = kr= > min(m) (k> 0). (32)
i=1

The integergu, . . ., uq defined above for a matroid pench (B) are the combina-
torial counterpart of the indices of nilpotency for a matrix peséh B.

5 Combinatorial Bounds and Their Tightness

Let D(s) = sA+ B be a matrix pencil of rank. We consider a matroid pencil

(L(A), L(B)) defined in terms of nonsingular submatricesAcdnd B (cf. Remark
3.1) and denote by " the associated valuated bimatroid in (19). We also consider
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another matroid pencilg(A), G(B)) defined in terms of term-nonsingular subma-
trices of A andB (cf. Remark 3.2) and denote Hy? the associated valuated bima-
troid in (19). It is mentioned that “b” and “g” stand for “bimatroid” and “graph,”
respectively.

In general we have

deg detD[X, Y] < f2(X,Y) < f9(X,Y),
as discussed in Remark 4.1, and therefore,
Sk(sA+ B) < 62(sA+ B) < 6)(sA+ B), (33)
whereélf andélﬁJ are defined by (28) as
52(sA+ B) = 6k(L(A), L(B)), 6 (sA+ B) = 6,(G(A),G(B)).  (34)
In parallel we define
62 (sA+ B) = 6k(L(A),L(B)), 6. (sA+ B) = 6 (G(A), G(B)) (35)

to obtain
O(sA+ B) < 82(sA+ B) < 62(sA+ B). (36)

The inequalities (33) and (36) share a common feature that a linear-algebraic quan-
tity is upper-bounded by combinatorial quantities.
From the general results for matroid pencils we see the following.

Proposition 5.1.
(1) The sequence’ = 5°(sA+ B) (0 < k <r) is concave.
(2) The sequence’ = §(sA+ B) (0 < k <r) is concave.

Proof. (1) and (2) are special cases of Proposition 4.6. O

Proposition 5.2.
(1) The sequence? = °(sA+ B) (k > 0) is convex.
(2) The sequence! = 6(sA+ B) (k> 0) is convex.

Proof. (1) and (2) are special cases of Proposition 4.1. O

Theorem 5.3.
(1) For 62 = 62(sA+ B) and6 = 62(sA+ B) we have

5P = min (6P, -ke)  (0O<ks), (37)
02, = gg&)r((éf + kﬁ) (¢ > 0). (38)
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(2) For 6 = 6J(sA+ B) and6? = 6J(sA+ B) we have

9 _ min(p?
5 = min (69, -ke)  (0O<ks), (39)
9 _ 9
00, = @ka;(ak +kf)  (£20). (40)
Proof. (1) and (2) are special cases of Theorem 4.7. O

The upper bounds in (33) and (36) are not necessarily tight. For example, for

A:[l 1 ’ Bz[l 0 s+1 s]’

0 0 110 PO=| 14

(41)

we haves, = 0 whereas? = 6] = 1, andé, = 2 wherea®) = 6 = 3.

Naturally, we are interested in cases where the upper bounds in (33) and (36)
are tight for allk. Let us say that a matrix pendilA+ B is §°-tight if it satisfies
(42) below, andP-tight if it satisfies (43) below:

ok(sA+ B) 6|E(SA+ B) forallkwithO<k<r, (42)
O(sA+ B) 02(sA+B)  forallk> 0. (43)

Likewise we say that a matrix penalA + B is §9-tight if it satisfies (44) below,
andg9-tight if it satisfies (45) below:

Sk(sA+B) = 6J(sA+B)  forallkwithO<k<r, (44)
O«(sA+B) = 6)(sA+B) forallk>0. (45)
Theorem 5.4.

(1) A matrix pencil sA B is 6 -tight if and only if it is6°-tight.
(2) A matrix pencil sA+ B is§9-tight if and only if it isg9-tight.

Proof. By Proposition 2.2 the sequencé (] k = 0,1,...,r) uniquely deter-
mines the sequencéy(| k = 0,1,2,...), and vice versa, by the discrete Legen-
dre transformation (8) and (9). The same is true ﬁ,ﬂ (k=0,1,...,r)and
(GIE | k =0,1,2,...) by Theorem 5.3(1). Hence follows the equivalence of (42)
and (43). Similarly for §J | k = 0,1,...,r)and ¢] | k = 0,1,2,...) by Theo-
rem 5.3(2). O

A matrix is called ageneric matrixif its nonzero entries are independent pa-
rameters. Ageneric matrix pencimeans a pencsA+ B with generic matriceé\
andB, where the independent parametersiandB are all distinct.

It is well known that (44) holds for a generic matrix pencil; see, e.g., [19, The-
orem 6.2.2]. Itis also shown in [11] that (45) holds for a generic matrix pencil. In
other words, a generic matrix pencil is b@tftight andg9-tight. Theorem 5.4(2)
above says that these two properties of a generic matrix pencil are in fact equiva-
lent.

As an application of Theorem 5.4(1) we can show the following.
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Theorem 5.5. A matrix pencil sA- B with generic A or B i$°-tight ande-tight.

Proof. Inthe expansion (24) in Remark 4.1, no distinct terms cancel one another by
the assumed genericity &for B. Therefore, we have dedetD[X, Y] = f b(X,Y),
which implies (42). Then (43) also holds by Theorem 5.4(1). m|

Applications of Theorem 5.5 to electric networks are discussed in the next
section.

Remark 5.1. A generic matrix pencil is obviously?-tight; see, e.g., [19, The-
orem 6.2.2]. Then Theorem 5.4(2) gives an alternative proof af%tghtness,
which was established in [11] by way of “periodic matching.” N

Remark 5.2. We have(SIE’(sA+ B) = 6E(SA+ B) for all k with 0 < k < r if and only
if 9f(sA+ B) = ef(sA+ B) for all k > 0. The proof is similar to that of Theorem 5.4.
N

6 Applications to Electric Networks

6.1 RLC networks

A matrix pencilsA+ B arises from frequency-domain descriptions of electric net-
works. First we consider RLC networks, which, by definition, consist of resistors
(R), inductors (L), and capacitors (C).

As a concrete instance, let us consider the simple RLC network in Fig. 1 with
a current sourcéy. The network can be described in terms of branch curignts
ir, iL and branch voltageg, vg, v as

ic+iR+i|_=|o, Vc =VR =V, ic=SC\C, VR=RiR, V|_=SLi|_,

wheres is a variable to represent the Laplace transformation. Accordingly we
obtain

iC iR i|_ Ve VR WL
1 1 1
1 -1 0
0 1 -1 (46)
-1 0 0|sC 0 O
0O R O|O0O -1 O
0O O sL|O 0 -1
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Figure 1: A simple RLC network

with
0 0O 1 1 1
0 0O 1 -1 0
0 0O 0O 1 -1
A_OOOCOO’ B_—1000 0 O (47
0O 0 0j]0 OO 0 RO|O0O -1 O
0O 0OL|O OO 0O 0 0|0 0 -1

The matrixA consists of two nonzero entrigS,andL, whereas the matriB com-
prisesR and constant nonzero entriesl and-1. If R, L, andC are independent
parametersA is a generic matrix and is a mixed matrix (see Section 7.1 for the
definition of a mixed matrix).

In RLC networks in general, we may reasonably assume that the physical char-
acteristics of resistors, inductors, and capacitors are mutually independent parame-
ters. Then the nonzero entries of the makii sA+ B, representing capacitances
and inductances, are independent parameters. This mearsithatgeneric ma-
trix, and the assumption of Theorem 5.5 is satisfied. Therefore, the matrix pencil
sA+ B arising from an RLC network as abovesi8-tight andg®-tight.

Moreover, both (A) andL (B) are computationally tractable objects. By gener-
icity of A, the bimatroid. (A) is equal toG(A), and hence it can be represented by
bipartite matchings. On the other hari®lis a mixed matrix, and the structure of
L (B) can be represented by independent matchings (or matroid intersection) for a
graphic matroid and a transversal matroid; see [19, Chapter 4] for detalils.

6.2 Networks containing gyrators and transformers

An ideal element called a gyrator is commonly employed in electric network the-
ory. It is a two-port element, the element characteristic of which is represented

a5 sl
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for the current-voltage pairs;(vi) and (2, v2) at the ports. Another common ele-
ment is an ideal transformer with the characteristic given by

Vo [ |t 0 Vi
HEEEA

Since the element characteristics of gyrators and transformers are free from
the variables, the matrixA in sA+ B remains generic even when gyrators and
transformers are contained in addition to resistors, inductors, and capacitors. This
means that the matrix penaA+ B remainss >-tight andd-tight by Theorem 5.5.

It is worth mentioning in passing that any passive network is known to be
“equivalent” to an RCG network, which is, by definition, a network consisting of
resistors, capacitors, and gyrators (and possibly, sources), although the transforma-
tion to an equivalent RCG network is not always compatible with the independence
of parameters. In RCG networks, the matBiis no longer a mixed matrix and con-
sequently the representationlofB) by independent matchings is no longer valid.

7 Mixed Matrix Pencils

Efficient combinatorial algorithms have been developed for compéitiagddy for

mixed matrix pencils. They are based on combinatorial characterizations that are
similar to, but somewhat fferent from, those discussed in Section 5. We describe
in this section the methods for mixed matrix pencils developed by Murota [18] and
lwata—Takamatsu [12], as a preliminary to an extension of the Legendre duality to
be presented in Section 8.

7.1 Mixed matrices and mixed matrix pencils

A matrix A is called amixed matrix{19, 21] if it is a sum of a constant matriQ
and a generic matriX:
A=Q+T. (48)

For instance, the matriB in (47) is a mixed matrix. It is easy to see thgiA) =
L(Q) v L(T); see Remark 3.3 and [19, Theorem 4.2.9].

A matrix pencilD(s) = sA+ Bis called amixed matrix penciif A= Qa+ Ta
andB = Qg + Tg are mixed matrices such that the independent paramet@ais in
andTg are all distinct.

For a mixed matrix pencil, the combinatorial bounds discussed in Section 5
can be nontight. That is, it may be th&(sA+ B) # 6f(sA+ B) or 6k(sA+ B) #
9£(3A+ B) in (33) and (36). In fact, (41) is a counterexample with= Tg = O.

In contrast, the bounds are tight@fy = O or Qg = O by Theorem 5.5.
For a mixed matrix penciD(s) = sA+ Bt is convenient to use an expression

D(s) = Q(s) + T(9) (49)
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with
Q(s) = sQa + Qg, T(s) = sTa+ Tg. (50)

This is the splitting oD(s) into the constant-cdicient partQ(s) and the generic-
codficient partT (9).

7.2 Characterization ofoy

We first considebk(sA+ B). It follows from the expansion
detD[X, Y] = »" =detQ[l,J] - detT[X\ I, Y\ J]
=13

that

deg,detD[X, Y] < ‘r|r|1_z‘aJ>|<{degb detQ[l, J] + deg,detT[X \ I, Y\ J]}, (51)
where the inequality is in fact an equality by virtue of the genericity of This
identity, observed first in [15, Proposition 5.3], can be formulated in terms of val-
uated bimatroids defined by

fo(X,Y) = degdetD[X,Y]  ((X.Y)eL(D(9)), (52)
fo(XY) = degdetQ[X,Y]  ((XY)eL(Q(9)) (53)
fr(XY) = degdetT[XY]  ((XY)eL(T(9)) (54)

as follows.

Theorem 7.1([19, Theorem 6.2.4])For a mixed matrix pencil [5) = Q(s)+T(59),
we have
fp = fQ v fr,

wherev means the union of valuated bimatroids. n

The functionfy associated witi (s) = sTa + Tg admits a further decompo-
sition fr = fr1 Vv fro with valuated bimatroiddt, and frg on L(Ta) andL(Tg)
defined by

fra(XY) = IX], fro(X,Y) = 0. (55)

In other words, we havér = f (t,).L(Tg), Where the right-hand side means the
function in (19) associated with the matroid penti{Ta), L (Tg)).
We now define

SR(sA+ B)
=max(fqV friV fro)(ZW) | 1Zl =k, (ZW) e L(Q(9)) V L(Ta) vV L(Te)}
(56)
= maxdeg detQ[l, J] + [X| | |+ X+ [XI =k, (I,X,X;JY,¥Y)eL"},
(57)
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where “m” ins[" stands for “mixed” and. v denotes the set of tuplels K, X; 1Y, Y)
such that

(L)) eL(Q(9). (XY)eL(Ta), (X.Y)eL(Ts)
INX=1NnX=XNnX=0, JNnY=JNnY=YNY=0.

It then follows from (51) that
Sk(sA+ B) < 6;'(sA+ B) (58)

for a matrix pencilsA+ B represented as (49) with (50), irrespective of the gener-
icity of the T-part. For a mixed matrix pencil the bound is tight indeed.

Theorem 7.2([18]). For a mixed matrix pencil, we have equality(B8). N

An efficient algorithm for mixed matrix pencils is designed in [18] that com-
putesdk(sA + B) on the basis of Theorem 7.2. The functiég can be com-
puted as the degree of a subdeterminant of the constafiteteet matrix pencil
Q(s) = sQn + Qg; see, e.g., [8, 16] (and references therein) for algorithms. The
function fr = fr1 v frg can be evaluated by solving a weighted bipartite matching
problem. Finally, the union ofg and fr can be computed by the valuated matroid
intersection algorithm. See [18, 19] for detalils.

7.3 Characterization of 6

Next we turn todk(sA+ B). Recall the definitions of expanded maté(sA+ B)
in (5) and its bimatroid versio®y(A, B) in (18). It follows from the expression

SA+ B = (SQa + Qg) + (STa + Tg)
and the inequality (15) in Remark 3.3 that

ok(sA+ B)

rank®y(sA+ B)
rank @x(sQa + Qg) + Ok(STa + Tg))
rank (L (Ok(sQa + Qg)) V L(Bk(STa + Tg))) (59)

IA

which is true, irrespective of the genericity of thepart.

To obtain a more tractable expression by taking advantage of the genericity, we
replace the second tefn{Ok(sTa+ Tg)) by Ok(L (Ta), L(Tg)). This yields another
upper bound, since (Ok(sTa + Tg)) € Ok(L(Ta),L(Tg)) in the notation (14) in
Remark 3.3. By defining

Ok (SA+B) = rank(L(Ok(sQa+ Qg)) vV Ok(L(Ta),L(Te))),  (60)
we thus arrive at another combinatorial upper bound

6(sA+ B) < 67(sA+ B). (61)
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It is noted in this connection th&t(Ox(sTa + Tg)) and®y(L(Ta),L(Tg)) are dif-
ferent in general, but they share the same rank [11].

It is shown by Iwata—Takamatsu [12] that the upper bound in (61) is indeed
tight for mixed matrix pencils.

Theorem 7.3([12]). For a mixed matrix pencil, we have equality(fil).

Proof. This is a reformulation of Theorem 6.2 in [12]. The right-hand side of (60)
coincides with the optimal value of the independent matching problem@y i)
considered in [12]. This is explained in Appendix A. O

An efficient algorithm for mixed matrix pencils is constructed in [12] that
computesik(sA+ B) on the basis of Theorem 7.3. BotHOk(sQa + Qg)) and
Ok(L(Ta), L(Tg)) are computationally tractable objects; the former is represented
by a constant matrix, of sizkm x kn, and the latter by an unweighted bipartite
matching problem. Then the combination of the two components is carried out by
the (unweighted) matroid intersection (or union) algorithm. See [12] for details.

Remark 7.1. We may be tempted to replat€®y(sQa + Qg)) in (61) with
Ok(L(Qn), L(Qp)). Sincel (Ok(sQa + Qg)) < Bk(L(Qn), L (Qg)), we obtain

Ok(sA+ B)

IA

rank (@x(L (Qa), L(Qg)) V Ok(L(Ta),L(Tg)))
rank (Ox(L (Qa) V L(Ta),L(Qg) vV L(Tg))) (62)

as a third upper bound. This bound is also derived from (36) as follow:

0(sA+B) < 6(L(A).L(B))
rank (Ox(L (A), L(B)))

rank (Ok(L (Qa) v L(Ta), L(Qe) v L(Te))),

Il A

IA

whereL (A) € L(Qa) VL(Ta) andL(B) € L(Qg) v L(Tg) are used. Unfortunately,
however, the upper bound (62) is not tight for mixed matrix pencils, as is seen for
the mixed matrix penciD(s) in (41) withTp = Tg = O. |

8 Bounds for Formal Mixed Matrix Pencils

8.1 Mixed-type bounds and their tightness

We have seen that the inequalities (58) and (61) are valid for a matrix fefsjil
expressed as

D(s) = sA+ B=(sQa+ Qg) + (sTa+ Tg) = Q(9) + T(S). (63)
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The genericity of th@ -part is a sfficient condition for (58) and (61) to hold with
equalities, but it is not a necessary condition.

We refer to a matrix pencil asfarmal mixed matrix pencif it is represented
as (63), where the genericity of tiiepart is not assumed. To be precise, a formal
mixed matrix pencil does not mean a matrix pencil itself, but it denotes a represen-
tation Q(s) + T(s) with two matrix pencilsQ(s) andT(s). For example, both

s+1s_ss+10
1 af |10 0 a

s+1s_s+10+Os
1 ol 0O O 1 a
are formal mixed matrix pencils, and we distinguish between the two.
For a formal mixed matrix pencil we defiag' (sA+ B) by (57) ands;’(sA+ B)

by (60), i.e.,

and

5¢ (SA+B) = maxdegdetQ[l,J] + [X] |
N+ X +1X =k (I,XX;JY,Y)elL"}, (64)
6g(sA+B) = rank(L(Ok(sQa+ Qg)) V Ok(L(Ta),L(Tg))) (65)

with reference to its representation (63). Then we have

ok(sA+ B)
ok(sA+ B)

SR(sA+ B), (66)

<
< 6P(sA+ B). (67)

The meanings of’ andé} can be rephrased as follows. For a formal mixed
matrix pencilD(s) = Q(s) + T(s) we consider a (genuine) mixed matrix pencil
D(s) = Q(s) + T(s) by changing the nonzero cieients of T(s) to independent
parameters; see Example 8.1 below for a concrete example. Then we have

5K (D) = 6(D) = 6(D), (68)
6¢(D) = 67(D) = 6k(D), (69)

where the first equalities in (68) and (69) are obvious from the definitions, and the
second equalities are due to Theorems 7.2 and 7.3, respectively.

Example 8.1. Consider a formal mixed matrix pencil
as+1 s

|10 N as s
B s | |0 s B 0
with @ andg being independent parameters. By changisgo ys with a new
parametety, we obtain a (genuine) mixed matrix pencil

:[1 O}_'_[as vS
0 s B 0
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Then we have"(D) = 6[(D) by the definition (64), and"(D) = 6x(D) by Theo-
rem 7.2. To explaim' we choose = 3 to obtain

[ a1 %
0 1
67(D) = 62(D) = rank L 0faz 7
B 00 1
1 Olas 73
B2 0|0 1|

by the definition (65), wherey, a», a3, B1, B2, ¥1, Y2, Y3 are independent parame-
ters. On the other hand]'(D) = 63(D) by Theorem 7.3. n

Proposition 8.1. The sequencél = §;'(SA+ B) is concave, i.eqy’  + 6y, < 26
foreach kwithl <k <r —1.

Proof. Let D(s) be the mixed matrix pencil associated wilifs) = sA+ B. The
concavity ofs"(D) follows from s7(D) = k(D) in (68) and the concavity af(D)
in (4). i

Proposition 8.2. The sequence] = 67'(sA+ B) is convex, i.e 4y | + 67, ; > 267
for every k> 1.

Proof. Let D(s) be the mixed matrix pencil associated wilifs) = sA+ B. The
convexity ofg(D) follows from6(D) = 6«(D) in (69) and the convexity afi(D)
in (7). i

Theorem 8.3. For ) = 6;'(SA+ B) and6)’ = 6;'(sA+ B) associated with a formal
mixed matrix pencil sA B in (63), we have

5y = m|n( ey k{’) (O<k<r), (70)
on, = 52&)5(6”‘ + kf) (¢ = 0). (71)

Proof. Let D(s) be the mixed matrix pencil associated witis) = sA+ B. Then
the assertions follow from'(D) = 5k(D) in (68),0 n4(D) = 6,.1(D) in (69), and
the Legendre duality betweep(D) andé,.1(D) given in Proposition 2.2. m]

Let us say that a formal mixed matrix pensih+ B in (63) is ¢™M-tight if it
satisfies (72) below, an@"-tight if it satisfies (73) below:

Ook(sA+ B)
Ok(sA+ B)

5y (SA+ B) forallkwithO<k<r, (72)
0 (sA+ B) forallk > 0. (73)
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Theorem 8.4. A formal mixed matrix pencil sA B in (63)is 6™-tight if and only
if it is 9M-tight.

Proof. By Proposition 2.2 the sequeneg)uniquely determines the sequenég (

and vice versa, through the discrete Legendre transformation (8) and (9) . The
same is true ford") and ;") by (70) and (71) in Theorem 8.3. Hence follows the
equivalence of (72) and (73). O

A mixed matrix pencil i$™-tight by Theorem 7.2 an@l"-tight by Theorem 7.3.
Theorem 8.4 above shows that these two statements are equivalent. It may be
emphasized that, by considering formal mixed matrix pencils without involving
the assumption of genericity, we can reveal the essence in the relationship between
6y andgy’.

Remark 8.1. Alternative proofs of Propositions 8.1 and 8.2 and Theorem 8.3 are
mentioned here. Sincé = fq v fr1 Vv fro in (56) is a valuated bimatroid by
Proposition 3.3, Proposition 3.2 shows the concavitypfclaimed in Proposi-
tion 8.1. The identity (71) can be proved by slightly modifying the arguments in
[12], which is explained in Appendix A. The other identity (70) follows from (71);
see Remark 2.1 in Section 2.2. Convexitysf claimed in Proposition 8.2, also
follows from (71). |

9 Conclusion

We may summarize the results of this paper as follows:

linear algebra matroid graph
k(D) < 6XD) < 6J(D)

g ) g ) ()
D) < 6°D) < 6ID)

Here{ denotes the duality with respect to the discrete Legendre transformation. If
any one of the inequalities above is tight forlglthen the corresponding inequality,
indicated byZ, is also tight for allk. A similar diagram holds for formal mixed
matrices:

linear algebra valuated matroid
k(D) < 6 (D)
) 7 )
k(D) < (D)

It is hoped that the Legendre duality as well as its consequences discussed in this
paper sheds a new light on the combinatorial study of matrix pencils.
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A Proof of the identity (71) in Theorem 8.3

We give an alternative proof to the identity (71) in Theorem 8.3. Instead of using
the statement of Theorem 7.3, we extract essential ingredients from the proof of
Theorem 7.3 in [12] and make some additional observations. In so doing we intend
to understand the combinatorial essence in the proof of Theorem 7.3.

To be specific, we prove

0 = max(op + (k-1)¢) (k=) (A1)

which is equivalent to (71) in Theorem 8.3. The proof consists of three stages: (i)
to reduce the proof to the layered case, where the nonzero ra(sdndT (s) in

the formal mixed matrix pencID(s) = Q(s) + T(s) are disjoint, (ii) to confirm that

a combinatorial identity established in [12] for mixed matrix pencils remains valid
for formal mixed matrix pencils, and (iii) to translate that identity to the discrete
Legendre transformation in (A.1).

A.1 Reduction to the layered case

A layered mixed matrix penc{br anLM-matrix penci) is defined to be a mixed
matrix pencil such that th@-part and ther -part have disjoint nonzero rows. A
formal LM-matrix penciis defined similarly.

Let Dm() = S(Qa + Ta) + (Qp + Tg) be anm x n formal mixed matrix pencil
of rankr. We associate a (@ x (m+ n) formal LM-matrix pencil

Q9 | Im  Qa O Q| [ Sln sQu+Qs
D(S)‘[ T |~ Tl Ta |71 O To | ™| =shy sTazTs |© A2
the rank of which is equal tm+ r. As proved below, we have
k (O<k<m),
m —
% (D) = {6E1m(DM)+m (M<k<m+r), (A-3)
6¢(D) = 6(Dm) + km (A.4)

With these formulas we can derive (A.1) D§, from (A.1) for D as follows:

max (67'(Dw) + (k - 1)¢) = Q%(W (D) - m+ (k- 1)¢)

o<e<r &+m

= max (67(D) + (k- 1)¢) - km= max (67(D) + (k= 1)¢) — km

m<E<mir

= (D) ~ km= 67(Du).

where it is noted thaf)'(D) + (k — 1)¢ is increasing it for 0 < £ < m.
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A.1.1 Proof of (A.3) for 57"

We denote the row set @y (s) by Rand the column set bg. Letting R? andR"
be copies oR, we denote the row set @(s) asR?® U R" and the column set as
RUC.

Obviously,6;(D) = k for 0 < k < m. Consider the expression (56) &f(D)
for D(s) in (A.2), wherefq, fr1, and frg are valuated bimatroids associated with
[Slm sQa + Qg], [-SIn sTal, and [O Tg] by (53) and (55). Fok = m, the
maximum on the right-hand side of (56) fBx(s) is attained byZ, W) = (R, R).
Fork > mwe may restrict ourselves t&@,W) e L(D(s)) with Z 2 R? andW 2 R
by [17, Theorem 2] (see also [19 Theorem 5.2.12]). This mean<thaR? U
IQUXQRUXQ andw = RUJUYUonrsome( J) € L(sQa+Qs), (X.Y) € L(T),
and X, V) e L(Tg)withInX=InX=XnX=0andJnY=JnY=YNY =0,
wherel, X, X ¢ Rand their copies ifRQ are denoted ak?, X, X?. Then we have

(fo Vv fr1V fro)(Z W) = m+ deg det((sQa + Qp)[I, J]) + X,
wherell| + |X| + [X| = k— msince|Z| = k and|R?| = m. Taking the maximum over
all (Z, W) we obtainsp(D) = 67" (Dm) + m.

A.1.2 Proof of (A.4) for 6"
Considem®y(D) and®y(Dw). Fork = 3, e.g., we have

Im O O Q O O] Qs O O]
O In O Q Qa O Q Qa O
| © O In O Qg Qa | O Qs Qa

©3(D) = Im, O O T» O O/ ©3(Dwm) = T~ O O
O -lm O Tg Ta O Tg Ta O

O O -ln O Tg Ta | | O Tg Ta |

where the rows are permuted. To consider the ran®@D) we may restrict our-
selves to submatrices that contain the identity matrix of okdein the upper-left
position. Then we can see the relation (A.4) easily from the definitiatj of

Remark A.1. Alternative proofs of (A.3) and (A.4) are given here. First note their
linear algebraic counterparts:

B k (0 <k<m),
o(D) = { Skem(Dm) +m (M< k< m+r), (A-5)
0k(D) = 6k(Dm) +km (A.6)

which can be proved easily by elimination arguments. By (68) and (69) we have
oM(D) = 6(D) andg(D) = 9k~(l5) for the LM-matrix p~encill5(s) associated with
D(s), and alsos'(Dm) = 6k(Dm) and6'(Dy) = 6k(Dwm) for the mixed matrix
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pencil Dy (s) associated witlDy (s). By applying (A.5) and (A.6) t® andDy we
obtain (A.3) and (A.4). |

Remark A.2. The definition ofD(s) here is diterent from thatin [12, (4.1)], where

the lower-leftly, is modified to a diagonal matrix with independent parameters.
This modification to a generic diagonal matrix is a standard technique in mixed
matrix theory, necessary to obtain an LM-matrix pencil. But this does not seem ad-
equate in discussing formal LM-matrix pencils. With this modification the relation
in (A.5) is no longer true. For instance, for

1 s as O
= +
0 1 a O

with an independent parameterwe haves,(Dy) = 0, whereas

as+1 s

Dm(s) = . 1

S 1 s S 1 s
s| 0 1 s| 0 1
det =&, det = S(a(ty — t1)S+ titp)
-S as O -t1s as O
-s|a O -tbs| a O
with 64 = 2 andds = 3, respectively. N

A.2 A combinatorial identity

We basically follow the notation in [12], except that we denst@, + Qg and
STa + Tginstead ofsXg + Yo andsXr + Y in [12].
Four combinatorial optimization problems are defined in [12] for an LM-matrix

pencilD(s) = [ A

9 and a positive integec

IMP(Ok(D)): an independent matching problem (maximization),

DIMP(®(D)): the dual of IMP@(D)) (minimization),

VIAP(D): a valuated independent assignment problem (maximization),

DVIAP(D): the dual of VIAR(D) (minimization),

where VIAR(D) and DVIAR(D) designate VIAPD) and DVIAPD) in [12], re-
spectively; showing the dependencekoexplicitly. It is shown in [12] that

opt (VIAP(D)) = opt (IMP(@k(D))) = opt (DIMP(@(D))) = opt (DVIAP(D)),
(A.7)
where opt{() denotes the optimal value of an optimization problem.
These optimization problems, defined without reference to the genericity of the
T-part, can be considered also for a formal LM-matrix pencil; the details are given
in Section A.3. Moreover, the relation (A.7) is maintained, as follows.
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Lemma A.1(cf. [12, Lemma 6.4]) For a formal LM-matrix pencil ¥s) we have
opt (VIAPk(D)) < opt (IMP@k(D))).

Proof. The proof of [12, Lemma 6.4], stated for an LM-matrix pencil, works for a
formal LM-matrix pencil. O

Lemma A.2 (cf. [12, Lemma 6.5]) For a formal LM-matrix pencil [js) we have
opt (DIMP@x(D))) < opt (DVIAP(D)).

Proof. The proof of [12, Lemma 6.5], stated for an LM-matrix pencil, works for a

formal LM-matrix pencil. O

In addition to the key facts given in Lemmas A.1 and A.2, which are specific to
our problem, we know two general principles, the weak duality for the independent
matching problem:

opt (IMP(©x(D))) < opt (DIMP©k(D)))

and the strong duality [19, Theorem 5.2.39] for the valuated independent assign-
ment problem:
opt (VIAP(D)) = opt (DVIAP(D)).

Combining the above facts, we obtain
opt (VIAPk(D)) < opt (IMP(@k(D))) < opt (DIMP(@k(D))) < opt (DVIAP(D)),

where all the inequalities are in fact equalities. We single out the following identity
as the combinatorial essence of our problem.

Lemma A.3(cf. [12, (6.14)]) For a formal LM-matrix pencil @s) we have
opt (VIAP,(D)) = opt (IMP©k(D))). (A.8)

In Section A.3 we will show

opt (VIAP(D)) = 522>r((6?1+(k—1)€), (A.9)
opt(IMP@(D)) = 6. (A.10)

Substitution of (A.9) and (A.10) into (A.8) yields (A.1).
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A.3 Translation to the Legendre duality

Let
D(s) =

Q9 ] _
e

be a formal LM-matrix pencil, and denote the column sdb(d) by C and the row
sets ofQ(s) andT(s) by RQ andR", respectively.

SQr+ Qs ] (A.11)

STA + TB

A.3.1 Proof of (A.9) for VIAP(D):
To define the problem VIAED) for a formal LM-matrix penciD(s) in (A.11), we
consider a polynomial matrix

Zo(9 =] 1 Q9 |=]1 $Qa+5Qg |.

The the row set oEq is identified withR®, and the column set witR? U C. The
underlying bipartite grap® = (V*, V~; E) of the valuated independent assignment
problem VIAR(D) is defined as

VF=RRUCRUR', V" =RUC, E=ERUEAUES,

whereCQ = {jQ | j € C}is a copy ofC, Ris a copy ofR?, orRQ = {i? | i € R},
and

EC = {(j%))IjeRuC)
{(i,)) 11 eR", jeC, (i, j)-entry of Ta is nonzerg,
{(i,))|1eR", jeC, (i, j)-entry of Tg is nonzerg.

m m
W >
(|

ForF C E in generalp*F means the set of vertices\ft that are incident to some
edge inF; and similarly foro-F. The weightw(e) of an edgee € E is specified as

0 (ec EQ),
w(e) = { Kk (e€ EN),
k-1 (eeEB).

Denote byf? the family of subset8 c RQ U~CQ that correspond to a column basis
of the matrixZg, and define a function "8 — Z as

&(B) = deg,detZo[RR, B].
Then the problem VIARD) reads as follows:

On the bipartite grapﬁa = (V+ V~; E), find a pair (M, B) of a match-
ing M C E and a bas® € B that maX|m|ze3N(M) + &(B) subject to
the condition thab*M N (R U CRQ) =
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Suppose we are given a matchingand a bas®. Forl = R?\ BandJ =
C? n Bwe have

&(B) = deg, detZo[R?, B] = deg,detQ[l, J] + (k — 1)/1].
In particular, (,J) is a linked pair inL(Q(s)). The matchingM determines a

linked pair X, Y) = (8*(M N EA),d~(M N EA)) in L(T,) and a linked pairX, Y) =
(0*(M N EB),8~(M N EB)) in L(Tg). The associated weight is given by

w(M) + &(B) kIX| + (k — 1)|X| + deg,detQ[I, J] + (k — 1)I|

deg,detQ[l, J] + [X| + (k= 1)(I| + IX] + 1X]).

In this way M, B) induces [, X, X; J Y,Y) € LY, and vice versa. For the weight we
have

opt (VIAP(D))

= maxw(M) + &(B) | M, B}

= mtg;\x((k —1)¢

+maxdeg detQ[1, ] + [X| | [1[+ X+ X/ = £(1LX X Y. V) e L"})
_ _ m
= m{ax((k 1) +57),

which establishes (A.9).

A.3.2 Proof of (A.10) for IMP(®k(D)):

The identity (A.10) is nothing but a straightforward translation of the definition of
6¢', which is explained here for completeness.

To define the problem IMB (D)) we conside®y(D) with rows permuted:
Ok(sQa + Qg) ] _ [ Q ]

O(D) = Ok(sTa + Tg) T

Fork = 3, for example, we have

[ Qa O O ]
%BgAQO _[@ O O] _ [Ta O O
D)=+ 5 51 Q=| Q% Q O T=|Te Ta O
" O Q& Qa O Tg Ta
Te Ta O
| O Tg Tal

We denote théith column set 0By (D) by Cy, and thehth row set ofT by RI for
h=1...,k ThenCy = {jn | j € C}is a copy ofC, andR] = {in | i € R"} is

a copy ofR"; we putﬁT = UﬁleI. Let Cr? = {JhQ | j € C} be a copy ofC for
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h=1,...,k we putCQ = Uk, Cr?' which is identified with the column set Q.

The row set ofQ is denoted bﬁQ. L
The underlying bipartite grapBx = (V *, V 7; E) of the independent matching
problem IMP@(D)) is defined as

EX = {(iin) 10 eCl jneCnl,

ER = {(injn) i €R", j€C, (i, j)-entry of Ta is nonzerg,
EE2 = {(inv1,jn) i €R", j€C, (i, j)-entry of Tg is nonzerg.

The problem IMP@(D)) reads as follows:.

On the bipartite grap, = (V *,V ~; E), find a matchingVl C E that
maximizegM| subject to the condition that the subma@{d_?Q, a*MN
€Y is of column-full rank.

Suppose we are given a matchimysuch that ran@[ﬁQ, J = |JforJ =

8*M N C2. Then there exists ¢ RC such thatQ[l, J] is nonsingular, which
means thatl( J) is a linked pair inL (Q) = L (©x(sQa + Qg)). For eacth, M N EA
determines a linked pair in(Ta) with row setRI and column sety. Similarly, for
eachh, M N EP determines a linked pair in(Tg) with row setR! , and column set
Ch. In this way an independent matchiidyinduces a linked pair i (Ox(sQa +
Q) VvV Ok(L(Ta),L(Tg)), and vice versa. This shows that opt (IMR(D))) is
equal to the rank of (Ok(sQa + Qg)) V Ok(L (Ta), L (Tg)), which is denoted a4"
in (65). This establishes (A.10).

1See [12, Fig. 6.2] for an illustration of this graph.
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