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Abstract

In this paper, three theoretical results are presented on Sinc-Nyström methods for Volterra
integral equations of the first and second kind that have been proposed by Muhammad et
al. On their methods, the following two points have been desired to be improved: 1) their
methods include a tuning parameter hard to be found unless the solution is given, and 2)
convergence has not been proved in a precise sense. In a mathematically rigorous manner,
we present 1) an implementable way to estimate the tuning parameter, and 2) a rigorous
proof of the convergence with its rate explicitly revealed. Furthermore, we show 3) the re-
sulting system of the schemes are well-conditioned. Numerical examples which support the
theoretical results are also given.

1 Introduction
We are mainly concerned with Volterra integral equations of the second kind of the form:

u(t) −
∫ t

a
k(t, s)u(s) ds = g(t), a ≤ t ≤ b, (1.1)

where g(t) and k(t, s) are given functions, and u(t) is the solution to be determined. The equa-
tions have been employed as mathematical models in many fields, such as renewal processes [3],
semi-conductor devices [14], wave phenomena [9], and population biology [5]. Because of the
great importance in application, there have been considerable number of researches on the the-
ory and numerical methods for the equations (see, for example, Linz [13], Kythe–Puri [11],
Brunner [6], and references therein). We also consider Volterra integral equations of the first
kind: ∫ t

a
k(t, s)u(s) ds = g(t), a ≤ t ≤ b, g(a) = 0, (1.2)

by rewriting it as the second kind equation (1.1). There have also been researches for the first
kind [1, 12].

If we turn our attention to numerical methods, Sinc numerical methods, which have been ex-
tensively studied by Stenger [29,30], seem to have become successful numerical tools, especially in
the area of differential equations: for example, initial value problems of ordinary differential equa-
tions [7, 29, 30], boundary value problems of second-order ordinary differential equations [4, 28],
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and boundary value problems of fourth-order ordinary differential equations [16,27]. The typical
convergence rate of these schemes is exponential, O(exp(−c1

√
N)), which is much higher than

the polynomial rate such as O(N−c). Moreover, it turned out that the rate can be improved to
O(exp(−c2N/ logN)) by replacing the variable transformation used in those methods: IVP [31],
BVP of second-order [19], BVP of fourth-order [20,21] (these transformations will be described
later). It is also notable that such a rate can be attained even if functions to be approximated
have end-point singularities [15,29,30,32].

As a natural extension of the studies, researches based on the Sinc numerical methods have
also started in the area of integral equations. Numerical indefinite integration has been pro-
posed by some authors [8, 10, 29] independently, and improved versions (by replacing the vari-
able transformation) have been proposed [17,33]. By using the numerical indefinite integration,
Muhammad et al. [18] have developed numerical schemes for Volterra integral equations of
the second kind (1.1) and the first kind (1.2), where Nystöm’s method is employed to dis-
cretize the equations (such a procedure is called a “Sinc-Nyström method”). They confirmed
by numerical experiments that their schemes enjoy exponential convergence, O(exp(−c1

√
N))

or O(exp(−c2N/ logN)), depending on the employed variable transformations. They have also
given an error analysis (only for the latter convergence rate case) that their numerical solution
uN satisfies the following estimate (see also Theorem 3.1):

sup
t∈(a, b)

|u(t) − uN (t)| ≤
(
C

√
N∥A−1

N ∥2 + C ′
) logN

N
exp(−c2N/ logN), (1.3)

where AN denotes the coefficient matrix of the resulting linear equations. Existence of A−1
N

and stability of its norm as N increases are suggested by their numerical experiments, but no
rigorous proof has been given.

One of the purposes of this study is to fill this gap by giving an error analysis in the following
form:

max
t∈[a, b]

|u(t) − uN (t)| ≤ C
logN
N

exp(−c2N/ logN), (1.4)

which does not include any unestimated term and thus rigorously proves exponential convergence
of the solution uN . The key here is a technique developed in the analysis for Fredholm integral
equations by the present authors [24]. We also proves the existence of A−1

N , and boundedness of
both ∥AN∥∞ and ∥A−1

N ∥∞, which means the resulting system is well-conditioned.
Another purpose of this study, which should be more important in practice, is to introduce

a way to estimate a tuning parameter ‘d’, which is required to set a mesh size h (see (2.15)
and (2.17)). The choice is quite important since it substantially affects the convergence profile
of the schemes (see numerical examples in Section 4.2). However, the optimal value of this
parameter is in principle determined from the unknown true solution u, and so far there seems
no practical way to find the optimal value. As a remedy, we show theoretically that the parameter
can be estimated by investigating known functions k and g, instead of the solution u. Similar
results have already been given for Fredholm integral equations [23,24,30].

This paper is organized as follows. Section 2 is a preliminary section that states numerical
indefinite integration formulas by means of the Sinc approximation, and their convergence the-
orems. In Section 3, we review the schemes and error analysis by Muhammad et al. [18], and
summarize new theoretical analyses in this paper (main results). The proofs will be given in
Sections 5–7. Numerical experiments will be presented in Section 4, where the focus is mainly
on the tuning parameter d. Finally in Section 8 we conclude this paper.
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2 Preliminary: Sinc indefinite integration

2.1 Sinc indefinite integration on the real axis

Let us first consider the approximation on the entire real axis. A function approximation formula
expressed as

F (σ) ≈
N∑

j=−N
F (jh)S(j, h)(σ), σ ∈ R, (2.1)

is called the “Sinc approximation,” where the basis function S(j, h) is defined by

S(j, h)(x) = sin[π(x/h− j)]
π(x/h− j)

. (2.2)

The mesh size h should be appropriately selected depending on N and smoothness of the function
F (described in the subsequent convergence theorems). Using the Sinc approximation, Haber [8]
has derived a numerical indefinite integration formula as follows:

∫ x

−∞
F (σ) dσ ≈

N∑
j=−N

F (jh)
∫ x

−∞
S(j, h)(σ) dσ =

N∑
j=−N

F (jh)J(j, h)(x), x ∈ R, (2.3)

where the basis function J(j, h) is defined by

J(j, h)(x) = h

{1
2

+ 1
π

Si[π(x/h− j)]
}
. (2.4)

Here, Si(x) is the so-called “sine integral” function, whose routine is available in some numer-
ical libraries (IMSL, NAG, GSL, and so on). We call the formula (2.3) the “Sinc indefinite
integration.”

2.2 SE-Sinc indefinite integration and DE-Sinc indefinite integration

In the case of the finite interval (recall the target equations (1.1) and (1.2)), variable transfor-
mation is often utilized. The standard one is the “Single-Exponential transformation” defined
by

s = ψSE(σ) = b− a

2
tanh

(
σ

2

)
+ b+ a

2
, (2.5)

which maps σ ∈ R onto s ∈ (a, b). We call it the “SE transformation” for short. The inverse
function is

σ = {ψSE}−1(s) = log
(
s− a

b− s

)
. (2.6)

Combining the SE transformation with the Sinc indefinite integration (2.3), Haber [8] has derived
a indefinite integration formula on the finite interval as follows:∫ t

a
f(s) ds =

∫ {ψSE}−1(t)

−∞
f(ψSE(σ)){ψSE}′(σ) dσ

≈
N∑

j=−N
f(ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t)), t ∈ [a, b]. (2.7)

We call this approximation the “SE-Sinc indefinite integration.”
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For the purpose of improving the convergence rate, Muhammad–Mori [17] have proposed to
replace the SE transformation with the Double-Exponential (DE) transformation:

s = ψDE(σ) = b− a

2
tanh

(
π

2
sinh(σ)

)
+ b+ a

2
, (2.8)

whose inverse function is

σ = {ψDE}−1(s) = log

 1
π

log
(
s− a

b− s

)
+

√
1 +

{ 1
π

log
(
s− a

b− s

)}2
 . (2.9)

The modified formula is expressed as

∫ t

a
f(s) ds ≈

N∑
j=−N

f(ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t)), t ∈ [a, b]. (2.10)

We call this approximation the “DE-Sinc indefinite integration.”

2.3 Convergence theorems

In order to state the error analysis of the formulas above, let us introduce the following function
spaces.

Definition 2.1. Let D be a bounded and simply-connected domain (or Riemann surface). Then
H∞(D) denotes the family of functions f analytic on D such that the norm ∥f∥H∞(D) is finite,
where

∥f∥H∞(D) = sup
z∈D

|f(z)|. (2.11)

Definition 2.2. Let α be a positive constant, and let D be a bounded and simply-connected
domain (or Riemann surface) which satisfies (a, b) ⊂ D . Then Lα(D) denotes the family of
functions f ∈ H∞(D) for which there exists a constant K such that for all z in D

|f(z)| ≤ K|Q(z)|α, (2.12)

where the function Q is defined by Q(z) = (z − a)(b− z).

In what follows, the domain D is supposed to be either

ψSE(Dd) = {z = ψSE(ζ) : ζ ∈ Dd} or ψDE(Dd) = {z = ψDE(ζ) : ζ ∈ Dd}, (2.13)

which denotes the domain translated from the strip domain

Dd = {ζ ∈ C : | Im ζ| < d}, (2.14)

for a positive constant d (see also Figures 1 and 2). Then convergence theorems of the SE/DE-
Sinc indefinite integration can be stated as follows.

Theorem 2.3 (Okayama et al. [22, Theorem 2.7]). Let (fQ) ∈ Lα(ψSE(Dd)) for d with 0 < d <
π. Let N be a positive integer, and h be selected by the formula

h =

√
πd

αN
. (2.15)
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Figure 1. The domain ψSE(D1) where
(a, b) = (0, 1).
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Figure 2. The domain ψDE(D1) where
(a, b) = (0, 1).

Then it holds that

max
t∈[a, b]

∣∣∣∣∣∣
∫ t

a
f(s) ds−

N∑
j=−N

f(ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t))

∣∣∣∣∣∣
≤ K(b− a)2α−1CSE

α,d e−
√
πdαN , (2.16)

where K is the constant in the inequality (2.12), and CSE
α,d is a constant depending only on α

and d.

Theorem 2.4 (Okayama et al. [22, Theorem 2.13]). Let (fQ) ∈ Lα(ψDE(Dd)) for d with 0 <
d < π/2. Let N be a positive integer, and h be selected by the formula

h = log(2dN/α)
N

. (2.17)

Then it holds that

max
t∈[a, b]

∣∣∣∣∣∣
∫ t

a
f(s) ds−

N∑
j=−N

f(ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t))

∣∣∣∣∣∣
≤ K(b− a)2α−1CDE

α,d

log(2dN/α)
N

exp
[ −πdN

log(2dN/α)

]
, (2.18)

where K is the constant in the inequality (2.12), and CDE
α,d is a constant depending only on α

and d.

Remark 2.5. On the SE-Sinc indefinite integration, Haber [8] has given an error estimate
O(

√
N e−πdαN ), but it is not sufficient for our purpose (see Remark 6.6). Similarly, the conver-

gence rate of the DE-Sinc indefinite integration has been evaluated as O(exp[−πdN/ log(2dN/α)])
in Muhammad–Mori [17], but the theorem above gives a stronger result.

Remark 2.6. In Theorems 2.3 and 2.4, the constants are stated more explicitly than usual.
This is needed for the proofs of Lemmas 6.5 and 6.9. In view of (6.24) and (6.37), we notice
that the function Fi(t, z)Q(z) cannot be bounded by a constant, and should depend on h (and
accordingly on N). We have to take care of the dependency on N , and the estimates in the
above form are needed for the purpose.
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3 Review of the existing results and the main results
First we review the schemes and theorems given by Muhammad et al. [18] in Sections 3.1 and 3.2.
Then we summarize the main three results in Sections 3.3–3.5.

3.1 SE-Sinc-Nyström methods

Let us first consider Volterra integral equations of the second kind (1.1). Let u ∈ H∞(ψSE(Dd))
and k(t, ·)Q(·) ∈ Lα(ψSE(Dd)) for all t ∈ [a, b]. Then according to Theorem 2.3, the integral in
the equation (1.1) can be approximated by the SE-Sinc indefinite integration as∫ t

a
k(t, s)u(s) ds ≈

N∑
j=−N

k(t, ψSE(jh))u(ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t)), (3.1)

where the mesh size h is selected by the formula (2.15). By this approximation we have a new
equation:

uSE
N (t) = g(t) +

N∑
j=−N

k(t, ψSE(jh))uSE
N (ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t)). (3.2)

In order to determine the approximated solution uSE
N , we have to obtain the unknown coefficients

uSE
m = [uSE

N (ψSE(−Nh)), uSE
N (ψSE(−(N − 1)h)), . . . , uSE

N (ψSE(Nh))]T, (3.3)

where m = 2N + 1. For this purpose, consider the discretization of the equation (3.2) at the
SE-Sinc points:

t = ψSE(ih), i = −N, −N + 1, . . . , N. (3.4)
Then the resulting linear system is written as

(Im − V SE
m )uSE

m = gSE
m , (3.5)

where Im denotes an m × m identity matrix and V SE
m is an m × m matrix whose (i, j) element

is defined by

(V SE
m )ij = k(ψSE(ih), ψSE(jh)){ψSE}′(jh)J(j, h)(ih), i, j = −N, −N + 1, . . . , N, (3.6)

and gSE
m ∈ Rm is defined by

gSE
m = [g(ψSE(−Nh)), g(ψSE(−(N − 1)h)), . . . , g(ψSE(Nh))]T. (3.7)

By solving the linear equation (3.5), the approximated solution uSE
N is determined by (3.2).

Next let us consider Volterra integral equations of the first kind (1.2). If k(t, t) ̸= 0 and both
k(·, s) and g are differentiable, the equation can be reduced to the second kind equation:

u(t) −
∫ t

a
k̃(t, s)u(s) ds = g̃(t), (3.8)

where
k̃(t, s) = − 1

k(t, t)
∂k(t, s)

∂t
, g̃(t) = g′(t)

k(t, t)
. (3.9)

In this case we can apply the same procedure as above. Let u ∈ H∞(ψSE(Dd)) and k̃(t, ·)Q(·) ∈
Lα(ψSE(Dd)) for all t ∈ [a, b], and consider the approximated equation:

ũSE
N (t) = g̃(t) +

N∑
j=−N

k̃(t, ψSE(jh))ũSE
N (ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t)). (3.10)
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By discretizing this equation at the SE-Sinc points (3.4), we have a linear equation

(Im − Ṽ SE
m )ũSE

m = g̃SE
m , (3.11)

where ũSE
m , Ṽ

SE
m , g̃SE

m are similarly defined to (3.3), (3.6), (3.7), respectively. By solving the linear
equation (3.11), the approximated solution ũSE

N is determined by (3.10).
Although the above results have been mentioned in Muhammad et al. [18], the authors have

mainly considered the DE-Sinc-Nyström methods described below, and no theoretical analysis
has been given for the schemes above (the SE-Sinc-Nyström methods).

3.2 DE-Sinc-Nyström methods

Here we describe DE-Sinc-Nyström methods; this is done by replacing the SE transformation,
which is used in the SE-Sinc-Nyström methods, with the DE transformation. Let us first consider
the second kind equation (1.1). Let u ∈ H∞(ψDE(Dd)) and k(t, ·)Q(·) ∈ Lα(ψDE(Dd)) for all
t ∈ [a, b]. Then according to Theorem 2.4, the integral in the equation (1.1) can be approximated
by the DE-Sinc indefinite integration as∫ t

a
k(t, s)u(s) ds ≈

N∑
j=−N

k(t, ψDE(jh))u(ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t)), (3.12)

where the mesh size h is selected by the formula (2.17). By this approximation we have a new
equation:

uDE
N (t) = g(t) +

N∑
j=−N

k(t, ψDE(jh))uDE
N (ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t)). (3.13)

In order to determine the approximated solution uDE
N , we have to obtain unknown coefficients

uDE
m = [uDE

N (ψDE(−Nh)), uDE
N (ψDE(−(N − 1)h)), . . . , uDE

N (ψDE(Nh))]T, (3.14)

where m = 2N + 1. For this purpose, consider the discretization of the equation (3.13) at the
DE-Sinc points:

t = ψDE(ih), i = −N, −N + 1, . . . , N. (3.15)

Then the resulting linear system is written as

(Im − V DE
m )uDE

m = gDE
m , (3.16)

where V DE
m is an m×m matrix whose (i, j) element is defined by

(V DE
m )ij = k(ψDE(ih), ψDE(jh)){ψDE}′(jh)J(j, h)(ih), i, j = −N, −N + 1, . . . , N, (3.17)

and gDE
m ∈ Rm is defined by

gDE
m = [g(ψDE(−Nh)), g(ψDE(−(N − 1)h)), . . . , g(ψDE(Nh))]T. (3.18)

By solving the linear equation (3.16), the approximated solution uDE
N is determined by (3.13).

Next let us consider Volterra integral equations of the first kind (1.2) by reducing it to
the second kind equation (3.8). Let u ∈ H∞(ψDE(Dd)) and k̃(t, ·)Q(·) ∈ Lα(ψDE(Dd)) for all
t ∈ [a, b], and consider the approximated equation:

ũDE
N (t) = g̃(t) +

N∑
j=−N

k̃(t, ψDE(jh))ũDE
N (ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t)). (3.19)
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By discretizing this equation at the DE-Sinc points (3.15), we have a linear equation

(Im − Ṽ DE
m )ũDE

m = g̃DE
m , (3.20)

where ũDE
m , Ṽ DE

m , g̃DE
m are defined similarly to (3.14), (3.17), (3.18), respectively. By solving the

linear equation (3.20), the approximated solution ũDE
N is determined by (3.19).

On these schemes (DE-Sinc-Nyström methods), Muhammad et al. [18] have given the fol-
lowing error analyses.
Theorem 3.1 (Muhammad et al. [18, Theorem 3.2]). Let u be the solution of the equation (1.1).
Let u ∈ H∞(ψDE(Dd)) and k(t, ·)Q(·) ∈ Lα(ψDE(Dd)) for all t ∈ [a, b]. Then there exist constants
C and C ′ independent of N such that

sup
a<t<b

|u(t) − uDE
N (t)| ≤

(
C

√
N∥(Im − V DE

m )−1∥2 + C ′
) logN

N
exp

[ −πdN

log(2dN/α)

]
. (3.21)

Theorem 3.2 (Muhammad et al. [18, Theorem 3.3]). Let u be the solution of the equation (1.2).
Let u ∈ H∞(ψDE(Dd)), let k(t, t) ̸= 0, let g(t) be differentiable, and let {∂k(t, ·)/∂t}Q(·) ∈
Lα(ψDE(Dd)) for all t ∈ [a, b]. Then there exist constants C and C ′ independent of N such that

sup
a<t<b

|u(t) − ũDE
N (t)| ≤

(
C

√
N∥(Im − Ṽ DE

m )−1∥2 + C ′
) logN

N
exp

[ −πdN

log(2dN/α)

]
. (3.22)

3.3 Main result 1: Estimating the tuning parameter ‘d’

In both the SE- and DE-Sinc-Nyström methods, the mesh size h is selected based on the param-
eters α and d (recall the formulas (2.15) and (2.17)). The former parameter α can be obtained
by investigating the known function k (recall the assumption in Theorems 3.1 and 3.2). The
latter parameter d is, however, not easy to know because it also depends on the unknown func-
tion u. Not only it is indispensable to launch the schemes, but it also substantially affects the
performance (see Section 4.2). So far, however, no practical way to find the value has ever been
known. In the previous study [18], the exact solution u seems to have been used to investigate d
for numerical experiments, but in practical situations we cannot expect the solution u is known.

To remedy this issue, we present the following results. The proof will be given in Section 5.
Theorem 3.3. Let D = ψSE(Dd) or D = ψDE(Dd). Let g ∈ H∞(D), let k(z, ·)Q(·) ∈ Lα(D),
and let k(·, w)Q(w) ∈ H∞(D) for all z, w ∈ D . Then the equation (1.1) has a unique solution
u ∈ H∞(D).
Theorem 3.4. Let D = ψSE(Dd) or D = ψDE(Dd). Let g′ ∈ H∞(D), let {∂k(z, ·)/∂z}Q(·) ∈
Lα(D), and let {∂k(·, w)/∂z}Q(w) ∈ H∞(D) for all z, w ∈ D . Furthermore let 1/k(z, z) ∈
H∞(D). Then the equation (1.2) has a unique solution u ∈ H∞(D).

These theorems state that the parameter d of the unknown function u can be found from
known functions k and g. Roughly speaking, by investigating the values of d of both k and g,
we can choose the smaller one as d in the overall formula.
Remark 3.5. Strictly speaking, Theorems 3.3 and 3.4 give just a safe choice of d, and the
optimal value might be larger than estimated. For example, let us consider

u(t) −
√

1 + (2t− 1)2
∫ t

0
u(s) ds = t2 − t3

3

√
1 + (2t− 1)2, 0 ≤ t ≤ 1. (3.23)

The functions g and k(·, s) in this equation are not analytic at the points z = (1 ± i )/2, and the
parameter d can be taken to d = π/2 in the SE case at most, and to d = π/6 in the DE case.
However the solution is u(t) = t2, which is analytic on the whole complex plane. In this way, in
several exceptional cases, the singularities of g and k might cancel, and the estimated value of
d can be too moderate, i.e., be smaller than the optimal value.
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3.4 Main result 2: Rigorous proof of the exponential convergence

In Theorems 3.1 and 3.2, there remained the N -dependent terms ∥(Im − V DE
m )−1∥2 and ∥(Im −

Ṽ DE
m )−1∥2. In Muhammad et al. [18], it has been numerically confirmed that these terms remain

low in all of their experiments, which suggests that their schemes converge exponentially. How-
ever, the boundedness of these terms has not been proved theoretically so far. Furthermore, in
those theorems the existence of the inverse matrices (Im − V DE

m )−1 and (Im − Ṽ DE
m )−1, which is

related to the feasibility of the schemes, is implicitly assumed and not proved.
In the present paper, we will rigorously prove the exponential convergence, providing the

missing discussions described above. The proof will be given in Section 6.

Theorem 3.6 (SE, 2nd kind). Let the assumptions in Theorem 3.3 be satisfied with D =
ψSE(Dd). Let g ∈ C([a, b]), and let k(t, ·)Q(·) ∈ C([a, b]) and k(·, s)Q(s) ∈ C([a, b]) for all
t, s ∈ [a, b]. Then there exists a positive integer N0 such that for all N ≥ N0 the coefficient
matrix (Im − V SE

m ) is invertible. Furthermore, there exists a constant C for all N ≥ N0 such
that

max
a≤t≤b

|u(t) − uSE
N (t)| ≤ C e−

√
πdαN . (3.24)

Theorem 3.7 (DE, 2nd kind). Let the assumptions in Theorem 3.3 be satisfied with D =
ψDE(Dd). Let g ∈ C([a, b]), and let k(t, ·)Q(·) ∈ C([a, b]) and k(·, s)Q(s) ∈ C([a, b]) for all
t, s ∈ [a, b]. Then there exists a positive integer N0 such that for all N ≥ N0 the coefficient
matrix (Im − V DE

m ) is invertible. Furthermore, there exists a constant C for all N ≥ N0 such
that

max
a≤t≤b

|u(t) − uDE
N (t)| ≤ C

log(2dN/α)
N

exp
[ −πdN

log(2dN/α)

]
. (3.25)

Remark 3.8. The assumption that g and kQ belong to C([a, b]) is just needed to guarantee
the continuity at the endpoints t = a, b since the domains ψSE(Dd) and ψDE(Dd) do not include
the endpoints. The same remark applies to the following theorems.

Theorem 3.9 (SE, 1st kind). Let the assumptions in Theorem 3.4 be satisfied with D =
ψSE(Dd). Let g′ ∈ C([a, b]), let {∂k(t, ·)/∂t}Q(·) ∈ C([a, b]), and let {∂k(·, s)/∂t}Q(s) ∈ C([a, b])
for all t, s ∈ [a, b]. Furthermore let 1/k(t, t) ∈ C([a, b]). Then there exists a positive integer
N0 such that for all N ≥ N0 the coefficient matrix (Im − Ṽ SE

m ) is invertible. Furthermore, there
exists a constant C for all N ≥ N0 such that

max
a≤t≤b

|u(t) − ũSE
N (t)| ≤ C e−

√
πdαN . (3.26)

Theorem 3.10 (DE, 1st kind). Let the assumptions in Theorem 3.4 be satisfied with D =
ψDE(Dd). Let g′ ∈ C([a, b]), let {∂k(t, ·)/∂t}Q(·) ∈ C([a, b]), and let {∂k(·, s)/∂t}Q(s) ∈
C([a, b]) for all t, s ∈ [a, b]. Furthermore let 1/k(t, t) ∈ C([a, b]). Then there exists a positive
integer N0 such that for all N ≥ N0 the coefficient matrix (Im− Ṽ DE

m ) is invertible. Furthermore,
there exists a constant C for all N ≥ N0 such that

max
a≤t≤b

|u(t) − ũDE
N (t)| ≤ C

log(2dN/α)
N

exp
[ −πdN

log(2dN/α)

]
. (3.27)

3.5 Main result 3: Analysis of conditions of the resulting systems

In Section 3.4, we have shown the invertibility of the coefficient matrices appearing in the
schemes. In addition, we show stronger results: we will prove the boundedness of the condition
numbers of the coefficient matrices as follows. The proof will be given in Section 7.
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Theorem 3.11 (SE, 2nd kind). Let the assumptions in Theorem 3.6 be satisfied with D =
ψSE(Dd). Then there exists a constant C1 independent of N such that

∥(Im − V SE
m )∥∞ ≤ C1. (3.28)

Furthermore there exists a constant C2 independent of N such that for all N ≥ N0

∥(Im − V SE
m )−1∥∞ ≤ C2, (3.29)

where N0 is the same integer as in Theorem 3.6.

Theorem 3.12 (DE, 2nd kind). Let the assumptions in Theorem 3.7 be satisfied with D =
ψDE(Dd). Then there exists a constant C1 independent of N such that

∥(Im − V DE
m )∥∞ ≤ C1. (3.30)

Furthermore there exists a constant C2 independent of N such that for all N ≥ N0

∥(Im − V DE
m )−1∥∞ ≤ C2, (3.31)

where N0 is the same integer as in Theorem 3.7.

Theorem 3.13 (SE, 1st kind). Let the assumptions in Theorem 3.9 be satisfied with D =
ψSE(Dd). Then there exists a constant C1 independent of N such that

∥(Im − Ṽ SE
m )∥∞ ≤ C1. (3.32)

Furthermore there exists a constant C2 independent of N such that for all N ≥ N0

∥(Im − Ṽ SE
m )−1∥∞ ≤ C2, (3.33)

where N0 is the same integer as in Theorem 3.9.

Theorem 3.14 (DE, 1st kind). Let the assumptions in Theorem 3.10 be satisfied with D =
ψDE(Dd). Then there exists a constant C1 independent of N such that

∥(Im − Ṽ DE
m )∥∞ ≤ C1. (3.34)

Furthermore there exists a constant C2 independent of N such that for all N ≥ N0

∥(Im − Ṽ DE
m )−1∥∞ ≤ C2, (3.35)

where N0 is the same integer as in Theorem 3.10.

Remark 3.15. The matrix norm in the four theorems above is infinity-norm: ∥ · ∥∞, whereas
2-norm is used in Theorems 3.1 and 3.2. This is because of some technical reasons.

4 Numerical Examples
The main purpose of the numerical experiments in this section is to investigate how the perfor-
mance of the Sinc-Nyström methods varies by the tuning parameter d (related to Section 3.3).
Also the rate of convergence is also confirmed (related to Section 3.4). In addition we con-
firm that the resulting system is in fact well-conditioned by investigating the condition number
(related to Section 3.5).

We used C++ with double precision arithmetic for implementation. GNU Scientific Library
(GSL) was used for computing the sine integral function Si(x), appearing in the basis function
J(j, h) defined by (2.4).
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4.1 Estimating the tuning parameter ‘d’

Throughout this section, we consider the following test equation:

u(t) =
√
t

2

{ 6
1 + 3t2

+ log(1 + 3t2)
}

−
∫ t

0

√
tsu(s) ds, 0 ≤ t ≤ 1. (4.1)

Let us first estimate the parameter d of the solution u by using Theorem 3.3, without using
any information on the solution. Let πϵ = π − ϵ, where ϵ denotes an arbitrary small positive
number. The functions g and k of the equation (4.1) satisfy the assumptions in Theorem 3.3
with D = ψSE(D2πϵ/3) and α = 1 in the SE case. In the DE case, let us set the following values:

p = π

3 log 2
, (4.2)

x = − log 2
π

1 −

√
1 + 5p2 +

√
(1 + 5p2)2 + (4p)2

2

 , (4.3)

y = 2
3

[
1 −

√
2

1 + 5p2 +
√

(1 + 5p2)2 + (4p)2

]
, (4.4)

dϵ = arcsin
(

y√
x2 + y2

)
− ϵ. (4.5)

Then the assumptions in Theorem 3.3 are fulfilled with D = ψDE(Ddϵ) and α = 1. Hence, the
parameter d can be estimated as d = 2πϵ/3 ≃ 2.09 in the SE case, and d = dϵ ≃ 0.69 in the
DE case. The analytical solution of the equation (4.1) is u(t) = 3

√
t/(1 + 3t2), which actually

belongs to H∞(ψSE(D2πϵ/3)) and H∞(ψDE(Ddϵ)). In this way, the parameter d can be estimated
by Theorem 3.3 without the solution.

4.2 How the performance in fact varies depending on the parameter

The parameter d estimated above is used for computing the mesh size h, defined by (2.15)
or (2.17). We are here interested in how the performance of the schemes varies when d is
selected incorrectly. To investigate it, we here define h as

h =
√

2rπϵπ
3N

(4.6)

in the SE case, and

h = log(2rdϵN)
N

(4.7)

in the DE case, and conduct numerical experiments with r = −1, 0, 1, 2, 3 (r = 1 is optimal in
theory). The results are shown in Figures 3–6. We checked the error of the numerical solutions
uSE
N and uDE

N on the equally-spaced 101 points over the interval [0, 1], and the maximum error
among them are shown in those graphs. We observe that in the SE case (Figures 3 and 4), the
performance gets remarkably worse as |r − 1| increases. The convergence rate in all cases looks
consistently O(exp(−c1

√
N)), although c1 is different in each case. In the DE case (Figures 5

and 6), the convergence rate in all cases looks consistently O(exp(−c2N/ log(N))), but the
difference of the results is interesting. Although there is not so big difference like the SE case,
the convergence rate looks improved as r decreases. Discussions about these observations are
given from theoretical viewpoint in Section 4.4.
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Figure 3. Performance of the SE-Sinc-Nyström method with h defined by (4.6), r = −1, 0, 1.
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Figure 4. Performance of the SE-Sinc-Nyström method with h defined by (4.6), r = 1, 2, 3.
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Figure 5. Performance of the DE-Sinc-Nyström method with h defined by (4.7), r = −1, 0, 1.
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Figure 6. Performance of the DE-Sinc-Nyström method with h defined by (4.7), r = 1, 2, 3.

4.3 Checking the condition numbers of the coefficient matrices

We also investigate the condition numbers:

∥(Im − V SE
m )∥∞∥(Im − V SE

m )−1∥∞ and ∥(Im − V DE
m )∥∞∥(Im − V DE

m )−1∥∞, (4.8)

in the case of r = 1. The results are shown in Figure 7, from which we can see the condition
numbers remain quite low and bounded, at least in this range of N .
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Figure 7. Condition number in the SE- and the DE-Sinc-Nyström method.

4.4 Discussions about the observed convergence rates

Let us roughly explain the convergence rates observed in Section 4.2 by analyzing the (SE/DE)
Sinc indefinite integration, since it determines the performance of the Sinc-Nyström methods as
shown in Section 6. The SE-Sinc indefinite integration has two main error terms: the “discretiza-
tion error” and the “truncation error,” which can be estimated as O(h e−πd/h) and O( e−αNh) [29],
respectively. Then we can estimate the whole error ESE-Sinc as

ESE-Sinc ≤ CDh e−πd/h + CT e−αNh. (4.9)
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If we define the mesh size h as
h =

√
c

N
(4.10)

(recall (4.6), where c = 2r−1πd/α, and where d = 2πϵ/3 and α = 1), then we have

ESE-Sinc ≤ CD

√
c

N
e−πd

√
N/c + CT e−α

√
cN , (4.11)

and we easily see that c = πd/α is optimal, giving the rate O( e−
√
πdαN ). If c is bigger than it,

then the first term limits the convergence rate to O( e−πd
√
N/c/

√
N). Similarly, if c is smaller,

then the rate becomes O( e−α
√
cN ). Thus we can conclude that in all cases the convergence rate

is actually consistently O(exp(−c1
√
N)), as observed in the numerical experiments.

Next we consider the DE case. The DE-Sinc indefinite integration also has two main error
terms stated above, but the truncation error is different from the SE case: O( e−π

2 exp(Nh)) [22].
Therefore the whole error EDE-Sinc can be estimated as

EDE-Sinc ≤ CDh e−πd/h + CT e−π
2 exp(Nh). (4.12)

If we define the mesh size h as
h = log(cN)

N
(4.13)

(recall (4.7), where c = 2rd/α, and where d = dϵ and α = 1), then we have

EDE-Sinc ≤ CD
log(cN)
N

e−πdN/ log(cN) + CT e−π
2 cN

=
{
CD + CT

N

log(cN)
e−π

2 N(c−2d/ log(cN))
} log(cN)

N
e−πdN/ log(cN). (4.14)

Since the part in { · } can be bounded by a constant C̃ independent of N , the convergence rate
is O(log(cN) e−πdN/ log(cN)/N). From the estimate, we see that the rate can be improved by
taking c as small as possible, which was roughly observed in the numerical experiments.

However, we should notice that if c is taken as too small, the part in { · } becomes large.
Actually, in the small range of N in Figure 5, the error becomes larger as r decreases, which
suggests the constant C̃ becomes larger. On the other hand, in Figure 6, the error in the case
r = 1 (the standard case) is smaller than others in almost all the range of N . Considering
the numerical experiments and the theoretical estimates above, we can say that the standard
formula (2.17) (r = 1 in the experiments) is a well-balanced way to select h from both viewpoints:
the convergence rate and the constant.

5 Proof of the main result 1
The idea here is to apply the standard contraction mapping theorem. Let D = ψSE(Dd) or
D = ψDE(Dd), and let us introduce integral operators V and Ṽ: H∞(D) → H∞(D):

V[f ](t) =
∫ t

a
k(t, s)f(s) ds, Ṽ[f ](t) =

∫ t

a
k̃(t, s)f(s) ds, (5.1)

where the kernels k and k̃ are assumed to satisfy the assumptions in Theorems 3.3 and 3.4,
respectively (recall that k̃ is defined by (3.9)). These operators become contraction maps by
multiplying repeatedly, as stated below.
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Lemma 5.1. Let D = ψSE(Dd) or D = ψDE(Dd). Let f ∈ H∞(D), let k(z, ·)Q(·) ∈ Lα(D), and
let k(·, w)Q(w) ∈ H∞(D) for all z, w ∈ D . Then it holds for all positive integers n that

∥Vnf∥H∞(D) ≤ {K(b− a)2α−1cα,d}n

n!
∥f∥H∞(D), (5.2)

where K is a constant depending only on k, and cα,d is a constant depending only on α and d.

Lemma 5.2. Let D = ψSE(Dd) or D = ψDE(Dd). Let f ∈ H∞(D), let {∂k(z, ·)/∂z}Q(·) ∈
Lα(D), and let {∂k(·, w)/∂z}Q(w) ∈ H∞(D) for all z, w ∈ D . Furthermore let 1/k(z, z) ∈
H∞(D). Then it holds for all positive integers n that

∥Ṽnf∥H∞(D) ≤ {K̃(b− a)2α−1cα,d}n

n!
∥f∥H∞(D), (5.3)

where K̃ is a constant depending only on k, and cα,d is a constant depending only on α and d.

From these lemmas, the equation (1.1) and (1.2), which can be rewritten symbolically as
(I − V)u = g and (I − Ṽ)u = g̃, have a unique solution u ∈ H∞(D) by the contraction mapping
theorem (note that H∞(D) is a Banach space [26, § 11.31]). Thus Theorems 3.3 and 3.4 follow.

In what follows we will prove Lemma 5.1, considering the SE and DE cases separately (proof
of Lemma 5.2 goes in the same way, and we omit it).

The next lemma is needed for the SE case.

Lemma 5.3 (Okayama et al. [23, Lemma A.1]). Let d be a constant with 0 < d < π and let us
define a function ψ1 as

ψ1(x) = 1
2

tanh
(
x

2

)
+ 1

2
. (5.4)

Then there exists a constant c1 depending only on d, such that for all x ∈ R and y ∈ [−d, d]

|Q(ψSE(x+ i y))| ≤ (b− a)2c1ψ
′
1(x). (5.5)

Since 0 ≤ ψ1(x) ≤ 1 holds, the following lemma is sufficient to establish Lemma 5.1.

Lemma 5.4. Let the assumptions in Lemma 5.1 be satisfied with D = ψSE(Dd). Then it holds
for all positive integers n and z ∈ D that

|Vn[f ](z)| ≤ {K(b− a)2α−1cα1 B(ψ1(x), α, α)}n

n!
∥f∥H∞(D), (5.6)

where x = Re[{ψSE}−1(z)], B(t, α, β) is the incomplete beta function, K is the constant in the
inequality (2.12) regarding k(z, ·)Q(·) ∈ Lα(D), and c1 is a constant depending only on d.

Proof. Let y = Im[{ψSE}−1(z)] and accordingly z = ψSE(x + i y). We show this lemma by
induction. Consider the case n = 1 first. By the variable transformation w = ψSE(t + i y), we
have

V[f ](z) =
∫ z

a
k(z, w)f(w) dw

=
∫ x

−∞
k(z, ψSE(t+ i y))f(ψSE(t+ i y)){ψSE}′(t+ i y) dt

=
∫ x

−∞
k(z, ψSE(t+ i y))f(ψSE(t+ i y))Q(ψSE(t+ i y))

b− a
dt. (5.7)
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From k(z, ·)Q(·) ∈ Lα(D) and Lemma 5.3, it holds that

|V[f ](z)| ≤
∥f∥H∞(D)K

b− a

∫ x

−∞
|Q(ψSE(t+ i y))|α dt

≤
∥f∥H∞(D)K

b− a

∫ x

−∞
{(b− a)2c1ψ

′
1(t)}α dt

= ∥f∥H∞(D)K(b− a)2α−1cα1 B(ψ1(x), α, α). (5.8)

Hence the inequality (5.6) holds when n = 1.
Next, assume the inequality (5.6) holds at n, and consider n+ 1. It holds that

|V[Vnf ](z)| =
∣∣∣∣∫ x

−∞
k(z, ψSE(t+ i y))Vn[f ](ψSE(t+ i y))Q(ψSE(t+ i y))

b− a
dt
∣∣∣∣

≤
∫ x

−∞

K|Q(ψSE(t+ i y))|α

b− a

{K(b− a)2α−1cα1 B(ψ1(t), α, α)}n

n!
∥f∥H∞(D) dt

≤ ∥f∥H∞(D){K(b− a)2α−1cα1 }n+1
∫ x

−∞
{ψ′

1(t)}α {B(ψ1(t), α, α)}n

n!
dt

= ∥f∥H∞(D){K(b− a)2α−1cα1 }n+1 {B(ψ1(x), α, α)}n+1

(n+ 1)!
. (5.9)

This completes the proof. �

Next let us consider the DE case. For this purpose the next lemma is needed.

Lemma 5.5 (Okayama et al. [23, Lemma A.4]). Let d be a constant with 0 < d < π/2 and let
us define a function ψ2 as

ψ2(x) = 1
2

tanh
(
π cos d

2
sinh(x)

)
+ 1

2
. (5.10)

Then there exists a constant c2 depending only on d, such that for all x ∈ R and y ∈ [−d, d]

|π cosh(x+ i y)Q(ψDE(x+ i y))| ≤ (b− a)2c2ψ
′
2(x). (5.11)

Since 0 ≤ ψ2(x) ≤ 1 holds, for Lemma 5.1, it is sufficient to prove the following lemma.

Lemma 5.6. Let the assumptions in Lemma 5.1 be satisfied with D = ψDE(Dd). Then it holds
for all positive integers n and z ∈ D that

|Vn[f ](z)| ≤ {K(b− a)2α−1c′
2 B(ψ2(x), α, α)}n

n!
∥f∥H∞(D), (5.12)

where x = Re[{ψDE}−1(z)], K is the constant in the inequality (2.12) regarding k(z, ·)Q(·) ∈
Lα(D), and c′

2 = (cα2 / cos1−α d), where c2 is a constant depending only on d.

Proof. Let y = Im[{ψDE}−1(z)] and accordingly z = ψDE(x + i y). We show this lemma by
induction. Consider the case n = 1 first. By the variable transformation w = ψDE(t + i y), we
have

V[f ](z) =
∫ z

a
k(z, w)f(w) dw

=
∫ x

−∞
k(z, ψDE(t+ i y))f(ψDE(t+ i y)){ψDE}′(t+ i y) dt

=
∫ x

−∞
k(z, ψDE(t+ i y))f(ψDE(t+ i y))π cosh(t+ i y)Q(ψDE(t+ i y))

b− a
dt. (5.13)
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From k(z, ·)Q(·) ∈ Lα(D) and Lemma 5.5, it holds that

|V[f ](z)| ≤
∥f∥H∞(D)K

b− a

∫ x

−∞
π| cosh(t+ i y)| · |Q(ψDE(t+ i y))|α dt

≤
∥f∥H∞(D)K

b− a

∫ x

−∞
{π cosh(t)}1−α{(b− a)2c2ψ

′
2(t)}α dt

= ∥f∥H∞(D)K(b− a)2α−1 cα2
cos1−α d

B(ψ2(x), α, α). (5.14)

Hence the inequality (5.12) holds when n = 1.
Next, assume the inequality (5.12) holds at n, and consider n+ 1. It holds that

|V[Vnf ](z)|

=
∣∣∣∣∫ x

−∞
k(z, ψDE(t+ i y))Vn[f ](ψDE(t+ i y))π cosh(t+ i y)Q(ψDE(t+ i y))

b− a
dt
∣∣∣∣

≤
∫ x

−∞

π| cosh(t+ i y)|K|Q(ψDE(t+ i y))|α

b− a

{K(b− a)2α−1c′
2 B(ψ2(t), α, α)}n

n!
∥f∥H∞(D) dt

≤ ∥f∥H∞(D){K(b− a)2α−1c′
2}n+1

∫ x

−∞
{π cosh(t) cos d}1−α{ψ′

2(t)}α {B(ψ2(t), α, α)}n

n!
dt

= ∥f∥H∞(D){K(b− a)2α−1c′
2}n+1 {B(ψ2(x), α, α)}n+1

(n+ 1)!
. (5.15)

This completes the proof. �

6 Proof of the main result 2
In this section we prove Theorems 3.6 and 3.7 (Theorems 3.9 and 3.10 can be proved in the
same way, and we omit it). Note that in this section ∥ · ∥C([a, b]) is used as the norm, although
∥·∥H∞(D) is used in the previous section. This is because we should evaluate the error not on the
complex domain D , but on the interval [a, b]. We write C = C([a, b]) for short, and operators
appearing in this section, such as V, VSE

N , VDE
N , are assumed to map C onto C.

6.1 Convergence analysis of the SE-Sinc-Nyström methods

First we prove the SE case, i.e., Theorem 3.6.

6.1.1 Sketch of the proof

Let us define an operator VSE
N as

VSE
N [f ](t) =

N∑
j=−N

k(t, ψSE(jh))f(ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t)), (6.1)

which is the approximation of Vf by the SE-Sinc indefinite integration. Then consider the
following three equations:

(I − V)u = g, (6.2)
(I − VSE

N )v = g, (6.3)
(Im − V SE

m )cm = gSE
m . (6.4)
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The first equation is nothing but (1.1), second is (3.2), and third is (3.5) itself. In order to prove
the existence of (Im−V SE

m )−1, which means feasibility of the scheme, we prove the following two
claims:

1. the equation (6.4) is uniquely solvable if and only if the equation (6.3) is uniquely solvable
(Lemma 6.1);

2. the equation (6.3) is uniquely solvable for all sufficiently large N (Lemma 6.7).
Combining Lemmas 6.1 and 6.7, we conclude Theorem 3.6.

6.1.2 Step 1: Equivalence of the solvability of (6.4) and (6.3)

Lemma 6.1. The following statements are equivalent:
(A) The equation (6.3) has a unique solution v ∈ C.

(B) The equation (6.4) has a unique solution cm ∈ Rm.
Proof. First we prove (A) ⇒ (B). If we define cm as cm = [v(ψSE(−Nh)), . . . , v(ψSE(Nh))]T,
then clearly cm is a solution of the equation (6.4). Next we prove the uniqueness. Let c̃m =
[c̃−N , . . . , c̃N ]T be another solution of the equation (6.4). Then let us define a function ṽ ∈ C
with the vector as

ṽ(t) = g(t) +
N∑

j=−N
k(t, ψSE(jh))c̃j{ψSE}′(jh)J(j, h)({ψSE}−1(t)). (6.5)

On the SE-Sinc points, t = ψSE(ih) (i = −N, . . . , N), it holds that

ṽ(ψSE(ih)) = g(ψSE(ih)) +
N∑

j=−N
k(ψSE(ih), ψSE(jh))c̃j{ψSE}′(jh)J(j, h)(ih). (6.6)

Furthermore, since c̃ is a solution of the equation (6.4), it holds that

c̃i = g(ψSE(ih)) +
N∑

j=−N
k(ψSE(ih), ψSE(jh))c̃j{ψSE}′(jh)J(j, h)(ih). (6.7)

Therefore ṽ(ψSE(ih)) = c̃i, and from this the equation (6.6) can be rewritten as (I − VSE
N )ṽ = g,

which shows ṽ is a solution of the equation (6.3). By assumption (A), v = ṽ holds, and from
which we have cm = c̃m. This shows the desired uniqueness.

Next we prove (B) ⇒ (A). Let us define a function v ∈ C as

v(t) = g(t) +
N∑

j=−N
k(t, ψSE(jh))cj{ψSE}′(jh)J(j, h)({ψSE}−1(t)). (6.8)

Then by the same argument as above, v(ψSE(ih)) = ci holds, from which we have (I −
VSE
N )v = g. Therefore the equation (6.3) has a solution. Next we prove the uniqueness.

Let ṽ be another solution of the equation (6.3). By using ṽ, let us define c̃m as c̃m =
[ṽ(ψSE(−Nh)), . . . , ṽ(ψSE(Nh))]T. Clearly c̃m is a solution of the equation (6.4), and by as-
sumption (B), cm = c̃m holds. Therefore ṽ(ψSE(jh)) = cj holds, and from this the equation
(I − VSE

N )ṽ = g can be rewritten as

ṽ(t) = g(t) +
N∑

j=−N
k(t, ψSE(jh))cj{ψSE}′(jh)J(j, h)({ψSE}−1(t)). (6.9)

Comparing the right hand side of (6.8) and (6.9), we conclude v = ṽ, which shows the desired
uniqueness. �
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6.1.3 Step 2: Solvability of the equation (6.3) for all sufficiently large N

For the analysis of Nyström methods, the next theorem is generally used.

Theorem 6.2 (Atkinson [2, Theorem 4.1.1]). Assume the following four conditions:

1. Operators X and Xn are bounded operators on C to C.

2. The operator (I − X ) : C → C has a bounded inverse (I − X )−1 : C → C.

3. The operator Xn is compact on C.

4. The following inequality holds:

∥(X − Xn)Xn∥L(C,C) <
1

∥(I − X )−1∥L(C,C)
. (6.10)

Then (I − Xn)−1 exists as a bounded operator on C to C, with

∥(I − Xn)−1∥L(C,C) ≤
1 + ∥(I − X )−1∥L(C,C)∥Xn∥L(C,C)

1 − ∥(I − X )−1∥L(C,C)∥(X − Xn)Xn∥L(C,C)
. (6.11)

Furthermore, if (I − X )u = g and (I − Xn)v = g, then

∥u− v∥C ≤ ∥(I − Xn)−1∥L(C,C)∥(X − Xn)u∥C. (6.12)

In what follows we show the four conditions are fulfilled with X = V and Xn = VSE
N , under the

assumptions in Theorem 3.6. The condition 1 clearly holds. The condition 2 is well-known (in
fact we can prove it in the same way as in Section 5 by using the contraction mapping theorem).
The condition 3 immediately follows from the Arzelá–Ascoli theorem. The main difficulty of
this project lies in the condition 4. For this purpose we need a bound of the basis function
J(j, h)(x) =

∫ x
−∞ S(j, h)(t) dt as follows.

Lemma 6.3 (Stenger [29, Lemma 3.6.5]). For all x ∈ R it holds that

|J(j, h)(x)| ≤ 1.1h. (6.13)

This result can be extended to the complex plane as follows.

Lemma 6.4. For all x ∈ R and y ∈ R it holds that

|J(j, h)(x+ i y)| ≤ 5h
π

· sinh(πy/h)
πy/h

. (6.14)

Proof. We split the integral path as

J(j, h)(x+ i y) =
∫ x+i y

−∞
S(j, h)(ζ) dζ =

∫ x

−∞
S(j, h)(ξ) dξ +

∫ y

0
S(j, h)(x+ i η) dη, (6.15)

and evaluate the two terms one by one. From Lemma 6.3, the first term can be bounded as∣∣∣∣∫ x

−∞
S(j, h)(ξ) dξ

∣∣∣∣ ≤ 1.1h < 7h
2π

≤ 7h
2π

· sinh(πy/h)
πy/h

. (6.16)

Next we evaluate the second term. Notice that the following inequality

|S(j, h)(x+ i η)| = h

2π

∣∣∣∣∣
∫ π/h

−π/h
eηt+i (jh−x)t dt

∣∣∣∣∣ ≤ h

2π

∫ π/h

−π/h
eηt dt = sinh(πη/h)

πη/h
(6.17)
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holds, and furthermore ∫ |r|

0

sinh t
t

dt ≤ 3
2

sinh r
r

(6.18)

holds for all r ∈ R. Then we have∣∣∣∣∫ y

0
S(j, h)(x+ i η) dη

∣∣∣∣ ≤
∫ |y|

0

sinh(πη/h)
πη/h

dη

= h

π

∫ π|y|/h

0

sinh t
t

dt

≤ 3h
2π

· sinh(πy/h)
πy/h

, (6.19)

which completes the proof. �

By using this lemma we can prove the convergence of the term ∥(V − VSE
N )VSE

N ∥L(C,C) as
below.

Lemma 6.5. Let k satisfy the assumptions in Theorem 3.6. Then there exists a constant C
independent of N such that

∥(V − VSE
N )VSE

N ∥L(C,C) ≤ Ch, (6.20)

where h is the mesh size defined by (2.15).

Proof. We show that there exists a constant C independent of N and f such that

∥(V − VSE
N )VSE

N f∥C ≤ C∥f∥Ch (6.21)

holds for all f ∈ C. Let us define a function Fi(t, s) as

Fi(t, s) = k(t, s)k(s, ψSE(ih))Q(ψSE(ih))J(i, h)({ψSE}−1(t)). (6.22)

Then (V − VSE
N )VSE

N f can be rewritten as

(V − VSE
N )VSE

N [f ](t)

=
N∑

i=−N

f(ψSE(ih))
b− a


∫ t

a
Fi(t, s) ds−

N∑
j=−N

Fi(t, ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t))

 .
(6.23)

First we evaluate the part in { · }. From k(t, ·)Q(·) ∈ Lα(ψSE(Dd)) and Lemma 6.4, it holds that

|Fi(t, z)Q(z)| ≤ K|Q(z)|αKQα(ψSE(ih))5h
π

sinh(πd/h)
πd/h

(6.24)

for all integers i and t ∈ [a, b] and z ∈ ψSE(Dd). Therefore Fi(t, ·) satisfies the assumptions of
Theorem 2.3, from which we have∣∣∣∣∣∣

∫ t

a
Fi(t, s) ds−

N∑
j=−N

Fi(t, ψSE(jh)){ψSE}′(jh)J(j, h)({ψSE}−1(t))

∣∣∣∣∣∣
≤
{
K2Qα(ψSE(ih))5h

π

sinh(πd/h)
πd/h

}
(b− a)2α−1CSE

α,d e−
√
πdαN

=
5K2Qα(ψSE(ih))(b− a)2α−1CSE

α,d

π2d
· h2

[
sinh(πd/h) e−πd/h

]
. (6.25)
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The last equality holds from the formula (2.15). Furthermore, | sinh(πd/h) e−πd/h| ≤ 1/2 holds,
which implies

|(V − VSE
N )VSE

N [f ](t)| ≤
N∑

i=−N

|f(ψSE(ih))|
b− a

5K2Qα(ψSE(ih))(b− a)2α−1CSE
α,d

π2d
· h

2

2

≤ ∥f∥C
5K2(b− a)2α−2CSE

α,d

2π2d
h

h
N∑

i=−N
Qα(ψSE(ih))

 . (6.26)

The term in { · } is uniformly bounded since it converges to (b − a)2α B(α, α). This shows the
desired inequality (6.21). �

Remark 6.6. In this proof we used Theorem 2.3, which says the convergence rate is O( e−
√
πdαN ),

to obtain the evaluation (6.25). However, as stated in Remark 2.5, if we employ the existing re-
sults O(

√
N e−

√
πdαN ), we cannot prove the desired convergence, since ∥(V −VSE

N )VSE
N ∥ ∼

√
Nh ∼

const. > 0.

Thus all of the conditions 1–4 in Theorem 6.2 are fulfilled, and the next lemma follows.

Lemma 6.7. Suppose that the assumptions in Theorem 3.6 are fulfilled. Then there exists a
positive integer N0 such that for all N ≥ N0 the equation (6.3) has a unique solution v ∈ C.
Furthermore there exists a constant C independent of N such that for all N ≥ N0

∥u− v∥C ≤ C∥Vu− VSE
N u∥C. (6.27)

Proof. We have already confirmed the assumptions in Theorem 6.2, and what is left here is to
show the boundedness of the term ∥(I − VSE

N )−1∥L(C,C) (notice the inequality (6.12)). From the
inequality (6.11), the claim follows if we prove that the term ∥VSE

N ∥L(C,C) is uniformly bounded.
From Lemma 6.3 and k(t, ·)Q(·) ∈ Lα(ψSE(Dd)), we have

|VSE
N [f ](t)| =

∣∣∣∣∣∣
N∑

j=−N
k(t, ψSE(jh))f(ψSE(jh))Q(ψSE(jh))

b− a
J(j, h)({ψSE}−1(t))

∣∣∣∣∣∣
≤ 1.1K∥f∥C

b− a

h
N∑

j=−N
Qα(ψSE(jh))

 (6.28)

for all f ∈ C. The term in { · } is uniformly bounded since it converges to (b − a)2α B(α, α).
This completes the proof. �

6.1.4 Step 3: Proof of the exponential convergence

Now we are in the position to prove Theorem 3.6.

Proof. What is left here is to evaluate the term ∥Vu− VSE
N u∥C in (6.27). From Theorem 3.3, we

have u ∈ H∞(ψSE(Dd)). Hence k(t, ·)u(·)Q(·) ∈ Lα(ψSE(Dd)), and we can apply Theorem 2.3.
This gives the desired estimate. �

6.2 Convergence analysis of the DE-Sinc-Nyström methods

Next we prove the DE case, i.e., Theorem 3.7.
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6.2.1 Sketch of the proof

The proof is similar to the SE case. Let us define an operator VDE
N as

VDE
N [f ](t) =

N∑
j=−N

k(t, ψDE(jh))f(ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t)), (6.29)

which is the approximation of Vf by the DE-Sinc indefinite integration. Then consider the
following three equations:

(I − V)u = g, (6.30)
(I − VDE

N )v = g, (6.31)
(Im − V DE

m )cm = gDE
m . (6.32)

The first equation is nothing but (1.1), second is (3.13), and third is (3.16) itself. In order
to prove the existence of (Im − V DE

m )−1, which means feasibility of the scheme, we prove the
following two claims:

1. the equation (6.32) is uniquely solvable if and only if the equation (6.31) is uniquely
solvable (Lemma 6.8).

2. the equation (6.31) is uniquely solvable for all sufficiently large N (Lemma 6.10).

Combining Lemmas 6.8 and 6.10, we conclude Theorem 3.7.

6.2.2 Step 1: Equivalence of the solvability of (6.32) and (6.31)

The next lemma holds good, which can be proved in the same way as Lemma 6.1.

Lemma 6.8. The following statements are equivalent:

(A) The equation (6.31) has a unique solution v ∈ C.

(B) The equation (6.32) has a unique solution cm ∈ Rm.

6.2.3 Step 2: Solvability of the equation (6.31) for all sufficiently large N

Our task is to show that the conditions 1–4 in Theorem 6.2 are fulfilled with X = V and
Xn = VDE

N , under the assumptions in Theorem 3.7. The conditions 1–3 clearly hold by the same
argument in the SE case. The condition 4 is confirmed by the following lemma.

Lemma 6.9. Let k satisfy the assumptions in Theorem 3.7. Then there exists a constant C
independent of N such that

∥(V − VDE
N )VDE

N ∥L(C,C) ≤ Ch2, (6.33)

where h is a mesh size defined by (2.17).

Proof. We show that there exists a constant C independent of N and f such that

∥(V − VDE
N )VDE

N f∥C ≤ C∥f∥Ch
2 (6.34)

holds for all f ∈ C. Let us define a function Fi(t, s) as

Fi(t, s) = k(t, s)k(s, ψDE(ih))Q(ψDE(ih))J(i, h)({ψDE}−1(t)). (6.35)
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Then (V − VDE
N )VDE

N f can be rewritten as

(V − VDE
N )VDE

N [f ](t) =
N∑

i=−N

f(ψDE(ih))π cosh(ih)
b− a

×


∫ t

a
Fi(t, s) ds−

N∑
j=−N

Fi(t, ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t))

 .
(6.36)

First we evaluate the part in { · }. From k(t, ·)Q(·) ∈ Lα(ψDE(Dd)) and Lemma 6.4, it holds that

|Fi(t, z)Q(z)| ≤ K|Q(z)|αKQα(ψDE(ih))5h
π

sinh(πd/h)
πd/h

(6.37)

for all integers i and t ∈ [a, b] and z ∈ ψDE(Dd). Therefore Fi(t, ·) satisfies the assumptions of
Theorem 2.4, from which we have∣∣∣∣∣∣

∫ t

a
Fi(t, s) ds−

N∑
j=−N

Fi(t, ψDE(jh)){ψDE}′(jh)J(j, h)({ψDE}−1(t))

∣∣∣∣∣∣
≤
{
K2Qα(ψDE(ih))5h

π

sinh(πd/h)
πd/h

}
(b− a)2α−1CDE

α,d

log(2dN/α)
N

exp
[ −πdN

log(2dN/α)

]
=

5K2Qα(ψDE(ih))(b− a)2α−1CDE
α,d

π2d
· h3

[
sinh(πd/h) e−πd/h

]
. (6.38)

The last equality holds from the formula (2.17). Furthermore, | sinh(πd/h) e−πd/h| ≤ 1/2 holds,
which implies

|(V − VDE
N )VDE

N [f ](t)| ≤
N∑

i=−N

|f(ψDE(ih))|π cosh(ih)
b− a

5K2Qα(ψDE(ih))(b− a)2α−1CDE
α,d

π2d
· h

3

2

≤ ∥f∥C
5K2(b− a)2α−2CDE

α,d

2π2d
h2

h
N∑

i=−N
π cosh(ih)Qα(ψDE(ih))

 . (6.39)

The term in { · } is uniformly bounded since it converges to (b − a)2α B(α, α). This shows the
desired inequality (6.34). �

Thus all of the conditions 1–4 in Theorem 6.2 are fulfilled, and the next lemma follows.

Lemma 6.10. Suppose that the assumptions in Theorem 3.7 are fulfilled. Then there exists a
positive integer N0 such that for all N ≥ N0 the equation (6.31) has a unique solution v ∈ C.
Furthermore there exists a constant C independent of N such that for all N ≥ N0

∥u− v∥C ≤ C∥Vu− VDE
N u∥C. (6.40)

Proof. We have already confirmed the assumptions in Theorem 6.2, and what is left here is to
show the boundedness of the term ∥(I − VDE

N )−1∥L(C,C) (notice the inequality (6.12)). From the
inequality (6.11), the claim follows if we prove that the term ∥VDE

N ∥L(C,C) is uniformly bounded.
From Lemma 6.3 and k(t, ·)Q(·) ∈ Lα(ψDE(Dd)), we have

|VDE
N [f ](t)| =

∣∣∣∣∣∣
N∑

j=−N
k(t, ψDE(jh))f(ψDE(jh))π cosh(jh)Q(ψDE(jh))

b− a
J(j, h)({ψDE}−1(t))

∣∣∣∣∣∣
≤ 1.1K∥f∥C

b− a

h
N∑

j=−N
π cosh(jh)Qα(ψDE(jh))

 (6.41)
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for all f ∈ C. The term in { · } is uniformly bounded since it converges to (b − a)2α B(α, α).
This completes the proof. �

6.2.4 Step 3: Proof of the exponential convergence

Now we are in the position to prove Theorem 3.7.

Proof. It remains to evaluate the term ∥Vu − VDE
N u∥C in (6.40). From Theorem 3.3, we have

u ∈ H∞(ψDE(Dd)). Hence k(t, ·)u(·)Q(·) ∈ Lα(ψDE(Dd)), and we can apply Theorem 2.4. Thus
this theorem is established. �

7 Proof of the main result 3
We prove only Theorem 3.11. Theorems 3.12–3.14 can be proved in exactly the same way.

Proof. If we show the following two inequalities:

∥Im − V SE
m ∥∞ ≤ ∥I − VSE

N ∥L(C,C), (7.1)
∥(Im − V SE

m )−1∥∞ ≤ ∥(I − VSE
N )−1∥L(C,C), (7.2)

then Theorem 3.11 is established. This is because, as proved in Lemma 6.7, ∥VSE
N ∥L(C,C) and

∥(I − VSE
N )−1∥L(C,C) are uniformly bounded.

We show (7.1) first. For a given arbitrary cm = [c−N , . . . , cN ]T, choose γ ∈ C with the
properties

∥γ∥C = ∥cm∥∞ and γ(ψSE(ih)) = ci (i = −N, . . . , N). (7.3)
Let us define a function f and a vector f SE

m as

f = (I − VSE
N )γ, f SE

m = [f(ψSE(−Nh)), . . . , f(ψSE(Nh))]T. (7.4)

Then we have

∥(Im − V SE
m )cm∥∞ = ∥f SE

m ∥∞

≤ ∥f∥C

= ∥(I − VSE
N )γ∥C

≤ ∥(I − VSE
N )∥L(C,C)∥γ∥C

= ∥(I − VSE
N )∥L(C,C)∥cm∥∞, (7.5)

which shows (7.1).
Next we show (7.2). Notice that (I−VSE

N )−1 exists for all sufficiently largeN from Lemma 6.7,
and from Lemma 6.1 (Im − V SE

m )−1 always exists if (I − VSE
N )−1 exists. For a given arbitrary

cm = [c−N , . . . , cN ]T, choose γ ∈ C with the properties (7.3). Furthermore define a function f
and a vector f SE

m as

f = (I − VSE
N )−1γ, f SE

m = [f(ψSE(−Nh)), . . . , f(ψSE(Nh))]T. (7.6)

Then we have

∥(Im − V SE
m )−1cm∥∞ = ∥f SE

m ∥∞

≤ ∥f∥C

= ∥(I − VSE
N )−1γ∥C

≤ ∥(I − VSE
N )−1∥L(C,C)∥γ∥C

= ∥(I − VSE
N )−1∥L(C,C)∥cm∥∞, (7.7)

which shows (7.2). �
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8 Concluding remarks
In this paper, the Sinc-Nyström methods for (1.1) and (1.2) developed by Muhammad et al. [18]
are considered, and the following three new theoretical results are given: 1) a way to estimate
a tuning parameter d, 2) the exponential convergence of the schemes was rigorously proved,
3) the resulting system was proved to be well-conditioned. These results were established for
both the SE- and DE-Sinc-Nyström methods. These results are also confirmed by the numerical
experiments.

Based on the results in this paper, we can analyze the Sinc-collocation methods for Volterra
integral equations [25], which will be reported somewhere else soon.
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