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Abstract

A tensegrity structure is a prestressed pin-jointed structure consisting of continuously con-

nected tensile members (cables) and disjoint compressive members (struts). This paper addresses

topology optimization of tensegrity structures subjected to self-weight loads, where the compli-

ance, i.e., the strain energy at the equilibrium state, is to be minimized. It is shown that the

optimization problem can be formulated as a mixed integer linear programming (MILP) problem.

The proposed method does not require connectivity relation of cables and struts of a tensegrity

structure to be known in advance. Numerical experiments illustrate that various tensegrity

structures can be found by solving the presented MILP problem.
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1 Introduction

The terminology tensegrity , coined by Fuller [13] from tension integrity , represents a particular class

of tension structures invented by Richard Buckminster Fuller [12], David Georges Emmerich [11],

and Kenneth Snelson [30]. A tensegrity structure is a prestressed pin-jointed structure consisting of

continuous tensile members (cables) and discontinuous compressive members (struts). An example

of a tensegrity structure is shown in Figure 1. This tensegrity structure consists of three struts and

nine cables connected by six nodes, where struts and cables are depicted by thick and thin lines,

respectively. Here, struts do not touch each other, while cables are connected continuously. The

nodes are aligned in the shape of a twisted triangular prism. By introducing an axial tensile force

to each cable, this tensegrity structure attains a stable equilibrium state. The forces introduced at

this initial equilibrium state are called the prestress forces.

Since cables of a tensegrity structure are very thin compared with struts, tensegrity structures

often give the impression of a cluster of struts floating in the air. Snelson has been creating many

tensegrity structures as fascinating sculptures [31] with his intuition as an artist and sophisticated

techniques developed over the years. Fuller and Emmerich, in contrast, explored possibility of

application of tensegrity structures to architecture. This attempt, afterward, has been realized as,
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Figure 1: An example of a tensegrity structure.

e.g., tensegrity domes [25]. Following these pioneers, various methods for finding forms of tensegrity

structures have been proposed by many researchers; see surveys due to Juan and Mirats Tur [20] and

Tibert and Pellegrino [35]. Note that an arbitrarily given geometrical configuration is not necessarily

realized as a tensegrity structure because the configuration of a tensegrity structure depends on

the prestress forces. Most of the proposed numerical methods require to specify topology of a

tensegrity structure as input data, where by topology we mean the connectivity of struts and cables

of a tensegrity structure. Finding new topologies of tensegrity structures has been fully addressed

only by few authors and remains as a challenging problem. For example, based on the group

representation theory [8], Back and Connelly [3] attempted to enumerate tensegrity structures with

the specified symmetry property. There exist only few numerical methods that can find asymmetric

topology of tensegrity structures [10, 21, 26].

Today the original definition of tensegrity has been extended in various ways; see Motro [24]

and the references therein. It has been recognized, or at least expected, that potential applications

of tensegrity structures include architectural and civil engineering structures [1, 4, 25], deployable

structures [33, 34], and cell cytoskeleton models in biomechanics [36, 37]. They are also studied in

the graph theory [5, 19, 32].

On the basis of this overview, it is desired to develop numerical methods that can find various

topologies of tensegrity structures without experience and intuition. The author proposed a mixed

integer linear programming (MILP) approach to topology optimization of compliance of a tensegrity

structure subjected to a fixed external load [21]. In continuation of that previous work, this paper

addresses self-weight loading. The self-weight load depends on design of a structure and design is

certainly unknown in the course of optimization. Therefore, topology optimization of structures with

the self-weight loads possesses particular difficulties. This problem was discussed first by Rozvany

[27] for plastic design, and subsequently studied for arches [28], beams and columns [2, 22, 29],

composite structures [23], shell structures [18], and continua [6]. Nevertheless, the self-weight load

is still often neglected in optimization of structures. However, tensegrity structures are unusual

structures in the sense that stiff structural elements, i.e., struts, are not connected to each other,

and hence they are relatively flexible in general. Therefore, it is important to consider the self-weight

load, which might significantly affect the equilibrium configuration of a tensegrity structure. The

compliance is a measure of global flexibility of structures. Therefore, by minimizing the compliance
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under the self-weight load we can find a tensegrity structure which is stiff against the self-weight

load.

The paper is organized as follows. Section 2 introduces the definition and fundamental equations

of tensegrity structures. The terminology of the graph theory is used in this exposition, especially for

readers who are familiar with operations research but not with applied mechanics. Section 3 presents

the constraints and the objective function considered in the topology optimization of tensegrity

structures. In section 4, the optimization problem is reduced to an MILP problem. Three numerical

examples are demonstrated in section 5. We conclude in section 6.

2 Fundamentals of tensegrity structures

As an initial solution for optimization, consider a structure constructed with some straight structural

components called members. The ends of the members are connected at joints called nodes. Each

node is a pin joint, which means that members connected to a node can rotate around the node

without friction. External forces are considered to be applied only at the nodes. Therefore, an

internal force transmitted by a member is only an axial force, which is either tensile or compressive.

Such a structure is referred to as a truss. The locations of nodes of a truss are specified in the

three-dimensional space, when no external force is applied. This configuration is called the initial

configuration. Throughout the paper, we assume that deformation of a structure is small and that

members consist of a linear elastic material.

Let V and E denote the set of nodes and the set of members of a truss, respectively, where

|V | = n and |E| = m. For simplicity, we assume E = {1, . . . ,m}. If we adopt the terminology of

the graph theory, V and E correspond to the set of vertices and that of edges of a graph G = (V,E),

respectively. Unlike the graph theory, however, the location is assigned to each node of the truss.

Figure 2 shows an initial configuration of a truss consisting of |E| = 15 members connected by

|V | = 6 nodes. The nodes of this truss form two horizontal equilateral triangles. This paper proposes

an optimization-based method for finding a tensegrity structure, regarded as a special truss, from a

given initial truss. Figure 1 is a tensegrity structure obtained from the initial structure in Figure 2.

Note that three members are removed from Figure 2 to obtain the tensegrity structure in Figure 1.

Let qi denote the axial force of member i (i ∈ E) introduced in the initial configuration. Here,

qi > 0 means that the axial force is tensile, while qi < 0 means that it is compressive. In a tensegrity

structure, a member transmits a compressive force is called a strut , while that transmits a tensile

force is called a cable. Let {S,C,N} be a partition of E defined by

S = {i ∈ E | qi < 0}, (1a)

C = {i ∈ E | qi > 0}, (1b)

N = {i ∈ E | qi = 0}, (1c)

where S, C, and N are the sets of struts, cables, and removed members from the initial structure,

respectively. Finding a tensegrity structure from an initial structure is to determine S, C, and N

satisfying some particular conditions introduced below; see Definition 2.1. For example, a tensegrity

structure in Figure 1 consists of |S| = 3 struts and |C| = 9 cables, while |N | = 3 members are

removed from the initial structure in Figure 2. Note that struts are represented by thick lines and
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Figure 2: An initial structure to obtain the tensegrity structure in Figure 1.

cables are represented by thin lines. This is because, in a real-world tensegrity structure, bars with

large cross-sections (e.g., stainless-steel tubes) are often used for struts, while cables (e.g., stranded

wires) usually have smaller cross-sections than struts.

Let f ∈ R3n denote the vector of external forces. The static equilibrium condition, or the

force-balance equation, is written as

Hq = f , (2)

where H ∈ R3n×m is a constant matrix called the equilibrium matrix. This matrix is obtained as

follows. We first determine a direction of each member to obtain a directed graph G = (V,E), where

V and E are regarded as the sets of vertices and edges of G, respectively. Let D ∈ Rn×m denote the

incidence matrix of G. Define Bi ∈ R3×3n by Bi = −dT
i ⊗I3, where di ∈ Rn is the ith column vector

of D, I3 is the 3 × 3 identity matrix, and the Kronecker product is designated by ⊗. Let x ∈ R3n

denote the vector consisting of the location vectors of all nodes in the three-dimensional space. Then

the ith column vector of H, denoted by hi, is given by hi = (1/li)BT
i Bix, where li is the length

of member i. Thus, H is a matrix determined by the connectivity of members and the locations

of nodes of the initial structure. Note that (2) is similar to the flow conservation condition of the

network flow; the vertex vp at which fj ̸= 0 corresponds to a source or a sink and q corresponds to

a flow. Unlike the network flow, however, qi’s in (2) possibly take negative values and each node

has three balance equations corresponding to the coordinates of the three-dimensional space.

We say that the structure is at the state of self-equilibrium if it sustains q (q ̸= 0) satisfying (2)

with f = 0. It should be clear that self-weight loads are regarded as external loads and hence are

not considered at the self-equilibrium state. The axial force qi at the self-equilibrium state is called

a prestress force. Once the self-equilibrium configuration is found, we usually apply the specified

external load to the structure to investigate the deformation from the self-equilibrium state.

Let E(vp) ⊂ E denote the set of indices of the members that are connected to the node vp ∈ V .

A tensegrity structure is defined in terms of prestress forces q as follows.

Definition 2.1. A truss is said to be a tensegrity structure if there exists q ̸= 0 satisfying

Hq = 0, (3)

|S ∩ E(vp)| ≤ 1, ∀vp ∈ V, (4)
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where S is defined by (1a). ■

Condition (3) together with q ̸= 0 requires that a tensegrity structure has a self-equilibrium

state. This means that m − rankH ≥ 1. Here, ds = m − rankH is called the degree of static

indeterminacy . We say that a structure is statically determinate if ds = 0 and that it is statically

indeterminate if ds ≥ 1. On the other hand, the degree of kinematic indeterminacy is defined by

dk = 3n− rankHT − 6. The member elongations, denoted c, can be written in terms of the nodal

displacements, denoted u, as c = HTu. Therefore, a nontrivial solution to HTu = 0 corresponds to

nodal displacements without member elongations. Since the number of degrees of freedom of rigid

body motion is six, dk represents the number of degrees of freedom of infinitesimal deformations

that cause no member elongation. In other words, a structure with dk > 1 can deform infinitesimally

without applying any external forces. Such a structure is said to be kinematically indeterminate

(or unstable). In contrast, if dk = 0, then we say that the structure is kinematically determinate

(or stable). Since rankH = rankHT, we obtain

m− ds = 3n− dk − 6, (5)

which is called the extended Maxwell rule [7, 14]. It is known that the tensegrity structure in Figure 1

satisfies ds = dk = 1, i.e., both statically and kinematically indeterminate, and hence unstable. By

introducing prestress forces, however, this tensegrity structure can be stabilized [9]. As such this

is an “usual” structure and attracts interests of many researchers and artists. A kinematically

indeterminate structure stabilized by introducing prestress forces is said to be prestress stable.

Finding a new tensegrity structure that is prestress stable is an extremely challenging problem.

Issues of stability are not taken into account in this paper; particularly, Definition 2.1 does not

require prestress stability.

Condition (4), called the discontinuity condition of struts, requires that any two struts of a

tensegrity structure do not share a common node. In other words, S is a matching of the graph

G = (V,E). The discontinuity condition of struts is an intrinsically difficult condition when we

attempt to design a new tensegrity structure. Note that Definition 2.1 is one of the most classical

definitions of a tensegrity structure; the concept of tensegrity structures has been extended in various

ways [24].

3 Compliance optimization under self-weight load

An optimization problem of tensegrity structures considering the self-weight load is formulated.

3.1 Practical constraints on prestress forces

By definition, the prestress force, qi, is required to satisfy (1). From a practical point of view,

however, it is not accepted to apply a very large force to a member. On the other hand, a very small

tensile force, which often causes cable sag, should also be avoided from view points of maintainability

and visual clarity. Therefore, instead of (1), we impose the lower and upper bound constraints for
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the prestress force as

qi ∈


[−qs,−qs] if i ∈ S,

[qc, qc] if i ∈ C,

{0} if i ∈ N ,

(6)

where qs, qs, qc, and qc are positive constants satisfying qs < qs and qc < qc.

Besides (6), q should satisfy the self-equilibrium condition introduced in (3).

3.2 Member cross-sectional areas

It is often that a real-world tensegrity structure is constructed by using thick bars for struts and

thin wires for cables. We denote by ξs and ξc (ξs > ξc) the specified cross-sectional areas of such

bars and wires, respectively. Then the cross-sectional area of member i, denoted ai, is given by

ai =


ξs if i ∈ S,

ξc if i ∈ C,

0 if i ∈ N .

(7)

The elongation stiffness of member i, which represents the axial force caused by a unit elongation,

is written as

ki =
Y ai
li

, (8)

where Y is the Young modulus. Precisely, the elongation stiffness should be defined by using the

initial (i.e., undeformed) member length, l0i , as Y ai/l
0
i . Due to the presence of prestress forces, the

member length of the initial structure, li, is not equal to l0i . However, the difference between li and

l0i is negligibly small. Hence, in this paper we define the member elongation stiffness by (8).

3.3 Equilibrium state under self-weight load

Usually a tensegrity structure transfers the applied external load (including its self-weight load) to

the ground (or a foundation). The connections which join a structure to its foundation are called

supports. In section 3.1 we have assumed that the tensegrity structure does not have supports

to study the self-equilibrium state at which no external load is applied. In contrast, we here

suppose that some of degrees of freedom of the displacements are fixed by supports to investigate

its equilibrium state in the presence of the external load.

Let u ∈ R3n denote the vector of nodal displacements. Consider a partition JD∪JN = {1, . . . , 3n}
of the set of indices of the degrees of freedom of displacements. Suppose that the displacement for

each j ∈ JD is fixed by a support as uj = 0 and that the external force for each j ∈ JN is specified

as fj . Since the self-weight load is a function of the member cross-sectional areas, a, we write

fj(a) in what follows. We use si to denote the axial force equilibrated with the external load. The

force balance between si (i = 1, . . . ,m) and fj(a) (j ∈ JN) can be written by using the equilibrium

matrix H introduced in (2). Summing up the support conditions and the force-balance condition,

u and s should satisfy

uj = 0, ∀j ∈ JD, (9)

(Hs)j = fj(a), ∀j ∈ JN, (10)
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where (Hs)j is the jth component of the vector Hs. Note that the prestress force qi presents before

applying the external load. In other words, the total axial force at the equilibrium state, denoted

s̃i, is given by

s̃i = qi + si. (11)

The equilibrium state is characterized by three conditions: the force-balance equation (i.e., (10)),

the compatibility relation, and the constitutive law. Let ci denote the elongation of member i. The

compatibility relation, that associates ci with u, can be written by using the column vector of H as

ci = hT
i u, i = 1, . . . ,m. (12)

The constitutive law gives the relation between ci and si. By using the elongation stiffness defined

by (8), it can be written as

si = kici, i = 1, . . . ,m. (13)

The upshot is that, for the given external load fj(a) (j ∈ JN), the equilibrium state is found as

the solution of (9), (10), (12), and (13).

We also consider the upper and lower bound constraints for the axial forces at the equilibrium

state under the self-weight load. Specifically, the total axial force, i.e., s̃i in (11), should satisfy

qi + si ∈

{
[−ss,−ss] if i ∈ S,

[sc, sc] if i ∈ C.
(14)

Here, ss, ss, sc, and sc are positive constants satisfying ss < ss and sc < sc. Note that for i ∈ N no

constraint is considered on the axial force.

3.4 Constraints on existing members

By definition, the struts should satisfy the discontinuity condition introduced in (4). Besides this

condition, we consider other constraints on number of members to restrict the feasible solutions to

attractive tensegrity structures.

To find complex tensegrity structures, it is natural to attempt to use many struts. This motivates

us to consider the constraint

|S| ≥ ns, (15)

where ns is the specified lower bound for the number of struts.

Roughly speaking, a tensegrity structure with less cables is more interesting when the number

of struts is fixed. Some of existing tensegrity structures, especially that are created as arts, are

prestress stable. Recall that stability is related to dk, the degree of kinematic indeterminacy:

dk = 0 if the tensegrity structure is stable, while dk > 0 if it is unstable. On the other hand, a

tensegrity structure satisfies ds ≥ 1, because it satisfies (3) by definition. Therefore, every stable

tensegrity structure satisfies dk − ds ≤ −1. An unstable tensegrity structure illustrated in Figure 1

satisfies dk−ds = 0. Hence, we attempt to explore tensegrity structures with large values of dk−ds,
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e.g., dk − ds = −1, 0, 1. Since many tensegrity structures do not have a node that are connected to

cables only, we substitute

m = |S|+ |C|, n = 2|S|

into (5) to obtain dk − ds = 5|S| − |C| − 6. Accordingly, we consider the constraint

5|S| − |C| − 6 = nd (16)

where nd is the specified value of dk − ds. In other words, the larger the value of nd, the less the

number of cables when the number of struts is fixed.

A more practical constraint was introduced by [21]. It is often that the initial structure includes

many intersecting members; see, e.g., Figure 3 in section 5.1. In a tensegrity structure obtained

from the initial structure, presence of mutually intersecting members is not accepted. Practically,

two members that are too close cannot exist simultaneously. The set of such pairs of members is

denoted by Pcross. Precisely, we write (i, i
′) ∈ Pcross if the distance of member i and member i′ is less

than a specified threshold δ (δ > 0). Then the constraint excluding too close members is formally

written as

{i, i′} ̸⊆ S ∪ C, ∀(i, i′) ∈ Pcross. (17)

3.5 Optimization problem of tensegrity structures

Since tensegrity structures are relatively flexible in general, the self-weight load may possibly affect

a tensegrity structure significantly compared with other stiff structures such as trusses and frames.

For example, if only prestress forces are taken into consideration in the design process, then the

configuration of the actually constructed tensegrity structure under the force of gravity may become

much different from the expected one. Moreover, due to such difference of configurations, some

cables may become slack and/or tensile forces may be introduced to some struts unanticipatedly.

Thus it is inevitable to consider the self-weight load in designing a tensegrity structure. This is

actually the motivation of the present work.

To prevent unanticipated deformation due to the self-weight, it might be natural to explore a

structure which is stiff against the self-weight load. Finding a stiff structure is usually performed

by minimizing the compliance, which is the work done by the applied external load. If the Dirichlet

boundary conditions are homogeneous (that is the case with our problem as seen in (9)), then the

compliance is equal to the elastic energy stored in the structure. Therefore, the compliance can

be regarded as a measure of flexibility of a structure. Let u be the displacement vector at the

equilibrium state, i.e., be a solution of (9), (10), (12) and (13). Then the compliance, denoted w, is

defined by

w =
∑
j∈JN

fj(a)uj . (18)

Note that in this paper we define the compliance as the external work done only by the self-weight

load. In other words, the internal work due to the prestress forces q is not considered in (18).

We are now in position to formulate an optimization problem for designing a tensegrity structure.

The constraints of the problem consist of the following four conditions: (i) the prestress forces should
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satisfy (3) and (6); (ii) the equilibrium condition under the self-weight load is described by (9), (10),

(12), and (13), where the member cross-sectional areas and the elongation stiffness are defined by

(7) and (8); (iii) at that equilibrium state the axial forces should satisfy (14); (iv) regarding existing

members we consider the constraints (4), (15), (16), and (17). Under these constraints, we find the

structure that minimizes the compliance defined by (18).

Thus the optimization problem of tensegrity structures is a nonconvex optimization problem.

Particularly, the constraints depends on the partition {S,C,N} of E. Therefore, nonlinear pro-

gramming approaches are likely to be inefficient. This motivates us to reformulate the optimization

problem as an MILP problem, which is the subject of the next section.

4 Mixed integer linear programming formulation

The optimization problem presented in section 3 is reduced to an MILP problem.

4.1 Constraints on member forces

A difficulty of optimization of structures considering the self-weight load stems from the fact that the

self-weight load depends on the design variables. In contrast, an optimization problem of tensegrity

structures subjected to a fixed external load was reduced to an MILP problem in [21]. We briefly

recall, here, the formulations in [21] concerning the labels of members and the stress constraints

under a fixed external load. The constraints involving the self-weight load will be addressed in

section 4.3.

An essential idea presented in [21] is introducing two 0–1 variables, xi and yi, to represent the

classification of member i as

(xi, yi) = (1, 0) ⇔ i ∈ S, (19a)

(xi, yi) = (0, 1) ⇔ i ∈ C, (19b)

(xi, yi) = (0, 0) ⇔ i ∈ N. (19c)

The case (xi, yi) = (1, 1) is excluded, i.e.,

xi + yi ≤ 1. (20)

Moreover, we rewrite the compatibility relation, (12), as

csi =

{
hT
i u if i ∈ S,

0 otherwise,
(21)

cci =

{
hT
i u if i ∈ C,

0 otherwise.
(22)

That is, csi represents the elongation of a strut and cci represents that of a cable. The constitutive

law, (13), is then reduced to

si = ksic
s
i + kci c

c
i , (23)
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where

ksi =
Eξs

li
, kci =

Eξc

li
.

Thus, (7), (8), (12), and (13) are equivalently rewritten as (21), (22), and (23). Note that (21),

(22), and (23) imply si = 0 for i ∈ N as expected.

The upper and lower bound constraints on axial forces are introduced in (6) and (14). We

rewrite these constraints in terms of qi, c
s
i , and cci together with the member label (xi, yi). Suppose

that (19) and (21), (22), (23) are satisfied. Then we can see that qi and si satisfy (6) and (14) if

and only if the linear inequalities

qcyi − qs(1− yi) ≤ qi ≤ −qsxi + qc(1− xi), (24a)

−ssxi ≤ qi + ksic
s
i ≤ −ssxi + qcyi, (24b)

−qsxi + scyi ≤ qi + kci c
c
i ≤ scyi (24c)

are satisfied.

Remark 4.1. If (xi, yi) = (1, 1), then (24a) is reduced to qc ≤ qi ≤ −qs. Therefore, (24a) implies

(20). In the MILP problem presented in section 4.4, we use (20) as a valid inequality constraint. ■

Finally we rewrite (21) and (22) as linear inequalities with binary variables. We again use xi

and yi defined by (19). For i ∈ S, it follows from (24a) and (24b) that qi and csi are subjected to

the following constraints:

−qs ≤ qi ≤ −qs,

−ss ≤ qi + ksic
s
i ≤ −ss.

These inequalities imply

qs − ss ≤ ksic
s
i ≤ qs − ss.

Therefore, (21) can be rewritten as

(qs − ss)xi ≤ ksic
s
i ≤ (qs − ss)xi, (26a)

M(1− xi) ≥ |csi − hT
i u|, (26b)

where M ≫ 0 is a sufficiently large constant. Similarly, (22) can be rewritten as

(sc − qc)yi ≤ kci c
c
i ≤ (sc − qc)yi, (27a)

M(1− yi) ≥ |cci − hT
i u|. (27b)

4.2 Constraints on member labels

In section 4.1 we have introduced variables (xi, yi) ∈ {0, 1}2 by (19) to formulate the constraints

concerning the equilibrium state under the specified external load. As the other constraints in terms

of xi and yi, we investigate, here, the constraints on the numbers of struts and cables.
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We first consider the discontinuity condition of struts, (4). This constraint can be written in

terms of xi (i ∈ E) as ∑
i∈E(vp)

xi ≤ 1, ∀vp ∈ V. (28)

The lower bound constraint on the total number of struts was given by (15), which is reduced to∑
i∈E

xi ≥ ns. (29)

The relation between the number of struts and that of cables was given by (16). This constraint

can be written as ∑
i∈E

(5xi − yi) = nd + 6. (30)

Constraint (17) was introduced to prevent two close members from existing together. This constraint

can be written in terms of xi and yi as

xi + xi′ + yi + yi′ ≤ 1, ∀(i, i′) ∈ Pcross. (31)

4.3 Compliance under self-weight load

We here discuss the compliance constraint under the self-weight load in the framework of MILP. In

the force-balance equation, (10), the self-weight load is denoted by f(a). For simplicity, the gravity

forces acting on cables are neglected, because in many real-life tensegrity structures struts are much

heavier than cables. Hence, f(a) is the sum of gravity forces acting on struts. Since the member

cross-sectional area, ai, is given by (7), f(a) can be written as

f(a) =
∑
i∈E

xiξ
sf (i), (32)

where f (i) is the gravity force vector of a unit cross-sectional area of member i.

The compliance, w, is then given by (18) with fj(a) in (32). Define extra variables wi (i ∈ E)

by

wi =


∑
j∈JN

f
(i)
j uj if i ∈ S,

0 otherwise.

(33)

Then (18) is rewritten as

w =
∑
i∈E

wi. (34)

On the other hand, by using xi, (33) is rewritten as

Mxi ≥ |wi|, (35a)

M(1− xi) ≥
∣∣∣wi −

∑
j∈JN

f
(i)
j uj

∣∣∣, (35b)

where M is a sufficiently large constant. Thus, minimizing the compliance of a tensegrity structure

is realized by minimizing w in (34) under constraint (35).
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4.4 MILP formulation

We are now in position to formulate an MILP problem for topology optimization of tensegrity

structures. The optimization problem was defined in section 3.5. To reformulate this problem, the

constraints on member forces were reduced to linear inequalities in section 4.1 by introducing 0–1

variables, xi and yi. Section 4.2 dealt with the constraints regarding the numbers of struts and

cables. In section 4.3, the compliance constraint under the self-weight load was expressed by using

linear inequalities.

The upshot is that the optimization problem of tensegrity structures can be written as

min
x,y,q,s,cs,cc,u,w

∑
i∈E

wi

s. t. Hq = 0,

qcyi − qs(1− yi) ≤ qi ≤ −qsxi + qc(1− xi), ∀i,
(Hs)j =

∑
i∈E

xiξ
sf

(i)
j , ∀j ∈ JN,

uj = 0, ∀j ∈ JD,

si = ksic
s
i + kci c

c
i , ∀i,

−(ss − qs)xi ≤ ksic
s
i ≤ −(ss − qs)xi, ∀i,

(sc − qc)yi ≤ kci c
c
i ≤ (sc − qc)yi, ∀i,

M(1− xi) ≥ |csi − hT
i u|, ∀i,

M(1− yi) ≥ |cci − hT
i u|, ∀i,

−ssxi ≤ qi + ksic
s
i ≤ −ssxi + qcyi, ∀i,

−qsxi + scyi ≤ qi + kci c
c
i ≤ scyi, ∀i,

Mxi ≥ |wi|, M(1− xi) ≥
∣∣∣wi −

∑
j∈JN

f
(i)
j uj

∣∣∣, ∀i,∑
i∈E(vp)

xi ≤ 1, ∀vp ∈ V,∑
i∈E

xi ≥ ns, 5
∑
i∈E

xi −
∑
i∈E

yi − 6 = nd,

xi + xi′ + yi + yi′ ≤ 1, ∀(i, i′) ∈ Pcross,

xi ∈ {0, 1}, yi ∈ {0, 1}, xi + yi ≤ 1, ∀i.



(36)

This is an MILP problem. In section 5 we solve this MILP problem by using commercial solvers,

CPLEX [17] and Gurobi Optimizer [15]. Note that this problem includes a large constant M . It

is well known that such a “big-M” should not be chosen larger than necessary, because constraints

including unnecessarily large M often slow down the solution process. Unfortunately, it is not easy

to guess the smallest value of M for this problem in advance.

5 Numerical experiments

The optimal topologies of various tensegrity structures are found by solving problem (36). Compu-

tation was carried out on two 2.66GHz 6-Core Intel Xeon Westmere processors with 64GB RAM.

The data of MILP problem (36) were prepared with MATLAB Ver. 7.9 in the CPLEX LP file

format. Then, for comparison, the MILP problem was solved by using CPLEX Ver. 12.2 [17] and

Gurobi Optimizer Ver. 4.5 [15] with the default options.

12



Figure 3: An initial structure with three layers.

Table 1: Computational results of the three layer example.

CPU (s)

nd w (J) |C| |S| (= ns) ds dk CPLEX Gurobi

−1 3.68500 30 7 1 0 512.3 1,078.1

−2 2.75344 31 7 2 0 442.0 650.5

−3 2.35530 32 7 3 0 588.1 465.6

In the examples of this section, the Young modulus of each member is Y = 70GPa and the

mass density is ρ = 3× 103 kg/m3. The member cross-sectional areas of struts and cables are ξs =

2000mm2 and ξc = 100mm2, respectively. The bounds for prestress forces in (6) are qs = 3.5 kN,

qs = 140 kN, qc = 1.75 kN, and qc = 35 kN. For the axial forces under the self-weight load, the

bounds in (14) are ss = 7kN, ss = 70 kN, sc = 3.5kN, and sc = 17.5 kN.

5.1 Three-layer tensegrity structure

Consider an initial structure illustrated in Figure 3, where X1 and X2 are taken to be two horizontal

axes, and the vertical axis is denoted by X3. The structure consists of |V | = 14 nodes and |E| = 77

members.

The locations of the nodes of this initial structure are defined as follows. The nodes form three

horizontal layers as depicted by shaded polygons in Figure 3, where the centers of these polygons

are on the X3-axis. The bottom layer is in an equilateral triangular shape, the middle one is in

a regular hexagon shape, and the top one is in a regular pentagon shape. The lengths of edges

of these polygons are 2
√
3m, 4m, and 5 sin π

5 m, respectively. Each polygon has an edge which is

parallel with the X2-axis. The distance between the adjacent layers is 2.5m.

Any two nodes are connected by a member, but members corresponding to the diagonals of

13



(a) (b)

(c) (d)

Figure 4: Optimal solutions obtained from the three-layer initial structure in Figure 3. (a) nd = −1

by CPLEX; (b) nd = −1 by Gurobi Optimizer; (c) nd = −2; (d) nd = −3.

hexagonal and pentagonal layers are removed. As stated in section 3.4, we do not allow two close

members to exist simultaneously. The lower bound for the distance of two existing members is

δ = 0.05m, which results in |Pcross| = 17 pairs of intersecting members for this initial structure. To

consider the equilibrium state under the self-weight load, six degrees of freedom of displacements of

the bottom nodes are fixed, i.e., |JD| = 6. Specifically, we fix the displacements in all directions of

the node at (1,
√
3, 0), the displacements in the X1- and X3-directions of the node at (1,−

√
3, 0),

and the displacement in the X3-direction of the node at (−2, 0, 0).

As for nd introduced in (16), we consider three cases: nd = −1, −2, and −3. The lower

bound for the number of struts is ns = 7. The optimal tensegrity structures obtained by solving

problem (36) are shown in Figure 4, where the thick lines and the thin lines represent struts and

cables, respectively. The computational results are listed in Table 1. Here, w means the compliance

of the optimal solution, “CPU” is the computational time spent by an MILP solver, |C| is the number

of cables, |S| is the number of struts, and ds and dk denote the degrees of static indeterminacy and

kinematic indeterminacy, respectively. All the obtained structures are kinematically determinate

(i.e., stable). It is observed in Table 1 that as the number of cables increases, the degree of static

14



Figure 5: A cantilevered initial structure.

Table 2: Computational results of the cantilevered example.

CPU (s)

ns nd w (J) |C| |S| ds dk CPLEX Gurobi

7 0 infeasible — — — — 89.1 417.3

7 −1 30.8941 30 7 1 0 93.5 1,096.9

7 −2 19.5696 31 7 2 0 107.9 12,521.6

6 0 infeasible — — — — 124.3 385.9

6 −1 30.8941 30 7 1 0 139.4 303.4

6 −2 14.6165 26 6 2 0 100.6 ∗
5 0 infeasible — — — — 206.5 629.8

5 −1 1.0729 20 5 1 0 163.0 595.5

5 −2 1.0243 21 5 2 0 145.5 ∗

indeterminacy increases and the compliance decreases. Thus the stiffness against the self-weight

load is improved by increasing the number of cables.

In the case of nd = −1, different optimal solutions are found by CPLEX and Gurobi Optimizer;

Figures 4(a) and (b) illustrate the solutions obtained by CPLEX and Gurobi Optimizer, respectively.

The objective value of the solution by CPLEX is w = 3.6850015, while that by Gurobi Optimizer

is w = 3.6850044. Therefore, the solution provided by Gurobi Optimizer is not a global optimal

solution, although the difference of these objective values is subtle.

The optimal solutions shown in Figures 4(a), (c), and (d) share the same set of struts. However,

the locations of cables are different. More precisely, for example, the set of cables in Figure 4(a) is

not a subset of that in Figure 4(c).

5.2 Cantilevered tensegrity structure

We next consider an initial structure illustrated in Figure 5. The structure consists of |V | = 14 nodes

and |E| = 82 members. The number of pairs of intersecting members (with threshold δ = 0.05m)

is |Pcross| = 23.

The locations of the nodes of this initial structure are defined as follows. The nodes form four
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Optimal solutions obtained from the cantilevered initial structure in Figure 5.

(a) (ns, nd) = (7,−1); (b) (ns, nd) = (7,−2); (c) (ns, nd) = (6,−1); (d) (ns, nd) = (6,−2);

(e) (ns, nd) = (5,−1); (f) (ns, nd) = (5,−2).

vertical layers, which are two equilateral triangles and two squares as shown in Figure 5. We call

these layers L1, L2, L3, and L4, where the leftmost one is L1 and the rightmost one is L4. The

lengths of edges of L1 and L4 are
√
3m, while those of L2 and L3 are 1.25

√
2m. All the layers are

parallel with the X2X3-plane and their centers are on the X1-axis. Moreover, each of L1, L3, and

L4 has an edge which is parallel with the X2-axis. Then L2 is rotated from L3 counter-clockwise

around the X1-axis with the angle π/12. The X1-coordinates of the nodes of L1, L2, L3, and L4

are 0m, 4.25m, 4.75m, and 9m, respectively.

Any two nodes of the initial structure are connected by a member, but members connecting the

pair L1 and L4 are removed to avoid presence of too long members. To consider the equilibrium

state under the self-weight load, all the nodes of L1 are fixed. Therefore, |JD| = 9 and |JN| = 33.

Such a structure anchored at only one end on a wall is called a cantilever .

As for ns and nd, we consider nine cases: ns = 5, 6, 7 and nd = 0,−1,−2. The solutions obtained

by CPLEX are illustrated in Figure 6. The computational results are listed in Table 2. In each

case, the computational time required by Gurobi Optimizer is larger than that required by CPLEX.

The three cases with nd = 0 are infeasible problems. The solution obtained for (ns, nd) = (6,−1) is

same as that for (ns, nd) = (7,−1).

In Table 2, the symbol “∗” means that the solution obtained by Gurobi Optimizer is not a global

optimal solution. Indeed, both for (ns, nd) = (6,−2) and (ns, nd) = (5,−2), Gurobi Optimizer
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Figure 7: An L-shaped initial structure.

declared the solution for (ns, nd) = (7,−2) shown in Figure 6(b) as the optimal solutions. It

is evident from Table 2 that the solutions obtained by CPLEX in these two cases have smaller

objective values than the solution for (ns, nd) = (7,−2).

5.3 L-shaped tensegrity structure

In this section we consider an initial structure illustrated in Figure 7. This structure consists of

|V | = 18 nodes and |E| = 116 members. The locations of the nodes are listed in Table 3. The nodes

form five regular polygons, i.e., two equilateral triangles and three squares, as shown in Figure 7.

We call the bottom square L1. The remaining polygons are called L2, . . . , L5, where the leftmost

triangle is L2 and the rightmost triangle is L5. Squares L1 and L3 are parallel with the X1X2-plane

and the X2X3-plane, respectively. The lengths of edges of L1 are
√
2/2m, those of L2 and L5 are

3
√
3/4m, and those of L3 and L4 are 5

√
2/4m.

The members connecting the pairs {L1, L4}, {L1, L5}, and {L2, L5} are not considered. The

number of pairs of intersecting members (with threshold δ = 0.05m) is |Pcross| = 53. The equilibrium

state under the self-weight load is considered by fixing all four nodes of L1. Hence, |JD| = 12 and

|JN| = 42. The lower bound for the number of struts is ns = 9.

The computational results are listed in Table 4. Here, the symbol “∗∗” means that Gurobi

Optimizer does not terminate within 100,000 s. The solutions obtained by CPLEX are shown in

Figure 8. It is observed that sets of struts are different between Figures 8(a) and (b).

6 Conclusions

For developing real-world innovative tensegrity structures, form-finding methods that can explore

diverse topologies are desired. In this paper we have explored a topology optimization problem of
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(a)

(b)

Figure 8: Optimal solutions obtained from the L-shaped initial structure in Figure 7. (a) nd = −2;

(b) nd = −3.
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Table 3: Locations of the nodes of the L-shaped initial structure in Figure 7.

L1 L2 L3 L4 L5

Node 1 X1 0.5000 −0.9749 1.0000 2.8682 4.9122

X2 0.0000 0.6495 1.2074 0.0000 0.7244

X3 0.0000 3.1993 2.6765 4.7682 4.1980

Node 2 X1 0.0000 −1.0730 1.0000 2.9772 4.9706

X2 0.5000 0.0000 −0.3235 1.2500 −0.5303

X3 0.0000 2.0785 1.7926 3.5229 3.8669

Node 3 X1 −0.5000 −0.9749 1.0000 3.0861 4.7527

X2 0.0000 −0.6495 −1.2074 0.0000 −0.1941

X3 0.0000 3.1993 3.3235 2.2777 5.1026

Node 4 X1 0.0000 1.0000 2.9772

X2 −0.5000 0.3235 −1.2500

X3 0.0000 4.2074 3.5229

Table 4: Computational results of the L-shaped example.

CPU (s)

nd w (J) |C| |S| (= ns) ds dk CPLEX Gurobi

−1 infeasible — — — — 18,286.1 ∗∗
−2 6.3504 41 9 2 0 14,459.3 ∗∗
−3 9.6019 42 9 3 0 35,559.7 ∗∗

tensegrity structures under self-weight loads. The presented approach prepares an initial structure

with sufficiently large number of candidate members and does not require a topology of tensegrity

structures to be known in advance. The optimization problem has been reduced to an MILP prob-

lem. It has been shown in numerical examples that various configurations of tensegrity structures

can be obtained by solving this MILP problem. The numerical experiments illustrate that, for

this MILP problem, Gurobi Optimizer is not superior to CPLEX from viewpoints of computational

efficiency and accuracy.

This paper has not addressed issues of stability of tensegrity structures. The tensegrity struc-

tures obtained in section 5 are kinematically determinate (i.e., stable), whereas many well-known

tensegrity structures are kinematically indeterminate (i.e., unstable) and stabilized by introducing

prestress forces; see, e.g., [7, 14, 16, 25]. Therefore, it remains an important future subject to develop

a numerical method that can find unstable (but prestress stable) tensegrity structures. Also, the

geometrical nonlinearity has not been considered. Furthermore, the proposed formulation results

in a large MILP problem, which might be a potential disadvantage for finding tensegrity structures

consisting of a large number of members.
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