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SPERNER PROPERTY AND FINITE-DIMENSIONAL

GORENSTEIN ALGEBRAS ASSOCIATED TO MATROIDS

TOSHIAKI MAENO AND YASUHIDE NUMATA

Abstract. We prove the Lefschetz property for a certain class of finite-dimensional
Gorenstein algebras associated to matroids. Our result implies the Sperner

property of the vector space lattice. We also discuss the Gröbner fan of the
defining ideal of our Gorenstein algebra.

Introduction

The Lefschetz property for Artinian Gorenstein rings is a ring-theoretic abstrac-
tion of the Hard Lefschetz Theorem for compact Kähler manifolds. Stanley devel-
oped the ideas of applications of the Lefschetz property to combinatorial problems.
For example, he showed in [14] the Sperner property of the Bruhat ordering on the
Weyl groups based on the Hard Lefschetz Theorem for the flag varieties. One of the
main topics of the present paper is an application of the Lefschetz property for a
certain kind of finite-dimensional Gorenstein algebras to the Sperner property of the
vector space lattice V (q, n) consisting of the linear subspaces of the vector space Fn

q .
A finite ranked poset P =

∪
i≥0 Pi with the level sets Pi is said to have the Sperner

property if the maximal cardinality of antichains of P is equal to maxi(#Pi).
For a given ranked poset P =

∪
i Pi, let Vi be the vector space spanned by

the elements of Pi. The Sperner property for P can be shown by constructing a
sequence (f0, f1, f2, . . .) of linear maps fi : Vi → Vi+1 satisfying a certain condition.

Let A(i) = (a
(i)
uv)u∈Pi,v∈Pi+1 be the matrix representing fi, i.e.,

fi(u) =
∑

v∈Pi+1

a(i)uvv, u ∈ Pi.

If every matrix A(i) satisfies the condition a
(i)
uv ̸= 0 ⇒ u < v, and is of full rank,

then P has the Sperner property. (See e.g. [8] for details.)
The Sperner property of the vector space lattice V (q, n) can be deduced from

the result on the rank of its incidence matrices due to Kantor [9]. We will give
another proof of the Sperner property of V (q, n) by the construction of a finite-
dimensional Gorenstein algebra AM(q,n) associated to the matroid M(q, n) on the

finite projective space Pn−1(Fq) and by showing that AM(q,n) has the Lefschetz
property.

Our construction can be done for general matroids. For a matroid M and its
bases B, we introduce a polynomial ΦM :=

∑
B∈B xB . The Gorenstein algebra AM
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2 T. MAENO AND Y. NUMATA

will be defined to be the quotient algebra of the ring of the differential polynomi-
als by the annihilator of ΦM . For a general polynomial F , though F has all the
informations on the annihilator AnnF in principle, the combinatorial structure of
AnnF is quite delicate in general, so it is difficult to describe directly from F. It is
remarkable that in our case the Gröbner fan G(AnnΦM(q,n)) of the annihilator of
ΦM(q,n) is a refinement of that of the principal ideal generated by ΦM(q,n), which
is also a consequence of our main theorem. As discussed in [1], the Gröbner fan of
an ideal is often difficult to compute. We will see that G(AnnΦM(q,n)) can be re-
covered from the tropical hypersurfaces of certain polynomials defined by the bases
of the linear subspaces of Pn−1(Fq).

Acknowledgment. The authors thank Junzo Watanabe for suggesting the idea of
the proof of the Sperner property for the vector space lattice via the Lefschetz
property.

1. Finite-dimensional Gorenstein algebras and Lefschetz property

In this section we summarize some fundamental results on the structure of finite-
dimensional Gorenstein algebras and on the Lefschetz property, which will be used
in the subsequent sections.

Definition 1.1. Let A = ⊕D
d=0Ad, AD ̸= 0, be a graded Artinian algebra. We say

that A has the strong Lefschetz property (in the narrow sense) if there exists an
element L ∈ A1 such that the multiplication map

×LD−2i : Ai → AD−i

is bijective for i = 0, . . . , [D/2].

In the rest of this paper, we consider the Gorenstein algebras that is finite-
dimensional over a field k of characteristic zero.

Definition 1.2. (See [12, Chapter 5, 6.5].) A finite-dimensional graded k-algebra
A = ⊕D

d=0Ad is called the Poincaré duality algebra if dimk AD = 1 and the bilinear
pairing

Ad ×AD−d → AD
∼= k

is non-degenerate for d = 0, . . . , [D/2].

The following is a well-known fact (see e.g. [5], [8], [10]).

Proposition 1.3. A graded Artinian k-algebra A is a Poincaré duality algebra if
and only if A is Gorenstein.

Let P = k[x1, . . . , xn] and Q = k[X1, . . . , Xn] be polynomial rings over k. We
may regard P as a Q-module via the identification Xi = ∂/∂xi, i = 1, . . . , n. For a
polynomial F (x) ∈ P, denote by AnnF the ideal of Q generated by the differential
polynomials annihilating F, i.e.,

AnnF := {φ(X) ∈ Q | φ(X)F (x) = 0}.
The following is immediate from the theory of the inverse systems (see [2], [4], [6]).

Proposition 1.4. Let I be an ideal of Q = k[X1, . . . , Xn] and A = Q/I the

quotient algebra. Denote by m the maximal ideal (X1, . . . , Xn) of Q. Then
√
I = m

and the k-algebra A is Gorenstein if and only if there exists a polynomial F ∈ R =
k[x1, . . . , xn] such that I = AnnQ F.
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Example 1.5. The coinvariant algebra RW of the finite Coxeter group W is an
example of the finite-dimensional Gorenstein algebra with the strong Lefschetz
property. The coinvariant algebra RW is defined to be a quotient of the ring of
polynomial functions on the reflection representation V of W by the ideal generated
by the fundamental W -invariants. When W is crystallographic (i.e., Weyl group),
the Lefschetz property of RW is a consequence of the Hard Lefschetz Theorem for
the corresponding flag variety G/B. Stanley [14] has shown the Sperner property
of the strong Bruhat ordering on W from the Lefschetz property of RW (except for
type H4). The Lefschetz property of RW of type H4 has been confirmed in [11].
Since RW is Gorenstein, it has a presentation as in Proposition 1.4. In fact, RW is
isomorphic to the algebra SymV ∗/AnnF, where F is the product of the positive
roots.

Definition 1.6. Let G be a polynomial in k[x1, . . . , xn]. When a family Bd =

{α(d)
i }i of homogeneous polynomials of degree d > 0 is given, we call the polynomial

det
(
(α

(d)
i (X)α

(d)
j (X)G(x))#Bd

i,j=1

)
∈ k[x1, . . . , xn]

the d-th Hessian of G with respect to Bd, and denote it by Hess
(d)
Bd

G. We denote

the d-th Hessian simply by Hess(d) G if the choice of Bd is clear.

When d = 1 and α
(1)
j (X) = Xj , j = 1, . . . , n, the first Hessian Hess(1) G coincides

with the usual Hessian:

Hess(1) G = Hess G := det

(
∂2G

∂xi∂xj

)
ij

.

Let a finite-dimensional graded Gorenstein algebra A = ⊕dAd have the presen-
tation A = Q/AnnQ F. The following gives a criterion for an element L ∈ A1 to be
a Lefschetz element.

Proposition 1.7. ([15, Theorem 4]) Fix an arbitrary k-linear basis Bd of Ad for
d = 1, . . . , [D/2]. An element L = a1X1 + · · · + anXn ∈ A1 is a strong Lefschetz
element of A = Q/AnnQ F if and only if F (a1, . . . , an) ̸= 0 and

(Hess
(d)
Bd

F )(a1, . . . , an) ̸= 0

for d = 1, . . . , [D/2].

Corollary 1.8. If one of the Hessians Hess
(d)
Bd

F, d = 1, . . . , [D/2], is identically

zero, then A = Q/AnnQ F does not have the strong Lefschetz property.

2. Matroids

Definition 2.1. A pair (E,F) of a finite set E and F ⊂ 2E is called a matroid if
it satisfies the following axioms (M1), (M2), (M3).
(M1) ∅ ∈ F .
(M2) If X ∈ F and Y ⊂ X, then Y ∈ F .
(M3) If X,Y ∈ F and #X > #Y, then there exists an element x ∈ X \ Y such
that Y ∪ {x} ∈ F .
Here, F is called the system of independent sets.
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Definition 2.2. Let M = (E,F) be a matroid.
(1) A maximal element B ∈ F is called a basis of M. We denote by B = B(M) ⊂ F
the set of bases of M.
(2) For a subset S ⊂ E, define r(S) := max{#F | F ∈ F , F ⊂ S}. The map
r : 2E → Z is called the rank function of M.
(3) For a subset S ⊂ E, define the closure σ(S) of S by

σ(S) := {y ∈ E | r(S ∪ {y}) = r(S)}.

We define an equivalence relation ∼ on 2E by

S ∼ T ⇔ σ(S) = σ(T ).

Example 2.3. The projective space P := Pn−1(Fq) over a finite field Fq has the
structure of a matroid by the usual linear independence. More precisely, if we define
the system of independence set F by

F := {F ∈ 2P | F is linearly independent over Fq},

then (P,F) is a matroid. We denote it by M(q, n). In this case, the closure σ(S)
of a subset S ∈ P coincides with the linear subspace ⟨S⟩ of P spanned by S.

Lemma 2.4. Let S, T ∈ F . Then we have

S ∼ T ⇔ {U ∈ F | U ∩ S = ∅, U ∪ S ∈ F} = {U ∈ F | U ∩ T = ∅, U ∪ T ∈ F}.

Proof. Let S,U be independent sets. If U ∩S = ∅ and S∪U ∈ F , then r(S∪{y}) =
r(S)+1 for all y ∈ U, and we have U ∩σ(S) = ∅. If U ∩S = ∅ and S ∪U ̸∈ F , then
there exists an element y ∈ U such that r(S∪{y}) = r(S). So we have U∩σ(S) ̸= ∅.
Hence σ(S) determines the set {U ∈ F | U ∩S = ∅, U ∪S ∈ F}, and vice versa. �

Definition 2.5. For a given matroid M = (E,F), the matroid polytope PM is
defined by the following system of inequalities:

xe ≥ 0 (e ∈ E),
∑
e∈A

xe ≤ r(A) (A ∈ 2E).

For each independent set F ∈ F , we define the incidence vector v⃗F = (vF,e)e∈E ∈
RE as follows:

vF,e :=

{
1, if e ∈ F,
0, otherwise.

Proposition 2.6. (Edmonds [3]) The matroid polytope PM coincides with the con-

vex hull of 0⃗ and the incidence vectors of F :

PM = conv({⃗0} ∪ {v⃗F | F ∈ F}).

Let ∆M be the face of PM defined by the equation
∑

e∈E xe = r(E), which is
also obtained as the convex hull of the incidence vectors corresponding to the bases
of M.

Example 2.7. Let M be a matroid defined by the following vectors.

v1 v2 v3 v4 v5
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1
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Then B = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}}.
The polytope ∆M is the convex hull of the following points in R5:

(1, 1, 1, 0, 0), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 0, 1, 0, 1),

(1, 0, 0, 1, 1), (0, 1, 1, 1, 0), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1).

3. Gorenstein algebras associated to matroids

For a matroid M = (E,F), we define a polynomial ΦM ∈ k[xe|e ∈ E] by

ΦM :=
∑
B∈B

xB ,

where xB :=
∏

b∈B xb. Note that the Newton polytope of ΦM coincides with ∆M in

RE . In the subsequent part of this paper, we discuss the structure of the Gorenstein
ring AM := Q/AnnQ ΦM .

Proposition 3.1. The ideal AnnΦM contains

ΛM := {x2
e|e ∈ E} ∪ {xS |S ̸∈ F} ∪ {xA − xA′ |A,A′ ∈ F , A ∼ A′}.

Proof. Since ΦM is square-free and does not contain the monomials of form xS ,
S ̸∈ F , the ideal AnnΦM contains {x2

e|e ∈ E} and {xS |S ̸∈ F}. If A,A′ ∈ F are
equivalent, then we have ∂AΦM = ∂A′ΦM from Lemma 2.4. �

We denote by JM ⊂ Q the ideal generated by the set ΛM . Let M = (E,F) be a
matroid, and Fi ⊂ F for i = 1, . . . , r(E), the set of independent sets of cardinality
i, i.e.,

Fi := {F ∈ F | #F = i}.
Let Ω := 2E/ ∼, F l := Fl/ ∼ and ml := #F l. We can identify Ω with the set of
subsets S of E such that S = σ(S). Under this identification, we define the subset
Ω(l), l = 1, . . . , r(E), of Ω by

Ω(l) := {S ∈ 2E | S = σ(S), r(S) = l}.
For an equivalence class τ ∈ Ω, consider a polynomial fτ given by

fτ :=
∑

F∈F∩τ

xF .

Proposition 3.2. We have

JM =
∩
τ∈Ω

Ann fτ .

Proof. It is easy to see that ΛM is contained in ∩τ∈Ω Ann fτ . It is enough to show
that a polynomial p ∈ ∩τ∈Ω Ann fτ of form

p =
∑
τ∈Ω

∑
F∈F∩τ

aFxF , aF ∈ k,

is a linear combination of polynomials of ΛM . Put pτ :=
∑

F∈F∩τ aFxF and con-
sider the polynomial

p′ :=
∑

τ∈Ω,pτ ̸∈ΛM

pτ .

Choose τ0 ∈ Ω with pτ ̸= 0 of minimum rank. Then

p(∂)fτ0 = pτ0(∂)fτ0 =
∑

F∈F∩τ0

aF = 0.
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Let F ∩ τ = {F1, . . . , Fs}. Then we have

pτ = aF1(xF1 −xF2)+(aF1 +aF2)(xF2 −xF3)+ · · ·+(aF1 + · · ·+aFs−1)(xFs−1 −xFs).

�

Proposition 3.3. The subset ΛM of Q is a universal Gröbner basis of JM .

Proof. The proof is based on Buchberger’s criterion. Fix a monomial ordering ≤ on
the polynomial ring Q. For non-zero monic polynomials f, g ∈ Q, the S-polynomial
S(f, g) is given as follows:

S(f, g) := −Γ(f, g)

in≤(f)
f +

Γ(f, g)

in≤(g)
g, Γ(f, g) := L.C.M(in≤(f), in≤(g)).

Let Λ1 := {xA−xA′ | A,A′ ∈ F , A ∼ A′}, Λ2 := {x2
e|e ∈ E} and Λ3 := {xS |S ̸∈ F}.

We will show that the S-polynomials S(f, g) are reduced to zero by the division
algorithm with respect to ΛM \ {f, g} for cases:
(i) f, g ∈ Λ1, (ii) f ∈ Λ1, g ∈ Λ2, (iii) f ∈ Λ1, g ∈ Λ3, (iv) f, g ∈ Λ2 ∪ Λ3.

Case (i): Take polynomials f := xA − xA′ , g := xB − xB′ ∈ Λ1 with xA > xA′ and
xB > xB′ . If A ∩ B = ∅, it is easy to see that S(f, g) is reduced to zero. Assume

that A ∩ B ̸= ∅. Let C := A ∩ B, Â = A \ C and B̂ = B \ C. Then we have
S(f, g) = xA′xB̂ − xB′xÂ. Note that we have

r(A′ ∪ B̂) = r(A ∪ B̂) = r(Â ∪ C ∪ B̂),

r(B′ ∪ Â) = r(B ∪ Â) = r(Â ∪ C ∪ B̂),

so r(A′ ∪ B̂) = r(B′ ∪ Â).

(i-1) If A′ ∩ B̂ ̸= ∅, then xA′xB̂ ∈ Λ2. In this case, we have

(∗) r(Â ∪B′) = r(A′ ∪ B̂) < r(A′) + r(B̂) = #A′ +#B̂ = #Â+#B′,

which means that Â∩B′ ̸= ∅ or Â∪B′ ̸∈ F . Hence we also have xÂxB′ ∈ Λ2 ∪Λ3.

(i-2) Assume that A′ ∩ B̂ = ∅. If A′ ∪ B̂ ̸∈ F , then we have xA′xB̂ ∈ Λ3. Moreover,

again from the inequality (∗), we see that xÂxB′ ∈ Λ2 ∪Λ3. If A
′ ∪ B̂ ∈ F , we have

r(Â ∪B′) = r(A′ ∪ B̂) = r(A′) + r(B̂) = #A′ +#B̂ = #Â+#B′,

which means that Â ∪B′ ∈ F . Hence we have S(f, g) = xA′xB̂ − xB′xÂ ∈ Λ1.
Case (ii): Take polynomials f := xA − xA′ ∈ Λ1 and g := x2

e ∈ Λ2 with xA > xA′ .
If e ̸∈ A, then S(f, g) = x2

exA′ is reduced to zero. If e ∈ A, then S(f, g) = xexA′ .
Since r(A′ ∪ {e}) = r(A ∪ {e}) = r(A), we have xexA′ ∈ Λ2 ∪ Λ3.
Case (iii): Take polynomials f := xA − xA′ ∈ Λ1 and g := xB ∈ Λ3 with xA > xA′ .
If A ∩ B = ∅, then S(f, g) = xA′xB is reduced to zero. If A ∩ B ̸= ∅, then
S(f, g) = xA′xB\A. The inequality

r(A′ ∪ (B \A)) = r(A ∪ (B \A)) = r(A ∪B) < #(A ∪B) = #(A′ ∪ (B \A))
implies that xA′xB\A ∈ Λ2 ∪ Λ3.
Case (iv): This case is easy because Λ2 and Λ3 are consisting of monomials. �

Corollary 3.4. The Hilbert polynomial of Q/JM is given by

Hilb(Q/JM , t) =

r(E)∑
i=0

(#F̄i)t
i.
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Example 3.5. Let M be the matroid as defined in Example 2.7. Then the ideal
AnnΦM contains an additional generator other than ΛM . In fact, we have

AnnΦM = JM + (x13 + x45 − x15 − x34).

The Hilbert series of Q/AnnΦM is (1, 5, 5, 1) and that of Q/JM is (1, 5, 6, 1). In
particular, Q/JM is not Gorenstein. By direct computation, we get

HessΦM = 8(x1 + x4)(x3 + x5)ΦM .

This implies that Q/AnnΦM has the Lefschetz property.

4. Vector space lattice

In this section we treat the matroid M = M(q, n) defined in Example 2.3. We

define polynomials Φ
(i)
M :=

∑
G∈Fi

xG for i = 1, . . . , n. Note that Φ
(n)
M = ΦM .

Lemma 4.1. For M = M(q, n) and l ≤ [n/2], the polynomials ∂FΦ
(2l)
M , F ∈ F̄l,

are linearly independent over k.

Proof. In the following, ⟨S⟩ stands for a linear subspace in Fn
q spanned by a subset

S ⊂ Pn−1(Fq). For B ∈ Fl and 0 ≤ i ≤ l, define

Fl(B, i) := {A ∈ Fl | dim(⟨A⟩ ∩ ⟨B⟩) = i}.

Then we have Fl(B, l) = {A ∈ Fl | A ∼ B} and

Fl =
l∪

i=0

Fl(B, i).

For A,B ∈ Fl, we also define

FA
l (B, i) := {A′ ∈ Fl(B, i) | ⟨A⟩ ∩ ⟨A′⟩ = {⃗0}}

= {A′ ∈ Fl(B, i) | A ∪A′ ∈ F2l}.

For B ∈ Fl, consider a polynomial Φ(B, i) :=
∑

A∈Fl(B,i) xA and a differential

polynomial P (B, i) :=
∑

A∈Fl(B,i) ∂
A. We have

P (B, i)Φ
(2l)
M =

∑
A∈Fl(B,i)

∂AΦ
(2l)
M

=
∑

A∈Fl(B,i)

∑
A′∈Fl

A∪A′∈F2l

xA′

=
∑

A′∈Fl

∑
A∈Fl(B,i)
A∪A′∈F2l

xA′

=

l∑
j=0

∑
A′∈Fl(B,j)

#{A ∈ Fl(B, i)|A ∪A′ ∈ F2l}xA′

=
l∑

j=0

∑
A′∈Fl(B,j)

#FA′

l (B, i)xA′ .
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Here, #FA′

l (B, i) is independent of the choice of A′ ∈ Fl(B, j) for M = M(q, n).

Put aBij := #FA′

l (B, i) for B ∈ Fl and A′ ∈ Fl(B, j). Now we have

P (B, i)Φ
(2l)
M =

l∑
j=1

aBij
∑

A′∈Fl(B,j)

xA′ =

l∑
j=1

aBijΦ(B, j).

If i + j > l, then dim(⟨A⟩ ∩ ⟨B⟩) + dim(⟨A′⟩ ∩ ⟨B⟩) = i + j > l. Hence, we

have dim(⟨A⟩ ∩ ⟨A′⟩ ∩ ⟨B⟩) > 0 and ⟨A⟩ ∩ ⟨A′⟩ ̸= {⃗0}. This means that aBij =

#FA′

l (B, i) = 0.
Assume that i + j = l. For A ∈ Fl(B, j), take an element A1 ∈ Fj such that

⟨A1⟩ = ⟨A⟩ ∩ ⟨B⟩. We also take an element A2 ∈ Fl−j = Fi such that ⟨A1 ∪A2⟩ =
⟨B⟩, and A3 ∈ Fn−l such that ⟨B∪A3⟩ = Fn

q . Put A
∗ := A2∪A3. Since dim⟨A∗⟩ =

n−j ≥ n−l ≥ l, there exists an element A′ ∈ Fl such that ⟨A∗⟩∩⟨B⟩ ⊂ ⟨A′⟩ ⊂ ⟨A∗⟩.
Since ⟨A′⟩ ∩ ⟨B⟩ = ⟨A∗⟩ ∩ ⟨B⟩ = ⟨A2⟩, we can see that A′ ∈ FA

l (B, i). Hence we
have aBij > 0 in this case.

We have seen that the matrix (aBi,l−j)
l
i,j=0 is upper-triangular, so

det(aBi,l−j)ij =

l∏
i=0

aBi,l−i > 0.

Since the matrix (ai,l−j)ij is invertible, ΦM (B, l) is written as a linear combination

of P (B, 0)Φ
(2l)
M , P (B, 1)Φ

(2l)
M , . . . , P (B, l)Φ

(2l)
M , and hence it is a linear combination

of the polynomials ∂FΦ
(2l)
M , F ∈ F̄l. On the other hand, it is easy to see the linear-

independency of the polynomials ΦM (B, l), B ∈ F̄l. Therefore the polynomials

∂FΦ
(2l)
M , F ∈ F̄l, are linearly independent. �

Theorem 4.2. Let M = M(q, n). Take a representative F1, . . . , Fml
∈ Fl of F l.

Then the determinant of the matrix(
∂Fi∂FjΦM

)ml

i,j=1

is not identically zero.

Proof. For F ∈ Fj , define c(F, i) := #{F ′ ∈ Fi | F ∪F ′ ∈ Fi+j}. Then the equality
c(F1, i) = c(F2, i) holds for any F1, F2 ∈ Fj and for j = 1, . . . , r(E) − 1. It is easy
to see that

det
(
∂Fi∂FjΦM

)ml

i,j=1

∣∣∣
x=1

= γ · det
(
δσ(Fi),σ(Fj)

)
i,j

,

where γ = c(F, l)ml ̸= 0 for any F ∈ Fl, and δτ1,τ2 , τ1, τ2 ∈ Ω(l), is defined by

δτ1,τ2 :=

{
1, if τ1 ∩ τ2 = ∅,
0, otherwise.

At the same time, we have

det
(
∂Fi∂FjΦ

(2l)
M

)
i,j

= det
(
δσ(Fi),σ(Fj)

)
i,j

.

Note that the algebra B(2l) := Q/AnnΦ
(2l)
M is also Gorenstein, and the natural

pairings

⟨ , ⟩ : B(2l)
i ×B

(2l)
2l−i → B

(2l)
2l

∼= k

are non-degenerate for i = 0, . . . , l. From Lemma 4.1, we see that {xFi |i = 1, . . . ,ml}
gives a basis of B

(2l)
l . Since the matrix

(
∂Fi∂FjΦ

(2l)
M

)
i,j

represents the pairing ⟨ , ⟩
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at the intermediate part B
(2l)
l ×B

(2l)
l → k, we see that its determinant is non-zero.

Therefore, det
(
∂Fi∂FjΦM

) ∣∣∣
x=1

is non-zero, and hence it cannot be identically

zero. �

Corollary 4.3. (1) The algebra AM(q,n) has the strong Lefschetz property.
(2) The ideal AnnΦM(q,n) is generated by ΛM(q,n), i.e., AnnΦM(q,n) = JM(q,n). In
particular, it is a binomial ideal.
(3) We have

Hilb(Q/AnnΦM(q,n), t) =
n∑

i=0

ti
(
n

i

)
q

,

where
(
n
i

)
q
, 0 ≤ i ≤ n, are q-binomial coefficients.

(4) The vector space lattice V (q, n) consisting of the linear subspaces of Fn
q has the

Sperner property.

Remark 4.4. For i ≤ n, let M (i)(q, n) be a matroid structure on Pn−1(Fq) obtained

by regarding Fi as a system of bases. We see that ΦM(i)(q,n) = Φ
(i)
M(q,n). It can be

shown by a similar manner as the proof of Theorem 4.2 that Q/AnnΦM(i)(q,n) has
the Lefschetz property, and AnnΦM(i)(q,n) = JM(i)(q,n).

Example 4.5. Let [n] := {1, 2, . . . , n} be an n-element set. The set 2[n] of the
subsets of [n] has a natural lattice structure induced by the operations ∪ and ∩.
The obtained lattice is called the Boolean lattice. Sperner’s theory originates his
work [13] on the maximal cardinality of the antichains of the Boolean lattice. On the
other hand, M([n]) := ([n], 2[n]) satisfies the axioms of the matroid. The matroid
M([n]) has the unique basis [n], so the corresponding Gorenstein algebra is given
by

AM([n]) = k[X1, . . . , Xn]/Ann(x1 · · ·xn).

In [7], it has been proved that M([n]) is another example of matroids for which
Theorem 4.2 holds. As a consequence, we obtain AnnΦM([n]) = JM([n]) and the
Lefschetz property for AM([n]), which gives another proof of the Sperner property
for the Boolean lattice.

Conjecture. The algebra AM has the strong Lefschetz property for an arbitrary
matroid M.

5. Gröbner fan of JM

In this section, we discuss the Gröbner fan of the ideals JM and AnnΦM(q,n).

The initial ideal inω⃗(I) of an ideal I ⊂ Q with respect to the weight vector ω⃗ ∈ RE

is given by

inω⃗(I) := (inω⃗(f) | f ∈ I, f ̸= 0).

For a weight vector ω⃗, the set C(ω⃗) := closure{λ⃗ ∈ RE | inλ⃗(I) = inω⃗(I)} is a

polyhedral cone in RE . The set of cones {C(ω⃗) | ω⃗ ∈ RE\{⃗0}} forms a fan G(I). The
fan G(I) is called the Gröbner fan of I. Denote by Gd(I) the set of d-dimensional
cones in G(I). The Gröbner fan G(I) of a homogeneous ideal I has the translation
invariance in the direction of n⃗ := (1, . . . , 1) ∈ RE . Let H be the hyperplane in RE

defined by the equation
∑

e∈E xe = 0. Denote by Ḡ(I) the restriction of G(I) to H.
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For two distinct independent sets F, F ′ ∈ F with F ∼ F ′, define a cone WF,F ′

by the condition∑
e∈F

xe =
∑
e∈F ′

xe,
∑
e∈F

xe ≤
∑
e∈F ′′

xe (∀F ′′ ∈ F , F ′′ ∼ F ).

Let C1, . . . , Cp be the closures of the connected components of

RE \
∪

F,F ′∈F
F∼F ′,F ̸=F ′

WF,F ′ .

Proposition 5.1. The maximal cones of G(JM ) are given by C1, . . . , Cp, i.e.,
G#E(JM ) = {C1, . . . , Cp}.

Proof. Since ΛM is a universal Gröbner basis of JM , inω⃗(JM ) is not a monomial
ideal if and only if inω⃗(JM ) contains xF −xF ′ for two distinct independent sets F, F ′

with F ∼ F ′ and does not contain xF or xF ′ . This is the case when ω⃗ ∈ WF,F ′ . �

The tropical hypersurface Vtrop(ΦM ) ⊂ RE is defined as the locus in RE where
the piecewise linear function

trop(ΦM ) = max

(∑
e∈B

xe | B ∈ B

)
is not smooth. The tropical hypersurface Vtrop(ΦM ) can be considered as a sub-
complex of G(ΦM ) (see [1]). Since ΦM is homogeneous, the corresponding tropical
hypersurface Vtrop(ΦM ) has the translation invariance in the direction of the vector
n⃗. Denote by V̄trop(ΦM ) the restriction of Vtrop(ΦM ) to H. In our case, V̄trop(ΦM )
is also regarded as a fan. The following proposition shows that the tropical variety
V̄trop(ΦM ) is directly obtained from the matroid polytope of M.

Proposition 5.2. The piecewise linear function trop(ΦM )|H is a support function
for the polytope ∆0

M := ∆M − r(E)(#E)−1 · n⃗ ⊂ H.

Proof. The polytope ∆0
M is spanned by the vectors u⃗B := v⃗B − r(E)(#E)−1 · n⃗,

B ∈ B, by Proposition 2.6. We also have the inequality

⟨u⃗B , y⃗⟩ =
∑
b∈B

yb ≤ trop(ΦM )(y⃗), ∀y⃗ = (ye)e∈E ∈ H,

and for y⃗ = u⃗B ,

⟨u⃗B , u⃗B⟩ = r(E)− r(E)2

#E
= trop(ΦM )(u⃗B).

Hence, the polytope ∆0
M is described as

∆0
M = {x⃗ ∈ H | ⟨x⃗, y⃗⟩ ≤ trop(ΦM )(y⃗), ∀y⃗ ∈ H}.

�

For a fan Σ, define −Σ := {−σ|σ ∈ Σ}.

Proposition 5.3. (1) For an equivalence class τ ∈ Ω(l) with l ≥ 2, we have

G#E−1(fτ ) = {−WF,F ′ |F, F ′ ∈ F ∩ τ, F ̸= F ′}.
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(2)

Vtrop(fτ ) =
∪

σ∈G#E−1(fτ )

σ =
∪

F,F ′∈F∩τ
F ̸=F ′

−WF,F ′ .

(3) ∪
σ∈G#E−1(JM )

−σ =
∪
τ∈Ω

Vtrop(fτ ).

Proof. Since the Newton polytope of fτ does not contain interior lattice points,
every monomial xF , F ∈ F ∩ τ, appearing in fτ can be the initial monomial for a
choice of monomial ordering. Hence, inω⃗(fτ ) is not a monomial ideal if ω⃗ belongs
to −WF,F ′ for a pair F, F ′ ∈ F ∩ τ, F ̸= F ′. This shows (1). The second claim (2)
follows from the definition of the tropical hypersurface Vtrop(fτ ). The claim (3) is
a consequences of (2) and Proposition 5.1. �

Corollary 5.4. The tropical hypersurface Vtrop(ΦM ) is a subcomplex of the fan
−G(JM ).

For M = M(q, n), we have G(AnnΦM(q,n)) = G(JM(q,n)) from Corollary 4.3
(2). By Proposition 5.3, the Gröbner fan G(AnnΦM(q,n)) can be computed from
the tropical hypersurfaces Vtrop(fτ ).

Example 5.5. The matroid M(2, 2) is defined by the following 3 vectors,

v1 v2 v3
1 0 1
0 1 1

so we have

ΦM(2,2) = x1x2 + x1x3 + x2x3,

AnnΦM(2,2) = (x2
1, x

2
2, x

2
3, x1x2 − x1x3, x1x2 − x2x3, x1x3 − x2x3).

In this case, the Gröbner fans G(AnnΦM(2,2)), G(JM(2,2)) and −G(ΦM(2,2)) are

same. Their restrictions Ḡ(AnnΦM(2,2)), Ḡ(JM(2,2)), −Ḡ(ΦM(2,2)) to the plane H
are determined by 3 rays:

R1 := R≥0(−2, 1, 1), R2 := R≥0(1,−2, 1), R3 := R≥0(1, 1,−2).

Moreover, V̄trop(ΦM(2,2)) = (−R1) ∪ (−R2) ∪ (−R3).

Example 5.6. The Gröbner fan Ḡ(AnnΦM(2,3)) = Ḡ(JM(2,3)) contains 420 cones

of maximal dimension 6 and 49 rays. The fan Ḡ(ΦM(2,3)) contains 28 maximal
cones and 21 rays.

Example 5.7. Let M be the matroid from Example 2.7. The fan Ḡ(JM ) contains
12 cones of maximal dimension 4 and 7 rays:

R≥0(−4, 1, 1, 1, 1),R≥0(−2,−2, 3,−2, 3),R≥0(−1, 4,−1,−1,−1),R≥0(1, 1,−4, 1, 1),

R≥0(1, 1, 1,−4, 1), R≥0(1, 1, 1, 1,−4), R≥0(3,−2,−2, 3,−2).

The fan Ḡ(ΦM ) contains 8 maximal cones, and Ḡ1(ΦM ) = −Ḡ1(JM ). In this case,
Ḡ(AnnΦM ) is a refinement of Ḡ(JM ). The fan Ḡ(AnnΦM ) contains 20 maximal
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cones and 9 rays:

R≥0(−4, 1, 1, 1, 1), R≥0(−3, 2, 2,−3, 2), R≥0(−2,−2, 3,−2, 3),

R≥0(−1, 4,−1,−1,−1), R≥0(1, 1,−4, 1, 1), R≥0(1, 1, 1,−4, 1),

R≥0(1, 1, 1, 1,−4), R≥0(2, 2,−3, 2,−3), R≥0(3,−2,−2, 3,−2).
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