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Abstract

The smallest positive eigenvalue of the Laplacian of a network is
called the spectral gap and characterizes various dynamics on net-
works. We propose mathematical programming methods to maximize
the spectral gap of a given network by removing a fixed number of
nodes. We formulate relaxed versions of the original problem using
semidefinite programming and apply them to example networks.

1 Introduction

An undirected and unweighted network (i.e., graph) onN nodes is equivalent
to an N × N symmetric adjacency matrix A = (Aij), where Aij = 1 when
nodes (also called vertices) i and j form a link (also called edge) such that
they are adjacent, and Aij = 0 otherwise. We define the Laplacian matrix
of the network by L ≡ D − A, where D is the N × N diagonal matrix in
which the ith diagonal element is equal to

∑N
j=1Aij , i.e., the degree of node

i.
When the network is connected, the eigenvalues of L satisfy λ1 = 0 <

λ2 ≤ · · · ≤ λN . The eigenvalue λ2 is called spectral gap or algebraic connec-
tivity and characterizes various dynamics on networks including synchroniz-
ability [1, 2, 3], speed of synchronization [1], consensus dynamics [4], the
speed of convergence of the Markov chain to the stationary density [3, 5],
and the first-passage time of the random walk [3]. Because a large λ2 is
often considered to be desirable, e.g., for strong synchrony and high speed
of convergence, maximization of λ2 by changing networks under certain con-
straints is important in the context of practical applications.

In the present work, we consider the problem of maximizing the spectral
gap by removing a specified number, Ndel, of nodes from a given network.
We assume that an appropriate choice of Ndel nodes keeps the network
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connected. A heuristic algorithm for this task in which nodes are sequen-
tially removed is proposed in [6]. In this study, we explore a mathemati-
cal programming approach. We propose two algorithms using semidefinite
programming and numerically compare their performance with that of the
sequential algorithm proposed in [6].

2 Methods

We start by introducing notations. First, the binary variable xi (1 ≤ i ≤ N)
takes a value of 0 if node i is one of the Ndel removed nodes and 1 if node
i survives the removal. Our goal is to determine the xi (1 ≤ i ≤ N) that
maximizes λ2 under the constraint

N∑
i=1

xi = N −Ndel. (1)

Second, we define L̃ij as the N ×N Laplacian matrix generated by a single
link (i, j) ∈ E, where E is the set of links. In other words, the (i,i) and (j,j)
elements of L̃ij are equal to 1, the (i,j) and (j,i) elements of L̃ij are equal
to −1, and all the other elements of L̃ij are equal to 0. It should be noted
that

L =
∑

1≤i<j≤N ;(i,j)∈E

L̃ij . (2)

Third, J denotes the N ×N matrix in which all the N2 elements are equal
to unity. Fourth, Ei denotes the N ×N diagonal matrix in which the (i, i)
element is equal to unity and all the other N2 − 1 elements are equal to 0.

After the removal of Ndel nodes, we do not decrease the size of the
Laplacian. Instead, we remove L̃ij ((i, j) ∈ E) from the summation on
the RHS of Eq. (2) if node i or j has been removed from the network.
The Laplacian of the remaining network, if connected, has Ndel + 1 zero
eigenvalues. These zero eigenvectors are given by u(0) ≡ (1 · · · 1)⊤ and ei,
where ⊤ denotes the transpose, ei is the unit column vector in which the
ith element is equal to 1 and the other N − 1 elements are equal to 0, and
i is the index of one of the Ndel removed nodes.

Allowing nonlinearity, we formulate the eigenvalue problem as follows;
we name this problem EIGEN:

maximize t subject to Eq. (1) and

−tI +
∑

i<j;(i,j)∈E

xixjL̃ij + αJ + β

N∑
i=1

(1− xi)Ei ≽ 0, (3)

and xi ∈ {0, 1} (1 ≤ i ≤ N), where ≽ 0 indicates that the LHS is a
semidefinite matrix. The semidefinite constraint Eq. (3) is derived from a
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standard prescription in semidefinite programming for optimization of an
extreme eigenvalue of a matrix. Maximizing t is equivalent to maximizing
the smallest eigenvalue of the matrix given by the summation of the second,
third, and fourth terms on the LHS of Eq. (3).

Without the third and fourth terms on the LHS of Eq. (3), the optimal
solution would be trivially equal to t = 0 because the Laplacian of any
network has 0 as the smallest eigenvalue. Because J = u(0)u(0)⊤, the third
term transforms a zero eigenvalue to ≈ α. We should take a sufficiently
large α > 0 such that the zero eigenvalue is shifted to a value larger than
the spectral gap of the remaining network, denoted by λ̃2. This technique
was introduced in [7] for solving the traveling salesman problem.

For each removed node i (i.e., xi = 0), the matrix represented by the
second term on the LHS of Eq. (3) has a zero eigenvalue associated with
eigenvector ei. The fourth term shifts this zero eigenvalue to ≈ β. Note
that the fourth term disappears for the remaining N −Ndel nodes because
xi = 1 for the remaining nodes. If the transformed eigenvalues are larger
than λ̃2, the solution to the problem stated above returns the Ndel nodes
whose removal maximizes λ̃2.

The second term on the LHS of Eq. (3) represents a nonlinear constraint.
To linearize the problem in terms of the variables, we follow a conventional
prescription to introduce auxiliary variables Xij ≡ xixj , where 1 ≤ i ≤ j ≤
N [8, 9, 10] (also reviewed in [11]). If xi is discrete, xi(1 − xi) = 0 holds
true. Therefore, we require Xii = x2i = xi. In the following discussion, we
use xi in place of Xii.

We define the (N + 1)× (N + 1) matrix

Y ≡
[
1 x⊤

x X

]
, (4)

where x ≡ (x1 . . . xN )⊤, the (i, i) element of the N ×N matrix X is equal
to xi, and the (i, j) element (i ̸= j) of X is equal to Xij . By allowing xi
and Xij (1 ≤ i < j ≤ N) to take any continuous value between 0 and 1, we
define the relaxed problem named SDP1 as follows:

maximize t subject to Eq. (1) and

−tI +
∑

i<j;(i,j)∈E

XijL̃ij+αJ + β
N∑
i=1

(1− xi)Ei ≽ 0, (5)

Y ≽0. (6)

Note that Eq. (6) implies 0 ≤ xi ≤ 1 (1 ≤ i ≤ N) and that SDP1 relaxes the
original problem in that xi and Xij are allowed to take continuous values
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while Eq. (6) is imposed. The method that we propose here for approxi-
mately maximizing the spectral gap is to remove the Ndel nodes correspond-
ing to the Ndel smallest values among x1, . . ., xN in the optimal solution of
SDP1.

SDP1 involves N(N + 1)/2 + 1 variables (i.e., t, xi, and Xij , where
i < j). In fact, Xij for which (i, j) /∈ E is free unless Eq. (6) is violated; it
does not appear in the main semidefinite constraint represented by Eq. (5).
Because a given network is typically sparse, this implies that there are many
redundant variables in SDP1. To exploit the sparsity and thus to save time
and memory space, a technique based on matrix completion might be useful
[12, 13]. In this paper, however, we propose another relaxation SDP2 for
this purpose.

To linearize the second term on the LHS of Eq. (3), we take advantage of
four inequalities xixj ≥ 0, xi(1−xj) ≥ 0, (1−xi)xj ≥ 0, and (1−xi)(1−xj) ≥
0 that must be satisfied for any link (i, j) ∈ E. By defining Xij ≡ xixj , as
in the case of SDP1, we obtain the following four linear constraints [14]:

Xij ≥0, (7)

xi −Xij ≥0, (8)

xj −Xij ≥0, (9)

1− xi − xj +Xij ≥0. (10)

SDP2 is defined by replacing Eq. (6) by Eqs. (7)–(10), where only the pairs
(i, j) ∈ E are considered. Note that Eqs. (7)–(10) guarantee 0 ≤ xi ≤ 1
(1 ≤ i ≤ N). We remove the Ndel nodes corresponding to the Ndel smallest
values among x1, . . ., xN in the optimal solution of SDP2.

Numerically, SDP2 is much easier to solve than SDP1 for two reasons.
First, the number of variables is smaller in SDP2. In SDP2, Xij is defined
only on the links, whereas in SDP 1 it is defined for all the pairs 1 ≤ i < j ≤
N . In sparse networks, the number of variables is O(N2) for SDP1 and O(N)
for SDP2. Second, the semidefinite constraint, which is much more time
consuming to solve than a linear constraint of a comparable size, is smaller
in SDP2 than in SDP1. While SDP1 and SDP2 share the N×N semidefinite
constraint (5), SDP1 involves an additional semidefinite constraint (6) of size
(N + 1)× (N + 1).

To choose the parameter values α and β, we consider the matrix rep-
resented by the sum of the second, third, and fourth terms on the LHS of
Eq. (3). A straightforward calculation shows that the eigenvalues of this ma-
trix are given by the N−Ndel−1 positive eigenvalues of the Laplacian of the

remaining network, (Ndel−1)-fold β, and β+
[
αN − β ±

√
(αN − β)2 + 4Ndelαβ

]
/2.

For a fixed β, we should choose α to maximize β+
[
αN − β −

√
(αN − β)2 + 4Ndelαβ

]
/2,

which is always smaller than eigenvalue β. We set α = β/N to simplify the
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expression of this eigenvalue to β(1−
√

Ndel/N) while approximately max-
imizing this eigenvalue.

We have the following bounds for the optimal solution to the original
problem. We denote by λ̃opt

2 the optimal solution, i.e., the maximum spectral
gap with Ndel nodes removed. We denote by λ̃SDP

2 the smallest positive
eigenvalue of the network obtained by the proposed method; the proposed
method removes the Ndel nodes corresponding to the Ndel smallest values
of x1, . . ., xN in the optimal solution of SDP1 or SDP2. Obviously, λ̃SDP

2

is a lower bound for λ̃opt
2 . On the other hand, the optimal value, max t, of

SDP1 or SDP2 serves as an upper bound for λ̃opt
2 , as long as the parameter

β is chosen to satisfy λ̃opt
2 ≤ β(1 −

√
Ndel/N). This follows from the facts

that the optimal value of EIGEN with such a β value coincides with λ̃opt
2

and both SDP1 and SDP2 are a relaxation of EIGEN. We can summarize
our observation as follows: λ̃SDP

2 ≤ λ̃opt
2 ≤ max t.

3 Numerical results

We apply SDP1 and SDP2 to the real data used in our previous paper [6].
We implement SDP1 and SDP2 using the free software package SeDuMi
that runs on MATLAB [15].

We compare the performance of SDP1 and SDP2 with that of the op-
timal sequential method, which is a heuristic method proposed in [6]. In
the optimal sequential method, we numerically calculate the spectral gap
(i.e., smallest positive eigenvalue of the Laplacian) obtained by the removal
of one node; we perform this calculation for all possible choices of nodes.
Subsequently, we remove the node whose removal yields the largest spectral
gap. Then, for the remaining network composed of N − 1 nodes, we imple-
ment the same procedure to determine the second node to be removed. We
repeat this procedure until Ndel nodes have been removed.

The first network that we examine is the largest connected component of
the undirected and unweighted version of a macaque cortical network [16].
The network has N = 71 nodes and 438 links. We set β = 2.

The spectral gap obtained by the different methods is shown in Fig. 1(a)
as a function of Ndel. Up to Ndel = 4, the optimal sequential method yields
the exact solution, as do SDP1 and SDP2. For Ndel ≥ 5, we could not obtain
the exact solution because of the combinatorial explosion. For Ndel ≥ 5,
SDP1 and SDP2 perform worse than the optimal sequential method. The
final values of xi (1 ≤ i ≤ N) are not bimodally distributed around 0 and 1.
The distribution is rather unimodal except for the first three values of xi that
are close to 0. The ten values of xi when Ndel = 5, in ascending order, are as
follows: x33 = 0.1086, x62 = 0.1531, x53 = 0.1589, x1 = 0.4813, x2 = 0.5246,
x8 = 0.5591, x7 = 0.6449, x24 = 0.7866, x51 = 0.8749, and x63 = 0.8931 in
SDP1, and x53 = 0.000, x33 = 0.145, x62 = 0.177, x2 = 0.585, x1 = 0.588,
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x8 = 0.610, x7 = 0.668, x24 = 0.708, x5 = 0.738, and x4 = 0.937 in SDP2.
We consider that the nature of this distribution to be the reason why SDP1
and SDP2 perform poorly as compared to the optimal sequential method.

The second network is the largest connected component of the C. elegans
neural network [17, 18]. Two nodes are regarded as being connected when
they are connected by a chemical synapse or gap junction. We ignore the
direction and weight of links. The network has N = 279 nodes and 2287
links. We set β = 2.5. SDP1 did not work for this network because N is
too large. Therefore, we only tried to solve SDP2.

The results for SDP2 and the optimal sequential method are shown in
Fig. 1(b). Although SDP2 gradually increases the spectral gap as Ndel

increases, which is nontrivial, it again performs poorly compared to the
optimal sequential method. The 15 values of xi whenNdel = 10, in ascending
order, are as follows: x274 = 0.0988, x148 = 0.1350, x149 = 0.1479, x36 =
0.2215, x93 = 0.2215, x107 = 0.8510, x186 = 0.8604, x137 = 0.8637, x229 =
0.8817, x230 = 0.8820, x123 = 0.8831, x275 = 0.8975, x127 = 0.8980, x122 =
0.8990, and x132 = 0.8990.

4 Discussion

We proposed a method to maximize the spectral gap using semidefinite
programming. Although the two algorithms have a firmer mathematical
foundation as compared to the heuristic numerical methods (i.e., brute
force method and optimal sequential method), they perform worse than
the heuristic methods.

We should also be careful about the choice of β. If β is too large, SDP1
and SDP2 would result in xi ≈ Ndel/N (1 ≤ i ≤ N). This is because setting
xi = Ndel/N (1 ≤ i ≤ N) makes the fourth term on the LHS of Eq. (3) equal
to βN−Ndel

N I, which increases all the eigenvalues, including the spectral gap

of the remaining network, by βN−Ndel
N . In contrast, if β is smaller than λ̃2,

SDP1 and SDP2 would maximize the false eigenvalue originating from the
fourth term on the LHS of Eq. (3).

To enhance the performance of SDP1 and SDP2, it may be useful to
neglect the convexity of the problem. For example, we could replace (1−xi)
in the fourth term by (1− xi)

p and gradually increase p from unity. When
p > 1, the problem is no longer convex. Accordingly, the existence of the
unique solution or the convergence of a proposed algorithm is not guaran-
teed. Nevertheless, we may be able to track the optimal solution x by the
Newton method while we gradually increase p (see p.5 and p.63 in [19]). An
alternative extension is to add −p

∑N
i=1 xi(1− xi) to the objective function

to be maximized (i.e., t). When p > 0, the convexity is violated. However,
we may be able to adopt a procedure similar to the method explained above,
i.e., start with p = 0 and gradually increase p to track the solution by the
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Newton method.
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Figure 1: Spectral gap as a function of the number of removed nodes. (a)
Results for the macaque cortical network with N = 71 nodes. We set β = 2.
(b) Results for the C. elegans neural network with N = 279 nodes. We set
β = 2.5.
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