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In this paper we give a review of the method of imsets introduced by Studený1

from a geometric point of view. Elementary imsets span a polyhedral cone and
its dual cone is the cone of supermodular functions. We review basic facts on

the structure of these cones. Then we derive some new results on the following
topics: i) extreme rays of the cone of standardized supermodular functions, ii)
faces of the cones, iii) small relations among elementary imsets, and iv) some
computational results on Markov basis for the toric ideal defined by elementary

imsets.

1. Introduction

The method of imsets by Studený1 provides a very powerful algebraic

method for describing conditional independence relations under a proba-

bility measure. Rules for deriving conditional independence relations are

translated into relations among integer vectors called imsets. Hence many
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properties of conditional independence relations can be conveniently in-

terpreted from a geometric viewpoint. In recent papers Studený and his

collaborators2,3 further develop geometric methods for learning Bayesian

networks. In this paper we are more concerned on basic geometric proper-

ties of imsets, in particular from the viewpoint of lattice bases and Markov

bases for the configuration of elementary imsets.

The cone of supermodular functions, which we call the supermodular

cone, is defined by a set of linear inequalities and effective inequalities corre-

spond to elementary imsets. Hence the H-representation (cf. Grünbaum4)

of the supermodular cone is explicitly given. The cone generated by the

elementary imsets, which we call the imset cone, is the dual to the super-

modular cone and its set of extreme rays is given by elementary imsets.

Hence, in the dual sense, the V -representation of the imset cone is given.

From an algorithmic viewpoint of convex geometry, the V -

representation of the supermodular cone, or equivalently the H-

representation of the imset cone, are hard to compute and characterize.

Therefore general results on the facets of the imset cone, or equivalently

the “extreme rays” of the supermodular cone are important. Since the su-

permodular cone contains a linear subspace consisting of modular functions,

we consider extreme rays of the cone of standardized supermodular func-

tions (see (6) below for standardization). These extreme rays are called

skeletal supermodular functions in Studený.1

Although the complete description of the supermodular cone and the

imset cone is very difficult, some faces of these cones can be studied in

detail. In particular a face corresponding to a semi-elementary imset seems

to have a simpler structure than other faces.

The organization of the paper is as follows. In Sections 2 and 3 we

present a review of the method of imsets from a geometric point of view. In

Section 2 we summarize basic facts on the cones of supermodular functions

and semi-elementary imsets. In Section 3 we review derivations of condi-

tional independence statements based on multiinformation and imsets. In

Section 4 we give some results on extreme rays of the cone of standardized

supermodular functions. In Section 5 we discuss properties of a face corre-

sponding to a semi-elementary imset. In Section 6 we characterize relations

among a small number of elementary imsets. Finally in Section 7 we discuss

some computational results on Markov basis for the toric ideal defined by

the configuration of elementary imsets.
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2. Basic facts on supermodular functions and imsets

As in Kashimura and Takemura5, we use the notation and definitions from

Studený.1 Let N be a finite set and let P(N) = {A : A ⊆ N} denote its

power set. In this paper A ⊆ B means that A is a subset of B and A ⊂ B

means that A is a proper subset of B. |A| denotes the cardinality of A. For

notational convenience, we write the union A ∪ B as AB. A singleton set

{i} is simply written as i. R, R+, Q, Q+, Z, Z+, N, denote the sets of reals,
non-negative reals, rationals, non-negative rationals, integers, non-negative

integers and positive integers, respectively.

f : P(N) → R is called supermodular if

f(EF ) + f(E ∩ F ) ≥ f(E) + f(F ), ∀E,F ⊆ N. (1)

The set of supermodular functions over N is denoted by K(N). f is sub-

modular if −f is supermodular.

f is modular if it is both supermodular and submodular, i.e.

f(EF ) + f(E ∩ F ) = f(E) + f(F ), ∀E,F ⊆ N. (2)

L(N) = K(N) ∩ (−K(N)) denotes the set of modular functions over N . A

modular function f is like a discrete (signed) measure. Indeed if f(∅) = 0,

then by taking disjoint E and F in (2), we see that f is a measure and

hence f can be written as f(E) =
∑

e∈E f(e). Without the restriction of

f(∅) = 0, we have f(E) − f(∅) =
∑

e∈E(f(e) − f(∅)), which can also be

written as

f(E) = λ∅ +
∑
e∈E

λe, λ∅ = f(∅), λe = f(e)− f(∅), e ∈ N. (3)

This shows that the dimension of the linear space L(N) is |N | + 1 and a

basis of L(N) is given by the following |N |+ 1 functions:

f∅(E) ≡ 1, fe(E) = 1e∈•(E) = 1e∈E , e ∈ N, (4)

where 1e∈•(E) = 1{e}⊆•(E) = 1e∈E is the indicator function

1e∈•(E) =

{
1 e ∈ E,

0 otherwise.
(5)

Given a supermodular function f , define a modular function fL and a

supermodular function f̄ by

fL(E) = λ∅ +
∑
e∈E

λe, λ∅ = f(∅), λe = f(e)− f(∅),

f̄(E) = f(E)− fL(E). (6)



4

Then f̄ is supermodular and f̄(E) = 0 for |E| ≤ 1. f̄ is often a preferred

standardization of f . By induction on the cardinality of |E|, it is easy to

show that any standardized supermodular function f is non-negative and

non-decreasing:

f(E) ≥ 0, E ⊆ F ⇒ f(E) ≤ f(F ), E, F ⊆ N.

Let N = {1, . . . , |N |}. We can identify f : P(N) → R with a vector in

R|P(N)| = R2|N|
by listing its values:(
f(∅), f(1), . . . , f(|N |), f({1, 2}), . . . , f(N)

)
.

With this identification the set of supermodular functions K(N) is a poly-

hedral cone in R2|N|
, because it is defined by the set of linear inequalities

in (1). By the definition of L(N) = K(N) ∩ (−K(N)), L(N) is the largest

linear subspace contained in K(N).

For A ⊆ N , δA : P(N) → R is defined as

δA(S) =

{
1 if S = A,

0 otherwise.

For pairwise disjoint subsets, A,B,C ⊆ N , we write this triplet by

〈A,B |C〉, and the set of all disjoint triplets 〈A,B |C〉 over N by T (N).

Unless otherwise stated, we assume that A,B are non-empty. On the other

hand C may well be an empty set. For a triplet 〈A,B |C〉 ∈ T (N), a semi-

elementary imset u〈A,B |C〉 : P(N) → R is defined as

u〈A,B |C〉 = δABC + δC − δAC − δBC . (7)

If A = ∅ or B = ∅, then u〈A,B |C〉 is the zero imset. We consider u〈A,B |C〉
as a 2|N |-dimensional integer vector with two elements equal to 1 (at ABC

and C) and two elements equal to −1 (at AC and BC). If A = a and

B = b are singletons, the imset u〈a,b |C〉 is called elementary. The set of all

elementary imsets is denoted by E(N). Note that the number of elementary

imsets is given by

|E(N)| =
(
|N |
2

)
2|N |−2 = |N |(|N | − 1)2|N |−3.

It is instructive to write out all elementary imsets in a 2|N | × |E(N)|
matrix UN , where each elementary imset is a column of UN . For |N | = 4,

N = abcd, the matrix UN is written in Table 1. In this paper we consider

this matrix as the configuration defining a toric ideal. Let f(S) = 1
2 |S|

2,
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Table 1. Configuration of elementary imsets UN , |N | = 4.
〈a

,
b
|c

d
〉

〈a
,
c
|b

d
〉

〈a
,
d
|b

c
〉

〈b
,
c
|a

d
〉

〈b
,
d
|a

c
〉

〈c
,
d
|a

b
〉

〈b
,
c
|d

〉

〈a
,
c
|d

〉

〈a
,
b
|d

〉

〈b
,
d
|c

〉

〈a
,
d
|c

〉

〈a
,
b
|c

〉

〈c
,
d
|b

〉

〈a
,
d
|b

〉

〈a
,
c
|b

〉

〈c
,
d
|a

〉

〈b
,
d
|a

〉

〈b
,
c
|a

〉

〈c
,
d
|∅

〉

〈b
,
d
|∅

〉

〈a
,
d
|∅

〉

〈b
,
c
|∅

〉

〈a
,
c
|∅

〉

〈a
,
b
|∅

〉

N 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bcd -1 -1 -1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
acd -1 0 0 -1 -1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
abd 0 -1 0 -1 0 -1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
abc 0 0 -1 0 -1 -1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
cd 1 0 0 0 0 0 -1 -1 0 -1 -1 0 0 0 0 0 0 0 1 0 0 0 0 0
bd 0 1 0 0 0 0 -1 0 -1 0 0 0 -1 -1 0 0 0 0 0 1 0 0 0 0
bc 0 0 1 0 0 0 0 0 0 -1 0 -1 -1 0 -1 0 0 0 0 0 0 1 0 0
ad 0 0 0 1 0 0 0 -1 -1 0 0 0 0 0 0 -1 -1 0 0 0 1 0 0 0
ac 0 0 0 0 1 0 0 0 0 0 -1 -1 0 0 0 -1 0 -1 0 0 0 0 1 0
ab 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 -1 0 -1 -1 0 0 0 0 0 1
d 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0
c 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 -1 0 0 -1 -1 0
b 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 -1 0 -1 0 -1
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 -1 0 -1 -1
∅ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

S ⊆ N . It is easily seen that this f is supermodular and∑
S⊆N

f(S)u(S) = 1, ∀u ∈ E(N). (8)

Hence UN defines a homogeneous toric ideal (Chapter 4 of Sturmfels6).

Note that since |S| is modular, any f(S) = 1
2 |S|

2 + c1|S| + c2, c1, c2 ∈ R,
satisfies (8). In particular f(S) = 1

2 |S|(|S|−1) is the standard supermodular

function satisfying (8).

In Table 1 rows are ordered (from bottom to top) by the cardinality of

the set and by reverse lexicographic order among sets of the same cardinal-

ity. We call this order the graded reverse lexicographic order of P(N). This

order can be generalized to elementary imsets as follows. In an elementary

imset u〈a,b |C〉 we always order a, b as a < b. Then we define

u〈a,b |C〉 < u〈a′,b′ |C′〉 if


C < C ′,

or C = C ′ and b < b′,

or C = C ′ and b = b′ and a < a′.

(9)

In particular, strict inclusion C ⊂ C ′ implies C < C ′. For N = {1, . . . , |N |},
the maximum element of E(N) with respect to < is u〈1,2 |R〉, where R =

{3, . . . , |N |}. We call this order the graded reverse lexicographic order of

E(N). This order will be used in the proof of Theorem 6.1 in Section 6. The

columns in Table 1 are ordered (from right to left) according to the graded

reverse lexicographic order for elementary imsets.
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The following identity among semi-elementary imsets is of basic impor-

tance.

u〈A,BD |C〉 = u〈A,B |C〉 + u〈A,D |BC〉. (10)

This identity can be directly verified as

u〈A,B |C〉 + u〈A,D |BC〉 = (δABC + δC − δAC − δBC)

+ (δABCD + δBC − δABC − δBCD)

= δABCD + δC − δAC − δBCD.

It is conveniently depicted in Fig. 1.
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1
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Fig. 1. Sum of two semi-elementary imsets

From (10) we can split A or B in u〈A,B |C〉 into smaller subsets. If we

repeat this splitting, every semi-elementary imset can be written as a non-

negative integer combination of elementary imsets

u〈A,B |C〉 =
∑

v∈E(N)

kv · v, where kv ∈ Z+. (11)

In Kashimura et al.7 we gave a detailed study of the set of all possible

non-negative integer combinations of elementary imsets which are equal to

a semi-elementary imset.

We consider R2|N|
as equipped with the standard inner product 〈·, ·〉.

Then the inner product of f : P(N) → R2|N|
and u〈A,B |C〉 is written as

〈f, u〈A,B |C〉〉 = f(ABC)− f(C) + f(AC) + f(BC).

This inner product was already considered in (8). Let E = AC,F = BC,E∩
F = C,EF = ABC in (1). We see that f is supermodular if and only if

〈f, u〈A,B |C〉〉 ≥ 0, ∀〈A,B |C〉 ∈ T (N). (12)
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Hence the set of semi-elementary imsets {u〈A,B |C〉 | ∀〈A,B |C〉 ∈ T (N)}
give the H-representation of the supermodular cone K(N). By definition,

the convex cone

K∗(N) = R+{u〈A,B |C〉 | 〈A,B |C〉 ∈ T (N)}

= {
∑

〈A,B |C〉∈T (N)

k〈A,B |C〉 · u〈A,B |C〉 | k〈A,B |C〉 ≥ 0}

generated by the semi-elementary imsets is the cone dual to the supermod-

ular cone K(N). We call K∗(N) the imset cone.

In the H-representation of K(N), not all of the hyperplanes determined

by u〈A,B |C〉 are effective. In fact by (11), if 〈f, v〉 ≥ 0 for all elementary

v ∈ E(N), then 〈f, u〈A,B |C〉〉 ≥ 0 for every semi-elementary imset. Hence

f is supermodular if 〈f, v〉 ≥ 0, ∀v ∈ E(N). It also follows that K∗(N) is

generated by the elementary imsets:

K∗(N) = R+E(N). (13)

K∗(N) is a pointed cone by (8). Note that (13) does not yet imply that the

every elementary imset is indeed an effective hyperplane defining K(N), or

equivalently every elementary imset is an extreme ray of K∗(N). Note that

an extreme ray of a polyhedral convex cone is a half line and when we say

“u is an extreme ray of a cone”, we actually mean that {cu | c ≥ 0} is an

extreme ray of the cone. At this point we establish the following lemma.

Lemma 2.1. Each elementary imset is an extreme ray of the imset cone

K∗(N).

There are many ways to prove this lemma. We give a somewhat involved

argument, which will be used frequently in Section 6.

Proof. Let u = u〈a,b |C〉 ∈ E(N) be an elementary imset. Suppose that u

is written as a non-negative combination of elements of K∗(N). By (13)

u〈a,b |C〉 =
∑

v∈E(N)

kv · v, kv ≥ 0, ∀v ∈ E(N). (14)

We need to show that kv = 0 for all v 6= u〈a,b |C〉. Suppose that for kv >

0 for some v = u〈a′,b′ |C′〉 6= u〈a,b |C〉. Among such v’s, choose vmax =

u〈a′,b′ |C′〉 such that a′b′C ′ is the largest according to the graded reverse

lexicographic order of P(N). If a′b′C ′ > abC, then on the left-hand side of

(14) u〈a,b |C〉(a
′b′C ′) = 0, but on the right-hand side of (14)

∑
v∈E(N) kv ·

v(a′b′C ′) > 0. This is a contradiction. Hence if kv > 0, then a′b′C ′ ≤ abC.



8

Similarly, considering the graded reverse lexicographic order of C, we have

C ′ ≥ C, if kv > 0 for v = u〈a′,b′ |C′〉. In particular for v = u〈a′,b′ |C′〉 with

kv > 0 we have |C| ≤ |C ′|, |a′b′C ′| ≤ |abC|. But this implies |C| = |C ′|.
Then for any S such that |S| = |C| we have

∑
v∈E(N) kv · v(S) ≥ 0. Since

u〈a,b |C〉(S) = 0 for S 6= C, we have kv = 0 for v = u〈a′,b′ |S〉, S 6= C,

|S| = |C|. Similarly kv = 0 for v = u〈a′,b′ |C′〉, a
′b′C ′ 6= abC, |C ′| = |C|.

Therefore kv > 0 only if C ′ = C and a′b′C ′ = abC. However this implies

v = u〈a,b |C〉.

Let L∗(N) ⊆ R2|N|
denote the linear subspace spanned by the semi-

elementary imsets. L∗(N) is the orthogonal complement of L(N) and its

dimension is

dimL∗(N) = 2|N | − |N | − 1.

K∗(N) ⊂ L∗(N) and the dimension of the relative interior of K∗(N) is the

same as dimL∗(N). By (4),

u ∈ L∗(N) ⇔
∑

E∈P(N)

u(E) = 0,
∑

e∈E∈P(N)

u(E) = 0, ∀e ∈ N.

Now let

L∗
Z = Z{u〈A,B |C〉 | 〈A,B |C〉 ∈ T (N)}

= {
∑

〈A,B |C〉∈T (N)

k〈A,B |C〉 · u〈A,B |C〉 | k〈A,B |C〉 ∈ Z} ⊆ Z2|N|

denote the submodule of Z2|N|
generated by the semi-elementary imsets.

Again by (11), L∗
Z is generated by the elementary imsets:

L∗
Z = ZE(N) = {

∑
v∈E(N)

kv · v | kv ∈ Z}. (15)

L∗
Z coincides with the set of integer points in L∗(N):

L∗
Z = L∗(N) ∩ Z2|N|

. (16)

This can be seen as follows. For each C ⊆ N , |C| ≤ |N | − 2, choose an

elementary imset u〈a,b |C〉. Consider a submatrix of the configuration con-

sisting these elementary imsets, which is of size 2|N |×(2|N |−|N |−1). If C’s

are ordered by the graded reverse lexicographic order as in Table 1, then

the lower (2|N | − |N | − 1)× (2|N | − |N | − 1) part of the matrix is an upper

triangular matrix with 1 on the diagonal, as seen in Table 1. Therefore it

is unimodular (= has integral inversion). Then the projection of L∗
Z onto
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these 2|N |−|N |−1 coordinates coincides with Z2|N|−|N |−1. Then (16) holds,

because other elements are determined by orthogonality to L(N).

Let Q+E(N) denote the set of non-negative rational combinations of

elementary imsets. An integer point in Q+E(N) is called a structural imset.

Let S(N) denote the set of structural imsets. Since K(N) and K(N)∗ are

rational polyhedral cones, we have

S(N) = K∗(N) ∩ Z2|N|
.

By (16), S(N) can also be written as S(N) = K∗(N) ∩ L∗
Z.

A non-negative integer combination of elementary imsets is called a

combinatorial imset and

C(N) = Z+E(N) = {
∑

v∈E(N)

kv · v | kv ∈ Z+}

denotes the set of combinatorial imsets. C(N) is the semigroup generated by

E(N). Clearly C(N) ⊆ S(N) and it is known that for |N | ≥ 5 the inclusion

is strict (Hemmecke et al.8), i.e. for |N | ≥ 5 the semigroup C(N) is not

normal.

3. Multiinformation and derivation of conditional

independence using imsets

Let P, µ be two probability measures on a sample space X , such that P is

absolutely continuous with respect to µ. The relative entropy H(P |µ) of P
with respect to µ is defined by

H(P |µ) =
∫
X
ln

dP

dµ
(x) dP (x).

H(P |µ) ≥ 0 and H(P |µ) = 0 if and only if P = µ.

Consider a joint probability distribution P of the variables in N . As

usual, A⊥⊥B |C [P ] denotes the conditional independence statement of

variables in A and in B given the variables in C under P . The set of

conditional independences under P is denoted by

MP = {〈A,B |C〉 ∈ T (N) | A⊥⊥B |C [P ]}.

We call MP the conditional independence model of P .

For A ⊆ N , PA denotes the marginal distribution of the variables in

A. Let
∏

i∈A P {i} denote the product of one-dimensional marginal distri-

butions in A. Then the multiinformation function mP : P(N) → [0,∞] is
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defined by

mP (S) = H(PS |
∏
i∈S

P {i}), S 6= ∅, (17)

andmP (∅) = 0. Throughout this paper we only consider P such thatmP (S)

is finite for every S ⊆ N . The basic fact on the multiinformation is that

mP is supermodular. Furthermore the following equivalence between the

conditional independence A⊥⊥B |C [P ] and the local modularity of mP at

〈A,B |C〉 holds:

〈mP , u〈A,B |C〉〉 ≥ 0, ∀〈A,B |C〉 ∈ T (N)

= 0 ⇔ A⊥⊥B |C [P ]. (18)

This equivalence is the basis for manipulating conditional independence

statements in terms of imsets. Note that mP is standardized as a super-

modular function since mP (S) = 0 for |S| ≤ 1.

Traditionally, the implications among conditional independence state-

ments under a probability measure P have been studied in terms of the

following semi-graphoid axioms. In the axioms A,B,C,D ⊆ N are disjoint.

1. triviality A⊥⊥∅ |C [P ]

2. symmetry A⊥⊥B |C [P ] ⇒ B⊥⊥A |C [P ]

3. decomposition A⊥⊥BD |C [P ] ⇒ A⊥⊥B |C [P ]

4. weak union A⊥⊥BD |C [P ] ⇒ A⊥⊥D |BC [P ]

5. contraction A⊥⊥D |BC [P ] and A⊥⊥B |C [P ] ⇒ A⊥⊥BD |C [P ]

Note that decomposition, weak union and contraction can be combined

into the following single equivalence:

A⊥⊥BD |C [P ] ⇔ A⊥⊥D |BC [P ] and A⊥⊥B |C [P ].

This equivalence can be proved very easily by imsets. Take the inner product

of (10) with the multiinformation mP . Then

〈mP , u〈A,BD |C〉〉 = 〈mP , u〈A,B |C〉〉+ 〈mP , u〈A,D |BC〉〉.

Since every term is non-negative, we have

A⊥⊥BD |C [P ] ⇔ 〈mP , u〈A,BD |C〉〉 = 0

⇔ 〈mP , u〈A,B |C〉〉 = 〈mP , u〈A,D |BC〉〉 = 0

⇔ A⊥⊥D |BC [P ] and A⊥⊥B |C [P ].

In this way, manipulation of “rules” such as the semi-graphoid axioms is

translated to linear algebraic operations in terms of imsets. This is a very

important advantage of the method of imsets and the multiinformation.
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As another example, consider the following identity.

u〈a,b | c〉 + u〈a,c | d〉 + u〈a,d | b〉 = (δabc + δc − δac − δbc) + (δacd + δd − δad − δcd)

+ (δabd + δb − δab − δbd)

= (δabc + δacd + δabd) + (δb + δc + δd)

− (δab + δac + δad)− (δbc + δbd + δcd)

= u〈a,c | b〉 + u〈a,d | c〉 + u〈a,b | d〉. (19)

By the method of imsets we then have

a⊥⊥ b | c, a⊥⊥ c | d, a⊥⊥ d | b ⇔ a⊥⊥ c | b, a⊥⊥ d | c, a⊥⊥ b | d, (20)

where for simplicity we wrote a⊥⊥ b | c instead of a⊥⊥ b | c [P ]. It is evident

that none of decomposition, weak union and contraction can be applied to

the left-hand side nor to the right-hand side of this equivalence. Therefore

this equivalence can not be derived from semi-graphoid axioms.

Here it is interesting to note that (19) can be derived by linear algebraic

operations from (10), which itself corresponds to the semi-graphoid axiom.

By applying (10) twice we can write

3 · u〈a,bcd | ∅〉 = (u〈a,b | ∅〉 + u〈a,c | b〉 + u〈a,d | bc〉)

+ (u〈a,c | ∅〉 + u〈a,d | c〉 + u〈a,b | cd〉)

+ (u〈a,d | ∅〉 + u〈a,b | d〉 + u〈a,c | bd〉) (21)

as well as

3 · u〈a,bcd | ∅〉 = (u〈a,b | ∅〉 + u〈a,d | b〉 + u〈a,c | bd〉)

+ (u〈a,c | ∅〉 + u〈a,b | c〉 + u〈a,d | bc〉)

+ (u〈a,d | ∅〉 + u〈a,c | d〉 + u〈a,b | cd〉). (22)

Equality of right-hand sides of (21) and (22) immediately gives (19).

Let u ∈ S(N) be a structural imset. A conditional independence with

respect to u is defined as follows. We say that A and B are conditionally

independent given C with respect to u, and denote it by A⊥⊥B |C [u], if

∃k ∈ N, k · u− u〈A,B |C〉 ∈ S(N). (23)

The set of conditional independences induced by u is denoted by

Mu = {〈A,B |C〉 ∈ T (N) | A⊥⊥B |C [u]}. (24)

We call Mu the conditional independence model of u. The importance of

this definition lies in the following completeness theorem for imsets.
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Theorem 3.1 (Theorem 5.2 of Studený1). Let P be a probability mea-

sure over N with finite multiinformation. Then there exists u ∈ S(N) such

that MP = Mu.

Proof. Define u =
∑

〈A,B |C〉∈MP
u〈A,B |C〉. Then clearlyMP ⊆ Mu. Now

for any 〈A,B |C〉 ∈ Mu choose k such that (23) holds. Then

0 = 〈mP , k · u〉 = 〈mP , k · u− u〈A,B |C〉〉+ 〈mP , u〈A,B |C〉〉.

Since two terms on the right-hand side are non-negative, we have

〈mP , u〈A,B |C〉〉 = 0 and hence Mu ⊆ MP .

We have reproduced this proof from Section 5 of Studený1, because this

argument is instructive. In this proof, to show 〈mP , u〈A,B |C〉〉 = 0, we have

added an extra term k · u− u〈A,B |C〉 to u〈A,B |C〉. In this sense, this proof

is similar to the argument concerning (21) and (22) above for showing (20).

Next we show that the conditional independence model Mu depends

only on the face of K∗(N) which contains u as a relatively interior point.

Although this fact is discussed in a series of papers by Studený9 and Chap-

ter 5 of Studený1, we make this point clear in the following lemma.

Lemma 3.1. Let a1, . . . , an be nonzero vectors in Rm. Let C =

R+{a1, . . . , an} be the convex cone generated by these vectors and suppose

that C is pointed and a1, . . . , an are extreme rays of C. For a face F of C,

let F ◦ denote its relative interior. Put IF = {i | ai ∈ F}. Then, b ∈ C

belongs to F ◦ if and only if the following two conditions hold:

(1) For every i ∈ IF , there exists ki ∈ N such that ki · b− ai ∈ C,

(2) For every i 6∈ IF and every k ∈ N, k · b− ai 6∈ C.

Proof. b ∈ C can be written as b =
∑n

i=1 ciai, ci ≥ 0, i = 1, . . . , n. Suppose

that b satisfies the above two conditions. Then for i ∈ IF , by condition 1,

for some ki ∈ N, kib = ai +
∑n

j=1 c̃
i
jaj , c̃

i
j ≥ 0, or

b =
1

ki
ai +

n∑
j=1

(c̃ij/ki)aj .

Taking the average of the right-hand side over i ∈ IF , we see that we can

take ci > 0 for i ∈ IF in b =
∑n

i=1 ciai. On the other hand, for i 6∈ IF ,

condition 2 implies k · ci − 1 ≤ 0 for any k ∈ N, hence ci = 0. Therefore if

b satisfies two conditions then b is written as

b =
∑
i∈IF

ciai, ci > 0, i ∈ IF .
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Since the coefficients are positive, we have b ∈ F ◦.

Conversely let b ∈ F ◦. For i ∈ IF and sufficiently large k ∈ N, let a =

(1/k)ai. Then we have b− a ∈ F , which is equivalent to k · b− ai ∈ F ⊆ C.

Let v ∈ Rm be a normal vector of a supporting hyperplane of F such that

〈v, x〉 ≥ 0, ∀x ∈ C, and for b ∈ F and any ai 6∈ F the inner product with

respect to v satisfy

〈v, b〉 = 0, 〈v, ai〉 > 0.

Then for any k ∈ N, we have

〈v, k · b− ai〉 < 0,

which means that k · b− ai 6∈ C.

Under the assumptions of Lemma 3.1, let b ∈ C and let F = Fb denote

the face of C such that b ∈ F ◦. Let

Eb = {ai | k · b− ai ∈ C, ∃k ∈ N}.

Then Eb is the set of extreme rays of Fb by Lemma 3.1.

From this fact we can prove that conditional independence structures

induced by imsets depend only on faces of the imset cone K∗(N) and not

on each imset.

Proposition 3.1. Let u, u′ ∈ S(N). Then Mu = Mu′ if and only if u, u′

belong to the relative interior of the same face of K∗(N).

Proof. For v ∈ S(N), let Fv denote the face of K∗(N) such that v belongs

to the relative interior F ◦
v of Fv and let Ev(N) denote the set of elementary

imset u〈a,b |C〉 such that ∃k ∈ N, k · v − u〈a,b |C〉 ∈ S(N), that is,

Ev(N) = {u〈a,b |C〉 | 〈a, b |C〉 ∈ Mu}.

As note above, Ev(N) is the set of extreme rays of Fv. Hence

Mu = Mu′ ⇔ Eu(N) = Eu′(N)

⇔ Fu = Fu′ .

By Theorem 3.1 and Proposition 3.1, each conditional independence

model MP corresponds to a face of K∗(N). Note that, by mutual orthog-

onality, the face poset of K(N) and that of K∗(N) are isomorphic (when

inclusion in K(N) is reversed). Hence each conditional independence model

MP also corresponds to a face of K(N).
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Also note that we can regard the set of conditional independence mod-

els MP as a poset with respect to the inclusion relation MP ⊆ MP ′ .

By Proposition 3.1 this poset is a sub-poset of the face poset of K∗(N).

Unfortunately it is known that for |N | ≥ 4, there exist faces of K∗(N)

which do not correspond to any MP , i.e. for |N | ≥ 4, the set of conditional

independence models is a proper sub-poset of the face poset of K∗(N).

Example 3.1 (Example 4.1 of Studený1). For N = abcd consider

u = u〈c,d | ab〉 + u〈a,b | ∅〉 + u〈a,b | c〉 + u〈a,b | d〉

= δN + 2 · δab − δac − δad − δbc − δbd − δa − δb + δc + δd + δ∅.

Then 〈c, d | ab〉, 〈a, b | ∅〉, 〈a, b | c〉, 〈a, b | d〉 ∈ Mu. Furthermore let

m = 4 · δN + 2 ·
∑

S⊆N :|S|=3

δS +
∑

S⊆N :|S|=2,S 6=ab

δS . (25)

(see Fig. 2.) Then it can be checked that 〈m, v〉 ≥ 0 for every v ∈ E(N).

Hence m is supermodular. Furthermore 〈m,u〉 = 0, 〈m,u〈a,b | cd〉〉 = 1.

Consequently for any k ∈ N, 〈m, k · u − u〈a,b | cd〉〉 = −1 and hence k · u −
u〈a,b | cd〉 6∈ S(N) and 〈a, b | cd〉 6∈ Mu. On the other hand it can be shown

that for any probability measure P with finite multiinformation

〈c, d | ab〉, 〈a, b | ∅〉, 〈a, b | c〉, 〈a, b | d〉 ∈ MP ⇒ 〈a, b | cd〉 ∈ MP

(cf. Corollary 2.1 of Studený1). Therefore for the above u, there exists no

P such that Mu = MP .

It can be shown that m in (25) is an extreme ray of the supermodular cone

K(N) for |N | = 4 in the sense of the next section.

4. Results on extreme rays of the supermodular cone

In this section we prove that certain supermodular functions are “extreme

rays” of the supermodular cone K(N). Since extreme rays of K(N) are

hard to describe, even partial results on the extreme rays are of interest.

As we discussed in Section 1, since K(N) contains the linear space L(N)

of modular functions, in order to consider “extreme rays” of K(N) we need

to identify two supermodular functions f and g if they differ by a modular

function. For this purpose it is simplest to consider the cone K`(N) of

standardized supermodular functions in (6):

K`(N) = {f ∈ K(N) | f(S) = 0 for |S| ≤ 1},

which is a pointed polyhedral cone in R2|N|−|N |−1.
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Fig. 2. An extreme ray of K(N) not corresponding to multiinformation
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Following the terminology of Studený1, we call an extreme ray of K`(N)

a skeletal supermodular function. Furthermore by abusing the terminology,

we call f ∈ K(N) a skeletal supermodular function (or an extreme ray of

K(N)) if its standardization f̄ in (6) is a skeletal supermodular function.

Below we often omit “supermodular” and simply say that f is a skeletal

function, or f is skeletal. Skeletal functions for |N | = 4 are depicted in

the appendix of Studený et al.10 Various conditions on skeletal functions

of this section are meant to be useful for understanding these functions.

Except for the extreme ray m in (25), other extreme rays for |N | = 4 are

covered by the results of this section. However they are far from enough for

understanding most of skeletal functions for |N | = 5 studied in Studený et

al.10

The results of this section concern extending a supermodular function

on P(N) to a larger base set Ñ ⊃ N and resemble results in Chapter 2 of

Topkis11, although Topkis11 does not consider skeletal functions. Results

on a skeletal function as a maximum of a collection of modular functions

are given in Rosenmüller and Weidner.12

For proving that a supermodular function f is skeletal we proceed as in

Lemma 2.1. Express f as a sum of two supermodular functions

f = f1 + f2. (26)

Here we can assume that f, f1, f2 are standardized, namely, 0 = f(S) =

f1(S) = f2(S) for |S| ≤ 1. This follows from the fact that the standardiza-
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tion (6) can be performed to f, f1, f2 separately. We need to show that f1
and f2 are proportional to f , i.e.,

f1 = c1f, f2 = c2f, c1, c2 ≥ 0, c1 + c2 = 1. (27)

We first state two simple facts on skeletal functions. The first one con-

cerns complementation of subsets of N . In Section 9.1.2 of Studený1 this is

referred to as a reflection. Let AC denote the complement of A ⊆ N . Let f

be a supermodular function. Define fC by

fC(S) = f(SC), S ⊆ N.

Taking the complement corresponds to looking at the configuration UN in

Table 1 upside down. The following lemma is trivial.

Lemma 4.1. fC is skeletal if and only if f is skeletal.

The second one concerns a supermodular function f(S) depending only on

the size |S| of S.

Lemma 4.2. Let |N | ≥ 2 and 1 ≤ k < |N |. f(S) = max(|S| − k, 0) is

skeletal.

Proof. It is easily verified that f is supermodular. Let f = f1 + f2, where

f1, f2 are standardized and supermodular. Since f1, f2 are non-negative,

f1 = f2 = 0 holds for |S| ≤ k. This means (27) holds for |S| ≤ k.

Next we consider the case for |S| ≥ k. If k = |N | − 1, then (27) holds.

Hence assume k ≤ |N | − 2. Let Sk be any subset of N such that |Sk| = k.

Let S̃ ⊃ Sk. Then f(S̃) = f(T ∪ Sk) where T = S̃ \ Sk. For Sk ⊆ N ,

define f̃Sk(T ) = f(T ∪ Sk) = |T | , T ⊆ N \ Sk. In the same way, define

f̃Sk
i (T ) = fi(T ∪ Sk), T ⊆ N \ Sk, i = 1, 2. Then f̃Sk and f̃Sk

i are modular

function on N \ Sk. By (3), f̃Sk
1 and f̃Sk

2 can be written as

f̃Sk
1 (T ) = λSk

∅ +
∑
a∈T

λSk
a , f̃Sk

2 (T ) = µSk

∅ +
∑
a∈T

µSk .

From f̃Sk(T ) = |T | and f = f1+f2, we have λ
Sk

∅ = µSk

∅ = 0 and λSk
α +µSk

α =

1 for α ∈ T . If λSk
α = λSk

β = λSk and µSk
α = µSk

β = µSk hold for all

α, β ∈ N \ Sk where λSk , µSk ∈ R+, then f̃Sk
1 (T ) = λSk |T | and f̃Sk

2 (T ) =

µSk |T | hold. Furthermore we obtain the representations f̃Sk
1 (T ) = λ |T |

and f̃Sk
2 (T ) = µ |T | where λ, µ ∈ R+, because f̃Sk

i (α′) = f̃
S′
k

i (α) holds

if α′Sk = αS′
k where S′

k is a subset of N such that |Sk|′ = k and α ∈
Sk, α

′ ∈ S′
k. This means that (27) holds for |S| ≥ k. It is suffices to show

that λSk
α = λSk

β holds for all α, β ∈ N \ Sk such that α 6= β, because we
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can prove the equation µSk
α = µSk

β in the same manner. Let α, β ∈ N \ Sk

such that α 6= β. For γ ∈ Sk, let S′
k = {S \ γ} ∪ α and S′′

k = {S \ γ} ∪ β.

First we consider f̃
S′
k

1 . From γS′
k = αSk, we have f̃

S′
k

1 (γ) = f̃Sk
1 (α) = λSk

α .

Furthermore, from βγS′
k = αβSk, we have f̃

S′
k

1 (βγ) = f̃Sk
1 (αβ) = λSk

α +λSk

β .

Since f̃
S′
k

1 is modular on N \ S′
k, we obtain

f̃
S′
k

1 (β) = f̃
S′
k

1 (βγ) + f̃
S′
k

1 (∅)− f̃
S′
k

1 (γ) = λSk

β . (28)

Next we consider f̃
S′′
k

1 . From γS′′
k = βSk, we have f̃

S′′
k

1 (γ) = f̃Sk
1 (β) = λSk

β .

Furthermore, from αγS′′
k = αβSk, we have f̃

S′′
k

1 (αγ) = f̃Sk
1 (αβ) = λSk

α +λSk

β .

Since f̃
S′′
k

1 is modular on N \ S′′
k , we obtain

f̃
S′′
k

1 (α) = f̃
S′′
k

1 (αγ) + f̃
S′′
k

1 (∅)− f̃
S′′
k

1 (γ) = λSk
α . (29)

From (28), (29) and βS′
k = αS′′

k , we have λSk

β = f̃
S′
k

1 (β) = f̃
S′′
k

1 (α) = λSk
α .

For stating other results on skeletal functions, we let N = {1, . . . , n},
n = |N |, and consider f as a function of x1, . . . , xn, where xi ∈ {0, 1},
i = 1, . . . , n. S ⊆ N can be identified with (x1, . . . , xn) ∈ {0, 1}n, where
xi = 1 if and only if i ∈ S. Let ∆if denote the function depending on xj ,

j 6= i, defined as

∆if = f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

Then it is easily shown that f is supermodular if and only if

∆i∆jf ≥ 0, ∀i 6= j.

Note that ∆i∆jf is a function of xk, k 6= i, j. Furthermore f does not

depend on xi if and only if ∆if ≡ 0. Also since a standardized supermodular

function f is non-decreasing, ∆if ≥ 0.

From now on we interchangeably write f(S) or f(x1, . . . , xn), i.e., the

argument of f may be a set or a 0-1 vector, depending on the context. We

now prove the following lemma.

Lemma 4.3. Let A ⊆ N and let g : P(A) → R. Define f : P(N) → R by

f(S) = g(S ∩A). Then f is supermodular if and only if g is supermodular.

Furthermore f is skeletal if and only if g is skeletal.

Proof. We omit the proof of the first statement, since it is trivial. Also it

is easily shown that if g is not skeletal, then f is not skeletal. It remains to
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show that if g is skeletal, then f is skeletal. Write f = f1+f2, where f, f1, f2
are standardized. Then 0 = ∆jf for j 6∈ A implies 0 = ∆jf1 = ∆jf2, j 6∈ A.

Hence f1, f2 do not depend on xj , j 6∈ A and f1, f2 can be considered as

supermodular functions on P(A). Then since g is skeletal, f1, f2 have to be

proportional to g = f .

For A ⊆ N let

fA(S) = 1A⊆•(S) = 1{A⊆S} =

{
1 if A ⊆ S

0 otherwise.
(30)

Using above lemmas we prove the following proposition.

Proposition 4.1. fA = 1A⊆• is skeletal.

Proof. On P(A), g(S) = gA(S) = max(|S| − |A| + 1, 0) is skeletal by

Lemma 4.2. Then its extension to P(N) is skeletal by Lemma 4.3.

We now consider more complicated extensions of supermodular func-

tions. For f : {0, 1}n → R define

f0(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0),

f1(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1).

The following lemma is easy to prove.

Lemma 4.4. Let f be a standardized supermodular function, such that

f0 ≡ 0. Then f is skeletal if and only if f1 is skeletal.

The following result is somewhat more difficult to prove. In the lemma

and its proof we denote N ′ = {1, . . . , n− 1}.

Lemma 4.5. Consider f such that f0 is a skeletal function satisfying

∆if0(N
′ \ i) = 1 for all i ∈ N ′ and f1(S) = |S|, S ⊆ N ′. This f is

skeletal.

Proof. We first show that f is supermodular. It suffices to show that

∆i∆jf ≥ 0 for all i, j ∈ N, i 6= j. For i, j 6= n and S ⊆ N ′ \ ij,

∆i∆jf(S) = ∆i∆jf0(S) ≥ 0 because of the supermodularity of f0. Also,

for i, j 6= n and n ∈ S ⊆ N \ ij, ∆i∆jf(S \ n) = ∆i∆jf1(S) ≥ 0. Thus

we need to show the supermodularity when j = n and S ⊆ N ′. From the

supermodularity of f0, for i ∈ N ′ \ S we have

f0(Si)− f0(S) ≤ f0(N
′)− f0(N

′ \ i) = 1 = f1(Si)− f1(S),
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which means that

∆i∆jf(S) = ∆i(f1(S)− f0(S)) = ∆if1(S)−∆if0(S) ≥ 0.

Therefore f is supermodular.

Now write f = g + h where g, h are standardized. Define g0, g1, h1, h0

as above. Considering the case xn = 0, since f0 is skeletal, there exist

cg, ch ≥ 0, cg + ch = 1, such that

g0 = cgf0, h0 = chf0.

Also from the assumption and supermodularity of g1 and h1, for any i ∈ N ′

we have

g1(N
′)− g1(N

′ \ i) ≥ g0(N
′)− g0(N

′ \ i) = cg∆if0(N
′ \ i) = cg, (31)

h1(N
′)− h1(N

′ \ i) ≥ h0(N
′)− h0(N

′ \ i) = ch∆if0(N
′ \ i) = ch. (32)

If at least one of the inequalities is strict, we have

1 = (n− 1)− (n− 2) = f1(N
′)− f1(N

′ \ i)
= (g1(N

′)− g1(N
′ \ i)) + (h1(N

′)− h1(N
′ \ i))

> cg∆if0(N
′ \ i) + ch∆if0(N

′ \ i) = 1,

which is a contradiction. Therefore (31) and (32) are equalities.

Now consider the case that xn = 1. f1(S) = |S| is modular. Hence both

g1 and h1 are modular as well. From (31) and the modularity of g1, for any

i ∈ N ′ we have

cg = g1(N
′)− g1(N

′ \ i) = g1(i)− g1(∅) = g1(i).

Furthermore from f1(∅) = 0 and the modularity of g1, we have g1(∅) = 0.

Hence by (3), we obtain

g1(S) =
∑
i∈S

g1(i) = cg|S| = cgf1(S), S ⊆ N ′.

Therefore g = cgf . Similarly h = chf . This proves that f is skeletal.

For our next result, we write xn−1 = (x1, . . . , xn−1). Let f
′ : {0, 1}n →

R be supermodular. Define f : {0, 1}n+1 → R by

f(xn−1, xn, xn+1) =

{
f ′(xn−1, 1) xn = xn+1 = 1,

f ′(xn−1, 0) otherwise.

Then the following result holds.

Proposition 4.2. If f ′ is skeletal, then f is skeletal.
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Proof. As in the last proposition we write N ′ = {1, . . . , n − 1}. We also

write N ′′ = {1, . . . , n + 1}. We first show that f is supermodular, i.e.

∆i∆jf ≥ 0 for all i, j ∈ N ′′, i 6= j. By assumption, ∆i∆jf ≥ 0 for i, j ∈ N ′.

Next consider the case i ∈ N ′ and j = n+ 1. Then by definition

∆n+1f(xn−1, 1) = ∆nf
′(xn−1), (33)

∆n+1f(xn−1, 0) = f ′(xn−1, 0)− f ′(xn−1, 0) = 0. (34)

Hence

∆i∆n+1f(xn−1,̂i, 1) = ∆i∆nf
′(xn−1,̂i) ≥ 0, ∆i∆n+1f(xn−1,̂i, 0) = 0,

where xn−1,̂i = xN ′\i. The case of i ∈ N ′, j = n is similar. For i = n, j =

n+ 1, by taking the difference of (34) and (33) we have

∆n∆n+1f(xn−1) = ∆nf
′(xn−1) ≥ 0.

Therefore f is supermodular.

Now let f = g + h. Repeating xn define

f̃(x1, . . . , xn) = f(x1, . . . , xn, xn).

Then f̃ = f ′. By assumption f̃ is skeletal. Hence defining g̃, h̃ similarly, we

have

g̃ = cg f̃ , h̃ = chf̃ , cg, ch ≥ 0, cg + ch = 1.

This implies that g(x) = cgf(x) and h(x) = chf(x) if xn = xn+1. Therefore

we only need to consider the cases (xn, xn+1) = (1, 0) or (xn, xn+1) = (0, 1).

By symmetry we consider only the former case. Then

cg f̃(xn−1, 0) = g̃(xn−1, 0) = g(xn−1, 0, 0) ≤ g(xn−1, 1, 0).

The last inequality holds by monotonicity of g. Similar relation holds for

h. If at least one of the inequalities for g and for h is strict, then

f̃(xn−1, 0) = cg f̃(xn−1, 0) + chf̃(xn−1, 0)

< g(xn−1, 1, 0) + h(xn−1, 1, 0) = f(xn−1, 1, 0)

= f ′(xn−1, 0) = f̃(xn−1, 0),

which is a contradiction. Hence

cgf(xn−1, 1, 0) = cgf
′(xn−1, 0) = cg f̃(xn−1, 0) = g(xn−1, 1, 0)

and g = cgf . Similarly h = chf . Hence f is skeletal.
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Our final result of this section concerns a product of skeletal functions

for disjoint sets. These functions played an important role in Kashimura et

al.7

Proposition 4.3. Let AB = N , A ∩B = ∅ and consider f of the form

f(S) = g(A ∩ S)h(B ∩ S) (35)

where g : P(A) → R and h : P(B) → R. Suppose that f, g, h are standard-

ized supermodular functions. Then f is skeletal if and only if g and h are

skeletal.

Note that if g and h are standardized supermodular functions on P(A)

and P(B), respectively, then f(S) in (35) is a standardized supermodular

function on P(N).

Proof. It is easily shown that if g or h are not skeletal, then f is not

skeletal. Hence if f is skeletal, then both g and h are skeletal.

We now show the converse. Suppose that g and h are skeletal. Write

f = f1 + f2, where f1, f2 are standardized. Consider any A′ ⊆ A such that

g(A′) > 0. For S ⊆ B, consider

f(A′S) = f1(A
′S) + f2(A

′S) = g(A′)h(S), S ⊆ B.

Since f1(A
′S), f2(A

′S) as functions of S are supermodular and since h is

skeletal, there exist c1(A
′), c2(A

′) ≥ 0, such that

f1(A
′S) = c1(A

′)h(S), f2(A
′S) = c2(A

′)h(S).

Hence

f(A′S) = c1(A
′)h(S) + c2(A

′)h(S) = g(A′)h(S), S ⊆ B.

Note that this holds also for A′ such that g(A′) = 0 by defining 0 =

c1(A
′) = c2(A

′). Now fixing any S ⊆ B such that h(S) > 0 and considering

f(A′S)/h(S) = g(A′) = c1(A
′) + c2(A

′) as a function of A′, we see that c1
and c2 have to be proportional to g because g is skeletal. Then f1 and f2
are proportional to f = gh.

In Appendix A, we present a generalization of Proposition 4.3 for arbi-

trary cones.
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5. Structure of faces of semi-elementary imsets

In this section we study a face of the imset cone corresponding to a semi-

elementary imset u〈A,B |C〉. By the face corresponding to u〈A,B |C〉, we mean

the unique face of the imset cone, such that u〈A,B |C〉 is in the relative

interior of the face. We denote this face by F〈A,B |C〉. In Kashimura et al.7

we have shown some remarkable facts on F〈A,B |C〉. Here we establish more

basic facts on F〈A,B |C〉.

If we repeatedly apply the decomposition in (10), any semi-elementary

imset u〈A,B |C〉 can be written as a sum of elementary imsets. Those ele-

mentary imsets are from the following set of elementary imsets:

E〈A,B |C〉 = {u〈a,b |Γ〉 | a ∈ A, b ∈ B,C ⊆ Γ ⊆ ABC}.

In this section we establish the following basic facts on F〈A,B |C〉: i) E〈A,B |C〉
is the set of extreme rays of F〈A,B |C〉, ii) dim(F〈A,B |C〉) = (2|A|−1)(2|B|−
1). For proving these facts we give linearly independent set of supermodular

functions orthogonal to F〈A,B |C〉.

Let D = N \ (ABC), i.e. N = ABCD. For E ⊆ N define 1E⊆• by (30),

which is skeletal by Proposition 4.1. Similarly define

1E⊇•(S) =

{
1 if E ⊇ S

0 otherwise,

which is skeletal by Lemma 4.1, since 1E⊇• = 1CEC⊆•. Now consider the

following supermodular functions.

1A1C⊆• (A1 ⊆ A), (36)

1B1C⊆• (∅ 6= B1 ⊆ B), (37)

1EC1⊇• (E ⊆ AB, C1 ⊂ C), (38)

1ED1⊆• (E ⊆ ABC, ∅ 6= D1 ⊆ D). (39)

Let M〈A,B |C〉 denote the set of these supermodular functions. The cardi-

nality of M〈A,B |C〉 is given by

|M〈A,B |C〉| = 2|A| + (2|B| − 1) + 2|AB|(2|C| − 1) + 2|ABC|(2|D| − 1)

= 2|N | − (2|A| − 1)(2|B| − 1). (40)

First we check that the linear independence of the above supermodular

functions.

Lemma 5.1. The elements of M〈A,B |C〉 are linearly independent.
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Proof. We need to show that the coefficients λA1
, µB1

, νEC1
, ξED1

∈ R in∑
A1⊆A

λA11A1C⊆•(S) +
∑

∅6=B1⊆B

µB11B1C⊆•(S) +
∑

E⊆AB,C1⊂C

νEC11EC1⊇•(S)

+
∑

E⊆ABC,∅6=D1⊆D

ξED11ED1⊆•(S) = 0 (∀S)

are zeros. Let S = A2C (A2 ⊆ A). Then
∑

A1⊆A2
λA1 = 0 and by induction

we have λA1 = 0. Similarly by letting S = B2C (∅ 6= B2 ⊆ B) we have∑
∅6=B1⊆B2

µB1 = 0 and by induction µB1 = 0.

Next let S = E2C2 (E2 ⊆ AB,C2 ⊂ C). Then∑
E2⊆E⊆AB,C2⊆C1⊂C

νEC1 = 0

and the double induction on E and C1 yields νEC1 = 0. Finally letting

S = E2D2 (E2 ⊆ ABC, ∅ 6= D2 ⊆ D) we have
∑

E⊆E2,∅6=D1⊆D2
ξED1 = 0

and the double induction on E and D1 yields ξED1 = 0.

Now we prove the following theorem.

Theorem 5.1. An elementary imset u belongs to E〈A,B |C〉 if and only if

〈u, f〉 = 0, ∀f ∈ M〈A,B |C〉. (41)

Proof. We first show the orthogonality 〈u, f〉 = 0 for all u ∈ E〈A,B |C〉 and

for all f ∈ M〈A,B |C〉. Consider f(S) = 1A1C⊆• (A1 ⊆ A). Let

u〈a,b |C′〉 = δabC′ + δC′ − δaC′ − δbC′ ∈ E〈A,B |C〉.

Then

〈u〈a,b |C′〉, f〉 = f(abC ′) + f(C ′)− f(aC ′)− f(bC ′)

= 1{A1C⊆abC′} + 1{A1C⊆C′} − 1{A1C⊆aC′} − 1{A1C⊆bC′}

= 1{A1C⊆aC′} + 1{A1C⊆C′} − 1{A1C⊆aC′} − 1{A1C⊆C′}

= 0.

Similarly f(S) = 1B1C⊆• is orthogonal to u〈a,b |C′〉 ∈ E〈A,B |C〉.

Next consider f(S) = 1EC1⊇• (E ⊆ AB,C1 ⊂ C). Since C 6⊆ C1

〈u〈a,b |C′〉, f〉 = f(abC ′) + f(C ′)− f(aC ′)− f(bC ′)

= 1{EC1⊇abC′} + 1{EC1⊇C′} − 1{EC1⊇aC′} − 1{EC1⊇bC′}

= 0 + 0− 0− 0 = 0.
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Finally consider f(S) = 1ED1⊆• (E ⊆ ABC, ∅ 6= D1 ⊆ D). Then

〈u〈a,b |C′〉, f〉 = f(abC ′) + f(C ′)− f(aC ′)− f(bC ′)

= 1{ED1⊆abC′} + 1{ED1⊆C′} − 1{ED1⊆aC′} − 1{ED1⊆bC′}

= 0 + 0− 0− 0 = 0.

We have shown that 〈u, f〉 = 0, ∀u ∈ E〈A,B |C〉, ∀f ∈ M〈A,B |C〉.

We now show that for any elementary imset u = u〈a′,b′ |C′〉 6∈ E〈A,B |C〉
there exists f ∈ M〈A,B |C〉 such that 〈u, f〉 = 1. For f = 1F⊆• we here

confirm which elementary imset u〈α,β |Γ〉 satisfies 〈u〈α,β |Γ〉, f〉 = 1. Write

Γ1 = Γ ∩ F, Γ2 = Γ ∩ FC .

Then we can ignore Γ2 and replace Γ by Γ1 in

1F⊆αβΓ + 1F⊆Γ − 1F⊆αΓ − 1F⊆βΓ. (42)

Hence we only consider Γ1. It is easy to see that (42) is equal to 1 if and

only if the first term of (42) is 1 and other three terms are zeros. In this

case

|αβΓ1| ≥ |F |, |Γ1| ≤ |F | − 2

implies F = αβΓ1. Putting Γ2 back we have the following equivalence

〈u〈α,β |Γ〉, 1F⊆•〉 = 1 ⇔ α, β ∈ F, (αβΓ) ∩ F = F

⇔ α, β ∈ F, αβΓ ⊇ F. (43)

Similarly for 1F⊇• we can show

〈u〈α,β |Γ〉, 1F⊇•〉 = 1 ⇔ α, β 6∈ F, Γ ⊆ F. (44)

Now arbitrarily fix α, β,Γ. Consider the case αβΓ 6⊆ ABC, i.e. (αβΓ)∩
D 6= ∅. Let

D1 = (αβΓ) ∩D, E = (αβΓ) ∩ABC.

Then ED1 = αβΓ and α, β ∈ F , αβΓ ⊇ F , where F = ED1. Hence

(43) implies 〈u〈α,β |Γ〉, 1ED1⊆•〉 = 1. It remains to consider the cases where

αβΓ ⊆ ABC. Hence assume C 6⊆ Γ ⊆ ABC. Let C1 = C∩Γ. Then C1 ⊂ C.

Let E = Γ ∩ (AB). Then Γ = EC1. For F = Γ, we have α, β 6∈ F,Γ = F.

Hence (44) implies 〈u〈α,β |Γ〉, 1EC1⊇•〉 = 1. It remains to consider the case

Γ ⊇ C, αβΓ ⊆ ABC. Note that we want to eliminate the case that both

α and β belong to A or belong to B. By symmetry we can only consider

the former case. Hence assume α, β ∈ A, Γ ⊇ C. In this case we can set

A1 = αβ(A ∩ Γ). Then (43) implies 〈u〈α,β |Γ〉, 1A1C⊆•〉 = 1.
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Remark 5.1. In the above proof we have shown that

〈u, 1A⊆•〉, 〈u, 1A⊇•〉 ∈ {0, 1}

for every elementary imset u and every A ⊆ N .

Remark 5.2. Let Lin(M〈A,B |C〉) and Lin(E〈A,B |C〉) denote linear sub-

spaces spanned by M〈A,B |C〉 and E〈A,B |C〉, respectively. Linearly extend-

ing (41) we see that Lin(M〈A,B |C〉) is the orthogonal complement of

Lin(E〈A,B |C〉).

Two facts stated at the beginning of this section are simple consequences

of Theorem 5.1.

Corollary 5.1. E〈A,B |C〉 is the set of extreme rays of F〈A,B |C〉 and

dim(F〈A,B |C〉) = (2|A| − 1)(2|B| − 1).

The first statement is obvious and the second statement follows from

Remark 5.2 and (40). The fact that dim(F〈A,B |C〉) does not depend on

C can also be seen from the one-to-one linear correspondence between

Lin(E〈A,B |C〉) and Lin(E〈A,B | ∅〉) given by

E〈A,B |C〉 3 u〈a,b |Γ〉 ↔ u〈a,b |Γ\C〉 ∈ E〈A,B | ∅〉.

Note that Theorem 5.1 shows that elements of M〈A,B |C〉 are extreme

rays of the face F⊥
〈A,B |C〉 of the supermodular cone K(N) dual to F〈A,B |C〉.

However it is hard to believe that F⊥
〈A,B |C〉 is simplicial and hence F⊥

〈A,B |C〉
should have other extreme rays than elements of M〈A,B |C〉. Characteriza-

tion of extreme rays of F⊥
〈A,B |C〉 is an interesting question left to our future

research.

Remark 5.3. In our previous manuscript Kashimura et al.7 we studied

how the semi-elementary imset u〈A,B |C〉 is expressed as a non-negative

integer combination of elements of E〈A,B |C〉. By Theorem 5.1, if u〈A,B |C〉
is expressed as a non-negative integer combination of all elementary imsets,

then the coefficients of u 6∈ E〈A,B |C〉 have to be zero. Therefore Theorem

5.1 justifies our restriction to imsets from E〈A,B |C〉 for expressing u〈A,B |C〉.

6. Small relations among imsets

Consider the configuration UN as in Table 1. The kernel of UN is denoted

by kerUN . Furthermore let

kerZ UN = (kerUN ) ∩ Z|E(N)|
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denote the integer kernel of UN . Let z = (zu)u∈E(N) ∈ R|E(N)| be an element

of the kernel of UN . Considering f in (8) as a row vector we have

0 = fUNz = (1, 1, . . . , 1)z =
∑

u∈E(N)

zu. (45)

Hence any non-zero z ∈ kerUN has both positive and negative elements.

We denote the positive elements of z as α1, . . . , αk and negative elements

of z as −β1, . . . ,−βm. Then (45) can be written as

α1u1 + · · ·+ αkuk = β1v1 + · · ·+ βmvm, (46)

where u1, . . . , uk, v1, . . . , vm are distinct elementary imsets. We call this

kind of equality between two non-negative combinations of elementary im-

sets a relation among elementary imsets. More precisely we call (46) a k

by m relation. Since −z also belongs to kerUN , we can take k ≤ m. Also

we can assume that u1, . . . , uk and v1, . . . , vm are ordered according to the

graded reverse lexicographic order of elementary imsets. We say that the

relation (46) contains another relation
∑k′

i′=1 α
′
i′u

′
i′ =

∑m′

j′=1 β
′
j′v

′
j′ if ev-

ery u′
i′ appears on the left-hand side of (46) or every v′j′ appears on the

right-hand side of (46).

The most basic relation is the following 2 by 2 relation, which comes

from the semi-graphoid axiom.

u〈a,b1 |C〉 + u〈a,b2 | b1C〉 = u〈a,b2 |C〉 + u〈a,b1 | b2C〉. (47)

The corresponding element of kerUN is written as

δ〈a,b1 |C〉 + δ〈a,b2 | b1C〉 − δ〈a,b2 |C〉 − δ〈a,b1 | b2C〉, (48)

where the unit vector δ〈a,b |C〉 ∈ Z|E(N)| is defined as δ〈a,b |C〉(v) = 1 if

v = u〈a,b |C〉 and 0 otherwise. In connection to Markov bases discussed in

Section 7 we call an element of kerUN a move. Let B denote the collection

of moves in (48) over all a, b1, b2, C. We first show that B generates the

integer kernel of UN , i.e. B contains a lattice basis for UN .

Theorem 6.1. kerZ UN as a submodule of Z|E(N)| is generated by B.

The following proof also shows that B spans kerUN as a linear subspace

of R|E(N)|.

Proof. Let N = {1, . . . , n}. Let ZB be the submodule of Z|E(N)| generated

by B. Since the inclusion kerZ UN ⊇ ZB holds, we prove kerZ UN ⊆ ZB.
Consider the graded reverse lexicographic order of E(N) in (9). Recall that
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we always assume a < b if we write u〈a,b |C〉 and the maximum element of

E(N) with respect to < is u〈1,2 |R〉, where R = {3, . . . , n}.
For any non-zero z ∈ Z|E(N)| we define the degree deg(z) by the mini-

mum elementary imset u〈a,b |C〉 such that z(u〈a,b |C〉) 6= 0. Now fix any non-

zero z ∈ kerZ UN . We will find some v ∈ ZB such that deg(z − v) > deg(z)

or z = v. Then the proposition follows by induction. We first show that

deg(z) is not the maximum u〈1,2 |R〉. Indeed, if deg(z) = u〈1,2 |R〉, then z

has to be z(u〈1,2 |R〉)δ〈1,2 |R〉 and therefore

0 = UN · z = z(u〈1,2 |R〉)u〈1,2 |R〉,

which contradicts to z(u〈1,2 |R〉) 6= 0. Hence deg(z) < u〈1,2 |R〉. Denote

deg(z) = u〈a,b |C〉 and let EC = {u〈a′,b′ |C〉 | a′, b′ ∈ N \ C}. Denote the

maximum of EC by u〈α,β |C〉. We show that u〈a,b |C〉 < u〈α,β |C〉. Indeed, if

u〈a,b |C〉 = u〈α,β |C〉, then z can be written as

z = z(u〈α,β |C〉)δ〈α,β |C〉 +
∑
C′>C

∑
a′,b′∈N\C′

z(u〈a′,b′ |C′〉)δ〈a′,b′ |C′〉.

Then

0 = UN · z = z(u〈α,β |C〉)u〈α,β |C〉 +
∑
C′>C

∑
a′,b′∈N\C′

z(u〈a′,b′ |C′〉)u〈a′,b′ |C′〉

= z(u〈α,β |C〉)δC + (terms of {δC′}C′>C),

which contradicts to z(u〈α,β |C〉) 6= 0. Hence u〈a,b |C〉 < u〈α,β |C〉.

Now we give a vector v ∈ ZB such that deg(z− v) > deg(z) or z = v. If

b < β, then consider a vector

v = z(u〈a,b |C〉)
(
δ〈a,b |C〉 + δ〈a,β | bC〉 − δ〈a,β |C〉 − δ〈a,b | βC〉

)
in ZB. Note that deg(v) = u〈a,b |C〉 = deg(z) and the leading terms of v

and z are the same. Therefore we have deg(z− v) > deg(z) or z− v = 0. If

b = β, then a < α. Consider a vector

v = z(u〈a,b |C〉)
(
δ〈a,b |C〉 + δ〈α,b | aC〉 − δ〈α,b |C〉 − δ〈a,b |αC〉

)
in ZB. Note that deg(v) = u〈a,b |C〉 = deg(z) and the leading terms of v

and z are the same. Therefore we have deg(z − v) > deg(z) or z − v = 0.

This completes the proof.

For the rest of this section we consider k = 2, 3 in (46) and show that

only certain types of relations exist. By (45) we have

α1 + · · ·+ αk = β1 + · · ·+ βm (49)
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Our first result on small relations is the following.

Theorem 6.2. Consider a relation in (46) with k = 2:

α1u1 + α2u2 = β1v1 + · · ·+ βmvm, (50)

where α1, α2, β1, . . . , βm are integers. Then m = 2 and α1 = α2 = β1 = β2

and the relation is a positive multiple of (47).

Proof. Let u = α1u1 + α2u2. From (49), we have

α1 + α2 = β1 + · · ·+ βm, α1 > 0, α2 > 0, β1 > 0, . . . , βm > 0.

Because u1, u2, v1, . . . , vm are extreme rays of K∗(N), there is no relation

like α1u1 + α2u2 = β1v1. Therefore, we have m ≥ 2. Furthermore, be-

cause u1, u2, v1, . . . , vm are distinct elementary imset, the following proper-

ties hold:

u1 6= u2, u1, u2 6= v1, . . . , vm, vi 6= vj (51)

for i 6= j. We write the elementary imsets in (50) as u1 = u〈a1,b1 |C1〉, u2 =

u〈a2,b2 |C2〉, v1 = u〈a′
1,b

′
1 |C′

1〉, . . . , vm = u〈a′
m,b′m |C′

m〉. Remember that the

terms are ordered such that u1 < u2 and v1 < v2 < · · · < vm according

to the graded reverse lexicographic order of elementary imsets. Then there

exists l1 ∈ {1, . . . ,m} such that C1 = C ′
1 = · · · = C ′

l1
and C ′

l1+1, . . . , C
′
m 6=

C1. Note that if C1 6= C2, then α1 = β1 + · · ·+βl1 and a1b1C1 6= a′ib
′
iC

′
i for

i ∈ {1, . . . , l1}. In the same way, there exists l2 ∈ {1, . . . ,m} such that

a2b2C2 = a′l2b
′
l2C

′
l2 (52)

and C2 6= C ′
l2
.

Now we define the weight w for a relation as follows:

w =
∑

{S⊆N | |S|=|C1|+1}

u(S) =
∑

{S⊆N | |S|=|C1|+1}

(α1u1(S) + α2u2(S)).

Then the possible values of w are −2α1, −2α1 − 2α2 and −2α1 + α2.

Firstly, we consider the case of w = −2α1. Then we have |C2| ≥ |C1|+2.

In this case, u1 = vj holds for some j ∈ {1, . . . ,m} and this contradicts (51).

Therefore there is no relation with w = −2α1.

Next, we consider the case of w = −2α1 − 2α2. We prove C1 6= C2. If

C1 = C2, then by (52) there exists some l ∈ {1, . . . ,m} such that vl = u2.

This contradicts (51). Hence we obtain C1 6= C2. In the same way, we can

prove a1b1C1 6= a2b2C2. Now, since |C1| = |C2| in this case, we have C2 =

C ′
l1+1 = · · · = C ′

m. However, there exists l2 ∈ {1, . . . ,m} such that (52)

holds. If l2 ∈ {l1 + 1, . . . ,m}, then this contradicts (51). If l2 ∈ {1, . . . , l1},
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then C1 ⊆ a2b2C2 and C2 ⊆ a1b1C1. This means that C1, C2 ⊆ a1b1C1 ∩
a2b2C2. Then we have C1 ∪ C2 ⊆ a1b1C1 ∩ a2b2C2. From C1 6= C2 and

|C1| = |C2|, we have |C1 ∪ C2| ≥ |C1| + 2. Furthermore, from a1b1C1 6=
a2b2C2, we have |a1b1C1 ∩ a2b2C2| ≤ |a1b1C1| − 2 = |C1|. However, this

means that |C1|+ 2 ≤ |C1|. This is a contradiction.

Finally, we consider the case of w = −2α1 + α2. Let h = |C1|. Then we

have |C2| = h + 1, |a1b1C1| = h + 2, |a2b2C2| = h + 3 and |C ′
i| = h + 1

for i ∈ {l1 + 1, . . . ,m}. This means that a2b2C2 = a′l1+1b
′
l1+1C

′
l1+1 = · · · =

a′mb′mC ′
m. Now, assume u(a1b1C1) ≥ 1. Since vi(S) ≤ 0 for |S| = h+2 and

i ∈ {l1+1, . . . ,m}, we have a1b1C1 = a′jb
′
jC

′
j for some j ∈ {1, . . . , l1}. This

contradicts (51). Therefore u(a1b1C1) ≤ 0 and we have

0 ≥ u(a1b1C1) = α1u1(a1b1C1) + α2u2(a1b1C1) = α1 + α2u2(a1b1C1).

From the above equation, we have u2(a1b1C1) ≤ −α1

α2
< 0. This means

u2(a1b1C1) = −1. Therefore, we have α2 ≥ α1. In the similar way, we

obtain u(C2) ≤ 0 and α1 ≥ α2. Hence we have α1 = α2. From this, we have

u(C2) = u(a1b1C1) = 0. Then there exist d1, d2 ∈ {a1, b1} and d3 ∈ {a2, b2}
such that

C2 = C1 ∪ {d1}, a1b1C1 = C2 ∪ {d2} = C1 ∪ {d1, d2},
a2b2C2 = a1b1C1 ∪ {d3} = C2 ∪ {d2, d3} = C1 ∪ {d1, d2, d3}.

Then, from u(C1∪{d2}) = u(a2b2C2\{d2}) = −1, there exist i′ ∈ {1, . . . , l1}
and j′ ∈ {l1 + 1, . . . ,m} such that

vi′(C1 ∪ {d2}) = vj′(a2b2C2 \ {d2}) = −1. (53)

Let vi′(C1∪d4) = −1 for some d4 ∈ N \{C1∪d2}. Then there exist j′ such

that vj′(C1 ∪ d4) = 1. Since vj′(a2b2C2) = 1 for this j′, we have C1 ∪ d4 ⊆
a2b2C2 = C1 ∪ {d1, d2, d3}. This means d4 ∈ {d1, d3}. Furthermore, since

vi′ 6= vj′ for i′ 6= j′ in (51), vi′ is limited to one of vi′ = u〈d2,d3 |C1〉 or

vi′ = u〈d3,d2 |C1〉, according to d2 < d3 or d3 < d2. In the same way, vj′

is limited to one of u〈d1,d2 | d3C1〉 or u〈d2,d1 | d3C1〉, according to d1 < d2 or

d2 < d1. Therefore we obtain m = 2. Furthermore from (53), the relation

is a positive multiple of (47).

One consequence of this theorem is the following corollary on two-

dimensional and three-dimensional faces of K∗(N).

Corollary 6.1. Two-dimensional faces of K∗(N) are simplicial cone gen-

erated by two arbitrary elementary imsets which do not appear on the same

side of the relation (47). Three-dimensional faces are either simplicial cones
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having three elementary imsets as extreme rays or a cone with four extreme

rays appearing in the relation (47).

Proof. Two-dimensional cones are always simplicial. If two elementary im-

sets do not span a two-dimensional face, then the two-dimensional cone

spanned by these two imsets cuts a relative interior of a face of a higher

dimension. Then it intersects a cone generated by other extreme rays of

this face. Hence these two imsets appear on one side of a 2 by m relation.

Then by Theorem 6.2 m = 2 and this face has to be of the form (47). If a

three-dimensional cone is not simplicial, then any set of four extreme rays

are linearly dependent. Hence there is a relation among them, which has to

be a two by two relation. By the same argument it is easily seen that there

are no more than four extreme rays of a three-dimensional face. Then by

Theorem 6.2 this face has to be of the form (47).

Another important example of relation is (19) with k = m = 3.

Theorem 6.3. Consider a relation in (46) with k = 3:

α1u1 + α2u2 + α3u3 = β1v1 + · · ·+ βmvm, (54)

where α1, α2, α3, β1, . . . , βm are integers. Then one of the following two

properties holds.

(1) m = 3, α1 = α2 = α3 = β1 = β2 = β3 and the relation (54) is a

positive multiple of

u〈a,b1 | b2C〉 + u〈a,b2 | b3C〉 + u〈a,b3 | b1C〉

= u〈a,b2 | b1C〉 + u〈a,b3 | b2C〉 + u〈a,b1 | b3C〉 (55)

(2) The relation (54) contains a relation of Theorem 6.2.

The statement in (1) can not be strengthened because there exist 3 by

m (m ≥ 3) relations of type (2) such as

2u〈a,c | ∅〉 + u〈a,b | c〉 + u〈b,c | a〉 = u〈a,b | ∅〉 + u〈b,c | ∅〉 + 2u〈a,c | b〉

(= u〈ab,c | ∅〉 + u〈a,bc | ∅〉),

and

u〈a,b3 | b1b2〉 + 2u〈a,b2 | b1〉 + u〈a,b1 | ∅〉

= u〈a,b2 | b1b3〉 + u〈a,b3 | b1〉 + u〈a,b1 | b2〉 + u〈a,b2 | ∅〉.
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Proof. Let u = α1u1 + α2u2 + α3u3. From (49), we have

α1+α2+α3 = β1+ · · ·+βm, α1 > 0, α2 > 0, α3 > 0, β1 > 0, . . . , βm > 0.

Because u1, u2, u3, v1, . . . , vm are extreme rays of K∗(N), we have m ≥ 3.

Furthermore, because u1, u2, v1, . . . , vm are distinct elementary imsets, the

following properties hold:

u1 6= u2, u1, u2 6= v1, . . . , vm, vi 6= vj . (56)

We write the elementary imsets in (54) as u1 = u〈a1,b1 |C1〉, u2 =

u〈a2,b2 |C2〉, u3 = u〈a3,b3 |C3〉, v1 = u〈a′
1,b

′
1 |C′

1〉, . . . , vm = u〈a′
m,b′m |C′

m〉. As in

the proof of Theorem 6.2, we define the weight w for a relation as follows:

w =
∑

{S⊆N | |S|=|C1|+1}

(a1u1(S) + a2u2(S) + a3u3(S)).

Remember that the terms are ordered such that u1 < u2 < u3 and

v1 < v2 < · · · < vm according to the graded reverse lexicographic order

of elementary imsets. Then the possible patterns are classified as follows:

(i) w = −2(α1 + α2 + α3) ⇔ |C1| = |C2| = |C3|,
(ii) w = −2(α1 + α2) + α3 ⇔ |C1| = |C2| = |C3| − 1,

(iii) w = −2α1 + α2 + α3 ⇔ |C1| = |C2| − 1 = |C3| − 1,

(iv) w = −2α1 + α2 ⇔ |C1| = |C2| − 1 ≤ |C3| − 2.

(v) w = −2α1 ⇔ |C1| ≤ |C2| − 2 ≤ |C3| − 2.

(vi) w = −2(α1 + α2) ⇔ |C1| = |C2| ≤ |C3| − 2

First, we consider the case (v) of w = −2α1. Because u1 6= vi from (52),

there exists i′ ∈ {1, . . .m} such that vi′ = 〈a1, d′ |C1〉, d′ 6= b1. To cancel out

the value vi′(d
′C1) = −αi′ < 0 at d′C1, there exists i

′′ ∈ {1, . . .m} such that

vi′′ = 〈a′′, b′′ | d′C1〉, d′ 6= b1. Furthermore there exists d′′ ∈ {a′′, b′′} such

that ui(d
′d′′C1) = 0 for i = 1, 2, 3. To cancel out the value vi′′(d

′d′′C1) =

−αi′′ < 0 at d′C1, there exists vi′′′ = 〈a′′′, b′′′ | d′d′′C1〉. In the same way,

there exists d′′′ ∈ {a′′′, b′′′} such that ui(d
′d′′d′′′C1) = 0 for i = 1, 2, 3.

Since it is impossible to cancel out the value vi′′′(d
′d′′d′′′C1) = −αi′′′ < 0

at d′d′′d′′′C1, this case can be ignored.

The case (vi) is almost the same as in the case of (v).

We consider the case (iv). If |C2|−1 < |C3|−2, then it contradicts (56).

Therefore, we consider the case of |C2| − 1 = |C3| − 2. In this case, there

exist m1 and m2 such that

1 ≤ m1 ≤ m2 ≤ m, α1 = β1 + · · ·+ βm1 , C1 = C ′
1 = · · · = C ′

m1
,

α3 = βm2+1 + · · ·+ βm, a3b3C3 = a′m2+1b
′
m2+1C

′
m2+1 = · · · = a′mb′mC ′

m,
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and we have |C2| =
∣∣C ′

m1+1

∣∣ = · · · =
∣∣C ′

m2

∣∣. Now let a1b1C1 = {d1, d2}∪C1.

From (56) and the same argument of the case (v), we can write C2 = d1C1

without loss of generality. Furthermore from (56), we have α1 ≤ α2. If

u(a1b1C1) ≤ 0, then α1u1 +α2u2 has a relation of Theorem 6.2. Therefore,

we have u(a1b1C1) > 0. In the same way, we have u(C3) > 0. Hence there

exist i′ ∈ {m2+1, . . . ,m} and j′ ∈ {1, . . . ,m1} such that C ′
i′ = a1b1C1 and

a′jb
′
jC

′
j ∈ C3. This means a1b1C1 6= C3. Since C1 ⊆ d1C1 = C2 ⊆ a1b1C1 =

C ′
i′ ⊆ a′i′b

′
i′C

′
i′ = a3b3C3, we can write a3b3C3 = d2d3d4C2 = d1d2d3d4C1.

From (56), we have d2C1 ⊆ C3. This means that C3 is equal to d2d3C1 or

d2d4C1. Without loss of generality, we assume that C3 = d2d3C1. In the

same way, we can show that a2b2C2 is equal to a3b3C3 \ d1 or a3b3C3 \ d4.
Since a2b2C2 ⊃ C2 = d1C1, we have a2b2C2 = a3b3C3 \ d4 = d1d2d3C1

and u2(d1d2C1) = −1. However, from a1b1C1 = d1d2C1 and a1 ≤ a2,

u(a1b1C1) = α1 − α2 ≤ 0. This is a contradiction.

Next, we consider the case (iii). If u(C2), u(C3) > 0, then a contradiction

follows from the proof of Theorem 6.2. Therefore, either u(C2) ≤ 0 or

u(C3) ≤ 0 holds. Without loss of generality, we assume that u(C2) ≤ 0.

From (56), we have u(a1b1C1) ≤ 0. Therefore, we obtain

0 ≥ u(a1b1C1) = α1 + α2u2(a1b1C1) + α3u3(a1b1C1)

⇐⇒ α2

α1
u2(a1b1C1) +

α3

α1
u3(a1b1C1) ≤ −1.

From this we have u2(a1b1C1) = −1 or u3(a1b1C1) = −1. However, if we

assume u2(a1b1C1) = −1, then α1u1 +α2u2 has a relation of Theorem 6.2.

Therefore, we have u2(a1b1C1) = 0 and u3(a1b1C1) = −1. From this, we

have C2 ⊆ a1b1C1 ⊆ a3b3C3. In this case, if u(C3) > 0, then a contradiction

follows from the proof of Theorem 6.2. Therefore u(C3) ≤ 0 holds. Further-

more, we have u1(C3) = −1. This means that α1u1 + α3u3 has a relation

of Theorem 6.2.

The case (ii) is almost the same as in the case of (iii).

Finally, we consider the case (i). Since C ′
i ∈ {C1, C2, C3}, a′ib

′
iC

′
i ∈

{a1b1C1, a2b2C2, a3b3C3} and (56), we have m = 3 and C ′
i = Ci. In this

case, a′1b
′
1C

′
1 = a2b2C2 or a′1b

′
1C

′
1 = a3b3C3 holds. Without loss of gen-

erality, we assume a′1b
′
1C

′
1 = a2b2C2. Then, we have a′2b

′
2C

′
2 = a3b3C3,

a′3b
′
3C

′
3 = a1b1C1 and α1 = α2 = α3 = β1 = β2 = β3. Therefore the

relation is a positive multiple of the three by three relation in (55).
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7. Some computational results on Markov basis for imsets

In this section we give some computational results on Markov basis for the

configuration UN . Before giving them we discuss motivation for studying

Markov basis from the viewpoint of inferences on conditional independence

statements. In Theorem 6.1 we showed that the set of moves in (48) contains

a lattice basis for kerZ UN . This means that if we allow negative coefficients,

then all relations with integer coefficients can be derived from the two by

two relations of Theorem 6.2. On the other hand, recall that the three by

three relation in Theorem 6.3 can not be derived from two by two relations

in the sense of our discussion after (20). This is because in “applying a

rule”, we do not allow subtracting a non-existing term from either side of

a relation. If a Markov basis is available, then we can derive any relation

without ever subtracting a non-existing term starting from a given initial

relation. For definitions and details of Markov basis refer to Chapter 5 of

Sturmfels6 or Chapter 1 of Drton, Sturmfels and Sullivant.13

Let G(UN ) be a (minimal) Markov basis for UN and |G(UN )| be the

number of elements in G(UN ). If |N | ≤ 2, then there is no relation in UN

and hence kerUN = ∅. If |N | = 3, then there is only the relation of (47) with

C = ∅. We now give some computational results on Markov basis for N =

4, 5. In the following results, we identify two relations if one is obtained by

permuting characters in another. For example, we identify the following two

relations: u〈a,b | d〉+u〈a,c | bd〉 = u〈a,c | d〉+u〈a,b | cd〉 and u〈a,b | c〉+u〈b,d | ac〉 =

u〈b,d | c〉 + u〈a,b | cd〉. Let GR(UN ) be the set of representative elements in

G(UN ) under this equivalence relation. Let
∣∣GR(UN )

∣∣ be the number of

elements in GR(UN ).

Let U〈A,B |C〉 be a sub-configuration of UN , N = ABC, which consists of

all of the elementary imsets u〈a,b |Γ〉 such that a ∈ A, b ∈ B, C ⊆ Γ ⊆ ABC,

a < b and Γ ∩ a = Γ ∩ b = ∅. Markov basis for U〈A,B |C〉 represents the re-

lations which appear in the face F〈A,B |C〉 of K∗(N). Markov bases for the

subconfiguration of elementary imsets belonging to F〈A,B |C〉 is of some in-

dependent interest because they generate a combinatorial pure subring in

the sense of Ohsugi, Herzog and Hibi14–16. Let GR(〈A,B |C〉) be the repre-
sentatives of Markov basis for U〈A,B |C〉 and

∣∣GR(〈A,B |C〉)
∣∣ be the number

of elements in GR(〈A,B |C〉). Let GR(T (N)) =
∑

ABC=N GR(〈A,B |C〉)
and

∣∣GR(T (N))
∣∣ be the number of elements in GR(T (N)).

For a relation of (46), we call α1 + · · · + αk the degree. Note that∑k
i=1 αi =

∑m
j=1 βm. We give GR(UN ) and GR(T (N)) at each degree for

|N | = 4, 5 in Table 2 and 3. The Markov basis of UN were computed with

4ti217. Since the computation has not completed when we used the graded
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reverse lexicographic order in (9), we give the result for the following order:

u〈a,b |C〉 < u〈a′,b′ |C′〉 if


2C > 2C

′
,

or C = C ′ and b > b′,

or C = C ′ and b = b′ and a > a′,

where 2C =
∑

i∈C 2i.

Table 2. Number of representatives of elements of Markov basis for |N | = 4

degree GR(UN ) GR(T (N))

2 2 2

3 1 1
4 4 4

Table 3. Number of representatives of elements of Markov basis for |N | = 5

degree GR(UN ) GR(T (N))

2 3 3

3 2 2
4 11 11
5 18 16
6 210 162

7 384 36
8 364 38
9 90 0

10 220 0
11 16 0
12 63 0

In Table 2 for |N | = 4, all of the representatives in GR(UN ) appear in

GR(T (N)). However, in Table 3 for |N | = 5, there are many representatives

which appear in GR(UN ) but do not appear in GR(T (N)). Especially there

is no relation with degree more than 8 in GR(T (N)). This means that the

facial structure of K∗(N) is quite complicated. Furthermore, through this

computational study, though there are a lot of coefficients more than 1 in

the Markov basis for GR(T (N)) for |N | = 5, we confirmed that the Markov

basis for GR(〈A,B |C〉), |A|+|B|+|C| ≤ 5 is square free i.e., the coefficients

in the relations are all 1. It is future work to confirm whether this is true

or not for |N | ≥ 6.
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Appendix A.

Here we present a generalization of Proposition 4.3 to convex cones on a

direct product of two finite sets.

Proposition 7.1. Let X,Y be finite sets and let G ⊆ {g : X → R+},
H ⊆ {h : Y → R+} be pointed convex cones in RX and RY respectively.

Define

M(G,H) := {f : X × Y → R+ | ∀x, f(x, ·) ∈ H, ∀y, f(·, y) ∈ G}.

Then M(G,H) is a convex cone. If g and h are extreme rays of G and H,

then g(x)h(y) is an extreme ray of M(G,H).

Proof. Let g and h be extreme rays of G and H and write g(x)h(y) =

f1(x, y)+f2(x, y) (f1, f2 ∈ M(G,H)). Note that there exist x′, y′ such that

g(x′) > 0 and h(y′) > 0. For x′ with g(x′) > 0 we have

h(y) =
f1(x

′, y)

g(x′)
+

f2(x
′, y)

g(x′)
, ∀y.

Since h is an extreme ray of H and the two terms on the right-hand side

belong to H as functions of y by the definition of M(G,H), f1(x
′, y) =

c1(x
′)h(y), f2(x

′, y) = c2(x
′)h(y) for some c1(x

′), c2(x
′). For x with g(x) =

0, we have f1(x, y) = f2(x, y) = 0 (∀y) and we can put c1(x) = c2(x) = 0.

Then for all x, y we can write f1(x, y) = c1(x)h(y), f2(x, y) = c2(x)h(y).

In particular for y′ with h(y′) > 0, c1(x) = f1(x, y
′)/h(y′), c2(x) =

f2(x, y
′)/h(y′) belong to G as functions of x and

g(x) =
f1(x, y

′) + f2(x, y
′)

h(y′)
= c1(x) + c2(x).

Hence c1, c2 are proportional to g.

We now show that Proposition 4.3 is a special case of Proposition 7.1. We

note that skeletal functions are also extreme rays of K+(N) := K(N)∩{f |
f ≥ 0}. In fact, if f ∈ K`(N) and f = f1 + f2 (f1, f2 ∈ K+(N)), then it is

easily seen that f1, f2 ∈ K`(N).

Let X = 2A, Y = 2B , G = K+(A), H = K+(B), and let g and h be

skeletal on A and B. Then g and h are extreme rays of G and H. Hence by

Proposition 7.1 f is an extreme ray of M(G,H). Now from the definition

of supermodularity K`(AB) ⊆ K+(AB) ⊆ M(G,H). Therefore f is an

extreme ray of K`(AB).
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Remark 7.1. We can not put G = K`(A),H = K`(B) in the above proof,

because K`(AB) 6⊆ M(G,H). For example, let f(S) = 1{ab⊆S} (a ∈ A, b ∈
B), then f ∈ K`(AB) but f(AS) = 1{b∈S} (∀S ⊆ B) does not belong to

K`(B) and f /∈ M(K`(A),K`(B)).
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