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Abstract

This paper gives an instance of a function defined on integers such that
(i) the discrete Hessian matrix is positive semidefinite at each point, but (ii)
it cannot be extended to a convex function in continuous variables. The con-
struction is based on a semidefinite programming technique. This example,
together with our previous examples, shows that the positive semidefinite-
ness of the discrete Hessian matrix is independent of convex extensibility of
discrete functions.
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1 Introduction

For functions defined on integer lattice points, discrete versions of the Hessian ma-
trix have been considered in various contexts. In discrete convex analysis [1, 2, 4],
for example, certain combinatorial properties of the discrete Hessian matrices are
known to characterize M�-convex and L�-convex functions, which can be extended
to convex functions in real variables.

For a function f : Z
n → R in discrete variables the discrete Hessian matrix

H f (x) = (Hi j(x)) of f at x ∈ Z
n is defined by

Hi j(x) = f (x + ei + e j) − f (x + ei) − f (x + e j) + f (x), (1.1)

where ei denotes the ith unit vector. The relationship between convex extensibility
and discrete Hessian matrices is not fully understood in general, and unfortunately,
some vague or imprecise statements have been made in the literature. Recent pa-
pers [5, 6, 7] discuss the relationship between convex extensibility of discrete func-
tions and the positive semidefiniteness of their Hessian matrix H f (x). It is certainly
true that a univariate discrete function f : Z → R, with n = 1, is convex exten-
sible if and only if the Hessian H f (x), which is actually a real number, is positive
semidefinite (i.e., nonnegative). But in case of n ≥ 2, convex extensibility and
the positive semidefiniteness of the discrete Hessian matrix is independent of each
other. In a previous report [3] we have shown examples to demonstrate that

• Even if f : Z
2 → R has a convex extension to a C2 convex function, its

discrete Hessian matrix is not necessarily positive semidefinite.

In the present report we shall construct an example to demonstrate that

• Even if f : Z
2 → R has a positive semidefinite discrete Hessian matrix at

every point of Z
2, f is not necessarily convex extensible.

The construction is based on a semidefinite programming technique.
To be specific, we construct a function f : Z

2 → R in two variables such that
(i) the discrete Hessian matrix H f (x) is positive semidefinite at each point x ∈ Z

2,
and (ii) f (1, 1)−2 f (2, 2)+ f (3, 3) < 0. The construction of such f consists of three
steps.

1. Construction of such a function f on a triangular domain with the aid of
semidefinite programming.

2. Modification of the function f to a function defined on the nonnegative or-
thant Z

2
+.

3. Extension of the function defined on Z
2
+ to a function on Z

2.

Our construction proves the following theorem. Note that the second property
(ii) above implies that the function f is not convex extensible, i.e., that no convex
function g : R

2 → R satisfies g(x1, x2) = f (x1, x2) for all (x1, x2) ∈ Z
2.
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Theorem 1.1. There exists a function f : Z
2 → R such that f is not convex

extensible and the discrete Hessian matrix H f (x) is positive semidefinite for each

x ∈ Z
2.

2 Construction by SDP on a Triangular Domain

We denote by R the set of reals, by Z the set of integers, and by Z+ the set of
nonnegative integers. For any finite set A, its cardinality is denoted by |A|. We use
the symbols I and O to denote the identity matrix and the zero matrix, respectively.

For c ∈ Z+, we define

P(c) = {(x1, x2) ∈ Z
2 | x1 + x2 ≤ c; x1, x2 ≥ 0},

B(c) = {(x1, x2) ∈ Z
2 | x1 + x2 = c; x1, x2 ≥ 0},

S (c) = {(x1, x2) ∈ Z
2 | x1 + x2 ≥ c; x1, x2 ≥ 0}.

It is assumed that c ≥ 8.
In this section, we construct a function f : P(c) → R which satisfies the

following conditions:

H f (x1, x2) � O (∀(x1, x2) ∈ P(c − 2)), (2.1)

f (1, 1) − 2 f (2, 2) + f (3, 3) < 0. (2.2)

2.1 Construction method

We use a SemiDefinite Programming (SDP) technique to construct a function f
satisfying (2.1) and (2.2) on a triangular domain. We regard (2.1) as a constraint
of SDP and want to find ( f (x1, x2) | (x1, x2) ∈ P(c)) which minimizes f (1, 1) −
2 f (2, 2)+ f (3, 3) under the constraint (2.1). If the optimal objective function value
is negative, its optimal solution is a desired function f : P(c)→ R.

We first consider (2.1) as a constraint of SDP. For f : P(c) → R, the discrete
Hessian matrix at (x1, x2) ∈ P(c − 2) is given by

H11(x1, x2) = f (x1 + 2, x2) − 2 f (x1 + 1, x2) + f (x1, x2),

H12(x1, x2) = H21(x1, x2)

= f (x1 + 1, x2 + 1) − f (x1 + 1, x2) − f (x1, x2 + 1) + f (x1, x2),

H22(x1, x2) = f (x1, x2 + 2) − 2 f (x1, x2 + 1) + f (x1, x2).

The matrix H f (x1, x2) can be written as follows:

H f (x1, x2) =

f (x1, x2)
[

1 1
1 1

]
+ f (x1 + 1, x2)

[ −2 −1
−1 0

]
+ f (x1 + 2, x2)

[
1 0
0 0

]

+ f (x1 + 1, x2 + 1)
[

0 1
1 0

]
+ f (x1, x2 + 1)

[
0 −1
−1 −2

]
+ f (x1, x2 + 2)

[
0 0
0 1

]
.
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Figure 1: Six points used in the definition of H f (x1, x2)

This shows that the condition H f (x1, x2) � O can be formulated as an SDP con-
straint on six variables f (x1, x2), f (x1+1, x2), f (x1+2, x2), f (x1+1, x2+1), f (x1, x2+

1), f (x1, x2 + 2); see Fig. 1.
To find ( f (x1, x2) | (x1, x2) ∈ P(c)) which minimizes f (1, 1)− 2 f (2, 2)+ f (3, 3)

under (2.1), we consider the following SDP:

P :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
∑

(x1 ,x2)∈P(c)

c(x1, x2) f (x1, x2)

subject to X =
∑

(x1 ,x2)∈P(c)

F(x1, x2) f (x1, x2),

X � O,

where ( f (x1, x2) | (x1, x2) ∈ P(c)) is the vector of decision variables,

c(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ((x1, x2) = (1, 1), (3, 3)),
−2 ((x1, x2) = (2, 2)),

0 (otherwise),

and F(x1, x2) is a sparse block-diagonal (2|P(c − 2)|) × (2|P(c − 2)|) matrix with
|P(c − 2)| diagonal blocks corresponding to (x1, x2) ∈ P(c − 2).

The problem P is homogeneous. This means that, if there exists a feasible
solution of P with a negative objective value, the optimal objective value is −∞,
that is, the problem P is unbounded.

To obtain a bounded SDP, we add the following constraints for normalization:

f (0, 0) = 1, (2.3)

l ≤ f (x1, x2) ≤ u (∀(x1, x2) ∈ P(c)) (2.4)

with l < 1 < u.

Remark 2.1. When we solve SDP by a computer software, we cannot avoid round-
off errors. In practice, it is useful to replace the constraint X � O by X − σI � O

with σ > 0, and to round the approximate optimal variable vector computed by the
software to an integer vector.
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Remark 2.2. Here is a remark related to our choice f (1, 1) − 2 f (2, 2) + f (3, 3)
in (2.2). The positive semidefiniteness of the discrete Hessian matrix H f (x1, x2)
implies (discrete) convexity along a line with x1 + x2 constant:

f (x1 + 2, x2) − 2 f (x1 + 1, x2 + 1) + f (x1, x2 + 2) ≥ 0, (2.5)

which can be shown as follows. By H f (x1, x2) � O we have H11 ≥ 0 and H22 ≥ 0.
We also have

det H f (x1, x2) = H11H22 − H2
12 ≥ 0,

from which follows that

H12 ≤ |H12| ≤
√

H11H22 ≤ 1
2

(H11 + H22).

By substituting the expressions of H12, H11 and H22, we obtain (2.5). In view of
(2.5) we search for the failure of convexity in the direction of constant difference
in (2.2).

Remark 2.3. Our construction method by SDP is valid not only for the case n = 2,
but also for an arbitrary dimension n.

2.2 Formulation in SDPA format

We solve SDP by SDPA [8], which is a computer software package for solving
SDP while extensively utilizing the sparseness of the matrices. We here show a
transformation of SDP to use SDPA.

We define the variable vector f ∈ R
|P(c)|−1 as

f1 = f (1, 0), f2 = f (0, 1), f3 = f (2, 0), f4 = f (1, 1), . . . , fi = f (x1, x2), . . . ,

i.e.,
fi = f (x1, x2) (∀(x1, x2) ∈ P(c) \ {(0, 0)}),

where the index i is given by

i = r(x1, x2) :=
1
2

(x1 + x2)(x1 + x2 + 1) + x1. (2.6)

It is noted that r(c, 0) = |P(c)| − 1.
Now, the SDP P is transformed as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize

∑m
i=1 ci fi

subject to X =
∑m

i=1 Fi fi − F0,

X � O,
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where m = |P(c)| − 1, Fi(i = 1, . . . ,m) are sparse block-diagonal (2|P(c − 2)|) ×
(2|P(c − 2)|) matrices with |P(c − 2)| diagonal blocks, and

{
c4 = 1, c12 = −2, c24 = 1,

ci = 0 (i � 4, 12, 24).

Note that r(1, 1) = 4, r(2, 2) = 12, and r(3, 3) = 24 from (2.6).
Though the normalization (2.3) decreases the number of variables, it does

not change the number of blocks of the constraint matrices because the positive
semidefiniteness of H f (0, 0) remains unaffected. We, expediently, assign H f (0, 0) �
O to the last block. Now, we have

F0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to add upper and lower bound constraints (2.4), we introduce slack
variables (t1, . . . , tm, s1, . . . , sm), i.e.,

ti = − fi + u ≥ 0, si = fi − l ≥ 0 (i = 1, . . . ,m).

Hence we can reduce the above problem to the following standard form SDP:

P′ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize

∑m
i=1 ci fi

subject to X̃ =
∑m

i=1 F̃i fi − F̃0,

X̃ � O,

where

F̃i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fi
0
. . .

0
−1

0
. . .

0
. . .

0
1

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(i = 1, . . . ,m),
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F̃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0
−u

. . .

−u
l
. . .

l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
t1

. . .

tm

s1

. . .

sm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.3 Numerical result

We here show the concrete numerical result of f : P(c) → R satisfying (2.1) and
(2.2) for c = 10. We solve SDP P′ with l = −100, u = 100 by SDPA. We also put
σ = 3 in X − σI � O to construct an integer-valued f from the output of SDPA;
see Remark 2.1. By rounding an approximate optimal variable vector in the output
of SDPA to an integer vector, we get f (x1, x2) ((x1, x2) ∈ P(10)) as follows:

10 100
9 73 45
8 50 21 −4
7 29 1 −25 −47

x2 6 11 −17 −43 −64 −56
5 −3 −32 −57 −79 −71 −59
4 −15 −44 −69 −91 −82 −71 −56
3 −24 −52 −78 −100 −91 −79 −64 −47
2 −23 −48 −66 −78 −69 −57 −43 −25 −4
1 −15 −35 −48 −52 −44 −32 −17 1 21 45
0 0 −15 −23 −24 −15 −3 11 29 50 73 100

0 1 2 3 4 5 6 7 8 9 10
x1

This function f : P(c)→ R serves as an example that the positive semidefiniteness
of the discrete Hessian matrix does not imply convex extensibility.

We can see a failure of midpoint convexity in

f (1, 1) − 2 f (2, 2) + f (3, 3) = −35 + 2 × 66 − 100 = −3. (2.7)
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The discrete Hessian matrices are as follows:

H(0, 8) =[
4 1
1 4

]

det = 15
H(0, 7) =[

2 −1
−1 2

]

det = 3

H(1, 7) =[
4 1
1 4

]

det = 15
H(0, 6) =[

2 0
0 3

]

det = 6

H(1, 6) =[
5 0
0 2

]

det = 10

H(2, 6) =[
29 −1
−1 3

]

det = 86
H(0, 5) =[

4 1
1 4

]

det = 15

H(1, 5) =[
3 −1
−1 3

]

det = 8

H(2, 5) =[
30 1
1 4

]

det = 119

H(3, 5) =[
4 0
0 2

]

det = 8
H(0, 4) =[

4 0
0 2

]

det = 8

H(1, 4) =[
3 0
0 3

]

det = 9

H(2, 4) =[
31 0
0 2

]

det = 62

H(3, 4) =[
2 −1
−1 3

]

det = 5

H(4, 4) =[
4 1
1 4

]

det = 15
H(0, 3) =[

2 −1
−1 3

]

det = 5

H(1, 3) =[
4 1
1 4

]

det = 15

H(2, 3) =[
31 0
0 3

]

det = 93

H(3, 3) =[
3 0
0 3

]

det = 9

H(4, 3) =[
3 −1
−1 2

]

det = 5

H(5, 3) =[
2 0
0 4

]

det = 8
H(0, 2) =[

7 −3
−3 10

]

det = 61

H(1, 2) =[
6 −8
−8 12

]

det = 8

H(2, 2) =[
21 −10
−10 21

]

det = 341

H(3, 2) =[
3 0
0 31

]

det = 93

H(4, 2) =[
2 0
0 31

]

det = 62

H(5, 2) =[
4 1
1 30

]

det = 119

H(6, 2) =[
3 −1
−1 29

]

det = 86
H(0, 1) =[

7 −5
−5 7

]

det = 24

H(1, 1) =[
9 −5
−5 9

]

det = 56

H(2, 1) =[
12 −8
−8 6

]

det = 8

H(3, 1) =[
4 1
1 4

]

det = 15

H(4, 1) =[
3 0
0 3

]

det = 9

H(5, 1) =[
3 −1
−1 3

]

det = 8

H(6, 1) =[
2 0
0 5

]

det = 10

H(7, 1) =[
4 1
1 4

]

det = 15
H(0, 0) =[

7 −5
−5 7

]

det = 24

H(1, 0) =[
7 −5
−5 7

]

det = 24

H(2, 0) =[
10 −3
−3 7

]

det = 61

H(3, 0) =[
3 −1
−1 2

]

det = 5

H(4, 0) =[
2 0
0 4

]

det = 8

H(5, 0) =[
4 1
1 4

]

det = 15

H(6, 0) =[
3 0
0 2

]

det = 6

H(7, 0) =[
2 −1
−1 2

]

det = 3

H(8, 0) =[
4 1
1 4

]

det = 15

3 Extending the Domain of Definition

3.1 Extension to a function on the nonnegative orthant Z
2
+

In this section, we construct a function f̃ : Z
2
+ → R which satisfies the following

conditions:

H f̃ (x1, x2) � O (∀(x1, x2) ∈ Z
2
+), (3.1)

f̃ (1, 1) − 2 f̃ (2, 2) + f̃ (3, 3) < 0. (3.2)

Let f be the function on P(c) constructed in Section 2.3. To extend it to f :
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Z
2
+ → R, we define the function value for (x1, x2) ∈ S (c + 1) by

f (x1, x2) = α(x1 + x2) + β (3.3)

with arbitrary α and β. Then we have

H f (x1, x2) = O (∀(x1, x2) ∈ S (c + 1))

and H f (x1, x2) is known to be positive semidefinite unless (x1, x2) ∈ B(c−1)∪B(c).
To take care of the case (x1, x2) ∈ B(c− 1)∪ B(c), we now define the following

functions g and h with a > 0:

g(x1, x2) = a(x1 − x2)2 ((x1, x2) ∈ Z
2
+),

h(x1, x2) =
{

0 ((x1, x2) ∈ P(c)),
a(x1 + x2 − c)2 ((x1, x2) ∈ S (c + 1)).

It is noted that

g(1, 1) = g(2, 2) = g(3, 3) = 0, (3.4)

h(1, 1) = h(2, 2) = h(3, 3) = 0, (3.5)

and the discrete Hessian matrices of g and h are given as follows:

Hg(x1, x2) = a
[

2 −2
−2 2

]
((x1, x2) ∈ Z

2
+),

Hh(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0
0 0

]
((x1, x2) ∈ P(c − 2)),

a
[

1 1
1 1

]
((x1, x2) ∈ B(c − 1)),

a
[

2 2
2 2

]
((x1, x2) ∈ S (c)).

Lemma 3.1. For f̃ = f + g + h, conditions (3.1) and (3.2) hold.

Proof. We can see the failure of midpoint convexity (3.2) easily from (2.7), (3.4)
and (3.5). We here prove the positive semidefiniteness of the discrete Hessian
matrix (3.1). Note first that

H f̃ = H f + Hg + Hh.

We consider the following four cases:

(i) For (x1, x2) ∈ P(c − 2): From H f � O and Hh = O, we have

H f̃ = H f + a

⎡⎢⎢⎢⎢⎢⎣ 2 −2
−2 2

⎤⎥⎥⎥⎥⎥⎦ � O.
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(ii) For (x1, x2) ∈ B(c− 1): Although H f is not necessarily positive semidefinite,
using a sufficiently large a, the positive semidefiniteness

H f̃ = H f + a

⎡⎢⎢⎢⎢⎢⎣ 3 −1
−1 3

⎤⎥⎥⎥⎥⎥⎦ � O

holds for all (x1, x2) ∈ B(c − 1). It is noted that such a exists since B(c − 1)
is a finite set.

(iii) For (x1, x2) ∈ B(c): Although H f is not necessarily positive semidefinite,
using a sufficiently large a, the positive semidefiniteness

H f̃ = H f + a

⎡⎢⎢⎢⎢⎢⎣ 4 0
0 4

⎤⎥⎥⎥⎥⎥⎦ � O

holds for any (x1, x2) ∈ B(c). It is noted that such a exists since B(c) is a
finite set.

(iv) For (x1, x2) ∈ S (c + 1): From H f = O, we have

H f̃ = Hg + Hh = a

⎡⎢⎢⎢⎢⎢⎣ 4 0
0 4

⎤⎥⎥⎥⎥⎥⎦ � O.

This completes the proof of Lemma 3.1.

�

3.2 Extension to a function on Z
2

In this section, we construct a function f̂ : Z
2 → R which satisfies the following

conditions:

H f̂ (x1, x2) � O (∀(x1, x2) ∈ Z
2), (3.6)

f̂ (1, 1) − 2 f̂ (2, 2) + f̂ (3, 3) < 0. (3.7)

Lemma 3.2. Suppose that a function f : Z
2
+ → R satisfies the following condi-

tions:

H f (x1, x2) � O (∀(x1, x2) ∈ Z
2
+), (3.8)

sup
x1∈Z+

( f (x1, 0) − f (x1, 1)) < +∞, sup
x2∈Z+

( f (0, x2) − f (1, x2)) < +∞. (3.9)

Choose a constant b as

b ≥ max
⎛⎜⎜⎜⎜⎝ sup

x1∈Z+
( f (x1, 0) − f (x1, 1)), sup

x2∈Z+
( f (0, x2) − f (1, x2))

⎞⎟⎟⎟⎟⎠ (3.10)
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and define a function f̂ : Z
2 → R as

f̂ (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x1, x2) (x1 ≥ 0, x2 ≥ 0),
f (x1, 0) − bx2 (x1 ≥ 0, x2 ≤ 0),
f (0, x2) − bx1 (x1 ≤ 0, x2 ≥ 0),
f (0, 0) − b(x1 + x2) (x1 ≤ 0, x2 ≤ 0).

(3.11)

Then the condition (3.6) is satisfied.

Proof. From condition (3.8), we have

f (x1 + 2, 0) − 2 f (x1 + 1, 0) + f (x1, 0) ≥ 0 (x1 ≥ 0),

f (0, x2 + 2) − 2 f (0, x2 + 1) + f (0, x2) ≥ 0 (x2 ≥ 0).

We check the positive semidefiniteness (3.6) in the following cases:

(i) For x1 ≥ 0, x2 ≥ 0: We have H f̂ (x1, x2) = H f (x1, x2) � O.

(ii) For x1 ≥ 0, x2 = −1: We have

H f̂ (x1,−1)

=

⎡⎢⎢⎢⎢⎢⎣ f (x1 + 2, 0) − 2 f (x1 + 1, 0) + f (x1, 0) 0
0 f (x1, 1) − f (x1, 0) + b

⎤⎥⎥⎥⎥⎥⎦ � O.

(iii) For x1 ≥ 0, x2 ≤ −2: We have

H f̂ (x1, x2) =

⎡⎢⎢⎢⎢⎢⎣ f (x1 + 2, 0) − 2 f (x1 + 1, 0) + f (x1, 0) 0
0 0

⎤⎥⎥⎥⎥⎥⎦ � O.

(iv) For x1 = −1, x2 = −1: We have

H f̂ (−1,−1) =

⎡⎢⎢⎢⎢⎢⎣ f (1, 0) − f (0, 0) + b 0
0 f (0, 1) − f (0, 0) + b

⎤⎥⎥⎥⎥⎥⎦ � O.

(v) For x1 = −1, x2 ≤ −2: We have

H f̂ (−1, x2) =

⎡⎢⎢⎢⎢⎢⎣ f (1, 0) − f (0, 0) + b 0
0 0

⎤⎥⎥⎥⎥⎥⎦ � O.

(vi) For x1 ≤ −2, x2 ≤ −2: We have H f̂ (x1, x2) = O.

(vii) In the above we have dealt with the case where x1 ≥ x2. The remaining case
with x1 ≤ x2 follows from symmetry.
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�

Lemma 3.3. For the function f̃ : Z
2
+ → R constructed in Lemma 3.1, we have

f̃ (x1, 0) − f̃ (x1, 1) = 2a(c − 1) − α (x1 ≥ c),

f̃ (0, x2) − f̃ (1, x2) = 2a(c − 1) − α (x2 ≥ c).

Therefore, the function f̃ satisfies the condition (3.9) and, the condition (3.10)
holds for b with

b ≥ max
(

max
0≤x1≤c

( f̃ (x1, 0) − f̃ (x1, 1)), max
0≤x2≤c

( f̃ (0, x2) − f̃ (1, x2)), 2a(c − 1) − α
)
.

Proof. For x1 ≥ c, we have

f̃ (x1, 0) − f̃ (x1, 1)

= [(αx1 + β) − (α(x1 + 1) + β)] + [g(x1, 0) − g(x1, 1)] + [h(x1, 0) − h(x1, 1)]

= −α + a[x2
1 − (x1 − 1)2] + a[(x1 − c)2 − (x1 + 1 − c)2]

= 2a(c − 1) − α.
We can calculate f̃ (0, x2) − f̃ (1, x2) similarly. �

The function f̂ : Z
2 → R constructed in Lemma 3.2 with f = f̃ in Lemma 3.1

satisfies (3.6) and (3.7). The positive semidefiniteness (3.6) follows from Lemmas
3.1, 3.2 and 3.3, whereas the failure of midpoint convexity (3.7) follows easily from
the definition of f̂ and Lemma 3.1. Hence this function f̂ serves as the function f
in Theorem 1.1.

The construction method presented in the above is summarized as follows:

1. We construct a function f : P(c) → R on the triangular domain P(c) with
the aid of SDP. The positive semidefiniteness of the discrete Hessian matrix
holds for (x1, x2) ∈ P(c − 2). The midpoint convexity fails at (x1, x2) =
(1, 1), (2, 2), (3, 3).

2. We extend f to a function f : Z
2
+ → R on the nonnegative orthant by (3.3).

The positive semidefiniteness of the discrete Hessian matrix holds except at
(x1, x2) ∈ B(c − 1) ∪ B(c).

3. We define f̃ : Z
2
+ → R by f̃ = f + g + h. The positive semidefiniteness of

the discrete Hessian matrix holds for (x1, x2) ∈ Z
2
+. The midpoint convexity

fails at (x1, x2) = (1, 1), (2, 2), (3, 3).

4. We extend f̃ to a function f̂ : Z
2 → R by (3.11). The positive semidefi-

niteness of the discrete Hessian matrix holds for (x1, x2) ∈ Z
2. The midpoint

convexity fails at (x1, x2) = (1, 1), (2, 2), (3, 3).
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Remark 3.1. In Theorem 1.1 the function f can be chosen to be integer-valued.
To see this note that the function f on P(c) satisfying (2.1) and (2.2) computed
by SDP is integer-valued and the parameters α, β, a, and b can be chosen to be
integers. Then the resulting function f̂ is integer-valued.
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