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Properties and applications of Fisher distribution on
the rotation group

Tomonari Sei∗†, Hiroki Shibata‡, Akimichi Takemura†‡,
Katsuyoshi Ohara§, Nobuki Takayama¶†

October 2011

Abstract

We study properties of Fisher distribution (von Mises-Fisher distribution, matrix
Langevin distribution) on the rotation group SO(3). In particular we apply the
holonomic gradient descent, introduced by Nakayama et al. [2011], and a method of
series expansion for evaluating the normalizing constant of the distribution and for
computing the maximum likelihood estimate. The rotation group can be identified
with the Stiefel manifold of two orthonormal vectors. Therefore from the viewpoint
of statistical modeling, it is of interest to compare Fisher distributions on these
manifolds. We illustrate the difference with an example of near-earth objects data.

Keywords: algebraic statistics; directional statistics; holonomic gradient descent; maxi-
mum likelihood estimation; rotation group.

1 Introduction

In this paper we apply the holonomic gradient descent (HGD) introduced in Nakayama
et al. [2011] and a method of series expansion for evaluating the normalizing constant of
Fisher distribution on the rotation group and on Stiefel manifolds and for obtaining the
maximum likelihood estimate. Fisher distribution is the most basic exponential family
model for these manifolds.

The general theory of exponential family is well established (e.g. Barndorff-Nielsen
[1978]). In nice “textbook” cases, the normalizing constant of the exponential family (i.e.
its cumulant generating function) can be explicitly evaluated and then the calculation of
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maximum likelihood estimate is also simple. However in general, the integral defining the
normalizing constant of an exponential family can not be explicitly evaluated. Various
techniques, such as infinite series expansion, numerical integration, Markov chain Monte
Carlo methods, iterative proportional scaling, have been applied for these cases.

Recently, we introduced a very novel approach, the holonomic gradient descent, for
evaluation of the normalizing constant and solving the likelihood equation (Nakayama
et al. [2011]). Our approach provides a systematic methodology for these tasks. Note
that the normalizing constant is a definite integral over the sample space, where the
integrand contains the parameter of the family of distributions. The likelihood equation
involves differentiation of the normalizing constant with respect to the parameter. In the
holonomic gradient descent, the theory of D-modules is used to derive a set of partial
differential equations satisfied by the normalizing constant.

In this paper we apply the holonomic gradient descent and a method of series expansion
to Fisher distribution on the rotation group SO(3) and on the Stiefel manifold V2(R3)
of two orthonormal vectors. The Fisher distribution on Stiefel manifolds and orthogonal
groups has been studied by number of authors. However only a few papers (Prentice
[1986], Wood [1993]) study the Fisher distribution on the special orthogonal group SO(p).

The holonomic gradient descent needs the initial value for the differential equation.
To evaluate this value, we develop an explicit formula of the infinite series expansion
for SO(3). An alternative method is a one-dimensional integration formula proposed by
Wood [1993]. In Figure 1, we illustrate a diagram that clarifies the difference between
HGD and direct use of gradient descent method. These variations will make the numerical
evaluation of the maximum likelihood estimator more flexible.

Computing c(Θ) etc.

Θ(0) Θ(1) Θ(2) · · ·

HGD

Subroutine:

(initial value for HGD)

Subroutine:

Θ(0) Θ(1) Θ(2) · · ·

Computing c(Θ),∇c(Θ).

(a) holonomic gradient descent. (b) usual gradient descent.

Figure 1: The difference between HGD and the usual gradient descent. In the diagram
(a), a subroutine that computes the normalizing constant c(Θ) (and related values) is
called only once. In the diagram (b), the subroutine is called every time the parameter
Θ is updated.

The organization of the paper is as follows. For the rest of this section we set up nota-
tion and summarize preliminary facts on special orthogonal groups and Stiefel manifolds.
In Section 2 we derive some properties of Fisher distribution on special orthogonal groups
and Stiefel manifolds. In Section 3 we derive the set of partial differential equations sat-
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isfied by the normalizing constant (Section 3.1). We also give an infinite series expansion
for the normalizing constant (Section 3.2). In Section 4 we apply the results of previous
sections to the data on orbits of near-earth objects.

1.1 Notation and preliminary facts

Here we set up notation of this paper and summarize some preliminary facts. Although
we are primarily interested in 3× 3 matrices for practical and computational reasons, we
set up our notation for general dimension. Let

Vr(Rp) = {A ∈ Rp×r | A>A = Ir} (0 < r ≤ p)

denote the Stiefel manifold of p× r real matrices with orthonormal columns, where Rp×r

denotes the set of p× r real matrices and A> denote the transpose of A. In particular for
r = p,

Vr(Rp) = O(p)

is the set of p× p orthogonal matrices.

SO(p) = {X ∈ O(p) | detX = 1}

denotes the special orthogonal group.
The total volume of Vr(Rp) is given as

Vol(Vr(Rp)) =
2rπrp/2

Γr(p/2)
,

where

Γr(a) = πr(r−1)/4

r∏
i=1

Γ[a− 1

2
(i− 1)].

See Theorem 2.1.12 of Muirhead [1982].
Let Vol denote the invariant measure (volume element) on Vr(Rp) and let

µ(·) = 1

Vol(Vr(Rp))
Vol(·)

denote the invariant probability measure on Vr(Rp). Similarly for SO(p), by µ(·) =
Vol(·)/Vol(SO(p)) we denote the invariant measure with

Vol(SO(p)) =
1

2
Vol(O(p)).

For a p× r matrix Θ ∈ Rp×r, r ≤ p, let

Θ = QDR, Q ∈ Vr(Rp), D : diagonal, R ∈ O(r)
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denote its singular value decomposition (SVD). In this usual SVD, the diagonal elements
of D are taken to be non-negative. Now let Θ ∈ Rp×p be a square matrix and restrict
Q,R to be in SO(p). Then the sign of detΘ has to be equal to the sign of detD. Let
ρ1, . . . , ρp ≥ 0 denote the singular values of Θ. For non-singular Θ, the sign of detD can
be adjusted by multiplying ρ1 by ε = ±1. Therefore we can write

Θ = QDR, Q,R ∈ SO(p), D = diag(ερ1, ρ2, . . . , ρp), ε = sgn detΘ. (1)

We call this decomposition the sign-preserving SVD of Θ with respect to SO(p). We also
call φ1 = ερ1, φi = ρi, i ≥ 2, the sign-preserving singular values of Θ. The decomposition
is also used in Prentice [1986] and Wood [1993].

2 Fisher distributions on Vr(Rp) and SO(p)

In this section we consider Fisher distribution on Vr(Rp) and SO(p). In particular we
clarify the difference between Fisher distributions on Vp−1(Rp) and SO(p). Basic facts on
Fisher distribution on Vr(Rp) is summarized in Chapter 13 of Mardia and Jupp [2000].

Let X denote either Vr(Rp) or SO(p). The density of the Fisher distribution on X
with respect to the uniform probability measure µ is given by

f(X; Θ) =
1

c(Θ)
etr(Θ>X), X ∈ X ,

where Θ = (θij) ∈ Rp×r is the parameter matrix, etr(·) = exp(tr(·)), and

c(Θ) =

∫
X
etr(Θ>X)µ(dX) (2)

is the normalizing constant. For Vr(Rp) it is well known (e.g. Khatri and Mardia [1977],
Muirhead [1982], Chikuse [2003]) that c(Θ) is a matrix-valued hypergeometric function
c(Θ) = 0F1(p/2, Y ), where Y = Θ>Θ/4. However properties of c(Θ) for the special
orthogonal group X = SO(p) are not studied in detail. For the case of SO(3), following
the approach in Prentice [1986], Wood [1993] used the correspondence between the Fisher
distribution on SO(3) and the Bingham distribution on the unit sphere S3 in R4 and
showed that c(Θ) can be written as a one-dimensional integral involving the modified
Bessel function of degree zero. In Section 3 we derive differential equations and an infinite
series expansion of c(Θ) for SO(3).

Let x1, . . . ,xp be the columns of X ∈ SO(p). Since xp is uniquely determined from
x1, . . . ,xp−1, we can identify SO(p) with Vp−1(Rp) by

(x1, . . . ,xp) ∈ SO(p) ↔ (x1, . . . ,xp−1) ∈ Vp−1(Rp) (3)

This leads to the question of differences of Fisher distributions on SO(p) and those on
Vp−1(Rp). Let Θ = (θ1, . . . ,θp) ∈ Rp×p be a parameter matrix for Fisher distribution on
SO(p). By setting θp = 0, we clearly obtain a Fisher distribution on Vp−1(Rp). Hence
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the family of Fisher distributions on Vp−1(Rp) is a submodel of the family of Fisher
distributions on SO(p). It can be easily seen that for p = 2, θ2 is redundant and these
two families are the same. However for p ≥ 3, the family of Fisher distributions on
Vp−1(Rp) is a strict submodel of that on SO(p). We state this as a lemma.

Lemma 1. For p ≥ 3, the family of Fisher distributions on Vp−1(Rp) is a strict submodel
of that on SO(p).

Proof. In general, let K be a positive integer and consider a K-dimensional exponential
family

p(x|θ) = 1

C(θ)
exp

(
θ>x

)
(x ∈ S), C(θ) =

∫
S

exp(θ>x)ν(dx),

where θ is a K-dimensional vector, S is a smooth submanifold of RK and ν is a measure
on S. Assume that C(θ) exists in some open neighborhood of the origin θ = 0. The
parameter θ is estimable if and only if

Affine(support(ν)) = RK

(Corollary 9.6 of Barndorff-Nielsen [1978]), where support(ν) is the support of ν and
Affine(U), U ⊂ RK , denotes the affine hull of U .

We now show that if p ≥ 3 then Affine(SO(p)) = Rp×p and the distribution p(X|Θ) ∝
etr(Θ>X) is estimable, which is sufficient to prove the lemma. Let L = Affine(SO(p)).
We first see that the zero matrix 0 belongs to L. Let εi ∈ {−1, 1} for 1 ≤ i ≤ p.
Then the average of 2p−1 matrices diag(ε1, . . . , εp−1,

∏p−1
i=1 εi) in SO(p) is zero. Hence

0 ∈ L. We now show that eie
>
j belongs to L (∀i, j), where ei = (0, . . . , 1, . . . , 0)> is the

standard basis vector with 1 as the i-th element. Then together with 0 ∈ L it follows that
L = Rp×p. Take matrices Pi ∈ SO(p) (i = 1, . . . , p) such that Piei = e1. For example,
let P1 = Ip and Pi = e1e

>
i − eie

>
1 +

∑
j 6=1,i eje

>
j for i 6= 1. Then eie

>
j ∈ L if and only if

e1e
>
1 = Pieie

>
j P

>
j ∈ L. Now it suffices to show that e1e

>
1 belongs to L. Take the average

of 2p−2 matrices diag(1, ε2, . . . , εp−1,
∏p−1

i=2 εi). Then e1e
>
1 ∈ L.

For X = Vr(Rp) the maximum likelihood estimate (MLE) of the Fisher distribution
is obtained by the following procedure (Khatri and Mardia [1977]). Let X(1), . . . , X(N)

be a data set on Vr(Rp). Let X̄ = N−1
∑N

t=1X
(t) be the sample mean matrix and let

X̄ = Q diag(g1, . . . , gr)R be the SVD of X̄, where Q ∈ Vr(Rp), R ∈ O(r) and g1 ≥ · · · ≥
gr ≥ 0. Then the maximum likelihood estimate Θ̂ is given by Θ̂ = Q diag(φ̂1, . . . , φ̂r)R,
where φ̂i is the solution of∫

Vr(Rp)
xii exp(

∑r
k=1 φ̂kxkk)µ(dX)∫

Vr(Rp)
exp(

∑r
k=1 φ̂kxkk)µ(dX)

= gi, i = 1, . . . , r.

This procedure is also valid for SO(p) if we use the sign-preserving SVD in (1). We
give the fact as a lemma since it is not explicitly proved in the literature. Remark that for
SO(p) the normalizing constant c(Θ) in (2) is invariant under a transformation Θ 7→ QΘR
for any Q,R ∈ SO(p).
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Lemma 2. Let X(1), . . . , X(N) be a data set on SO(p). Let X̄ = N−1
∑N

t=1X
(t) be the

sample mean matrix and X̄ = Q diag(g1, . . . , gp)R be the sign-preserving SVD of X̄, where
Q,R ∈ SO(p) and |g1| ≥ g2 · · · ≥ gp ≥ 0. Then the maximum likelihood estimate of the

Fisher distribution on SO(p) is Θ̂ = Q diag(φ̂1, . . . , φ̂r)R, where φ̂i is the maximizer of
the function

(φk)
p
k=1 7→

p∑
k=1

φkgk − log c(diag(φ1, . . . , φr)), (4)

or equivalently, the solution of∫
SO(p)

xii exp(
∑p

k=1 φ̂kxkk)µ(dX)∫
SO(p)

exp(
∑p

k=1 φ̂kxkk)µ(dX)
= gi, i = 1, . . . , p. (5)

Proof. We change the parameter variable from Θ to Φ = (φij)
p
i,j=1 = Q>ΘR>. Then the

(1/N times) log likelihood function is written as

tr(Θ>X̄)− log c(Θ) = tr(Φ>G)− log c(Φ), (6)

where G = diag(g1, . . . , gp). Since (6) is strictly convex in Φ, the unique maximizer makes
its first-order derivatives zero. Note that the first term on the right hand side of (6) does
not depend on the off-diagonal elements of Φ. Therefore the condition for maximization
of (6) with respect to an off-diagonal element is written as

0 =
∂

∂φij

log c(Φ), (i 6= j). (7)

We now fix i 6= j and evaluate (∂/∂φij) log c(Φ) at (φi′j′)i′ 6=j′ = 0. Then we have

∂

∂φij

log c(Φ)

∣∣∣∣
φi′j′=0 ∀i′ 6=j′

=

∫
SO(p)

xij exp(
∑p

k=1 φkkxkk)µ(dX)∫
SO(p)

exp(
∑p

k=1 φkkxkk)µ(dX)
.

However∫
SO(p)

xij exp(

p∑
k=1

φkkxkk)µ(dX) =

∫
SO(p)

(−xij) exp(
p∑

k=1

φkkxkk)µ(dX) = 0

because the uniform distribution µ on SO(p) is invariant with respect to multiplication of
−1 to the i-th row and the i-th column of X. Therefore any diagonal matrix Φ satisfies
(7). The log-likelihood function of the diagonal matrix is (4) and the maximizer satisfies
(5).

When det X̄ < 0, it is not correct to use the ordinary singular values of X̄ on the
right-hand side of (5).

6



Remark 1. The determinant of the sample mean matrix X̄ is not necessarily positive
even if all X(t), t = 1, . . . , N , are in SO(p). Indeed for the case of uniform distribution
on SO(p) we prove

P (det X̄ < 0) → 1

2
, (N → ∞),

as long as p ≥ 3. By the central limit theorem
√
N(X̄ − E(X)) converges to a Gaussian

random matrix Z with the same covariances as X. We will show E(X) = 0 and the
covariances of X are diagonal when p ≥ 3. Then Z and any sign change of a column
of Z have the same probability distribution and therefore the probability of det(Z) < 0 is
1/2. Hence the probability of det(X̄) < 0 converges to 1/2.

To prove that the mean is zero and the covariance is diagonal, it is sufficient to consider
E(X11) and E(Xa1Xb2) (1 ≤ a, b ≤ p) by symmetry. Define a random matrix Y by
Yij = Xij for j 6= 1, 3 and Yij = −Xij for j = 1, 3. Since both X and Y have the
uniform distribution on SO(p), we deduce that E(X11) = E(−X11) = 0, E(Xa1Xb2) =
E(−Xa1Xb2) = 0.

Remark 2. Even if det X̄ > 0, the determinant of the estimated parameter Θ̂ may be
negative. Indeed, let the sign-preserving singular values of X̄ and Θ̂ be g = (g1, g2, g3)
and φ̂ = (φ̂1, φ̂2, φ̂3), respectively. We prove that g1g2g3 and φ̂1φ̂2φ̂3 can have the opposite
signs. To see this, we first consider the case φ̂1 = 0, φ̂2 > 0 and φ̂3 > 0. Then, by using
the Taylor expansion formula developed in Subsection 3.2, we deduce that g1, g2 and g3
are strictly positive. By continuity, there exist some φ̂1 < 0, φ̂2 > 0 and φ̂3 > 0 while all
gi’s are positive.

3 Computation of the normalizing constant and its

derivatives

For computing the maximum likelihood estimate of Fisher distribution we need numerical
evaluation of the normalizing constant c(Θ) of (2) and its derivatives. In this section we
study two methods for this purpose. The first method is the holonomic gradient descent.
In the second method, we use series expansion of etr(Θ>X). The second method is also
used to compute the initial value of HGD (see Figure 1 (a)).

3.1 The holonomic gradient descent for Stiefel manifolds and
special orthogonal group

Let us briefly describe the holonomic gradient descent. As to details, we refer to Nakayama
et al. [2011]. An algebraic computation is the first step; we construct linear ODE’s
(ordinary differential equations) satisfied by c(Θ) with respect to each θij by Gröbner
bases of a set of partial differential equations satisfied by c. Variables other than θij appear
as parameters in the ODE. The rank of ODE’s is called the holonomic rank. The ODE’s
give a dynamical system for the function c(Θ) etr(−Θ>X̄), the reciprocal of the likelihood.
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The gradient of the function can also be expressed in terms of derivatives of the reciprocal
standing for the standard monomials and X̄. The second step is a numerical procedure;
a point in the dynamical system moves toward the maximum likelihood estimate along
the gradient direction, simultaneously updating the values of c(Θ) and its derivatives.

For the holonomic gradient descent, we study differential operators A annihilating
c(Θ), that is, A · c(Θ) = 0. Denote the differential operator ∂/∂θij by ∂ij. We first study
the special orthogonal group and then study the Stiefel manifold.

3.1.1 The case of special orthogonal group

Let Θ ∈ Rp×p. We consider the following three types of differential operators:

A
(1)
ij =

p∑
k=1

∂ik∂jk − δij, Ã
(1)
ij =

p∑
k=1

∂ki∂kj − δij (i ≤ j),

A(2) = det(∂ij)− 1,

A
(3)
ij =

p∑
k=1

(−θjk∂ik + θik∂jk) , Ã
(3)
ij =

p∑
k=1

(−θkj∂ki + θki∂kj) (i < j),

where δij is the Kronecker’s delta. The following lemma is an analogy of Theorem 2 of
Nakayama et al. [2011].

Lemma 3. The above differential operators annihilate c(Θ) of SO(p).

Proof. We first prove that the operators A
(1)
ij , Ã

(1)
ij and A(2) annihilate etr(Θ>X) for any

X ∈ SO(p). Then they also annihilates c(Θ) because A ·c(Θ) =
∫
SO(p)

A ·etr(Θ>X)µ(dX)

for any operator A. Since ∂ij · etr(Θ>X) = xij etr(Θ
>X) and XX> = I, we have

A
(1)
ij · etr(Θ>X) =

(
p∑

k=1

xikxjk − δij

)
etr(Θ>X) = 0.

Similarly, we obtain Ã
(1)
ij · etr(Θ>X) = 0 from X>X = I and A(2) · etr(Θ>X) = 0 from

det(X) = 1. Next consider A
(3)
ij and Ã

(3)
ij . We note c(Θ) = c(QΘ) = c(ΘQ) for any

Q ∈ SO(p). For any fixed i < j, define a rotation matrix Q = Q(ε) by

Q = (cos ε)(Eii + Ejj) + (sin ε)(−Eij + Eji) +
∑
k 6=i,j

Ekk,

where Ekl is the matrix whose (i, j)-th component is 1 if k = i and l = j and 0 otherwise.
Then

0 = c(QΘ)− c(Θ)

= c

(
Θ− ε

∑
k

θjkEik + ε
∑
k

θikEjk + o(ε)

)
− c(Θ)

= ε

p∑
k=1

(−θjk∂ik + θik∂jk) · c(Θ) + o(ε),
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as ε → 0. Hence we have A
(3)
ij · c(Θ) = 0. Similarly we obtain Ã

(3)
ij · c(Θ) = 0 from

c(ΘQ) = c(Θ).

Let D be the ring of differential operators with polynomial coefficients in θij and let I

denote the ideal generated by the above differential operators A
(1)
ij , . . . , Ã

(3)
ij in D. Also let

Idiag denote I restricted to diagonal matrices Θ = diag(θ11, . . . , θpp). I · f(Θ) = 0 implies
Idiag · f(diag(Θ)) = 0. We denote by Rp the ring of differential operators with rational
function coefficients in θij, 1 ≤ i, j ≤ p.

The following proposition is necessary for the holonomic gradient descent. We refer to
Nakayama et al. [2011] for the definition of holonomic ideals in D and zero-dimensional
ideals in Rp. Once zero-dimensionality of RpI is proved and a Gröbner basis is constructed,
we can find ODE’s and apply the holonomic gradient descent for the maximum likelihood
estimate.

Proposition 1. If p = 2, then the ideal I is holonomic. In particular, the ideal R2I is
zero-dimensional. The holonomic rank is equal to 2.

The proposition is proved by Macaulay2 (Grayson and Stillman) and the yang package
on Risa/Asir (RisaAsir developing team) by utilizing Gröbner basis computations in rings
of differential operators. Also the set of generators of I is obtained by nk restriction
function of asir from the integral representation of c(Θ) as

g1 = −∂12 − ∂21, g2 = −∂11 + ∂22, g3 = ∂221 + ∂222 − 1,

g4 = (θ22 + θ11)∂21 + (−θ21 + θ12)∂22,

g5 = (θ21 − θ12)∂22∂21 + (θ22 + θ11)∂
2
22 + ∂22 − θ22 − θ11,

g6 = (−θ21 + θ12)∂21 + (θ221 − 2θ12θ21 + θ222 + 2θ11θ22 + θ211 + θ212)∂
2
22

+ (θ22 + θ11)∂22 − θ222 − 2θ11θ22 − θ211.

Furthermore the set of generators of Idiag is given as

h1 = (−θ22 − θ11)∂
2
11 − ∂11 + θ22 + θ11, h2 = −∂11 + ∂22.

Proposition 2. If p = 3, then the ideal R3I is zero-dimensional. The holonomic rank is
less than or equal to 4. R3/(R3I) is spanned by 1, ∂31, ∂32, ∂33 as a vector space over the
field of rational functions.

The proposition is proved by a large scale computation on Risa/Asir with Gröbner
bases. The algorithm for it is explained in, e.g., Nakayama et al. [2011]. Programs and
obtained data are at the website OpenXM/Math (OpenXM Mathematics Repository).
We conjecture that I is holonomic and consequently RpI is zero-dimensional for any p in
the case of SO(p).
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3.1.2 The case of Stiefel manifold

Let Θ ∈ Rp×r (r ≤ p). Consider the following differential operators:

A
(1)
ij =

p∑
k=1

∂ki∂kj − δij (1 ≤ i ≤ j ≤ r),

A
(2)
ij =

r∑
k=1

(−θjk∂ik + θik∂jk) (1 ≤ i < j ≤ p),

Ã
(2)
ij =

p∑
k=1

(−θkj∂ki + θki∂kj) (1 ≤ i < j ≤ r).

Lemma 4. The above operators annihilate c(Θ) of Vr(Rp).

Proof. The proof is similar to that of Lemma 3. The operator A
(1)
ij annihilates etr(Θ>X)

if X ∈ Vr(Rp). Since c(Θ) = c(QΘ) = c(ΘR) for any Q ∈ O(p) and R ∈ O(r), we have

A
(2)
ij · c(Θ) = 0 and Ã(2) · c(Θ) = 0, respectively.

Let I denote the ideal generated by the above operators and let Idiag denote its re-
striction to diagonal matrices Θ = diag(θ11, . . . , θrr) ∈ Rp×r. We denote by Rr,p the ring
of differential operators with rational function coefficients in θij, 1 ≤ i ≤ p, 1 ≤ j ≤ r.

Proposition 3. If r = 2, p = 3, then the ideal R2,3I is zero-dimensional. The holonomic
rank is equal to 4. R2,3/(R2,3I) is spanned by 1, ∂11, ∂12, ∂

2
11 over the field of rational

functions.

This proposition is also proved by a computation on Risa/Asir. Programs to verify
the proposition are at the website OpenXM/Math (OpenXM Mathematics Repository).
We conjecture that I is holonomic and consequently Rr,pI is zero-dimensional for any r
and p in the case of Vr(Rp).

We close this subsection with some notes on our result and a study of hypergeo-
metric functions. For the matrix-valued hypergeometric function c(Θ) = 0F1(p/2, Y ),
Y = Θ>Θ/4, the following partial differential equation is well known (Muirhead [1970],
[Muirhead, 1982, Thm.7.5.5]). Let y1, . . . , yr denote the eigenvalues of Y . F satisfies the
following partial differential equations:

yi∂
2
i F +

{
p

2
− r − 1

2
+

1

2

r∑
j=1,j 6=i

yi
yi − yj

}
∂iF − 1

2

r∑
j=1,j 6=i

yj
yi − yj

∂jF = F, i = 1, . . . , p.

(8)
Muirhead [1970] obtained these partial differential equations from the partial differential
equations satisfied by zonal polynomials (James [1968], [Takemura, 1984, Sec.4.5]). In
Appendix A we check that for low dimensional cases these equations are also derived
from the differential operators in Lemma 4.
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3.1.3 Practice of HGD

Although the HGD is a general method which can be applied to broad problems, we need
a good guess (oracle) of a starting point to search the optimal point (MLE). We explain
why we need a good guess of a starting point with an example of V2(R3). Let Θ be the
optimal point for a given data and ∂Q

∂θij
= Pij(θ)Q be the Pfaffian system to apply for the

HGD. The denominator of the coefficient matrix Pij is a polynomial in θ. The Figure 2
shows the zero set in the θ11, θ12 space of the product of the polynomials standing for P11

and P12 when θij, i = 2, 3 is restricted to the constant (Θ̂1:2)ij, which is the MLE for the
comets data (Section 4.2).

Figure 2: Singular locus in θ11, θ12 space for V2(R3)

Similarly, in the case of SO(3), the Figure 3 shows the zero set in the θ11, θ12 space
of the product of the polynomials standing for the Pfaffian system when {θij | (i, j) 6=
(1, 1), (1, 2)} is restricted to the MLE for the comets data (Section 4.2).

Figure 3: Singular locus in θ11, θ12 space for SO(3)

The numerical integration procedure of the Pfaffian system becomes unstable near the
zero set of the product of the polynomials, which is called the singular locus of the Pfaffian
system. Therefore, the starting point must be in the same component with the optimal
point in the semi-algebraic set defined by the zero set. In our current implementation of
HGD, we find the starting point by preparing a table of the values of the normalization
constant (integral) at grids and making the exhaustive search of the optimal point on the
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grids or by using an approximate MLE obtained by an other method. Note that the table
can be used not only for specific data but also for general data.

3.2 Series expansion approach for SO(3) and V2(R3)

We describe a method to compute the maximum likelihood estimate by an infinite series
expansion of c(Θ). By Lemma 2, computation of the maximum likelihood estimate for
SO(p) is reduced to computation of c(diag(φ1, . . . , φp)) and its derivatives with respect
to φi’s, together with the usual gradient method. In this subsection we give an explicit
series expansion of c(diag(φ1, φ2, φ3)) when p = 3. Note that c(Θ) for any Θ ∈ R3×3 is
also obtained via sign-preserving SVD due to the rotational invariance of c(Θ). By using
the expansion formula we also clarify the difference between the normalizing constants for
the orthogonal group O(3) and the special orthogonal group SO(3). The series expansion
approach for V2(R3) is also discussed.

From mathematical viewpoint, the holonomic descent and the infinite series expansion
is related as follows. In the general recipe of the holonomic gradient descent and holonomic
systems, we can construct series expansion of the normalization constant c(Θ) for any p up
to any degree modulo finite constants in an algorithmic method from a holonomic system
of differential equations satisfied by c(Θ), which is obtained in the previous subsection.
The existence of finite recurrence relations for coefficients of the series is proved by the
holonomicity. This is a multi-variable generalization of the fact that coefficients of series
solutions of linear ODE satisfy a finite recurrence relation. Since this computation requires
huge computational resources, constructing the series expansion in a more efficient way
is preferable to using the general algorithm. Here we derive an infinite series expansion
for SO(3) with an analysis of integrals.

Let E[·] denote the expectation with respect to the uniform distribution on SO(3).
Let φ1, φ2, φ3 be the sign-preserving singular values of Θ. By the rotational invariance,
the expansion of c(Θ) is

c(Θ) =
∞∑
h=0

1

h!
E[(trΘ>X)h] =

∞∑
h=0

1

h!
E[(φ1x11 + φ2x22 + φ3x33)

h]

=
∞∑

k,l,m=0

1

k! l!m!
φk
1φ

l
2φ

m
3 E[x

k
11x

l
22x

m
33] (9)

and the problem is reduced to the evaluation of

E(k, l,m) = E[xk11x
l
22x

m
33].

Again by the rotational invariance we can simultaneously change the sign of any two of
x11, x22, x33. From this it is easily seen that E(k, l,m) = 0 unless k, l,m are all even or
k, l,m are all odd.

Note that for O(3) we can individually change the signs of x11, x22, x33. Hence for O(3)
E(k, l,m) = 0 unless k, l,m are all even and c(Θ) is indeed a function of the eigenvalues
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of Y = Θ>Θ/4. Therefore the difference between c(Θ) for SO(3) and c(Θ) for O(3) comes
from terms E[k, l,m] = 0 with k, l,m all odd.

We now express X = (xij) ∈ SO(3) by the Euler angles θ, φ, ψ.

X =


sin θ sinφ cosφ sinψ + cos θ sinφ cosψ − cosφ cosψ + cos θ sinφ sinψ

sin θ cosφ − sinφ sinψ + cos θ cosφ cosψ sinφ cosψ + cos θ cosφ sinψ

cos θ − sin θ cosψ − sin θ sinψ

 .

The Jacobian of the above transformation is sin θ and the range of variables is

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π.

Hence the integral of f over SO(3) with respect to the uniform probability measure is
expressed as∫

SO(3)

f(X)dµ(X) =
1

8π2

∫ π

0

dθ

∫ 2π

0

dφ

∫ 2π

0

dψ f(X(θ, φ, ψ)) sin θ.

For

f = xk11x
l
22x

m
33 = (sin θ sinφ)k(− sinφ sinψ + cos θ cosφ cosψ)l(− sin θ sinψ)m

we have

f · sin θ = (−1)m sink+m+1 θ sink φ sinm ψ

·
l∑

n=0

(
l

n

)
(−1)n sinn φ sinn ψ cosl−n θ cosl−n φ cosl−n ψ

=
l∑

n=0

(
l

n

)
(−1)m+n sink+m+1 θ cosl−n θ sink+n φ cosl−n φ sinm+n ψ cosl−n ψ.

Define

I[m,n] =
(m− 1)!!(n− 1)!!

(m+ n)!!
,

where (2a)!! =
∏a

j=1(2j) and (2a − 1)!! =
∏a

j=1(2j − 1) for each non-negative integer a.
Then from well-known results on the definite integrals of trigonometric functions we have

E(k, l,m) =
∑

0≤n≤l
l−n: even

(
l

n

)
I[k +m+ 1, l − n] · I[k + n, l − n] · I[m+ n, l − n]. (10)

By numerical experiments we found that (10) can be computed easily and we can evaluate
c(Θ) by the right-hand side of (9) to a desired accuracy. For large k, l,m the value of
E(k, l,m) can be approximated by Laplace’s method. Laplace approximation to E(k, l,m)
is given in Appendix B.
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We now consider the maximization of (4) with respect to {φi}3i=1 when we adopt
direct use of the gradient descent as in Figure 1 (b). The gradient method uses the first
derivatives of (4). The Hessian matrix is also needed if one uses the Newton method.
Since the first term of (4) is linear, it is sufficient to give the series expansion of the
derivatives of c(diag(φ1, φ2, φ3)). They are easily obtained from the expansion of c(Θ).
For example the derivative with respect to φ1 is

∂c(diag(φ1, φ2, φ3))

∂φ1

=
∞∑

k,l,m=0

1

k! l!m!
φk
1φ

l
2φ

m
3 E(k + 1, l,m).

Similarly,

∂2c(diag(φ1, φ2, φ3))

∂φ2
1

=
∞∑

k,l,m=0

1

k! l!m!
φk
1φ

l
2φ

m
3 E(k + 2, l,m),

∂2c(diag(φ1, φ2, φ3))

∂φ1∂φ2

=
∞∑

k,l,m=0

1

k! l!m!
φk
1φ

l
2φ

m
3 E(k + 1, l + 1,m).

Finally we note that the series expansion of c(Θ) for SO(3) is directly used for the max-
imum likelihood estimate of V2(R3). Let X̄1:2 be the first two columns of the averaged data
matrix X̄ ∈ R3×3. Let X̄1:2 = Q diag(g1, g2)R be the (usual) SVD. Then, as stated before
Lemma 2, the maximum likelihood estimator for V2(R3) is given by Θ̂ = Q diag(φ̂1, φ̂2)R,
where (φ̂i) is the maximizer of

2∑
k=1

φkgk − log

(∫
V2(R3)

exp(
2∑

k=1

φkxkk)µ(dX)

)
=

2∑
k=1

φkgk − log c(diag(φ1, φ2, 0))

in terms of c(Θ) for SO(3). Then the MLE is obtained via the series expansion of c(Θ).

4 Application to data on orbits of near-earth objects

In this section as an illustration of the above discussion, we fit Fisher distributions of
SO(3) and V2(R3) to data of orbits of near-earth objects. We obtained the data from the
web page of Near Earth Object Program of National Aeronautics and Space Administra-
tion (cf. http://neo.jpl.nasa.gov/cgi-bin/neo_elem). Near-earth objects are comets
and asteroids around the Earth. Jupp and Mardia [1979] fitted Fisher distribution on
V2(R3) to data of comets from Marsden [1972], but did not consider Fisher distribution
on SO(3). See also Mardia [1975] for analysis of data of perihelion direction.

The near-earth objects have ellipsoidal orbits with the Sun as their focus. The orbits
are characterized by the following two directions:

1. the perihelion direction x1, which is the direction of the closest point on the orbit
from the Sun.
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2. the normal direction x2 to the orbit, which is determined by the right-hand rule for
the rotation of the object.

The pair (x1,x2) is an element of V2(R3). We can also define x3 = x1 × x2 such that
(x1,x2,x3) is an element of SO(3).

x1 (the perihelion direction)

x2 (the directed unit normal to the orbit)

O: the Sun

x3 (the vector product x1 × x2 )
O

Figure 4: Orbits of near-earth objects

We analyzed 151 comets and 6496 asteroids separately. To obtain a meaningful result,
we identified a tight cluster of 67 similar comets, which we treated as one comet, and
therefore the actual sample size of comets is N = 85. Parts of the data are shown in
Table 1 and Table 2. As discussed in Section 2 we can analyze the data either on V2(R3)
or on SO(3).

Table 1: Part of data on 85 comets around the Earth (x1,x2,x3).
index object x1 x2 x3

1 1P/Halley ( 0.527,−0.304, 0.794) ( 0.010,−0.931,−0.363) ( 0.849, 0.199,−0.488)
2 2P/Encke ( 0.901, 0.431, 0.048) (−0.001, 0.113,−0.994) (−0.434, 0.895, 0.102)
3 3D/Biela (−0.341, 0.700, 0.628) (−0.010, 0.665,−0.747) (−0.940,−0.261,−0.220)
4 5D/Brorsen (−0.235, 0.939, 0.250) ( 0.003,−0.257, 0.966) ( 0.972, 0.227, 0.058)
...

...
...

...
...

85 P/2009 L2 (Yang–Gao) (−0.164,−0.961, 0.221) (−0.005, 0.225, 0.974) (−0.986, 0.159,−0.042)
mean ( 0.115, 0.113, 0.022) ( 0.001,−0.102, 0.038) ( 0.140,−0.233,−0.091)

4.1 The test of uniformity based on Rayleigh’s statistic

As a preliminary analysis we test whether the orbits of the comets and asteroids are
uniformly distributed over V2(R3) or SO(3).

We first recall the Rayleigh’s statistic for Stiefel manifolds. Let x̄1:r be the sample
mean matrix of a data set on Vr(Rp) and N be the sample size. Under the null hypothesis
of uniformity over Vr(Rp) the Rayleigh statistic

S1:r = pN · tr(x̄T
1:rx̄1:r) (11)
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Table 2: Part of data on 6496 asteroids (x1,x2,x3).
index object x1 x2 x3

1 433 Eros (−0.548, 0.837, 0.004) (−0.155,−0.110, 0.982) ( 0.822, 0.538, 0.187)
2 719 Albert ( 0.939,−0.340, 0.082) (−0.014, 0.201, 0.980) (−0.340,−0.920, −0.183)
3 887 Alinda (−0.191, 0.981,−0.030) ( 0.153, 0.057, 0.987) ( 0.970, 0.184,−0.160)
4 1036 Ganymed ( 0.933,−0.140, 0.331) (−0.262, 0.365, 0.893) (−0.250,−0.920, 0.304)
...

...
...

...
...

6496 (6344 P–L) ( 0.536, 0.842,−0.070) (−0.005, 0.082, 0.997) ( 0.844,−0.530, 0.048)
mean ( 0.074, 0.018,−0.000) ( 0.012, 0.003, 0.949) ( 0.016,−0.070, 0.002)

is asymptotically distributed according to the chi-square distribution with rp degrees of
freedom. Similarly we can define the Rayleigh statistic for the special orthogonal group.
Let x̄ be the sample mean matrix of a data set on SO(p) and N be the sample size. Under
the null hypothesis of uniformity over SO(p), the Rayleigh statistic

S = pN · tr(x̄T x̄) (12)

is asymptotically distributed according to the chi-square distribution with p2 degrees of
freedom (see Remark 1).

From Table 1, the sample mean matrix of comets’ data is calculated as

x̄ =

 0.257 0.044 0.189
0.158 −0.052 −0.146
0.079 0.765 0.004

 .

Since the (3, 2) element of x̄ is large, the orbital plane of the comets are typically close
to that of the Earth. Let x̄1:2 be the first two columns of x̄. The Rayleigh statistic (11)
for V2(R3) is

S1:2 = 3 · 85 · tr(x̄>
1:2x̄1:2) = 175.2

with the p-value almost zero. The Rayleigh statistic (12) for SO(3) is

S = 3 · 85 · tr(x̄>x̄) = 189.8

with the p-value almost zero.
Similarly for asteroids data in Table 2 the sample mean matrix is given as

x̄ =

 0.074 0.012 0.016
0.018 0.003 −0.070

−0.000 0.949 0.002


and the null hypothesis of uniformity is rejected by both

S1:2 = 3 · 6496 · tr(x̄>
1:2x̄1:2) = 1.77× 104

and
S = 3 · 6496 · tr(x̄>x̄) = 1.78× 104.

The p-values are almost zero.
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4.2 Maximum likelihood estimate of Fisher distributions

We compute the MLE (maximum likelihood estimate) of the Fisher distribution on V2(R3)
and SO(3) by using the two methods described in Section 3. For clarity we denote the
parameter of the Fisher distribution on V2(R3) and SO(3) by Θ1:2 and Θ, respectively.

First we compute the MLE by the holonomic gradient descent with solving numerically
the associated dynamical system along gradient directions. We add a superscript (h) as
Θ̂(h) for values computed by the holonomic gradient descent. For the comets’ data the
MLE of the Fisher distribution on V2(R3) is

Θ̂
(h)
1:2 =

0.689 0.341
0.394 −0.229
0.496 4.273



The starting point is

0.1 0.1
0.1 −0.1
0.1 5.1

 which is found by the exhaustive search of the optimal

point on the grids with θij = ±0.1,±5.1 (Section 3.1.3). We apply the HGD and obtain an
optimal point and apply it again to correct numerical errors and obtain the MLE stated

first. The search domain of the HGD is

 (0.1, 1.0) (0.1, 1.0)
(0.1, 1.0) (−1,−0.1)
(0.1, 1.0) (0.1, 10.0)

 . Here the (1, 1)-entry

(0.1, 1.0) of the search domain means that the variable θ11 is confined in the interval
(0.1, 1.0) during the gradient descent. Other entries stand for corresponding variables.

The MLE of the Fisher distribution on SO(3) is

Θ̂(h) =

 2.953 0.200 0.871
−0.423 −0.317 2.390
0.378 5.566 0.251


Since the MLE is near to the singular locus of the Pfaffian system in case of SO(3), the
grid method (Section 3.1.3) to find a starting point does not work well. We use the MLE
obtained by the series expansion method below as the starting point. In this case, the
HGD is used to confirm and make the answer by an other method more precise.

For the asteroid data, the difference scheme of the dynamical system is instable and we
cannot find the MLE even when we start from the MLE obtained by the series expansion.

We next compute the MLE (maximum likelihood estimate) of the Fisher distribution
on V2(R3) and SO(3) by using the series expansion approach. We add a superscript (s)
as Θ̂(s) for values computed by this method. For the comets’ data the MLE of the Fisher
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distribution on V2(R3) and its SVD are

Θ̂
(s)
1:2 =

0.689 0.341
0.394 −0.229
0.496 4.273


=

 0.098 0.835
−0.041 0.547
0.994 −0.060

(4.326 0
0 0.767

)(
0.126 0.992
0.992 −0.126

)

The MLE of the Fisher distribution on SO(3) and its sign-preserving SVD are

Θ̂(s) =

 2.953 0.200 0.871
−0.423 −0.317 2.390
0.378 5.566 0.251


=

−0.109 0.964 0.242
0.048 0.248 −0.968

−0.993 −0.093 −0.073

−5.614 0 0
0 3.079 0
0 0 2.387

0.128 0.991 0.041
0.879 −0.132 0.458
0.459 −0.023 −0.888


Note that det x̄ > 0 but det Θ̂ < 0.

For the asteroid data the MLEs are

Θ̂
(s)
1:2 =

0.157 0.254
0.038 0.060
0.005 19.568


=

0.013 0.972
0.003 0.235
1.000 −0.013

(19.570 0
0 0.161

)(
0.000 1.000
1.000 −0.000

)

and

Θ̂(s) =

0.291 0.257 −0.781
0.817 0.056 0.134
0.001 19.601 0.056


=

0.013 −0.721 0.693
0.003 −0.693 −0.721
1.000 0.011 −0.007

19.603 0.000 0.000
0.000 0.908 0.000
0.000 0.000 0.747

 0.000 1.000 0.002
−0.855 −0.001 0.518
−0.518 0.002 −0.855

 .

The AIC values are given in Table 3. For each data, AIC was minimized by the Fisher
distribution on SO(3).
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Table 3: AIC of each data and each model.

comets asteroids
Uniform V2(R3) SO(3) Uniform V2(R3) SO(3)

AIC 0 −207.0 −219.7 0 −3.47× 104 −3.48× 104

A Partial differential equation for 0F1(p/2, Y )

If Θ = diag(θii) is diagonal, then yi = θ2ii/4. By change of variables from (8) we have

yi∂
2
i +

{
p

2
− r − 1

2
+

1

2

r∑
j=1,j 6=i

yi
yi − yj

}
∂i −

1

2

r∑
j=1,j 6=i

yj
yi − yj

∂j − 1

= ∂2ii + (p− r)
1

θii
∂ii +

∑
j 6=i

1

θ2ii − θ2jj
{θii∂ii − θjj∂jj} − 1. (13)

We now show that the numerator of (13) belongs Idiag for small dimensions.
For p = r = 2 (i.e. for O(2)) by Macaulay2 we checked that the above I is holonomic.

Also by asir (nk restriction), a set of generators of Idiag is given as

h1 = (−θ222 + θ211)∂
4
11 + 6θ11∂

3
11 + (2θ222 − 2θ211 + 6)∂211 − 6θ11∂11 − θ222 + θ211 − 3,

h2 = (θ222 − θ211)∂
2
11 − θ11∂11 + θ22∂22 − θ222 + θ211,

h3 = θ22∂
4
11 + θ11∂22∂

3
11 + (3∂22 − θ22)∂

2
11 − θ11∂22∂11 − 2∂22,

h4 = θ11θ22∂
3
11 + (θ211∂22 − θ22)∂

2
11 + (−θ211 − 1)∂22 + θ22,

h5 = −∂211 + ∂222.

Looking at h2 and h5 we have

h2 = (θ222 − θ211)

{
∂211 +

θ11∂11 − θ22∂22
θ211 − θ222

− 1

}
,

h2
θ222 − θ211

+ h5 =

{
∂222 +

θ22∂22 − θ11∂11
θ222 − θ211

− 1

}
.

These are the same as (13) for p = r = 2.
For the case of V2(R3) (p = 3, r = 2) by Macaulay2 we have checked that I is holonomic

By asir (nk restriction) Idiag has the set of generators:

h1 = −θ11∂22∂211 + (−θ22∂222 − 3∂22 + θ22)∂11 + θ11∂22,

h2 = θ11θ22∂
2
11 + θ22∂11 − θ11θ22∂

2
22 − θ11∂22,

h3 = θ211∂
2
11 + 2θ11∂11 − θ222∂

2
22 − 2θ22∂22 + θ222 − θ211,

h4 = −θ11∂211 + (θ222∂
2
22 + 2θ22∂22 − θ222 − 1)∂11 + θ11θ22∂

3
22 + 2θ11∂

2
22 − θ11θ22∂22,

h5 = (−θ11θ22∂222 − θ11∂22 + θ11θ22)∂11 − θ222∂
3
22 − 4θ22∂

2
22 + (θ222 − 2)∂22 + 2θ22,

h6 = −θ11θ22∂11 + (θ322 − θ211θ22)∂
2
22 + (2θ222 − θ211)∂22 − θ322 + θ211θ22.
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Looking at h6

h6 = −θ11θ22∂11 + (θ322 − θ211θ22)∂
2
22 + (2θ222 − θ211)∂22 − θ322 + θ211θ22

= (θ222 − θ211)θ22

{
∂222 +

2θ222 − θ211
(θ222 − θ211)θ22

∂22 −
θ11

θ222 − θ211
∂11 − 1

}
= (θ222 − θ211)θ22

{
∂222 +

1

θ22
∂22 +

θ22∂22 − θ11∂11
θ222 − θ211

− 1

}
we see that it coincides with the case of p = 3, r = 2, i = 2 in (13).

B Asymptotic evaluation of E(k, l,m)

We derive an asymptotic form of E(k, l,m) when k, l,m simultaneously go to infinity.
Let k = nα, l = nβ and m = nγ where α, β and γ are fixed positive numbers. We use
Laplace’s method to show

E(k, l,m) ∼
√

2

π
((k + l)(l +m)(k +m))−1/2 (14)

as n→ ∞. The integrand xk11x
l
22x

m
33 ofE(k, l,m) is maximized at four points (x11, x22, x33) =

(1, 1, 1), (−1,−1, 1), (−1, 1,−1) and (1,−1,−1) as long as k, l,m are all even or all odd.
By symmetry it is sufficient to consider the neighborhood of diag(1, 1, 1), where X is
approximated by

X =

(1− ε21 − ε22)
1/2 −ε1 −ε2

ε1 (1− ε21 − ε23)
1/2 −ε3

ε2 ε3 (1− ε22 − ε23)
1/2


with sufficiently small numbers ε1, ε2, ε3. The density of (ε1, ε2, ε3) with respect to the
Lebesgue measure dε1dε2dε3 is 1/Vol(SO(3)) = 1/(8π2). Hence we obtain

E(k, l,m) ∼ 4

∫
(1− ε21 − ε22)

k/2(1− ε21 − ε23)
l/2(1− ε22 − ε23)

m/2 1

8π2
dε1dε2dε3

∼ 4

∫
e−(k+l)ε21/2−(k+m)ε22/2−(l+m)ε23/2

1

8π2
dε1dε2dε3

=

√
2

π
((k + l)(l +m)(k +m))−1/2.

We have checked that the right-hand side gives a good approximation to the exact value
of E(k, l,m) for k + l +m ≥ 100.

The same argument shows that for SO(p)

E

[
p∏

i=1

xkiii

]
∼ p(p− 1)

2

1

Vol(SO(p))

(∏
i<j

(ki + kj)

)−1/2

as n→ ∞ when ki = nαi, αi > 0, and ki’s are are all even or all odd.
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