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Abstract

We propose a method for selecting edges in Gaussian graphical
models. Our algorithm takes after our previous work, an extension of
Least Angle Regression (LARS), and it is based on the information
geometry of dually flat spaces. Non-diagonal elements of the inverse
of the covariance matrix, the concentration matrix, play an important
role in edge selection. Our iterative method estimates these elements
and selects covariance models simultaneously. A sequence of pairs of
estimates of the concentration matrix and an independence graph is
generated, whose length is the same as the number of non-diagonal
elements of the matrix. In our algorithm, the next estimate of the
graph is the nearest graph to the latest estimate of the concentration
matrix. The next estimate of the concentration matrix is not just the
projection of the latest estimate, and it is shrunk to the origin. We
describe the algorithm and show results for some datasets.

Key words and phrases: divergence, dually flat space, edge selec-
tion, Gaussian graphical model, information geometry, shrinkage, up-
date of estimator.

1 Introduction

In this paper, we propose a method for selecting edges in Gaussian graph-
ical models. Edge selection is an important problem in statistical science,
machine learning, and many other areas. Our method is based on the infor-
mation geometry of dually flat spaces.

In 1972, Dempster proposed covariance selection [3]. The non-diagonal
elements of the inverse of the covariance matrix, the concentration matrix,

∗hirose@stat.t.u-tokyo.ac.jp
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play an important role. For reducing the dimension of the parameter space,
Maximum Likelihood Estimators (MLEs) are considered under constraints
that some non-diagonal elements of the concentration matrix are 0. In [13],
an algorithm was proposed for calculating the MLE for any covariance selec-
tion model, and Fortran code was given. In 1986, Speed and Kiiveri showed
how 0s of the concentration matrix correspond to the conditional indepen-
dence properties, thereby yielding a graph corresponding to a covariance
selection model ([11]). The graph corresponding to a covariance selection
model is called the independence graph of the model. In this paper, we pro-
pose an iterative algorithm for estimating non-diagonal elements of the con-
centration matrix and selecting covariance models, or independence graphs,
simultaneously.

In the previous study [7], we extended the Least Angle Regression (LARS)
algorithm [4] to generalized linear regression. We call this extension of
LARS bisector regression because an estimator moves along bisectors of
angles in the linear regression setting. LARS provides an efficient algorithm
for computing LASSO, one of the most famous methods of regularization
([5, 6, 12]). LARS and LASSO estimate parameters and select explana-
tory variables simultaneously in the linear regression problem. A version
of LARS is described in terms of Euclidean geometry, and it is easy to
interpret in that correlations are used as angles of explanatory variables.
For extending LARS, methods based on the information geometry of dually
flat spaces was used ([1, 2, 8]). A new algorithm, bisector regression, was
proposed which estimates parameters and selects explanatory variables si-
multaneously in the generalized linear regression problem. The important
points of this extension are that exponential families of distributions form
dually flat spaces, the algorithm is described as an estimator’s move within
a space, similar to LARS, and a sequence of pairs of a parameter estimate
and a submodel is generated without the difficulty of combinations of vari-
ables. Our method of edge selection proposed in this paper follows the main
idea of bisector regression. We consider the dually flat space of multivariate
Gaussian distributions and propose the algorithm as updates of an estimator
in the space. The algorithm is an iterative one. A sequence of graphs are
generated and the number of graphs is the number of non-diagonal elements
of the covariance matrix. Not all candidates of graphs are considered and
we avoid the difficulty of combinations of edges. In terms of the graph, the
next estimate of the graph is the nearest graph to the latest estimate of
the concentration matrix. In terms of the concentration matrix, the next
estimate of the matrix is not just the projection of the latest estimate of the
matrix to the nearest graph. The next estimate of the matrix is shrunk to
the origin.

In edge selection in Gaussian graphical models, the problem in this paper,
we consider the covariance matrix and the inverse of distributions, while the
mean is considered in the regression settings. In the case of the Gaussian
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distribution, the space of the mean is Euclidean space. However, the space
of the covariance matrix does not form Euclidean space. The dually flat
space is introduced naturally for edge selection.

The remainder of this paper is organized as follows. In Section 2, we
provide the settings and problem. The notations and parameters to be es-
timated are also introduced. A brief explanation of edge selection is given.
The new algorithm for edge selection in Gaussian graphical models is pro-
posed in Section 3. We provide an intuitive explanation and the detailed
algorithm. Our iterative algorithm is based on the information geometry
of dually flat spaces. A geometrical explanation is given. In Section 4, the
result of our algorithm is shown for some datasets. The results are compared
with those of the graphical LASSO [15]. We conclude the paper in Section
5.

2 Edge Selection in Gaussian Graphical Models

In this section, we consider the setting and problem, edge selection in Gaus-
sian graphical models. We define the notations and parameters to be esti-
mated. A brief explanation of edge selection is given for our algorithm.

2.1 Settings, Notations and Tools

We define the settings, notations, and tools used in the following. X1, . . . , Xp

are the random variables under consideration. X = (X1, . . . , Xp)
⊤ has a

multivariate Gaussian distribution with the mean vector µ = (µ1, . . . , µp)
⊤

and covariance matrix Σ = (σab). The inverse of the covariance matrix Σ,
the concentration matrix, is represented as Σ−1 = (σab). We sometimes use
the notation (Σ)ab = σab and (Σ−1)ab = σab for convenience.

The distribution of X is

f(x1, . . . , xp|µ,Σ) =
1

(2π)p/2
√

|Σ|
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

Let l denote the logarithm of f , that is,

l(x|µ,Σ) = −p
2
log(2π)− 1

2
log |Σ| − 1

2
(x− µ)⊤Σ−1(x− µ)

= −1

2
x⊤Σ−1x+ x⊤

(
Σ−1µ

)
−
{
−1

2
log
∣∣Σ−1

∣∣+ 1

2
µ⊤Σ−1µ

}
− p

2
log(2π).
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Defining u = Σ−1µ, we have

l(x|u,Σ−1) = −1

2
x⊤Σ−1x+ x⊤u−

{
−1

2
log
∣∣Σ−1

∣∣+ 1

2
u⊤Σu

}
=

∑
1≤a<b≤p

−σabxaxb +
p∑

a=1

(
−1

2
σaa
)
x2a +

p∑
a=1

uaxa

−
{
−1

2
log
∣∣Σ−1

∣∣+ 1

2
u⊤Σu

}
− p

2
log(2π).

Let d := p(p− 1)/2, the number of non-diagonal elements of the covariance
matrix. The natural parameter θ is defined by

θ =

((
−σab

)
1≤a<b≤p

;

(
−1

2
σaa
)

1≤a≤p

; (ua)1≤a≤p

)
.

When p = 4, for example, it holds that d = 6 and

θ =
(
− σ12,−σ13,−σ14,−σ23,−σ24,−σ34;

− 1

2
σ11,−1

2
σ22,−1

2
σ33,−1

2
σ44; u1, u2, u3, u4

)
.

The expectation parameter η corresponding to the natural parameter θ is

η =
(
(σab + µaµb)1≤a<b≤p ;

(
σaa + µ2a

)
1≤a≤p

; (µa)1≤a≤p

)
.

When p = 4, we have

η =
(
σ12 + µ1µ2, σ13 + µ1µ3, σ14 + µ1µ4, σ23 + µ2µ3, σ24 + µ2µ4, σ34 + µ3µ4;

σ11 + µ21, σ22 + µ22, σ33 + µ23, σ44 + µ24;µ1, µ2, µ3, µ4

)
.

Hereafter, we also call the pair (u,Σ−1) the natural parameter. Similarly,
the pair (µ,Σ) is called the expectation parameter. The two pairs (u,Σ−1)
and (µ,Σ) are just different names specifying a distribution.

We define two functions, called potential functions, with respect to the
natural parameter (u,Σ−1) and the expectation parameter (µ,Σ), respec-
tively. Let ψ be the potential function of the natural parameter (u,Σ−1)
defined by

ψ(u,Σ−1) = −1

2
log
∣∣Σ−1

∣∣+ 1

2
u⊤Σu,

which is the last part of l. The potential function ϕ of the expectation
parameter (µ,Σ) is defined by

ϕ(µ,Σ) = −1

2
log |Σ| − p

2
.
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For the potential functions, it holds that

ϕ(µ,Σ) + ψ(u,Σ−1)− 1

2
u⊤Σu+

p

2
= 0.

Let D(·|·) denote the Kullback-Leibler divergence, that is, the divergence
between two Gaussian distributions (µ1,Σ1) and (µ2,Σ2), given by

D(µ1,Σ1 | µ2,Σ2) = E(µ1,Σ1)

log exp
{
−1

2(X − µ1)
⊤Σ−1

1 (X − µ1)
}/(

(2π)p/2
√

|Σ1|
)

exp
{
−1

2(X − µ2)⊤Σ
−1
2 (X − µ2)

}/(
(2π)p/2

√
|Σ2|

)


= −1

2
log |Σ1|+

1

2
log |Σ2|+

1

2
tr
(
Σ1Σ

−1
2

)
− p

2

+
1

2
(µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1) .

In our method, the mean vector µ is fixed as explained later. The divergence
from Σ1 to Σ2 is given as

D(Σ1 | Σ2) = −1

2
log |Σ1|+

1

2
log |Σ2|+

1

2
tr
(
Σ1Σ

−1
2

)
− p

2
.

In addition, we use the notation D(Σ−1
1 |Σ−1

2 ) = D(Σ1|Σ2).

2.2 Problem

We explain edge selection in Gaussian graphical models briefly. Only undi-
rected graphs are considered and neither directed nor hybrid graphs are
treated in this paper. Non-diagonal elements of the concentration matrix
Σ−1 = (σab) play an important role. For details, see references [9, 14].

We consider the graphG = (E, V ) corresponding to the random variables
X1, . . . , Xp with a multivariate Gaussian distribution. Each node va ∈ V
of the graph G corresponds to each random variable Xa and, for a ̸= b,
whether or not Xa and Xb have an edge eab ∈ E between them depends
on the value of σab. There is no edge between Xa and Xb if σab = 0.
The condition σab = 0 means that two random variables Xa and Xb are
conditionally independent given that other random variables fixed. The
graph G represents the conditional independence between random variables
X1, . . . , Xp, and it is called the independence graph. In edge selection for
the independence graph G, we must estimate the non-diagonal elements of
the concentration matrix Σ−1, σab (a ̸= b). It is particularly important to
decide which σabs are 0.

In the following, we apply the main idea of bisector regression to edge
selection in Gaussian graphical models. The mean vector µ is fixed and the
space of Gaussian distributions is considered with two different names of the
covariance matrix Σ and concentration matrix Σ−1. Our main objectives are
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Figure 1: An example of the concentration matrix and independence graph for
p = 4. The asterisk ∗ represents any value. In the concentration matrix Σ−1,
two elements are set to 0, that is, σ13 = σ14 = 0. In the independence graph
corresponding to Σ−1, the two edges e13 and e14 are deleted.

Figure 2: Elements of submodels. The non-diagonal elements of Σ−1, σab, are in-
dicated for three submodelsM ((a, b), s, I), M(I), andM(I \{(a, b)}). The asterisk
∗ represents any value.

to estimate the non-diagonal elements of Σ−1, σab (a ̸= b), and to estimate
the independence graph G corresponding to Σ−1. We consider submodels

M (I) =
{
Σ | σa′b′ = 0

(
(a′, b′) ̸∈ I

)}
,

M ((a, b), s, I) =
{
Σ | σab = s, σa

′b′ = 0
(
(a′, b′) ̸∈ I

)}
for (a, b) ∈ I ⊆ {(a′, b′)| 1 ≤ a′ < b′ ≤ p}. The submodel M (I) is the model
where the edge ea′b′ is deleted for (a′, b′) ̸∈ I. The submodel M ((a, b), s, I)
is the model where the edge ea′b′ is deleted for (a′, b′) ̸∈ I and eab is deleted
if s = 0. A graph corresponding to a distribution in M (I) or M ((a, b), s, I)
has edges in I at most.
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3 Proposed Algorithm

In this section, the algorithm for our method is proposed. We give an intu-
itive explanation of the algorithm. The algorithm is illustrated geometrically
and a detailed algorithm is proposed.

We describe the proposed algorithm for selecting edges in Gaussian
graphical models. The main idea is based on our previous work [7] on bi-
sector regression, which uses the information geometry of dually flat spaces.
Our algorithm is an iterative one, generating a graph at each iteration.
A sequence of graphs Ĝ(0), . . . , Ĝ(d) is produced by the algorithm, where
d = p(p − 1)/2 is the number of non-diagonal elements of the covariance
matrix Σ.

First, we illustrate our algorithm intuitively during the first iteration. A
detailed explanation of the (k+ 1)th iteration is given later. The algorithm
can be described as updates of one estimator in the dually flat space of multi-
variate Gaussian distributions with a fixed mean vector and fixed variances.
The mean vector µ and variances σaa, the diagonal elements of the covariance
matrix Σ, are fixed as µ = µMLE and σaa = (σMLE)aa (a = 1, . . . , p), where
µMLE and (σMLE)aa are the MLEs, the sample mean and sample variance,
respectively. Both Σ and Σ−1 indicate the Gaussian distribution with the
covariance matrix Σ. The subspace with fixed µ and fixed σaas is a dually
flat space, and our algorithm runs in this subspace. Our estimator starts at
the MLE Σ̂−1

(0) = Σ̂−1
MLE of the model with no constraint, which corresponds

to the complete graph denoted by Ĝ(0) = ĜMLE. Σ̂MLE is the sample co-

variance matrix. Note that the diagonal elements of Σ̂MLE are the same as
the (σMLE)aas. The terminal of the estimator is the MLE Σ̂−1

(d) = Σ̂−1
0 of

the model with the condition that each pair of random variables X1, . . . , Xp

is conditionally independent, which corresponds to the graph with no edge
denoted by Ĝ(d) = Ĝ0. The diagonal elements of Σ̂0 are the same as the

(σMLE)aas. For the graph G−ab
(0) (a ̸= b), which has all edges except for the

edge eab between Xa and Xb, we measure the distance from Σ̂−1
(0) to the graph

G−ab
(0) . The distance from Σ̂−1

(0) to G
−ab
(0) is defined as the distance from Σ̂−1

(0) to

the projection of Σ̂−1
(0) to the model corresponding to the graph G−ab

(0) . This

projection is known to be the MLE of the model of G−ab
(0) . The nearest graph

from Σ̂−1
(0) among all a < b is the next estimate of the independence graph

G, and it is denoted by Ĝ(1). Ĝ(1) has d − 1 edges. In terms of Σ−1, the

next estimate of Σ−1, Σ̂−1
(1), is not just the projection of Σ̂−1

(0) to the model of

the graph Ĝ(1). Σ̂−1
(1) is shrunk to Σ̂−1

0 depending on the distance between

Σ̂−1
(0) and the MLE of the model of Ĝ(1). The details of this shrinkage are

described later. Thus, we obtain the next estimate of the concentration
matrix Σ−1 and independence graph G, Σ̂−1

(1) and Ĝ(1), respectively. The
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Figure 3: Submodels and projections. Σ̂(k): kth estimate of Σ, I ⊆ {(a′, b′) |
1 ≤ a′ < b′ ≤ p}: indices of non-diagonal elements to be estimated, (a, b) ∈ I:

elements of I, M((a, b), s, I): the submodel
{
Σ
∣∣σab = s, σa′b′ = 0 ((a′, b′) ̸∈ I)

}
,

Σ
−ab

(k) : the projection of Σ̂(k) to the submodel M (I \ {(a, b)}), Σ̃−ab
(k) : the projection

of Σ̂(k) to the submodel M((a, b), s∗ab, I), s
∗
ab: the value decided by the condition

that D
(
Σ̂(k) | Σ̃−ab

(k)

)
= t∗. The estimate and two projections are on a geodesic.

Σ̃−ab
(k) is on the geodesic connecting Σ̂(k) and Σ

−ab

(k) .

first iteration of the algorithm is completed. In the second iteration, the
algorithm proceeds in the same way as in the first, substituting Σ̂−1

(1) and

Ĝ(1) for Σ̂
−1
(0) and Ĝ(0), respectively.

After k iterations, we should have the kth estimate of the concentration
matrix Σ−1 and independence graph G, Σ̂−1

(k) and Ĝ(k), respectively. Σ̂
−1
(k) has

k 0s and Ĝ(k) = (Ê(k), V ) has d− k edges, that is, |Ê(k)| = d− k. The set of
indices of the non-diagonal elements to be estimated, I, has d−k components
and Ê(k) = {eab| (a, b) ∈ I}. In the following, we give an explanation mainly
in terms of the covariance matrix Σ or concentration matrix Σ−1, not in
terms of the graph G. The graph G is determined by Σ−1, depending on
values of σab. Strictly speaking, Σ−1 has more information than G because G
does not know the values of σab. Σ−1 knows the values of σab while G knows
only which σab is 0, that is, G indicates a model, a covariance selection
model. We use M(I) and M((a, b), s, I) instead of G. In the (k + 1)th
iteration, the algorithm proceeds as follows. Note that the mean vector
µ and diagonal elements of the covariance matrix Σ, σaa for 1 ≤ a ≤ p,
are fixed at the values of the MLEs, and that σ̂a

′b′ = 0 for (a′, b′) ̸∈ I. For
(a, b) ∈ I, we measure the distance from Σ̂−1

(k) to the submodelM(I\{(a, b)}),
which is the same asM ((a, b), 0, I). The distance from Σ̂−1

(k) toM(I\{(a, b)})
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is the distance from Σ̂−1
(0) to the MLE Σ

−ab
(k) of the submodel M(I \ {(a, b)}).

Σ
−ab
(k) is also the projection of Σ̂(k) to the submodel M(I \ {(a, b)}). Let

M(I \ {(a∗, b∗)}) be the nearest submodel from Σ̂−1
(k) among all (a, b) ∈

I and t∗ = min(a,b)∈I D
(
Σ̂(k) | Σ

−ab
(k)

)
= D

(
Σ̂(k) | Σ

−a∗b∗

(k)

)
. For (a, b) ∈

I, the submodel M(I \ {(a, b)}) is translated so that the distance from
Σ̂(k) to the translated model is equal to t∗ as follows. The m-geodesic l−ab

(k)

connecting Σ̂(k) and Σ
−ab
(k) is given by l−ab

(k) =
{
Σ
∣∣∣L ≤ σab ≤ U, σa′b′ =(

Σ̂(k)

)
a′b′

for (a′, b′) ̸= (a, b), (a′, b′) ∈ I, σa
′b′ = 0 for (a′, b′) ̸∈ I

}
, where

L = min
{(

Σ̂(k)

)
ab
,
(
Σ
−ab
(k)

)
ab

}
and U = max

{(
Σ̂(k)

)
ab
,
(
Σ
−ab
(k)

)
ab

}
. On

the m-geodesic l−ab
(k) , elements σa′b′ are fixed for (a′, b′) ̸= (a, b), (a′, b′) ∈ I

and σa
′b′ = 0 are fixed for (a′, b′) ̸∈ I. We calculate s∗ab and Σ̃−ab

(k) ∈ l−ab
(k)

so that D
(
Σ̂(k) | Σ̃−ab

(k)

)
= t∗ for Σ̃−ab

(k) ∈ M ((a, b), s∗ab, I). This submodel

M ((a, b), s∗ab, I) is the translated model ofM(I\{(a, b)}). The next estimate

of Σ−1, Σ̂−1
(k+1), is defined as the intersection of the translated models. In

detail, let σ̂ab(k+1) :=
(
(Σ̃−ab

(k) )
−1
)ab

= s∗ab for (a, b) ∈ I, σ̂ab(k+1) := 0 for

(a, b) ̸∈ I. Let Êk+1 := Êk\{ea∗b∗}, and define Ĝk+1 =
(
Êk+1, V

)
. Thus, we

obtain the next estimate of the concentration matrix Σ−1 and independence
graph G, Σ̂−1

(k+1) and Ĝ(k+1), respectively. The (k + 1)th iteration of the

algorithm is completed. In the (k+2)th iteration, the algorithm proceeds in
the same way, substituting Σ̂−1

(k+1) and Ĝ(k+1) for Σ̂
−1
(k) and Ĝ(k), respectively.

After d = p(p − 1)/2 iterations, our estimator comes to Σ̂−1
0 and Ĝ0, and

the algorithm is completed.
Some remarks are necessary for describing the algorithm. In our algo-

rithm, (a) the diagonal elements of the covariance matrix Σ are fixed, (b)
the non-diagonal elements of the concentration matrix Σ−1 are estimated,
(c) other elements of Σ and Σ−1 are decided by elements which are fixed or
estimated, and (d) the mean vector is fixed. The algorithm is applied to the
non-diagonal elements of Σ−1 and estimates them. In the following, we con-
fine our attention to the non-diagonal elements of Σ−1, and the description
of other elements of Σ and Σ−1 is omitted.

The algorithm is given as follows. Steps 2 to 6 are iterated.

1. Let Σ̂(0) := Σ̂MLE, Ĝ(0) := ĜMLE, I := {(a, b)| 1 ≤ a < b ≤ p}, and
k := 0.

2. Calculate the MLE Σ
−ab
(k) of the model M (I \ {(a, b)}) for (a, b) ∈ I.

3. Find t∗ := min(a,b)∈I D
(
Σ̂(k) | Σ

−ab
(k)

)
and (a∗, b∗) := argmin(a,b)∈I D

(
Σ̂(k) | Σ

−ab
(k)

)
.
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Figure 4: Update of the estimator. Σ̂(k): kth estimate of Σ, Σ̂(k+1):

(k + 1)th estimate of Σ, Σ̂0: the MLE of the model with no edge,

M((a, b), s, I) =
{
Σ
∣∣σab = s, σa′b′ = 0 ((a′, b′) ̸∈ I)

}
, Σ

−ab

(k) : the MLE of the

submodel M (I \ {(a, b)}), Σ̃−ab
(k) : the projection of Σ̂(k) to the submodel

M((a, b), s∗ab, I). M(I \ {(a, b)}) is nearer from Σ̂(k) than M(I \ {(a′, b′)}) is. The

divergence to Σ̃−a′b′

(k) from Σ̂(k) is the same as the divergence to Σ
−ab

(k) . Σ̂(k+1) is

defined as the intersection of M((a, b), 0, I) and M((a′, b′), s∗a′b′ , I).

4. For (a, b) ∈ I, calculate s∗ab and Σ̃−ab
(k) ∈ l−ab

(k) satisfying D(Σ̂(k) |
Σ̃−ab
(k) ) = t∗ and Σ̃−ab

(k) ∈M((a, b), s∗ab, I).

5. Let σ̂ab(k+1) := s∗ab for (a, b) ∈ I, σ̂ab(k+1) := 0 for (a, b) ̸∈ I, and Ê(k+1) :=

Ê(k) \ {ea∗b∗}.

6. If k + 1 < d− 1, then go to step 2 with k := k + 1, I := I \ {(a∗, b∗)}.
If k + 1 = d− 1, then go to step 7.

7. Let Σ̂(d) := Σ̂0 and Ê(d) := ∅. Stop the algorithm.

Note that in step 5, it holds that σ̂a
∗b∗

(k+1) = 0 while (a∗, b∗) ∈ I. This fact

indicates that one non-diagonal element of Σ−1 becomes 0 in an iteration
and that our method selects covariance models sequentially.

4 Examples

We show the results of our method for some datasets and compare them with
those of the graphical LASSO [15]. We used the software R [10] for comput-
ing the algorithm. The datasets are included in the SIN and SMPracticals

packages of R.
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Figure 5: The result of our method for the frets’ heads dataset. The sequence of
independence graphs generated by our method is shown. 1: the head length of the
first son, 2: the head breadth of the first son, 3: the head length of the second son,
4: the head breadth of the second son.

4.1 Frets’ Heads Dataset

We show the result of our method for Frets’ heads dataset. The data frets

in the SMPracticals package was used. This dataset consists of head mea-
surements of the first and the second adult son in a sample of 25 families.
The dataset includes four variables, which are the head length of the first
son, head breadth of the first son, the head length of the second son, and
head breadth of the second son.

The result of our method is shown in Figure 5. The sequence of inde-
pendence graphs is generated, the length of which is six, the total number of
all edges. The graphical LASSO produces the sequence of graphs shown in
Figure 6. Two sequences are almost the same but do not coincide strictly.

4.2 Mathematics Marks Dataset

The results for the mathematics marks dataset are shown. We used the
mathmarks data in the SIN package. This dataset consists of the examination
marks of 88 students in five subjects. The dataset includes five variables,
which are mechanics, vectors, algebra, analysis, and statistics.

The result of our method is shown in Figure 7. The sequence of inde-
pendence graphs is generated, the length of which is ten. The result of the
graphical LASSO is shown in Figure 8. The two methods produce almost
the same sequences of independence graphs, but they are not strictly the
same.
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Figure 6: The result of the graphical LASSO for the frets’ heads dataset. 1: the
head length of the first son, 2: the head breadth of the first son, 3: the head length
of the second son, 4: the head breadth of the second son.

5 Conclusion

We proposed a new method for selecting edges in Gaussian graphical models,
where the main idea comes from our previous work on bisector regression.
Our method is based on the information geometry of dually flat spaces,
and it estimates the concentration matrix and selects edges of the graph
simultaneously. A sequence of pairs of estimates of the concentration matrix
and independence graph is generated, whose length is same as the number
of non-diagonal elements of the matrix. The algorithm is efficient in that
it avoids the difficulty of combinatorial choices on edges because all pairs
of edges are not considered. Our algorithm is described as updates of an
estimator in the dually flat space. Our estimator is updated with shrinkage
concerning the intersection of submodels, and it goes into submodels in turn.
This means that an estimate of the independence graph has one less edge
than the previous estimate of the graph.

The results of our method were shown for some datasets and compared
with those of the graphical LASSO. The two methods produce almost the
same sequences of graphs, but the sequences do not necessarily coincide.

We are working on applying our main idea of bisector regression to other
models and are making an effort to provide efficient and stable codes for our
method. Sophisticated codes will enable readers to apply our method to suit
their own purposes.
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Figure 7: The result of our method for the mathematics marks dataset. 1:
mechanics, 2: vectors, 3: algebra, 4: analysis, 5: statistics.
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