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Abstract

Given an undirected graph G = (V,E) and a delta-matroid (V,F), the delta-matroid

matching problem is to find a maximum cardinality matching M such that the set of the

end vertices of M belongs to F . This problem is a natural generalization of the matroid

matching problem to delta-matroids, and thus it cannot be solved in polynomial time in

general.

This paper introduces a class of the delta-matroid matching problem, where the given

delta-matroid is a projection of a linear delta-matroid. We first show that it can be solved

in polynomial time if the given linear delta-matroid is generic. This result enlarges a

polynomially solvable class of matching problems with precedence constraints on vertices

such as the 2-master/slave matching. In addition, we design a polynomial-time algorithm

when the graph is bipartite and the delta-matroid is defined on one vertex side. This result

is extended to the case where a linear matroid constraint is additionally imposed on the

other vertex side.

Keywords: constrained matching, delta-matroid, polynomial-time algorithm, mixed matrix

theory

1 Introduction

For an undirected graph G = (V,E), a subset M of E is called a matching if no two edges in

M share a common vertex incident to them. The matching problem is a fundamental topic

in combinatorial optimization, and many polynomial-time algorithms have been developed (see

e.g., [25, 34]). When we apply the matching problem to practical problems such as scheduling,

it is often natural to have some additional constraints. In the literature, there are matching

problems with a variety of constraints such as matroids [22], trees [9], precedence constraints [1,
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20], and knapsack constraints [2]. These constrained matching problems are known to be NP-

hard except for some cases with matroid constraints.

For an undirected graph G = (V,E) and a matroidM on V , the matroid matching problem

is a problem of finding a maximum cardinality matching M such that ∂M is independent inM,

where ∂M denotes the set of vertices incident to edges in M . This problem, which is equivalent

to the matroid parity problem [26], has been investigated in combinatorial optimization as a

common generalization of two well-known polynomially solvable problems: the matroid inter-

section problem and the matching problem. Although it is shown to be intractable in the oracle

model [23, 30] and NP-hard for matroids with compact representations [28], Lovász provided a

min-max formula [28] for the linear matroid matching problem, and a number of polynomial-

time algorithms for the linear matroid matching have been developed [11, 15, 27, 29, 33]. On

the other hand, when the graph is bipartite and the matroid is defined on each class of the

vertex bipartition, the matroid matching problem can be solved in polynomial time for general

matroids [22], because this is equivalent to the matroid intersection problem. This problem is

also known as the independent matching problem.

A delta-matroid was introduced by Bouchet [5] as a generalization of matroids, where es-

sentially equivalent combinatorial structures are given independently by [10, 12]. We say that

a pair (V,F) of a finite set V and a nonempty family F of subsets of V is a delta-matroid if it

satisfies the symmetric exchange axiom:

(DM) For F, F ′ ∈ F and u ∈ F△F ′, there exists v ∈ F△F ′ such that F△{u, v} ∈ F ,

where I△J denotes the symmetric difference, i.e., I△J = (I \J)∪(J \I). A set F ∈ F is called

feasible. A delta-matroid maintains matroidal properties in the sense that a greedy algorithm

is applicable to maximizing linear functions over a delta-matroid [5].

In this paper, we generalize the matroid matching problem in terms of delta-matroids. That

is, for an undirected graph G = (V,E) and a delta-matroid (V,F), the delta-matroid matching

problem is to find a maximum cardinality matching M with ∂M ∈ F . Since this problem

includes the matroid matching problem, the delta-matroid matching problem cannot be solved

in polynomial time in general.

It should be noted that the feasibility problem for the delta-matroid matching, i.e., finding

a matching M such that ∂M is feasible, already generalizes the matroid matching problem.

The feasibility problem is reduced to the delta-covering problem, posed by Bouchet [7] as a

generalization of the matroid parity problem. For this problem, Geelen et al. [18] provided

a polynomial-time algorithm and a min-max theorem if a given delta-matroid is linear, i.e.,

represented by a skew-symmetric matrix. Thus, for linear delta-matroids, we can find a feasible

delta-matroid matching in polynomial time. However, the complexity of the problem to find a

maximum delta-matroid matching is still unknown for the linear case.

The main purpose of this paper is to investigate polynomial solvability of the delta-matroid

matching problem. We introduce a new class of the delta-matroid matching problem, where

the delta-matroid is given by a projection of a linear delta-matroid with a skew-symmetric

matrix. We call such problem the matching problem with a projected linear delta-matroid .

For this problem, we first show that it can be solved in polynomial time if the given skew-

symmetric matrix K is generic, that is, each entry in K is an independent parameter. This
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can be done by reducing it to the maximum weight matching problem. Let us remark that,

although we restrict a delta-matroid to a generic case, our class still includes a variety of

constrained matching problems, as presented in Section 3.2. In particular, our class includes

polynomially solvable classes of the master/slave matching [20] and its variant [1], arising in a

manpower scheduling problem.

In addition, we deal with a bipartite case of our problem. That is, we assume that a graph

G is bipartite and that the ground set of a delta-matroid is contained in one class of the vertex

bipartition. This problem generalizes the bipartite 2-master/slave matching [19], which is a

special case of the master/slave matching. In this setting we prove that the matching problem

with a projected linear delta-matroid can be solved in polynomial time. The proof makes

use of mixed matrix theory developed by Murota [32]. We further show that our result can be

extended to the problem where a linear matroid constraint is additionally imposed on the other

vertex side. Note that this problem can be viewed as an intersection problem, i.e., the problem

of finding a maximum cardinality set that is both feasible for a delta-matroid and independent

for a matroid.

The organization of this paper is as follows. In Section 2, we explain delta-matroid theory

and mixed matrix theory. In Section 3 we examine a projection of a linear delta-matroid

and provide a variety of examples representable by such delta-matroids. Section 4 presents

a polynomial-time algorithm for the generic delta-matroid matching problem. In Section 5,

we deal with the bipartite case and its generalization to the problem with additional linear

matroid constraint. Finally, Section 6 discusses related intersection problems on matroids and

delta-matroids.

2 Matrices and delta-matroids

2.1 Graphs and matrices

Let G = (V,E) be a graph with vertex set V and edge set E. For a subset F of E, we denote

by ∂F the set of vertices incident to edges in F . For a subset X of V , the induced subgraph

on X is a graph G[X] = (X,E′), where E′ ⊆ E is the set of edges whose both end vertices

are included in X. For a bipartite graph G = (V +, V −;E) with E ⊆ V + × V −, the induced

subgraph on I ⊆ V + and J ⊆ V − is denoted by G[I, J ]. We also define ∂+F = ∂F ∩ V + and

∂−F = ∂F ∩ V − for a subset F of E.

Throughout this paper, we consider a matrix over the real field R1 unless otherwise specified.

For a matrix K = (Kij) with row set R and column set C, K[I, J ] denotes the submatrix with

row set I ⊆ R and column set J ⊆ C. For a square matrix K, we denote a principal submatrix

with row/column set I by K[I]. A matrix K is called skew-symmetric if Kij = −Kji for all

(i, j) and all diagonal entries of K are zero. For a skew-symmetric matrix K = (Kij) with

row/column set V such that |V | = 2n, the Pfaffian of K is defined by

pfK =
∑
P

kP ,

1In fact, the results of this paper can be applied to a matrix over any ordered field F. That is, the real field

R and the rational field Q which appear in this paper may be replaced by an ordered field F and its subfield K.
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where the summation is taken over all partitions P = {{i1, j1}, . . . , {in, jn}} of V into unordered

pairs and

kP = sgn

(
1 2 · · · 2n− 1 2n

i1 j1 · · · in jn

)
n∏

l=1

Kiljl .

Then it holds that detK = (pfK)2.

A generic matrix is a matrix in which each nonzero entry is an independent parameter.

More precisely, a matrix is generic if the set of nonzero entries is algebraically independent

over the rational field Q. A skew-symmetric matrix K is called generic if {Kij | Kij ̸= 0, i < j}
is algebraically independent over Q.

Let K be a generic skew-symmetric matrix with row/column set V . The support graph

of K is the undirected graph H = (V,EH) with EH = {(i, j) | Kij ̸= 0, i < j}. Note that a

nonzero term kP in the Pfaffian corresponds to a perfect matching in the support graph. Hence

the rank of a generic skew-symmetric matrix K is twice the size of a maximum matching in its

support graph H (see e.g., [31]). By applying this fact to each principal submatrix of K, we

obtain the following lemma.

Lemma 2.1. Let K be a generic skew-symmetric matrix with row/column set V , and H =

(V,EH) be its support graph. For a subset X ⊆ V , K[X] is nonsingular if and only if H[X]

has a perfect matching.

2.2 Delta-matroids and greedy algorithms

We say that a pair (V, I) of a finite set V and a family I of subsets of V is a matroid if it

satisfies the following:

(I-1) ∅ ∈ I,

(I-2) I ⊆ J ∈ I ⇒ I ∈ I,

(I-3) I, J ∈ I, |I| < |J | ⇒ I ∪ {v} ∈ I for some v ∈ J \ I.

A set I ∈ I is said to be independent, and a maximal independent set is a base.

Recall that a delta-matroid is a pair M = (V,F) of a finite set V and a nonempty family F
of subsets of V that satisfies the symmetric exchange axiom (DM). A delta-matroid generalizes

a matroid, since the family of independent sets of a matroid forms a delta-matroid. A delta-

matroid (V,F) is said to be even if |F △F ′| is even for all F, F ′ ∈ F . A simple example of even

delta-matroids is the family of the subsets of even size. The base family of a matroid also forms

an even delta-matroid. Another example is the family of vertex sets X with X = ∂M for some

matching M in a graph G, called the matching delta-matroid [6]. Let K be a skew-symmetric

matrix with row/column set V . We denote the family of column indices corresponding to

nonsingular principal submatrices by

F(K) = {X ⊆ V | rankK[X] = |X|}.

Then M(K) = (V,F(K)) forms an even delta-matroid, where the empty set is feasible [4].
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The twisting of a delta-matroid M = (V,F) by X ⊆ V is a delta-matroid defined by

M△X = (V,F△X), where

F△X = {F△X | F ∈ F}.

A delta-matroid M′ is equivalent to M if M′ is a twisting of M by some X ⊆ V . A delta-

matroid M is said to be linear if M is equivalent to M(K) for some skew-symmetric matrix

K. Since M(K) is an even delta-matroid, a linear delta-matroid is even. We call a linear

delta-matroid M generic if M is equivalent to M(K) for some generic skew-symmetric matrix

K. For X ⊆ V , the projection of a delta-matroid M on X is defined by M|X = (V \X,F|X),

where

F|X = {F \X | F ∈ F}.

The projection M|X is also a delta-matroid. Note that projection does not necessarily preserve

evenness. The deletion of X from M is a delta-matroid M \X = (V \X,F \X) with

F \X = {F ∈ F | F ⊆ V \X},

where F \ X is assumed to be nonempty. The contraction of M by X is defined as M/X =

(M△X) \X.

Given a delta-matroid M = (V,F) and a weight function c : V → R, consider the problem

to find F ∈ F which maximizes c(F ) =
∑

v∈F c(v). For this problem, Bouchet [5] designed a

greedy-type algorithm, and Shioura and Tanaka [35] extended the algorithm to one for jump

systems [8], which is a generalization of delta-matroids to integral lattice. Their results imply

that the greedy algorithm finds an optimal solution in polynomial time under the assumption

that a membership oracle for M, which checks whether or not a given set F is in F , is available.

2.3 Mixed skew-symmetric matrices and delta-covering

Mixed matrix theory, developed by Murota [32], is one of the most significant applications of

delta-matroid theory. In this section, we explain the concept of mixed skew-symmetric matrices,

which will be used to analyze the bipartite delta-matroid matching problem in Section 5.

Let F be a field and K be a subfield of F. A typical example is K = Q and F = R. A

skew-symmetric matrix A is called a mixed skew-symmetric matrix if A is given by A = Q+T ,

where

(MS-Q) Q = (Qij) is a skew-symmetric matrix over K (i.e., Qij ∈ K), and

(MS-T) T = (Tij) is a skew-symmetric matrix over F (i.e., Tij ∈ F) such that the set {Tij |
Tij ̸= 0, i < j} of its nonzero entries in the upper-triangle part is algebraically independent

over K.

The problem of computing the rank of a mixed skew-symmetric matrix is discussed in

[17, 18]. The rank is expressed by using delta-matroids.

Theorem 2.2 ([32, Theorem 7.3.22]). For a mixed skew-symmetric matrix A = Q + T with

row/column set V , it holds that

rankA = max{rankQ[I] + rankT [V \ I] | I ⊆ V }
= max{|FQ△FT | | FQ ∈ F(Q), FT ∈ F(T )},
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where M(Q) = (V,F(Q)) and M(T ) = (V,F(T )).

For a pair of delta-matroids (V,F1) and (V,F2), the delta-covering problem is the problem to

find F1 ∈ F1 and F2 ∈ F2 maximizing |F1△F2|. This problem is a generalization of the matroid

parity problem, and contains the delta-matroid intersection problem and the delta-matroid

partition problem as special cases (see [32]). Since Geelen et al. [18] gave a polynomial-time

algorithm for the delta-covering problem for linear delta-matroids, it follows from Theorem 2.2

that the rank of a mixed skew-symmetric matrix A = Q + T can be computed in polynomial

time. This is rewritten as follows.

Corollary 2.3. Let A = Q + T be a mixed skew-symmetric matrix with row/column set V .

Then we can find in polynomial time a maximum cardinality set X ⊆ V such that A[X] is

nonsingular. Moreover, we can obtain in polynomial time a set I ⊆ X such that both Q[I] and

T [X \ I] are nonsingular.

We can also compute in polynomial time the weighted version of finding a nonsingular

principal submatrix of A. More generally, we have the following.

Lemma 2.4. Let A = Q + T be a mixed skew-symmetric matrix with row/column set V .

For a weight function c : V → R and U ⊆ V , we can find a set X ⊆ V which maximizes

c(X) =
∑

v∈X c(v) subject to U ⊆ X and rankA[X] = |X| in polynomial time, if exists.

Proof. Since A is skew-symmetric, (V,F(A)) is a delta-matroid. We define a weight function

c̃ : V → R by

c̃(v) =

{
N (v ∈ U)

c(v) (v ∈ V \ U)
,

where N is an integer larger than cmax|V | with cmax = maxv∈V c(v). Let X be a maximum

weight feasible set with respect to the delta-matroid (V,F(A)) with weight c̃, which can be

obtained by the greedy algorithm. Then if c̃(X) < N |U | there exists no set Y ∈ F(A) with

U ⊆ Y . If c̃(X) ≥ N |U | then X maximizes c(X) subject to U ⊆ X and rankA[X] = |X|.
In the greedy algorithm, it is necessary to determine whether a given set Y ⊆ V is in F(A)

or not. This is equivalent to computing the rank of A[Y ], which can be done in polynomial

time by solving the linear delta-covering problem. Thus a membership oracle for (V,F(A))
is available, which implies that we can find a maximum weight feasible set X in polynomial

time.

3 Matching problem with projected linear delta-matroids

Let K be a skew-symmetric matrix with row/column set VK , and V be a subset of VK . For a

subset S of V , the pair (VK ,F(K)△S) is a linear delta-matroid. We define

FK := (F(K)△S)|R, (1)

where R = VK \ V . Then (V,FK) is a delta-matroid, which we call a projected linear delta-

matroid .
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Figure 1: A skew-symmetric matrix Ls and a diagonal matrix Ld.

We then discuss weighted non-bipartite matching problem with (V,FK). That is, given a

graph G = (V,E) with edge weight w : E → R+, we aim at finding a matching M ⊆ E in G

which maximizes w(M) =
∑

e∈M w(e) subject to ∂M ∈ FK .

We first show in Section 3.1 that the family of nonsingular principal submatrices of a

skew-symmetric matrix with nonnegative diagonals can be represented as a projected linear

delta-matroid (1). This representation brings a variety of constrained matching problems into

our framework, which are provided in Section 3.2.

3.1 Skew-symmetric matrices with nonnegative diagonals

Let L be a skew-symmetric matrix with nonnegative diagonals, that is, L = Ls+Ld with a skew-

symmetric matrix Ls and a nonnegative diagonal matrix Ld. We denote the row/column set of

L by V , and the row/column set of Ld corresponding to positive diagonals by W . A matrix L

over R is called generic if {Lij | Lij ̸= 0, i ≤ j} is algebraically independent over Q. For a skew-

symmetric matrix L with nonnegative diagonals, define F(L) = {X ⊆ V | rankL[X] = |X|}.
The main purpose of this section is to prove that (V,F(L)△S) for S ⊆ V forms a projection

of a linear delta-matroid. We first show the following lemma.

Lemma 3.1. Let L = Ls + Ld be a skew-symmetric matrix with nonnegative diagonals, and

V be the row/column set of L. Then L is nonsingular if and only if there exists X ⊆ W such

that Ls[V \X] is nonsingular.

Proof. Since Ld is a diagonal matrix, we have

detL =
∑
X⊆V

detLs[V \X] · detLd[X]

=
∑
X⊆W

detLs[V \X] · detLd[X] (2)

by the definition of W . Figure 1 shows submatrices Ls[V \X] and Ld[X]. Since Ls[V \X] is

skew-symmetric, detLs[V \X] ≥ 0 holds. Moreover, we have detLd[X] > 0 for X ⊆W . Hence

each term of (2) is nonnegative. Thus, L is nonsingular if and only if there exists X ⊆W such

that Ls[V \X] is nonsingular.

The copy of W is denoted by Wc. For X ⊆ W , Xc denotes a copy of X included in Wc.

7



We define a skew-symmetric matrix K in the form of

Wc W V \W

K =

 O Ld[W ] O

−Ld[W ]

O
Ls

 . (3)

The matrices L and K are related as follows.

Lemma 3.2. The following (i) and (ii) hold.

(i) For any X ⊆Wc ∪ V such that K[X] is nonsingular, L[X \Wc] is nonsingular.

(ii) For any Y ⊆ V such that L[Y ] is nonsingular, there exists a subset Z ⊆ Wc such that

K[Z ∪ Y ] is nonsingular.

Proof. We first prove (i). Let us denote X∩Wc by Zc and its copy by Z ⊆W . By the definition

of K, it holds that

detK[X] = detK[Zc, Z] · detK[Z,Zc] · detK[X \ (Z ∪ Zc)]. (4)

Since Ld[W ] is a diagonal matrix with positive entries, both detK[Zc, Z] and detK[Z,Zc] are

nonzero. By detK[X] ̸= 0, it holds that detK[X \ (Z ∪Zc)] = detLs[(X \Wc) \Z] ̸= 0. Since

Z ⊆ X ∩W , this implies by Lemma 3.1 that L[X \Wc] is nonsingular.

We next prove (ii). Since L[Y ] is nonsingular, Lemma 3.1 implies that there exists a subset

Z ⊆ W ∩ Y such that Ls[Y \ Z] is nonsingular. Letting X = Zc ∪ Y , we know that K[X] is

nonsingular from (4), which proves (ii).

Let us define FS(K) = F(K)△(S ∪ Wc). Since K is a skew-symmetric matrix, (Wc ∪
V,FS(K)) is a linear delta-matroid. Lemma 3.2 leads to the following theorem.

Theorem 3.3. Let L be a skew-symmetric matrix with nonnegative diagonals, V be the

row/column set of L, and K be a skew-symmetric matrix defined by (3). For a subset S of

V , the pair (V,F(L)△S) is a projection of the linear delta-matroid (Wc ∪ V,FS(K)) on Wc.

Moreover, if L is generic, then (Wc ∪ V,FS(K)) is a generic linear delta-matroid.

Proof. The projection of FS(K) on Wc is equal to

FS(K)|Wc = {F \Wc | F ∈ FS(K)}
= {(X△(S ∪Wc)) \Wc | rankK[X] = |X|, X ⊆Wc ∪ V }
= {(X \Wc)△S | rankK[X] = |X|, X ⊆Wc ∪ V }.

If X ⊆ Wc ∪ V satisfies rankK[X] = |X|, then L[X \Wc] is nonsingular by (i) in Lemma 3.2.

This implies FS(K)|Wc ⊆ F(L)△S. Conversely, if Y ⊆ V satisfies rankL[Y ] = |Y |, it follows
from (ii) in Lemma 3.2 that there exists a subset Z ⊆ Wc such that K[Z ∪ Y ] is nonsingular.

Hence Y△S = ((Z ∪ Y ) \Wc)△S ∈ FS(K)|Wc. Thus we obtain F(L)△S ⊆ FS(K)|Wc.

If L is generic, K defined by (3) is a generic skew-symmetric matrix, which implies that

(Wc ∪ V,FS(K)) is a generic linear delta-matroid.
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The following corollary immediately follows from Theorem 3.3, because a projection of a

delta-matroid is also a delta-matroid. Note that the resulting delta-matroid is not necessarily

linear.

Corollary 3.4. Let L be a skew-symmetric matrix with nonnegative diagonals, and V be the

row/column set of L. For a subset S ⊆ V , the pair (V,F(L)△S) is a delta-matroid.

3.2 Constrained matching problems with delta-matroids

In this section, we provide a variety of constrained matching problems that are included in the

matching problem with a projected linear delta-matroid. We first remark that the identity ma-

trix is a skew-symmetric matrix with nonnegative diagonals, which represents free constraints,

and hence the standard matching problem is contained in our problem by Theorem 3.3.

Example 3.1. (2-master/slave-constraint) The master/slave matching problem, intro-

duced by Hefner and Kleinschmidt [20], arises in manpower scheduling problem in printing

plants. Let G = (V,E) be an undirected graph and D = (V,A) be a directed graph with the

same vertex set as G. For (us, um) ∈ A, we say that us is a slave of um and um is a master of

us. A master/slave matching (MS-matching for short) is a matching M in G which satisfies

the following master/slave constraint (MS-constraint):

(us, um) ∈ A, us ∈ ∂M ⇒ um ∈ ∂M. (5)

The MS-matching problem (MSMP) is to find an MS-matching of maximum cardinality. Given

a weight function w : E → R+, the weighted MSMP is defined similarly. Hefner and Klein-

schmidt [20] proved that it is NP-hard in general, while it can be solved in O(|V |3) time

under the assumption that k(D) ≤ 2, where k(D) denotes the maximum size of a connected

component of D. Such MSMP is called the 2-MSMP .

Let D = (V,A) be a directed graph with k(D) ≤ 2. Then D consists of the following three

kinds of components:

(a) ◦ (b) ◦ ←− ◦ (c) ◦ ←→ ◦

MS-constraints (5) arising from (a), (b), and (c) correspond to F(La), F(Lb), and F(Lc),

respectively, where

La =
(
d
)
, Lb =

(
d k

−k 0

)
, and Lc =

(
0 k

−k 0

)

with constants d > 0 and k ̸= 0. Here, La, Lb, and Lc are generic skew-symmetric matrices

with nonnegative diagonals. Thus the 2-MSMP is included in the matching problem with

projected linear delta-matroids. It should be noted that MS-constraints with k(D) ≥ 3 are not

necessarily contained in our framework.

Example 3.2. (multi-master/single-slave constraint) Amanuma and Shigeno [1] intro-

duced the following variant of the MSMP, motivated by the observation of staff scheduling

with new staffs. Given an undirected graph G = (V,E) and a directed graph D = (V,A),
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we say that a multi-master single-slave matching (MMSS-matching) is a matching M in G

satisfying

u ∈ ∂M, N+(u) ̸= ∅ ⇒ N+(u) ∩ ∂M ̸= ∅,

where N+(u) = {v ∈ V | (u, v) ∈ A}. Note that if k(D) ≤ 2, then the family of MMSS-

matchings coincides with that of MS-matchings. Amanuma and Shigeno showed that this

problem can be solved in polynomial time if each connected component of D has (i) exactly

one slave vertex us, or (ii) exactly two slave vertices u1s , u
2
s with (u1s , u

2
s ), (u

2
s , u

1
s ) ∈ A. MMSS-

constraints arising from (i) and (ii) correspond to F(Li) and F(Lii) determined by

Li =


us u1m · · · unm

0 k1 · · · kn
−k1
... D

−kn

 and Lii =



u1s u2s U1
m U2

m U12
m

0 k1 k⊤
1 0⊤ k⊤

2

−k1 0 0⊤ k⊤
3 k⊤

4

−k1 0

0 −k3 D

−k2 −k4

,

where D is a diagonal matrix with positive entries and kj = (kj1, . . . , k
j
nj )

⊤ is a vector of size

nj with constants kj1, . . . , k
j
nj for j = 1, . . . , 4. Indeed, if a feasible set F of F(Li) contains us,

F contains at least one uim. Next, consider the case of F(Lii). If a feasible set F of F(Lii)

contains both u1s and u2s , then F can contain any subset of U1
m ∪U2

m ∪U12
m . This is because u1s

is a master of u2s and vice versa. If F contains u1s and not u2s , then F has to contain at least

one element of U1
m ∪U12

m , which is a master of u1s . Here, L
i and Lii are generic skew-symmetric

matrices with nonnegative diagonals.

Example 3.3. (matching constraint) Let G = (V,EG) be an undirected graph and (V,FH)

be the matching delta-matroid of an undirected graph H = (V,EH), i.e., F ∈ FH if H has a

matching M with ∂M = F . Since (V,FH) is represented by a generic skew-symmetric matrix

whose support graph coincides with H, the matching problem with (V,FH) is contained in our

framework with no projection.

This constraint arises in the maximum cycle subgraph problem in a 2-edge-colored multi-

graph [3]. A 2-edge-colored multigraph is a graph which has red edges and blue edges. A

cycle subgraph is a union of disjoint cycles whose successive edges differ in color. It is known

that a maximum cycle subgraph can be found in polynomial time by the maximum match-

ing problem. Let Gr and Gb be the subgraphs consisting of all the red edges and all the

blue edges, respectively. We know that the maximum cycle subgraph problem is equivalent to

finding a maximum cardinality matching M in Gr subject to ∂M is feasible for the matching

delta-matroid of Gb.

Example 3.4. (upper/lower size constraint) Let G = (V,E) be an undirected graph.

Define V1, . . . , Vm to be a partition of V and r1, . . . , rm to be positive integers. In this setting

we aim at finding a maximum cardinality matching M with |∂M ∩ Vi| ≤ ri for any i.

This problem can be viewed as the matching problem with a projection of a generic even
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delta-matroid. Indeed, define a bipartite graph H = (V,W ;EH) as follows:

W =

m∪
i=1

Wi, where Wi = {wi
1, . . . , w

i
ri} (i = 1, . . . ,m),

EH =

m∪
i=1

Ei, where Ei = {(v, w) | v ∈ Vi, w ∈Wi} (i = 1, . . . ,m).

Thus H is the disjoint union of complete bipartite graphs with vertex sets Vi and Wi for all i.

Consider the matching matroid of H, denoted by FH . Then the size constraint is represented

by using (V,FH |W ).

Note that X ∈ FH△V |W if and only if |X ∩ Vi| ≥ |Vi| − ri for any i. Hence by using the

delta-matroid (V,FH△V |W ), we can also deal with finding a maximum cardinality matching

M with |∂M ∩ Vi| ≥ r′i for any i, where r′i = |Vi| − ri.

Example 3.5. (linear matroid constraint) Let G = (V,E) be an undirected graph and

(V, I) be a linear matroid. Then we discuss finding a maximum cardinality matching M with

∂M ∈ I.
We denote a representation of (V, I) by a matrix A with row set W and column set V .

Define a skew-symmetric matrix K to be

K =

(
O A

−A⊤ O

)
.

The column set of K is denoted by W ∪ V . Then it is not difficult to see that F(K)|W = I.
Thus the matching problem with linear matroid constraint can be reduced to one with projected

linear delta-matroids.

We conclude this section with a relation between our delta-matroid and a simultaneous

delta-matroid. A pair (V,F) is called a simultaneous delta-matroid if it satisfies the following

simultaneous exchange property:

(SDM) For F, F ′ ∈ F and u ∈ F△F ′, there exists v ∈ F△F ′ such that F△{u, v} ∈ F and

F ′△{u, v} ∈ F .

It is shown in [13, 37] that an even delta-matroid satisfies (SDM). In fact, a delta-matroid is

simultaneous if and only if it is a projection of some even delta-matroid on a singleton [13].

Simultaneous delta-matroids are also discussed in Takazawa [36], where he showed that delta-

matroids arising from branchings and matching forests both satisfy (SDM). We prove that our

delta-matroid is a simultaneous delta-matroid as follows.

Theorem 3.5. A delta-matroid (V,FK) given by (1) is a simultaneous delta-matroid.

Proof. We denote F(K)△S by F̃ . Then (VK , F̃) is an even delta-matroid. We prove that

FK = F̃ |R satisfies the simultaneous exchange axiom (SDM). Let F, F ′ ∈ FK and u ∈ F△F ′.

Then there exist Y, Y ′ ⊆ R such that F ∪ Y, F ′ ∪ Y ′ ∈ F̃ . Since F̃ satisfies the simultaneous

exchange axiom (SDM), there exists ṽ ∈ (F ∪ Y )△(F ′ ∪ Y ′) = (F△F ′) ∪ (Y△Y ′) such that

(F ∪ Y )△{u, ṽ} ∈ F̃ and (F ′ ∪ Y ′)△{u, ṽ} ∈ F̃ . (6)
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If ṽ ∈ F△F ′, (6) is rewritten as (F△{u, ṽ})∪ Y ∈ F̃ and (F ′△{u, ṽ})∪ Y ′ ∈ F̃ . Hence we

have F△{u, ṽ} ∈ FK and F ′△{u, ṽ} ∈ FK . Thus (SDM) with v = ṽ holds. If ṽ ∈ Y△Y ′, it

follows from (6) that F△{u} ∈ FK and F ′△{u} ∈ FK . This implies that (SDM) with v = u

holds.

4 Generic delta-matroid matching

In this section, we discuss weighted non-bipartite matching problem with a projected linear

delta-matroid, and show that it can be solved in polynomial time if a given skew-symmetric

matrix K is generic. Note that all the delta-matroids given in Examples 3.1–3.4 are generic.

Thus weighted matching problems with these constraints can be solved in polynomial time.

Let G = (V,EG) be a graph, w : EG → R+ be an edge weight, and K be a skew-symmetric

matrix with row/column set VK ⊇ V . We denote VK \V by R. For a subset S of V , let FK be

given by (1). The main theorem of this section is the following.

Theorem 4.1. If a skew-symmetric matrix K is generic, the weighted delta-matroid matching

problem with (V,FK) can be solved in O(|V |3) time.

By the definition, we have

FK = {(X \R)△S | rankK[X] = |X|, X ⊆ R ∪ V },

because S and R are disjoint. Let H = (R ∪ V,EH) be the support graph of K. Since K is

generic, we obtain

FK = {(∂MH \R)△S |MH : matching in H}

by Lemma 2.1. Then, the given problem is rewritten as a problem to find a matching MG in

G which maximizes w(MG) such that there exists a matching MH in H with (∂MH \R)△S =

∂MG.

The above problem is reduced to the maximum weight matching problem as follows. Let

VG and VH be copies of V , and VS be a copy of S ⊆ V . The copies of i ∈ V are denoted by

iG ∈ VG, iH ∈ VH , and iS ∈ VS , respectively. We set U = VG ∪ VH ∪ VS for convenience. For

G = (VG, EG) and H = (R ∪ VH , EH), we construct a graph Γ = (U ∪R,EG ∪ EH ∪ Ẽ) with

Ẽ = {(iG, iH) | i ∈ V \ S} ∪ {(iG, iS), (iS , iH) | i ∈ S}.

The weight γ(e) of an edge e ∈ EG ∪ EH ∪ Ẽ is defined to be

γ(e) =

{
w(e) (e ∈ EG)

0 (e ∈ EH ∪ Ẽ)
.

Then the following lemma holds.

Lemma 4.2. The following (i) and (ii) hold.

(i) For a matching M in Γ with U ⊆ ∂M , the set MG = M ∩ EG is a matching in G with

∂MG ∈ FK and w(MG) = γ(M).
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(ii) For a matching MG in G with ∂MG ∈ FK , there exists a matching M in Γ with U ⊆ ∂M

and γ(M) = w(MG).

Proof. Define MH = M ∩EH . Since U ⊆ ∂M , it holds that iG ∈ ∂MG if and only if iH ∈ ∂MH

for any i ∈ V \ S, and iG ∈ ∂MG if and only if iH ̸∈ ∂MH for any i ∈ S. Hence (∂MH \R)△S

corresponds to ∂MG. This means that MG is a matching satisfying ∂MG ∈ FK and w(MG) =

γ(M).

We next prove (ii). By the definition of FK where K is generic, there exists a matching

MH in H with (∂MH \R)△S = ∂MG. We define

M = MG ∪MH ∪ {(iS , iH) | i ∈ S ∩ ∂MG}
∪ {(iG, iS) | i ∈ S ∩ ∂MH} ∪ {(iG, iH) | i ̸∈ ∂MG ∪ ∂MH)}.

Then M is a matching in Γ satisfying U ⊆ ∂M and γ(M) = w(MG).

By Lemma 4.2, a matching M in Γ has a corresponding matching MG in G, and vice

versa. Thus, we reduce our problem to maximum weight matching problem in Γ, and solve this

problem in O(|V |3) time [16, 26]. This completes the proof of Theorem 4.1.

5 Bipartite delta-matroid matching

Let G = (V +, V −;E) be a bipartite graph, and (V −,F−) be a delta-matroid on V −. The

bipartite delta-matroid matching is to find a maximum cardinality matching M in G satisfying

∂−M ∈ F−. Although Section 4 assumes that a matrix K is generic, this section deals with K

over the rational field Q. This problem is a special case of the delta-matroid matching problem,

where G is restricted to be bipartite and the delta-matroid is defined on V −. The general case

is discussed in Section 6.

Let K be an n×n skew-symmetric matrix with row/column set VK with V − ⊆ VK . Define

a delta-matroid (V −,F−
K) to be

F−
K = F(K)|R (7)

with R = VK \ V −. In this section, we mainly focus on the bipartite delta-matroid matching

with (V −,F−
K). We remark that K is not assumed to be generic, which is different from

Section 4, and instead, we assume that FK is not twisted in this section.

In Section 5.1, we describe a polynomial-time algorithm for this problem, which is based

on mixed matrix theory described in Section 2.3. For that purpose, we first define operations

induced by a bipartite graph for a delta-matroid, and show that this operation preserves linear

delta-matroidness. We further impose linear matroid constraints on V + in Section 5.2.

5.1 Algorithm via mixed skew-symmetric matrices

Let G = (V +, V −;E) be a bipartite graph. For a delta-matroid (V −,F−) on the one vertex

side of G, we define

F+ = {J+ ⊆ V + | G[J+, J−] has a perfect matching for some J− ∈ F−}.
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Then it is known that (V +,F+) forms a delta-matroid [5], called the delta-matroid induced by

G. We will further show that for a delta-matroid (V −,F−
K) given by (7), the delta-matroid

(V +,F+
K) induced by G is also represented by a skew-symmetric matrix.

Define T (G) = (Tij) to be a generic matrix with row set V + and column set V − provided

that Tij ̸= 0 if (i, j) ∈ E and Tij = 0 otherwise. Note that for vertex sets J+ ⊆ V + and

J− ⊆ V −, G[J+, J−] has a perfect matching if and only if T (G)[J+, J−] is nonsingular. We

denote by K ′ a mixed skew-symmetric matrix in the form of

V + V −
c V − R

K ′ =


O T (G) O O

−T (G)⊤ O D O

O

O

−D
O

K

 , (8)

where D = (dii) denotes a generic diagonal matrix all of whose diagonal entries are nonzero.

We identify each element of V − with that of V −
c in correspondence with D. Let V ′ be the

whole column set of K ′ and U ′ = V −
c ∪ V −.

Lemma 5.1. Let G = (V +, V −;E) be a bipartite graph and (V −,F−
K) be a delta-matroid

given by (7). Then the delta-matroid (V +,F+
K) induced by G is equal to F(K ′)/U ′|R, where

K ′ is defined by (8). In particular, if R = ∅ then (V +,F+
K) is a linear delta-matroid.

Proof. Let J+ ⊆ V + be a feasible set in F(K ′)/U ′|R. Then there exists Y ⊆ R such that

K ′[J+ ∪U ′ ∪ Y ] is nonsingular. This submatrix is skew-symmetric, and its Pfaffian is equal to

pfK ′[J+ ∪ U ′ ∪ Y ] =
∑

X⊆V −

±detT (G)[J+, Xc] ·
∏

i∈V −\X

dii · pfK[X ∪ Y ]. (9)

Since the left-hand side is nonzero, there exists X ⊆ V − such that both of T (G)[J+, Xc] and

K[X ∪ Y ] are nonsingular. This implies that X ∈ F−
K and hence J+ ∈ F+

K .

Conversely, let J+ ⊆ V + be a feasible set in F+
K . Then there exists J− ⊆ V − such that

T (G)[J+, J−] is nonsingular and J− ∈ F−
K . It follows from J− ∈ F−

K that there exists Y ⊆ R

such that K[J− ∪ Y ] is nonsingular. Consider the principal submatrix K ′[J+ ∪ U ′ ∪ Y ] of K ′.

Its Pfaffian is equal to (9). The right-hand side has at least one nonzero term when X = J−.

Since each nonzero term has distinct dii’s, we conclude that pfK
′[J+∪U ′∪Y ] ̸= 0 by genericity

of dii’s. Thus J
+ ∪ U ′ ∪ Y is feasible for F(K ′), and hence J+ ∈ F(K ′)/U ′|R.

Therefore, the first part of the statement holds. Note that, since K ′[U ′] is nonsingular,

F(K ′)/U ′ can be represented by some skew-symmetric matrix by pivoting operation. Hence if

R = ∅ then (V +,F+
K) is a linear delta-matroid.

We prove the following theorem using Lemma 5.1.

Theorem 5.2. The bipartite delta-matroid matching with (V −,F−
K) given by (7) can be solved

in polynomial time.

Proof. We show that this problem can be solved by a greedy algorithm for a delta-matroid.

By the definition of F+
K , for a set X ⊆ V +, there exists a matching M in G with X = ∂+M
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and ∂−M ∈ F−
K if and only if X ∈ F+

K . Hence the maximum size of delta-matroid matchings

is equal to the maximum size of feasible sets in F+
K . Since (V +,F+

K) is a delta-matroid, we can

find a maximum feasible set in F+
K by a greedy algorithm. In fact, for a delta-matroid F(K ′),

define a weight function c : V ′ → R+ as follows:

c(v) =

{
1 (v ∈ V +)

0 (v ̸∈ V +)
.

Then, by Lemma 5.1, finding a maximum feasible set in F+
K is equivalent to finding a feasible

set X in F(K ′) with U ′ ⊆ X that maximizes c(X). Such X can be found in polynomial time

by Lemma 2.4. Note that a maximum matching corresponding to X can also be computed by

Corollary 2.3.

5.2 Bipartite delta-matroid matching with linear matroid constraints

In this section, we deal with the bipartite delta-matroid matching with linear matroid con-

straints on the other vertex side. That is, for the bipartite delta-matroid matching with

(V −,F−
K) given by (7), we are additionally given a linear matroid (V +, I), and our task is

to find a maximum cardinality matching M in G subject to ∂+M ∈ I and ∂−M ∈ F−
K .

Let A be an m × n matrix representing (V +, I). The column set corresponds to V + and

the row set is denoted by W . We now construct a mixed skew-symmetric matrix

W V +
c V + V −

c V − R

Ǩ =



O A O O O O

−A⊤ O D′ O O O

O

O

O

O

−D′

O

O

O

K ′


,

where K ′ is defined in (8) and D′ = (d′ii) is a generic diagonal matrix all of whose diagonal

entries are nonzero. Let V̌ be the whole column set of Ǩ and Ǔ = V +
c ∪ V + ∪ V −

c ∪ V −. We

consider a delta-matroid (W,F(Ǩ)/Ǔ |R). Then we can prove the following lemma in a similar

way to Section 5.1.

Lemma 5.3. Let X ⊆ W . Then there exists a matching M in G such that A[X, ∂+M ] is

nonsingular and ∂−M ∈ F−
K if and only if X ∈ F(Ǩ)/Ǔ |R.

Proof. Assume that X is a feasible set in F(Ǩ)/Ǔ |R. Then there exists Y ⊆ R such that

Ǩ[X ∪ Ǔ ∪ Y ] is nonsingular. The Pfaffian of this submatrix is equal to

pf Ǩ[X ∪ Ǔ ∪ Y ] =
∑

J⊆V +

± detA[X, Jc] ·
∏

i∈V +\J

d′ii · pfK ′[J ∪ V −
c ∪ V − ∪ Y ]. (10)

Since the left-hand side is nonzero, there exists J ⊆ V + such that both of A[X,Jc] and K ′[J ∪
V −
c ∪ V − ∪ Y ] are nonsingular. Moreover, the nonsingularity of the latter matrix implies that
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J ∈ F+
K by Lemma 5.1, which means that there exists a matching M in G with ∂+M = J and

∂−M ∈ F−
K . Thus the sufficiency of the statement holds.

Conversely, let M be a matching in G such that A[X, ∂+M ] is nonsingular and ∂−M ∈ F−
K .

We set J+ = ∂+M and J− = ∂−M . Then J+ ∈ F+
K follows from the definition of F+

K . By

Lemma 5.1, there exists Y ⊆ R such that K ′[J+ ∪ V −
c ∪ V − ∪ Y ] is nonsingular. Consider the

principal submatrix Ǩ[X ∪ Ǔ ∪ Y ] of Ǩ. Its Pfaffian is equal to (10), whose right-hand side

has at least one nonzero term when J = J+. Since each nonzero term has distinct d′ii’s, we

conclude that pf Ǩ[X ∪ Ǔ ∪ Y ] ̸= 0 by genericity of d′ii’s. Thus X ∈ F(Ǩ)/Ǔ |R holds, and

hence we obtain the necessity of the statement.

Therefore, in order to find a maximum matching M satisfying given delta-matroid con-

straints, it suffices to find a maximum feasible set X ⊆ W in F(Ǩ)/Ǔ |R. Such X can be

found in polynomial time by applying Lemma 2.4 to a linear delta-matroid (V̌ ,F(Ǩ ′)), a set

Ǔ required to be contained, and a weight function c : V̌ → R+ defined by

c(v) =

{
1 (v ∈W )

0 (v ̸∈W )
.

We can construct from X a desired matching M by Corollary 2.3.

Thus we obtain the following theorem.

Theorem 5.4. For a delta-matroid (V −,F−
K) given by (7), the bipartite delta-matroid match-

ing with linear matroid constraints on V + can be solved in polynomial time.

Remark 5.5. Hefner and Kleinschmidt [21] extended the 2-MSMP to one with capacity con-

straints. That is, given a bipartite graph G = (V +, V −;E), a directed graph D = (V +∪V −, A)

with k(D) ≤ 2, a partition (V +
1 , . . . , V +

m ) of V +, and positive integers r1, . . . , rm, we aim at

finding a maximum cardinality MS-matching M in G subject to |∂M ∩V +
i | ≤ ri for 1 ≤ i ≤ m.

They showed that this problem is NP-hard in general.

Theorem 5.4 indicates that if 2-MS-constraints are imposed only on V −, the 2-MSMP with

capacity constraints can be solved in polynomial time, because the capacity constraints on V +

can be represented by a linear matroid.

6 Related intersection-type problem

Let S1 and S2 be two families of subsets in a finite set V . The intersection problem with respect

to S1 and S2 is the problem of finding a maximum cardinality set in S1 ∩ S2. A well-known

example of this kind of problem is the case where both S1 and S2 are matroids, called the

matroid intersection problem, which can be solved in polynomial time (see e.g., [34]). In this

section, we summarize our results from the viewpoint of the intersection problem with respect

to a matroid and a delta-matroid. For a matroid (V, I) and a delta-matroid (V,F), we classify

related intersection problems with respect to I and F as Table 1. Note that an untwisted linear

delta-matroid in Table 1 means a delta-matroid F(K) for some skew-symmetric matrix K.

Let us first discuss the case where (V, I) is a transversal matroid, that is, given a bipartite

graph G = (U, V ;E), I ∈ I holds if and only if G has a matching covering I. Hence the in-

tersection problem with a transversal matroid (V, I) coincides with the bipartite delta-matroid
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Table 1: Intersection problems with a matroid and a delta-matroid

delta-matroid (V,F)
matching

delta-matroid
untwisted linear
delta-matroid

general
delta-matroid

transversal poly. time poly. time exp. time

matroid (Theorem 4.1) (Theorem 5.2) (Theorem 6.1)

matroid linear poly. time [28] poly. time exp. time

(V, I) matroid (linear matroid matching) (Theorem 5.4)

general exp. time [23] exp. time exp. time

matroid (matroid matching)

matching. Therefore, it follows from Theorems 4.1 and 5.2 that we can solve the intersection

problems in polynomial time if (V,F) is a matching delta-matroid and an untwisted linear

delta-matroid, respectively. However, it turns out to be intractable if (V,F) is not linear.

Theorem 6.1. The bipartite delta-matroid matching problem, i.e., the intersection problem

with respect to a transversal matroid and a delta-matroid, cannot be solved in polynomial time

in the oracle model.

Proof. Let G = (V,E) be a graph with |V | = n and (V, I) be a matroid with rank r. We

consider to find a matching MG of size r with ∂MG ∈ I, which is known to require exponential

time in the oracle model [34, §43.9].
We define two delta-matroids (V,Fb) and (V,FG) to be the base family of the given matroid

and the matching delta-matroid of G, respectively. We denote by V1 and V2 the copies of V , and

by vi ∈ Vi (i = 1, 2) the copies of v ∈ V . Construct a bipartite graph H = (V, V1 ∪ V2;E) with

E = {(v, vi) | v ∈ V, i = 1, 2}. Let (V1 ∪ V2,F) be a delta-matroid defined by the direct sum of

(V1,Fb) and (V2,FG△V2). Then H has a matching MH of size n with ∂MH ∩ (V1 ∩ V2) ∈ F if

and only if G has a matching MG of size r with ∂MG ∈ I. Indeed, if such MG exists, by letting

Ji be the copies of ∂MG in Vi (i = 1, 2), we know that J1 ∈ Fb and J2△V2 = V2 \ J2 ∈ FG△V2,

and hence H has the matching MH covering J1 ∪ (V2 \ J2), which satisfies the constraints.

The converse also holds by the same argument. Therefore, we can reduce finding a matching

MG of size r with ∂MG ∈ I to the bipartite delta-matroid matching, and thus the statement

holds.

Let us remark that the master/slave matching problem in Example 3.1 is shown to be NP-hard

even if the graph G is bipartite and k(D) = 3 [1, 20]. Since the MS-constraint with k(D) = 3

can be represented by a (non-linear) delta-matroid, except for the case where the directed graph

is complete, this fact implies that the bipartite delta-matroid matching is NP-hard even when

an explicit representation of the delta-matroid is given.

Next assume that (V,F) is a matching delta-matroid of a graph H. Then (V,F) is rep-

resented by a generic slew-symmetric matrix whose support graph coincides with H. This

means that the intersection problem with a matching delta-matroid (V,F) is equivalent to the

matroid matching. Therefore, if (V, I) is linear then it can be solved in polynomial time, while
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Table 2: Intersection problems with two delta-matroids

delta-matroid (V,F2)

matching linear general

delta- matching poly. time open exp. time

matroid (matching) (linear delta-matroid matching) (matroid matching)

(V,F1) linear open exp. time

(linear delta-matroid matching)

it requires exponential time if (V, I) is general. Hence, for general (V, I), the intersection prob-

lem requires exponential time, because a matching delta-matroid is a special case of (linear)

delta-matroids.

The remaining case is that for a linear matroid and an untwisted delta-matroid. This

problem can be solved in polynomial time by Theorem 5.4. Indeed, for a linear matroid (V, I)
and an untwisted linear delta-matroid (V,F), construct a bipartite graph G = (V, V ′;E), where

V ′ is a copy of V and E consists only of edges connecting a vertex in V and its copy. Then the

intersection problem with respect to I and F is equivalent to finding a maximum matching M

in G with ∂+M ∈ I and ∂−M ∈ F .
It should be noted that Fleiner et al. [14] deal with the intersection problem with respect

to a matroid and the 2-MS-constraint in Example 3.1, which is a special case of a matching

delta-matroid. They showed that this problem can be solved in polynomial time with the aid

of the matroid intersection.

We conclude this section with remarks on the intersection problems with respect to two

delta-matroids Mi = (V,Fi) (i = 1, 2), which is summarized in Table 2. If M1 is a matching

delta-matroid of a graph H, the problem is equivalent to the delta-matroid matching. This

implies that if M2 is also a matching delta-matroid then we can solve it in polynomial time

by Theorem 4.1, and if M2 is general then it requires exponential time. Assume that M2 is

linear in addition. This case, which is equivalent to the matching problem with linear delta-

matroids, is an important broader class of the delta-matroid matching, because it includes the

linear matroid matching and the linear delta-covering as a special case. Let us remark that

this problem is equivalent to that with two linear delta-matroids.

Theorem 6.2. The intersection problem with respect to two linear delta-matroids is reduced

to the linear delta-matroid matching, i.e., the intersection problem with respect to a matching

delta-matroid and a linear delta-matroid.

Proof. Let (V,Fi) (i = 1, 2) be two linear delta-matroids. Then construct a bipartite graph

G = (V, V ′;E), where V ′ is a copy of V and E consists only of parallel edges connecting a

vertex in V and its copy. Then the intersection problem with respect to F1,F2 is reduced

to the bipartite delta-matroid matching with (V ∪ V ′,F), where F is a direct sum of F1 and

F2.
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