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Abstract

For functions defined on integer lattice points, discrete versions of the
Hessian matrix have been considered in various contexts. In discrete convex
analysis, for example, certain combinatorial properties of the discrete Hes-
sian matrices are known to characterize M#-convex and L*-convex functions,
which can be extended to convex functions in real variables. The relationship
between convex extensibility and discrete Hessian matrices is not fully under-
stood in general, and unfortunately, some vague or imprecise statements have
been made in the literature. This note points out that the positive semidefi-
niteness of the discrete Hessian matrix is not implied by convex extensibility

of discrete functions.
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1 Introduction

For functions defined on integer lattice points, discrete versions of the Hessian ma-
trix have been considered in various contexts. In discrete convex analysis [1, 3, 4],
for example, certain combinatorial properties of the discrete Hessian matrices are
known to characterize M¥-convex and Li-convex functions, which can be extended



to convex functions in real variables. A natural definition of a discrete Hessian
matrix H(x) = (H;j(x)) of f : Z" — Rat x € Z" is

Hij(x) = f(x + ei + ej) = f(x + &) = fx + ¢j) + (%),

where ¢; denotes the ith unit vector. This is used in characterizing M*-convex
functions, whereas a modified definition is suitable for Li-convex functions.

However, the relationship between convex extensibility and discrete Hessian
matrices is not fully understood in general, and unfortunately, some vague or im-
precise statements have been made in the literature. Recent papers [6, 7, 8] discuss
the relationship between convex extensibility of discrete functions and the positive
semidefiniteness of their Hessian matrix H(x) at each point x. It is certainly true
that a univariate discrete function f : Z — R with n = 1 is convex extensible if and
only if the Hessian H(x), which is actually a real number, is positive semidefinite
(i.e., nonnegative). But this statement is incorrect for n > 2. We point out the
incorrectness of this statement by giving counterexamples in following sections.

This paper is a small contribution toward clarifying the relationship between
discrete Hessians and the convex extensibility of discrete functions. To be specific,
this paper points out the following facts by examples:

e Even if f : Z> — R has a convex extension to a C> convex function, its
discrete Hessian matrix is not necessarily positive semidefinite.

e Evenif f : R?> — R is C? convex, its discrete Hessian matrix is not positive
semidefinite.

In addition, we reconsider the previous results [1, 3] for discrete Mh—convex/Lh—
convex functions to better understand the role of discrete Hessian matrices in dis-
crete convex analysis.

2 Discrete-Variable Functions

In this section we consider functions in discrete variables. We define the discrete
Hessian matrix H(x) = (H;j(x)) of f : Z"" — R at x € Z" by

Hij(x) = f(x+e +ej)— f(x+e)— f(x+e))+ f(x), (2.1

where e; denotes the ith unit vector.
We first show, by giving counterexamples, that the positive semidefiniteness of
the discrete Hessian matrix H(x) in (2.1) is not implied by the convex extensibility

of f.

Example 2.1. The function f : Z?> — R defined by

f(x1,x2) = |x1 — x2



is extensible to a convex function 7 ‘R2 5 R given by f(xl ,X2) = |x1 — xp|. We

have

Hi;1(0,0) = f(2,0)-27(1,0) + f(0,0) = 0,

H1(0,0) = H»(0,0) = f(1,1) - f(1,0) - f(0, 1) + £(0,0) = -2,

H»(0,0) = f(0,2)-2£(0,1) + f(0,0) =0,
1.€e.,

oo =| O 7
-2 o

This is not positive semidefinite in spite of the convex extensibility of f. |

Whereas the convex extension of the function f in Example 2.1 is piecewise
linear, the function f in Example 2.2 below admits a convex extension to a C2
function. Even in this smooth case, the discrete Hessian matrix is not positive
semidefinite.

Example 2.2. Consider a univariate function ¢ : R — R as

1 4
—=P + <1 (1<,
piy=1 3 3

) | (2.2)
=\ H—-= =1,
3I|+|I 3 (= 1)

which is a C? convex function with ¢(0) = 0, ¢(+1) = 1, and ¢(+2) = 3. Using
this ¢ we define f : 7} >R by f(x1,x2) = ¢(x] — x2), which is convex extensible
to a CZ convex function ? ‘RS R given by ?(xl, x2) = ¢(x1 — x2). The discrete
Hessian matrix of f at (0, 0):
3 1 -2
127

@(2) = 2¢(1) + ¢(0)  2¢(0) = (=1) — (1)
2¢0(0) = o(=1) = @(1)  p(=2) = 2¢(=1) + ¢(0)
is not positive semidefinite in spite of the extensibility of f to a C> convex function.
|

H(0,0) =

Naturally, we are also concerned with the converse, that is, whether positive
semindefiniteness of the discrete Hessian matrix implies convex extensibility. The
following example gives a partial answer to this question that integral convexity,
which is much stronger than convex extensibility, is not implied by positive se-
mindefiniteness of the discrete Hessian matrix.

Example 2.3. Consider f : Z> — R defined by f(x1, x2) = x% +4x1x + SX%. The

discrete Hessian matrix at any (x1, xp) is given by

o 2| 24
X1, X) = ,
R IVIRST)



which is positive definite. The values of f are given as follows:

Xy =2 20 29 40 53 68
x =1 5 10 17 26 37
x=0 0 1 4 9 16

‘X]IO X1=1 X1=2 X1=3 X1=4

Let f be the convex closure of f, i.e., the pointwise-largest convex extension of
f. It has the triangle with vertices (x1, x2) = (0, 1), (1,0) and (2,0) as a linearity
domain. This shows that f is not integrally convex in the sense of Favati—Tardella;
see [4, Section 3.4] for the definition of integral convexity. [ |

3 M-convex/L-convex Functions

In this section, we deal with M-convex and L-convex functions, which play central
roles in discrete convex analysis [4]. Our objective here is to discuss the signif-
icance of the previous results on discrete Hessian matrices of M-convex and L-
convex functions in the light of the general phenomena we have seen in Section
2. Both M- and L-convex functions are convex extensible, and their characteriza-
tions in terms of discrete Hessians (Theorems 3.1 and 3.5 below) are combinatorial
conditions that are stronger than positive semidefiniteness.

For a vector x € Z" and an element i € {1,2,...,n}, x; means the component
of x with index i. For vectors x,y € Z", we write x V y and x A y for their compo-
nentwise maximum and minimum. We write the positive and negative supports of
a vector x by

supp*(x) = {i € {1,2,...,n} | x; > 0},

supp (x) ={i € {1,2,...,n}| x; <O}

We write 1 = (1,1,...,1) € Z" and 0 = (0,0,...,0) € Z" . For a function
f :Z" - R U {+0c0}, the effective domain, denoted as dom f, is defined to be the
set of x € Z" for which f(x) is finite.

3.1 M-convex functions

A function f : Z"" — R U {+0co} is said to be M-convex if it satisfies

(M-EXC) Vx,y € dom f, Vi € supp™(x — y), dj € supp~(x — y) such
that
O+ =z fx—ei+ep)+ fy+e—ep.



The effective domain of an M-convex function is contained in {x € Z" | 37, x; = r}
for some r € Z. In view of this, we say that a function f : Z" — R U {400} is M-
convex if the function f : Z"*! — R U {+co} defined by

z { ) ((x0,0) € 2 xo = r = XL, x0),

flxo0, %) = +00 (otherwise)
is M-convex. Mf-convexity is characterized by the following exchange property:

(MB-EXC) Vx,y € dom £, Vi € supp*(x — y), 3j € supp~(x — y) U {0}
such that

fO+f )= f(x—eite)+ fy+e —e),
where ¢j = 0.

An M’-convex function f:Z" - R U {+00} can be extended to a convex function
f:R" 5 R U {+oo}.

We now consider the Hessian matrix. Mf-convex functions can be character-
ized by a certain combinatorial property of the discrete Hessian matrix, as follows.

Theorem 3.1 ([1]). A function f : Z" — R is Mb-convex if and only if the discrete
Hessian matrix H(x) = (H;j(x)) in (2.1) satisfies the following conditions for each
xeZ":
H;j(x) > min(Hy(x), Hx(x)) if {i, 10 {k} =0, (3.1)
H;j(x) >0 for any (i, j). (3.2)

It is known that a symmetric matrix satisfying the conditions (3.1) and (3.2)
above is necessarily positive semidefinite.

Example 3.2. The function f : 7? — R defined as f(x1,x2) = @(x1 + xp) with a
univariate convex function ¢ : R — R is Mf-convex. The discrete Hessian matrix
of f at (xy, xp) is given by

H(xy,x2) = (p(x1 + x2 +2) = 20(x1 + x2 + 1) + @(x1 + x2))

2

which is positive semidefinite, since ¢(x] +x3 +2) —2¢(x; + xp+ 1)+ @(x1 +x3) > 0
by the assumed convexity of ¢. For the function ¢(f) in (2.2), in particular, we have

H(0,0) = [ 1

Compare this with Example 2.2, which shows that the discrete Hessian matrix of
f(x1, x2) = o(x1 — xp) with ¢(¢) in (2.2) is not positive semidefinite. [ |



As we have repeatedly seen, convex extensibility alone does not imply positive
semidefiniteness of the discrete Hessian (2.1). On the other hand, M”—convexity,
which is a combinatorial convexity concept, does imply both convex extensibility
and positive semidefiniteness of the discrete Hessian via (3.1) and (3.2).

3.2 L-convex functions

A function f : Z" — R U {+co} is called L-convex if it satisfies

SO+ )= fxvy)+ fxAy) (x,y € Z"), (3.3)
Jr R suchthat f(x+1)= f(x)+r (x€Z"),

where it is understood that the inequality (3.3) is satisfied if f(x) or f(y) is equal to
+00. A function f : Z" — R U {400} is called L-convex if it is obtained from an L-
convex function f(xo,xl, v X)) by f(xp, .., x) = f(O, X1yenesXp). Lh—convexity
is characterized by the following discrete midpoint convexity:

fo+ oz (525 ez,

where [%-‘ and [x—;yJ denote, respectively, the integer vectors obtained from %

by componentwise round-up and round-down to the nearest integers. An L-convex
function f : Z" — R U {+oco} can be extended to a convex function ? R —
R U {+0c0}.

We now consider the Hessian matrix.

Example 3.3. The function f : 7? — R defined as f(x1,x2) = @(x1 — xp) with a
univariate convex function ¢ : R — R is Li-convex. Recall Example 2.2, which
shows that the discrete Hessian matrix (2.1) of f(xy, x2) = ¢(x1 — x2) with ¢(f) in
(2.2) is not positive semidefinite at (x1, xp) = (0, 0). [ |

Example 3.4. The function f : Z* — R defined by
J(x) =max(x; +xp, x3+ x4, X1 +x3+ Lxi+xg+ L, xo+x3+ 1L, 0+x4+1) (3.4)

is Li-convex [4]. The discrete Hessian matrix (2.1) at (x, x2, x3, x4) = (0,0,0, 0)

18

0 -1 0 O
-1 0 0 0
H(0,0,0,0) = )
0 0 0 -1
0 0 -1 0
which is not positive semidefinite. |



The above examples demonstrate that the natural definition (2.1) of the dis-
crete Hessian matrix is not amenable to L¥-convexity. An alternative possibility is
pursued in [3], which turned out to be suitable for Lh-convexity.

For f: 7" - R,xeZ", and i, je {l,...,n} withi # j, we first define

nij(x) = —flx+ei+ep)+ flx+e)+ flx+e))— flx),
1i(x) SO+ flx+1+e)— flx+1) = flx+e).

Then we define a symmetric matrix A(x) = (H;;(x) |i,j=1,...,n) by
Hijx) = =mijx) G # ), Halo) =m0 + Y mij(x) (3.5)
i
as a variant of the discrete Hessian matrix. The modified discrete Hessian matrix

gives a characterization of Li-convex functions, as follows.

Theorem 3.5 ([3]). A function f : 7" — R is L3-convex if and only if the modified
discrete Hessian matrix H(x) = (H; (X)) in (3.5) satisfies the following conditions

for each x € Z":

Hij(x)<0 (G, je{l,...,nhi# )), (3.6)
Zﬁij(x) >0 (e{l,....n). (3.7)
j=1

It is known that a symmetric matrix satisfying the conditions (3.6) and (3.7)
above is necessarily positive semidefinite.

Example 3.6. For the Li-convex function f(x1, x2) = @(x1 — x2) with ¢(¢) in (2.2),

treated in Example 3.3, the modified discrete Hessian matrix (3.5) at (x1,x2) =

(0,0) is
0.0) = | 22O +eD+e) 200 —p-D—e() | _ [ 2 -2 l
’ 20(0) = p(=1) = ¢(1)  =2¢(0) + ¢(=1) + (1) -2 2]
This is positive semidefinite. |

Example 3.7. For the Lf-convex function (3.4) in Example 3.4, the modified dis-

crete Hessian matrix (3.5) at (x1, x2, x3, x4) = (0,0,0,0) is

1 -1 0 O
_ -1 1 0 0
H(0,0,0,0) =
0 1 -1
0 0 -1 1
This is positive semidefinite. |



Convex extensibility alone does not imply positive semidefiniteness of the
modified discrete Hessian H(x) = (H; j(x)) in (3.5), which is demonstrated by Ex-
ample 3.8 below. On the other hand, Lh—convexity, which is a combinatorial con-
vexity concept, does imply both convex extensibility and positive semidefiniteness
of H(x) via (3.6) and (3.7).

Example 3.8. We define f : 7} >R by f(x1,x2) = ¢(x1 + xp) with the univariate

2
o) = { <,

convex function
2e—1 (i) = 1).
The modified discrete Hessian matrix H(x1, x5) of f at (x, x2) = (0, 0) is given by
¢(3) =202 +¢(1) ¢(2)=2e(1) +¢(0) | _ [ 0 1 l
1 o

©(2) = 2¢(1) + ¢(0)  ¢(3) = 2¢(2) + ¢(1)
This is not positive semidefinite, whereas f is convex extensible (not Lf-convex).
|

H(0,0) =

4 Mixed-Variable Functions

Convexity concepts have also been discussed for functions f : Z" x R™ — R with
discrete and continuous variables [2, 5, 6, 7, 8]. In [6, 7, 8], to be specific, “mixed
convexity” is discussed for functions f : Z" X R™ — R with particular reference
to the mixed Hessian matrix, which is defined as follows:

[Vii(F sy haxn [Vilg 6 YD) Lascm

H(x,y) = 2 , 4.1
where
Vii(f(xy) = fx+e+ejy) - fx+e,y) — f(x+e;,y) + f(x,y),
9 _ O .Y
Vz'(a_ylf(x’ y) = By, (x+eiy) v (X, ),
4 _ O .9
a—yk(V ifey) = o (x+ej,y) e (x, ),
o? 3 *f )
Ayr0y A Oyr0y; (7%

and [V;;(f(x,y))]:x, means the n X n matrix that has V;;(f(x,y)) as its (i, j) entry,
. 2
and similarly for [Vi(zZ fGe ) loan [ (Vif )] . and [l fx )]
See Remark 4.3 for some definitions and propositions in [8].
In this section we point out, by way of examples, that the positive semidefinite-
ness of the mixed Hessian matrix of f is not implied by the convex extensibility of

f.

mxm



Let (1) be a univariate C> convex function ¢ : R — R. We define f : ZxR —
R as f(x,y) = ¢(x —y). Such function f is convex extensible, with a convex
extension f given by f(x,y) = ¢(x —y). According to the definition (4.1) we have

—¢'(1) +¢'(0) ¢"(0)

Example 4.1. In the case of ¢(f) = 1*, we have ¢(0) = ¢’(0) = ¢”(0) = 0; ¢(1) = 1,
¢’ (1) = 4; ¢(2) = 16 and the Hessian matrix (4.1) of f is

14 -4
H(0,0) = .
-4 0
This is not positive semidefinite in spite of the convex extensibility of f. |

Example 4.2. In the case of f is defined by ¢(¢) of (2.2), the Hessian matrix (4.1)

at (0,0) is
H(0.0) = 1 3 -5
U3 -5 8
This is not positive semidefinite in spite of the convex extensibility of f. |

The above examples show that the mixed Hessian matrix is not necessarily
positive semindefinite even when f is convex extensible.

Remark 4.3. Some definitions and propositions in [8] are reproduced here for

critical comments.

Definition 2. A mixed function ¥ : Z"XR"™ — R is called mixed con-
vex if it is discretely convex with respect to its integer variables

and convex with respect to its continuous variables.

Definition 3. A function is called strictly mixed convex if it is strictly
discrete convex and strictly convex with respect to the continu-

ous variables, simultaneously.

Definition 5. A mixed function is k-smooth if it is k-times differen-
tiable (i.e. C*) with respect to the real variables and if it can be
differenced k-times with respect to the integer variables.

Theorem 4.4. A function ¥ : Z" x R™ — R is 2-smooth strictly
mixed convex if and only if the mixed Hessian matrix for ¥ is

strictly positive.!

' An obvious typo “R"” in [8] is corrected to “R™” here.



Corollary 5.1. ® : Z xR — R is a mixed convex function if and
only if G|z is an integer convex function and Olg is a real convex

function.

Corollary 5.3. A function ® : Z X R — R is 2-smooth strictly mixed

convex if and only if ® has a positive Hessian matrix.

As far as the present authors understand from the above definitions and Corollary
5.1, the function ® : Z x R — R defined by ©(x,y) = x?y* for x € Z and y € R is

mixed convex. The mixed Hessian matrix (4.1) at (x, y) is given as

2y? 22x + 1)y

H(x,y) =
(-) 22x + 1)y 2x%

We note that the diagonal entries are positive, but the matrix H is not positive
semidefinite since its determinant det H(x, y) = —4y*(3x> +4x+ 1) can be negative.
It is also noted that the off-diagonal entries of H are positive or negative depending
on (x,y). This seems to contradict Corollary 5.3 above. |

S Conclusion
We may summarize our observations as follows.

e Convex extensibility alone does not imply positive semidefiniteness of the
discrete Hessian matrix (2.1). Counterexamples for f : 7Z? — R have been
given in Examples 2.1 and 2.2.

e Positive semidefiniteness of the discrete Hessian matrix (2.1) does not imply
integral convexity. A counterexample for f : Z> — R has been given in
Example 2.3. It is left unanswered whether positive semidefiniteness of the
discrete Hessian matrix implies convex extensibility or not.

o MP-convexity, which is a combinatorial convexity concept, does imply both
convex extensibility and positive semidefiniteness of the discrete Hessian
matrix in (2.1). Conversely, a certain combinatorial property of the discrete
Hessian matrix, which is stronger than positive semidefiniteness, implies
convex extensibility via Mf-convexity (Theorem 3.1).

e Li-convexity, which is another combinatorial convexity concept, is not com-
patible with the discrete Hessian in (2.1), as shown in Examples 3.3 and
3.4. With the modified version of the discrete Hessian matrix in (3.5), L
convexity does imply both convex extensibility and positive semidefiniteness

10



of the (modified) discrete Hessian. Conversely, a certain combinatorial prop-
erty of the (modified) discrete Hessian matrix, which is stronger than pos-
itive semidefiniteness, implies convex extensibility via Li-convexity (Theo-
rem 3.5).

Convex extensibility of a mixed function f : Z" X R" — R does not imply
positive semidefiniteness of the discrete Hessian matrix (4.1). Counterexam-
ples for f: Z x R — R have been given in Examples 4.1 and 4.2.

The concepts of MP-convexity and Li-convexity for mixed functions f : Z" x
R™ — R are introduced in [2] and [5], respectively. The Hessian matrices of such
functions are yet to be investigated.
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