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Abstract

In this paper, the theoretical convergence rate of the trapezoidal rule combined with the
double-exponential (DE) transformation is given for a class of functions for which the tanh
transformation is suitable. It is well known that the DE transformation enables the rule to
achieve a much higher rate of convergence than the tanh transformation, and the conver-
gence rate has been analyzed and justified theoretically under a proper assumption. Here
it should be emphasized that the assumption is more severe than the tanh transformation’s
one, and there actually exist some examples such that the trapezoidal rule with the tanh
transformation achieves its usual rate, whereas the rule with DE does not. Such cases have
been observed numerically, but no theoretical analysis has been given so far. This paper
reveals the theoretical rate of convergence in such cases, and it turns out that the DE’s rate
is almost the same, but slightly lower than the tanh’s rate.

By using the analysis technique developed here, the theoretical convergence rate of the
Sinc approximation/Sinc indefinite integration with the DE transformation is also given for
a class of functions for which the tanh transformation is suitable. The results are quite
similar to above; the convergence rate in the DE transformation’s case is slightly lower than
in the tanh transformation’s case. Numerical examples which support those three theoretical
results are also given.

1 Introduction
The double-exponential formula (DE formula) was proposed by Takahasi–Mori [17] as an optimal
quadrature formula for the integral with end-point singularity, such as∫ 1

−1

dt
(t− 2)(1 − t)1/4(1 + t)3/4 . (1.1)

The formula consists of two parts: (i) transformation to the integral over the whole real line,
i.e., ∫ b

a
f(t) dt =

∫ ∞

−∞
f(ψDE(x))ψ′

DE(x) dx, (1.2)
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and (ii) application of the (truncated) trapezoidal rule, i.e.,

∫ ∞

−∞
F (x) dx ≈ h

N∑
k=−M

F (kh), (1.3)

where F (x) = f(ψDE(x))ψ′
DE(x). The variable transformation used in (1.2) is called the “double-

exponential transformation” (DE transformation) defined by

t = ψDE(x) = b− a

2
tanh

(
π

2
sinh x

)
+ b+ a

2
, (1.4)

which maps the whole real line R onto the finite interval (a, b). This transformation is crucial
in this formula. There are various options for the variable transformation to use with the
trapezoidal rule, and in fact, before the DE formula there had already existed several quadrature
rules that differ only in the variable transformation. One of such a rule is the tanh rule [2,8,9],
which is the combination of the trapezoidal rule and the “tanh transformation:”

t = ψSE(x) = b− a

2
tanh

(
x

2

)
+ b+ a

2
, (1.5)

and the rate of convergence is O(exp(−c0
√
n)) (as described later, M and N in (1.3) are de-

fined proportional to n). The transformation is also called the “single-exponential (SE) trans-
formation,” and accordingly we call the tanh rule the “SE formula” throughout this paper.
Takahasi–Mori [16,17] argued the difference of the performance between such quadrature rules,
and concluded based on intuitive mathematical arguments and numerical experiments that the
DE transformation is optimal among those variable transformations. The convergence rate of
the DE formula that they have claimed was O(exp(−c1n/ log(c2n))), which actually coincides
with their numerical results.

After that, however, a question was raised about the optimality of the DE transformation in
Stenger’s analysis [10]. A functional analysis approach has been taken in it; he has considered
all integrands f that belong to the Hardy space, and shown that under the assumption the
optimal rate of convergence should be O(exp(−c0

√
n)), which is the same rate as the SE formula.

This result seems to conflict with the claim by Takahasi–Mori that the DE formula is optimal
achieving O(exp(−c1n/ log(c2n))).

Sugihara [13] has given an answer to the question by considering another function space.
He has clarified the difference between the function spaces that should be assumed in each
transformation (SE/DE), and justified theoretically that the DE’s rate O(exp(−c1n/ log(c2n)))
is actually attainable and optimal in the corresponding function space. The difference of the
assumptions between the SE’s function space and the DE’s one is important. The DE’s assump-
tion is stronger than the SE’s one, which indicates that there exist some examples such that
the SE formula works good while the DE formula does not. Some concrete examples have been
considered by Tanaka et al. [18, § 4]. From their numerical results, the DE formula does not
seem to achieve its usual rate: O(exp(−c1n/ log(c2n))), whereas O(exp(−c0

√
n)) is consistently

observed in the SE formula. It should be noted that even in such a case the DE formula can be
applied, and it does converge.

Here another new question arises: how fast does the DE formula converge in such a case?
The main purpose of the present paper is to answer this question. Our task here is to estimate
the DE formula’s error under the same assumption as the SE formula, but the standard argument
does not apply as it stands. Therefore we develop a new way to analyze such a case, and show
that the desired rate is O(exp(−c3

√
n/ log(c4n))), which is slightly worse than the SE’s rate.

This in other words suggests from a practical viewpoint that users can always select the DE
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formula because there is little difference under the SE’s assumption, whereas under the DE’s
assumption a far better rate can be obtained: O(exp(−c1n/ log(c2n))). Therefore this result is
also useful for practical purposes beyond theoretical interests.

The analysis technique developed here can be applied to other formulas, and as a second
contribution of this paper, we also consider the “Sinc approximation” and the “Sinc indefinite
integration.” These two approximation formulas are frequently used with the SE transforma-
tion [11, 12] or the DE transformation [4, 5, 14, 15], and one may face quite the same situa-
tion as above there, i.e., the formula with SE works as expected while DE does not. We will
analyze the DE’s error in such a case, and which will then show the rate of convergence is
O(exp(−c3

√
n/ log(c4n))), like as the trapezoidal rule case.

This paper is organized as follows. Sections 2 and 3 are devoted to the arguments of the
trapezoidal rule. These are also important for subsequent sections because some key ideas are
included. More precisely, in Section 2, the existing theoretical results and a new result for the
trapezoidal rule are described, with some illustrative numerical examples. The proof of the
new theorem is given in Section 3, with a sketch of the idea to overcome the difficulties in the
analysis summarized in the beginning. Then we proceed to Section 4, in which the existing/new
theoretical results for the Sinc approximation and the Sinc indefinite integration are described.
The new theorems for both formulas are proved in Sections 5 and 6, respectively. In short, the
main results of this paper can be found in Sections 2 and 4. Numerical examples that confirm
the results are shown in Section 7. Finally in Section 8 we conclude this paper.

2 Existing/new convergence theorems for the SE/DE formula
We firstly review the existing convergence theorems for the SE and DE formulas under the
corresponding standard assumptions. Then two kinds of numerical examples follow: (i) the case
where the existing error estimates can explain the numerical results of both SE and DE, and
(ii) the opposite case where the existing error estimates cannot explain the DE’s result. After
that a new theorem that can explain the result is given.

2.1 Existing convergence theorems under the standard assumptions

We have to introduce the following function space.

Definition 2.1. Let D be a bounded and simply-connected domain (or Riemann surface) which
satisfies (a, b) ⊂ D, and let α and β be positive constants. Then Lα,β(D) denotes the family
of all functions f that satisfy the following conditions: (i) f is analytic on D; (ii) there exists a
constant K such that for all z in D

|f(z)| ≤ K|Qα,β(z)|, (2.1)

where Qα,β(z) = (z − a)α(b− z)β. For simplicity, we write Q1,1(z) as Q(z).

We use the strip region Dd defined by

Dd := {ζ ∈ C : | Im ζ| < d} (2.2)

for a positive constant d and consider the domains ψSE(Dd) and ψDE(Dd), where

ψSE(Dd) = {z = ψSE(ζ) : ζ ∈ Dd}, (2.3)
ψDE(Dd) = {z = ψDE(ζ) : ζ ∈ Dd}. (2.4)
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That is, ψSE(Dd) and ψDE(Dd) are the image of the strip region Dd by the SE transformation (1.5)
and the DE transformation (1.4), respectively, which contain a real interval (a, b). In this paper,
we use ψSE(Dd) or ψDE(Dd) as the domain D in Definition 2.1, and consider the function space
Lα,β(ψSE(Dd)) or Lα,β(ψDE(Dd)).

As the standard error estimates of the SE formula and the DE formula, the following two
theorems have been known.

Theorem 2.2 (Stenger [11, Theorem 4.2.6]). Let fQ ∈ Lα,β(ψSE(Dd)) for d with 0 < d < π .
Let µ = min{α, β}, n be a positive integer, and h be selected by the formula

h =
√

2πd
µn

. (2.5)

Furthermore, let M and N be positive integers defined by{
M = n, N = ⌈αn/β⌉ (if µ = α)
N = n, M = ⌈βn/α⌉ (if µ = β)

(2.6)

respectively. Then there exists a constant C independent of n such that∣∣∣∣∣∣
∫ b

a
f(t)dt− h

N∑
j=−M

f(ψSE(jh))ψ′
SE(jh)

∣∣∣∣∣∣ ≤ C e−
√

2πdµn. (2.7)

Theorem 2.3 (Okayama et al. [6, Theorem 2.11]). Let fQ ∈ Lα,β(ψDE(Dd)) for d with 0 <
d < π/2. Let µ = min{α, β}, ν = max{α, β}, n be a positive integer with n > ν/(4d), and h be
selected by the formula

h = log(4dn/µ)
n

. (2.8)

Furthermore, let M and N be positive integers defined by{
M = n, N = n− ⌊log(β/α)/h⌋ (if µ = α)
N = n, M = n− ⌊log(α/β)/h⌋ (if µ = β)

(2.9)

respectively. Then there exists a constant C independent of n such that∣∣∣∣∣∣
∫ b

a
f(t)dt− h

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ C e−2πdn/ log(4dn/µ). (2.10)

Remark 2.4. The condition n > ν/(4d) is derived from the following requirements: (i) n >
µ/(4d) is needed for h > 0, and (ii) n > ν/(4d) is needed for M, N > 0. For this reason, such a
condition is also assumed on n in all of the subsequent DE’s theorems.

2.2 Numerical example that can be explained by the existing theorems

In order to confirm the theorems above numerically, let us consider the following example.

Example 1. Consider the function

f1(t) = 2(1 − t2)
tan2(1/2) + t2

(2.11)
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and its definite integral on (−1, 1):∫ 1

−1
f1(t) dt = 4(π − 1 − sin(1))

sin(1)
. (2.12)

The function f1 satisfies f1Q ∈ L2,2(ψSE(D1−ϵ)) and f1Q ∈ L2,2(ψDE(Darcsin{(1−ϵ)/π})) for any ϵ
with 0 < ϵ < 1.

The domains above: ψSE(D1−ϵ) and ψDE(Darcsin{(1−ϵ)/π}) are determined as follows. Let us
recall that the SE formula is a combination of the SE transformation∫ b

a
f(t) dt =

∫ ∞

−∞
f(ψSE(x))ψ′

SE(x) dx =
∫ ∞

−∞
f(ψSE(x))Q(ψSE(x))

b− a
dx (2.13)

and the trapezoidal formula (1.3). We have to determine the regularity of the transformed
integrand: F (ζ) = f1(ψSE(ζ))Q(ψSE(ζ))/2. Easily one may find Q(ψSE(·)) is analytic in Dπ .
As for f1(ψSE(·)), there are two poles at ζ = ±i (see Figure 1). Therefore f1(ψSE(·)) and
accordingly F are analytic in D1. The reason for setting D1−ϵ, not D1, is due to (2.1), which
requires boundedness of supζ∈Dd

|F (z)|. In the same manner, one can find in the DE case that
the transformed integrand has two poles at ζ = ±i arcsin(1/π) (see Figure 2).

The numerical errors1 of the SE formula and the DE formula are plotted in Figure 5.
From the graph, we can observe the expected rates for both formulas, O(exp(−c0

√
n)) and

O(exp(−c1n/ log(c2n))), as predicted in Theorems 2.2 and 2.3.

2.3 Numerical example that cannot be explained by the existing theorem for
the DE formula

Let us now turn to the next example, which is an unfavorable case for the DE formula.

Example 2. Consider the function [18, § 4.2]

f2(t) = 2(1 − t2)
cos(4 arctanh t) + cosh(2)

(2.14)

and its definite integral on (−1, 1):2∫ 1

−1
f2(t) dt = 0.7119438 · · · . (2.15)

The function f2 satisfies f2Q ∈ L2,2(ψSE(D1−ϵ)) for any ϵ with 0 < ϵ < 1, but does not satisfy
f2Q ∈ L2,2(ψDE(Dd)) for any d > 0.

Let us first examine the poles of the integrand in the SE case. The function f2(ψSE(·)) has
infinite number of poles at

ζ =
(
π

2
+mπ

)
± i (m ∈ Z), (2.16)

as shown in Figure 3. From this we can see the transformed integrand is analytic in D1, same
as the previous example. Therefore there is no problem for the SE formula.

1Computation programs in this section were written in C with quadruple-precision floating-point arithmetic,
which is available on PowerPC CPU by using long double type. And we set ϵ = 0.001 for the computation.

2We used the value 0.71194382297059827888000405031539396435 as an answer, which was calculated by
Mathematica 7 with sufficient accuracy. This is the same manner as Tanaka et al. [18, § 4.2].
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Figure 1. Two poles of f1(ψSE(·)) (ζ = ±i ).
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Figure 2. Two poles of f1(ψDE(·)) (ζ =
±i arcsin(1/π)).
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Figure 3. Infinite number of poles of
f2(ψSE(·)) (defined by (2.16)).
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Figure 4. Infinite number of poles of
f2(ψDE(·)) (defined by (2.17)).
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Figure 5. Error of the SE formula and the
DE formula in Example 1.
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DE formula (h is selected as (2.18)) in Ex-
ample 2.
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In the case of the DE formula, however, the situation is different. The function f2(ψDE(·))
has infinite number of poles at

arcsinh
[ 1
π

{(
π

2
+mπ

)
± i
}]

(m ∈ Z), (2.17)

which approach the real axis as |m| → ∞ (see Figure 4). This causes a problem; we cannot take
any Dd as a domain in which f2(ψDE(·)) is analytic. Therefore Theorem 2.3 cannot be used in
this case for the DE formula.

Furthermore, there is a problem in the implementation. A mesh size h should be selected by
the formula (2.8), but in this case we have no clue how to choose d (we easily see µ = 2 though).
Here let us try

h = log(rdn/2)
n

, (2.18)

where d = arcsin((1 − ϵ)/π), and r is either 40, 41, 42.
The results are shown in Figure 6. In the case of the SE formula, we can observe a quite

similar result to the previous example (Figure 5), and it coincides with the claim of Theorem 2.2.
On the other hand, in the case of the DE formula, the predicted rate: O(exp(−c1n/ log(c2n)))
does not seem to be attained anymore. However, even in this case the DE formula does converge,
and as an important observation, it seems to converge at a rate quite similar to the SE case. A
similar situation has been also observed in Tanaka et al. [18, § 4.2], but no theoretical explanation
has been given so far. The main purpose of this paper is to explain such a numerical observation
in a theoretical way.

2.4 New convergence theorem for the DE formula under the same assump-
tion as the SE formula

Here we show a new theorem giving theoretical explanation for the DE formula’s convergence
in Example 2. Notice that the assumption on the integrand f is the same as Theorem 2.2.

Theorem 2.5. Let fQ ∈ Lα,β(ψSE(Dd)) for d with 0 < d < π, and put d′ = arcsin(d/π). Let
µ = min{α, β}, ν = max{α, β}, and let c be a positive number. For a positive integer n with
n > ν/(cµ), define h as

h = log(cn)
n

, (2.19)

and define M and N as (2.9). Then there exists a constant Cα,β,c,d′ depending only on α, β, c, d′

such that∣∣∣∣∣∣
∫ b

a
f(t)dt− h

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ K(b− a)α+β−1Cα,β,c,d′ exp
(

−2πd′
√
c

√
n

log(cn)

)
,

(2.20)
where K is the constant in (2.1).

This theorem convinces us that in this case the convergence rate of the DE formula is
O(exp(−c3

√
n/ log(c4n))). This rate is slightly worse than the SE’s rate: O(exp(−c0

√
n)), but

quite similar.

Remark 2.6. In Theorem 2.3, a mesh size h is determined explicitly by using µ and d as (2.8).
In contrast, in Theorem 2.5, an undetermined constant c is used in h as (2.19). This is because
h varied as (2.18) in Example 2 (in this case c = rd/µ).
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Remark 2.7. The estimate (2.20) may give an impression that the convergence rate can be
improved by taking c smaller. But a smaller c makes Cα,β,c,d′ larger. A practical choice is
c = 4d′/µ (see Remark 3.6 for the reason).

Remark 2.8. Unlike usual error estimates such as (2.7) and (2.10), the constant in (2.20) is
more explicitly given. This explicit form is needed for another study: convergence analysis of the
scheme for weakly singular Volterra integral equations (see the comments on the future works
in Section 8). Only to grasp the main claim of this theorem (convergence rate), one can just
put C = K(b− a)α+β−1Cα,β,c,d′ as a constant independent of n.

3 Proof of Theorem 2.5 (for the DE formula)
To show the idea for the proof of Theorem 2.5, we begin with the review of the proof of the
standard theorem: Theorem 2.3. In this review, we notice a difficulty arises, and in order to settle
it, two new steps should be introduced in the proof. They are explained in detail in Sections 3.2
and 3.3, respectively. The two steps are also keys to analyze the other approximation formulas
described in the subsequent sections. Finally we prove Theorem 2.5 in Section 3.4.

3.1 Review of the standard proof and emerging difficulties

In the proof of Theorem 2.3, the following orthodox technique is used to estimate the error:∣∣∣∣∣∣
∫ b

a
f(t) dt− h

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ∞

−∞
F (x) dx− h

N∑
j=−M

F (jh)

∣∣∣∣∣∣ ≤ E′
1(F, n) + E′

2(F, n), (3.1)

where F (x) = f(ψDE(x))ψ′
DE(x) and

E′
1(F, n) =

∣∣∣∣∣∣
∫ ∞

−∞
F (x) dx− h

∞∑
j=−∞

F (jh)

∣∣∣∣∣∣ , (3.2)

E′
2(F, n) = h

−M−1∑
j=−∞

|F (jh)| + h
∞∑

j=N+1
|F (jh)|. (3.3)

The quantities E′
1 and E′

2 are referred to as a discretization error and a truncation error, re-
spectively. For them, we have

E′
1(F, n) = O( e−2πd/h), (3.4)

E′
2(F, n) = O( e−π

2 µ exp(nh)). (3.5)

Finally, substituting h = log(4dn/µ)/n into these expressions, we obtain the conclusion.
The most critical part of the above proof is the derivation of (3.4), where the key is rewriting

the quadrature rule by a complex contour integral:

h
∞∑

j=−∞
F (jh) = lim

k→∞

{ 1
2i

∮
Γk

F (ζ)
tan(πζ/h)

dζ
}
. (3.6)

The contour Γk is illustrated in Figure 7. The horizontal paths of the contour are taken as
close as possible to the boundary of Dd. If the transformed function F is analytic on Dd, the
expression (3.6) holds from the residue theorem.

8



R

iR

O

id

−id

kh−kh

(k + 1)h−(k + 1)h

c
cc

#
##

Γk

Figure 7. The contour Γk.
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Under the assumption of Theorem 2.5, however, the transformed function F is not always
analytic on Dd. See also Figure 4; in this case we cannot take any positive constant d for a strip
domain Dd. Therefore the expression (3.6) is no longer possible. This is the first difficulty.

An immediate way to revive the expression is to delete the limiting process from both sides
in (3.6). This in fact holds if we choose the contour Γk in the domain in which the transformed
function F is analytic. To this end, we have to take the following two additional steps:

• determine the explicit form of the domain in which F (ζ) = f(ψDE(ζ))ψ′
DE(ζ) is analytic,

• choose a proper contour in the domain so that a sharp error estimate can be given.

In what follows we explain these two steps one by one. In the latter step, the second difficulty
arises; a certain natural choice of the contour leads to a meaningless error estimate. The difficulty
and its remedy are described in Section 3.3.

3.2 Determining the explicit form of the domain to be considered

The transformed integrand F is analytic on the domain ψ−1
DE (ψSE(Dd)), and we have to clarify

the expression of the domain.

Lemma 3.1. Let d be a constant with 0 < d ≤ π and put D = ψSE(Dd). Then we have

ψ−1
DE (D) =

{
ζ ∈ C : | Im ζ| < arcsin

[
d

π cosh(Re ζ)

]}
. (3.7)

Proof. The inverse of the DE transformation is expressed as ψ−1
DE (z) = arcsinh[ψ−1

SE (z)/π]. There-
fore we have ψ−1

DE (D) = arcsinh[Dd/π]. Using the expression ξ = sinh(x)
√
π2 − (d/ cosh x)2 ± i d

of the boundary of the domain Dd, we can show that ζ = x± i arcsin(d/(π cosh x)) iff ζ belongs
to the boundary of arcsinh[Dd/π], which proves the lemma. �

But this domain is not very convenient to handle. Thus we define another domain contained
in it with a simpler expression. For a nonnegative constant δ, let us set

∆δ
d = {ζ ∈ C : | Im ζ| < d exp(−δ| Re ζ|)} (3.8)

and consider∆1
arcsin(d/π). Then, as shown below, ∆1

arcsin(d/π) is contained in the domain expressed
by (3.7).
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Lemma 3.2. Let d be a constant with 0 < d ≤ π and put D = ψSE(Dd). Then we have

∆1
arcsin(d/π) ⊆ ψ−1

DE (D). (3.9)

Proof. Since the inequality
sin[arcsin(d/π)y] ≤ d

π

2y
1 + y2 (3.10)

holds for y with 0 ≤ y ≤ 1, by putting y = e−|x| we have

arcsin(d/π) e−|x| ≤ arcsin
(
d

π

1
cosh x

)
(3.11)

for arbitrary x ∈ R. Thus the lemma is proven. �

Immediately from Lemma 3.2, we can rewrite the assumption in Theorem 2.2 as follows.

Lemma 3.3. fQ ∈ Lα,β(ψSE(Dd)) implies fQ ∈ Lα,β(ψDE(∆1
arcsin(d/π))).

Thanks to this lemma, we may set d′ = arcsin(d/π) and consider the error estimate of the
DE formula under the assumption fQ ∈ Lα,β(ψDE(∆1

d′)).

3.3 Choosing a proper contour: difficulty and its remedy

Now let us return to the expression (3.6). In the domain ∆1
d′ , we can take the contour Γ ′

n illus-
trated in Figure 8 (recall that M , N , and h are determined from n, through the definitions (2.9)
and (2.19)). Observe how it differs from Γk. The height of Γ ′

n must tend to zero as n → ∞,
whereas the height of Γk can be fixed. For this reason we cannot obtain the same expression
as (3.6), but it holds without the limiting process, i.e.,

h
N∑

j=−M
F (jh) = 1

2i

∮
Γ ′

n

F (ζ)
tan(πζ/h)

dζ. (3.12)

In order to use this expression (3.12), one may naturally modify the splitting of the quadrature
error (3.1) as follows:∣∣∣∣∣∣

∫ ∞

−∞
F (x) dx− h

N∑
j=−M

F (jh)

∣∣∣∣∣∣ ≤ E′′
1 (F, n) + E′′

2 (F, n), (3.13)

where

E′′
1 (F, n) =

∣∣∣∣∣∣
∫ (N+1/2)h

−(M+1/2)h
F (x) dx− h

N∑
j=−M

F (jh)

∣∣∣∣∣∣ , (3.14)

E′′
2 (F, n) =

∣∣∣∣∣
∫ −(M+1/2)h

−∞
F (x) dx

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

(N+1/2)h
F (x) dx

∣∣∣∣∣ . (3.15)

Notice the difference between E′
1(F, n) and E′′

1 (F, n). In order to use a complex contour integral
for estimating the error E′′

1 (F, n), any limiting process should not appear in it. This is because
the transformed integrand F is analytic not on Dd, but on ∆1

d′ .
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The splitting (3.13) is, however, unsuitable for our analysis. If we estimate E′′
1 in a similar

manner to E′
1, we find that d in (3.4) should be replaced with d′ exp(−(n+ 1/2)h), which is the

height of Γ ′
n from the real axis. From this and (2.19), we have

E′′
1 (F, n) ≈ O

(
exp

(
−2πd′

h
exp(−nh)

))
= O

(
exp

(
− 2πd′n

log(cn)
exp(− log(cn))

))
= O

(
exp

(
− 2πd′

c log(cn)

))
→ O(1) (n → ∞), (3.16)

which is meaningless as an error estimate. This is the second difficulty mentioned at the end of
Section 3.1.

In order to remedy the issue, we change the splitting as follows:∣∣∣∣∣∣
∫ ∞

−∞
F (x) dx− h

N∑
j=−M

F (jh)

∣∣∣∣∣∣ ≤ E1(F, n) + E2(F, n), (3.17)

where

E1(F, n) =

∣∣∣∣∣∣∣
∫ (⌈ N

2 ⌉+ 1
4 )h

−(⌈ M
2 ⌉+ 1

4 )h
F (x) dx− h

⌈ N
2 ⌉∑

j=−⌈ M
2 ⌉

F (jh)

∣∣∣∣∣∣∣ , (3.18)

E2(F, n) =
∫ −(⌈ M

2 ⌉+ 1
4 )h

−∞
|F (x)| dx+

∫ ∞

(⌈ N
2 ⌉+ 1

4 )h
|F (x)| dx+ h

−⌈ M
2 ⌉−1∑

j=−M
|F (jh)| + h

N∑
j=⌈ N

2 ⌉+1

|F (jh)|.

(3.19)

Roughly speaking, M and N in (3.14) are replaced with M/2 and N/2, respectively. Accordingly
the contour Γ ′

n is replaced with Γ ′
n/2. By this modification, the estimate (3.16) is improved as

E1(F, n) ≈ O
(

exp
(

−2πd′

h
exp(−(n/2)h)

))
= O

(
exp

(
− 2πd′n

log(cn)
exp(− log(cn)/2)

))
= O

(
exp

(
− 2πd′√n√

c log(cn)

))
, (3.20)

which gives a meaningful estimate. And for E2 we can show

E2(F, n) = O
(

exp
(

−πµ

2
√
cn

))
. (3.21)

Thus we obtain the desired conclusion.

3.4 Proofs

For simplicity, we write d′ as d and assume that fQ ∈ Lα,β(ψDE(∆1
d)) throughout the following

proof. As described above, this proof consists of the following two estimates.
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Lemma 3.4. Under the assumptions of Theorem 2.5, for F (x) = f(ψDE(x))ψ′
DE(x), there exists

a constant C̃α,β,c,d depending only on α, β, c, d such that

E1(F, n) ≤ K(b− a)α+β−1C̃α,β,c,d exp
(

−2πd√
c

√
n

log(cn)

)
. (3.22)

Lemma 3.5. Under the assumptions of Theorem 2.5, for F (x) = f(ψDE(x))ψ′
DE(x), there exists

a constant C̃α,β,c depending only on α, β, c such that

E2(F, n) ≤ K(b− a)α+β−1C̃α,β,c exp
(

−πµ

2
√
cn

)
. (3.23)

Remark 3.6. As mentioned in Remark 2.7, a nearly optimal c is c = 4d/µ. This is because
this almost equates the exp( · ) parts of (3.22) and (3.23).

To prove these lemmas, the next inequality is useful. It immediately follows from the existing
lemma [6, Lemma 4.21], and we omit the proof.

Lemma 3.7. Let fQ ∈ Lα,β(ψDE(∆1
d)) for d with 0 < d < π/2. Let F (ζ) = f(ψDE(ζ))ψ′

DE(ζ),
and let x and y be arbitrary real numbers with x+ i y ∈ ∆1

d. Then it holds that

|F (x+ i y)| ≤ K(b− a)α+β−1Gα,β(x, y) (3.24)

where K is the constant in (2.1) and Gα,β(x, y) is a function defined by

Gα,β(x, y) = π cosh x
(1 + e−π sinh(x) cos y)α(1 + eπ sinh(x) cos y)β cosα+β(π2 sin y)

. (3.25)

In the case f̃ ∈ Lα,β(ψDE(∆1
d)) (needed in Section 5), let F̃ (ζ) = f̃(ψDE(ζ)). Then it holds that

|F̃ (x+ i y)| ≤ K(b− a)α+β

π
Gα,β(x, y). (3.26)

In what follows we prove Lemma 3.4 and Lemma 3.5. We begin with the proof of Lemma 3.5,
which is easier.

Proof of Lemma 3.5. It clearly follows from (3.24) of Lemma 3.7 that∫ −(⌈ M
2 ⌉+ 1

4 )h

−∞
|F (x)| dx+

∫ ∞

(⌈ N
2 ⌉+ 1

4 )h
|F (x)| dx

≤ K(b− a)α+β−1
{∫ −Mh/2

−∞
Gα,β(x, 0) dx+

∫ ∞

Nh/2
Gα,β(x, 0) dx

}
, (3.27)

and it also follows that

h

−⌈ M
2 ⌉−1∑

j=−M
|F (jh)| + h

N∑
j=⌈ N

2 ⌉+1

|F (jh)|

≤ K(b− a)α+β−1

h
−⌈ M

2 ⌉−1∑
j=−∞

Gα,β(jh, 0) + h
∞∑

j=⌈ N
2 ⌉+1

Gα,β(jh, 0)


≤ K(b− a)α+β−1Cα,β,c

{∫ −Mh/2

−∞
Gα,β(x, 0) dx+

∫ ∞

Nh/2
Gα,β(x, 0) dx

}
, (3.28)
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for some constant Cα,β,c depending only on α, β, c. Noting the relation among M, N and n, for
the first term of the RHS of (3.27), we have

K(b− a)α+β−1
∫ −Mh/2

−∞
Gα,β(x, 0) dx ≤ K(b− a)α+β−1

α

∫ −Mh/2

−∞
πα cosh(x) eπα sinhx dx

= K(b− a)α+β−1

α
e−πα sinh(Mh/2)

≤ K(b− a)α+β−1

µ
e

π
2 ν e−π

2 µ exp(nh/2). (3.29)

The estimate of the second term is similar, and the same applies to the estimate for (3.28). Then
substituting h = log(cn)/n, we have the desired inequality. �

Proof of Lemma 3.4. We define the following integral paths:

Γ+
vr(x, y) = {ζ ∈ C : Re ζ = x, 0 ≤ Im ζ ≤ y}, (3.30)
Γ−

vr(x, y) = {ζ ∈ C : Re ζ = x, −y ≤ Im ζ ≤ 0}, (3.31)
Γ+

vl (x, y) = {ζ ∈ C : Re ζ = −x, 0 ≤ Im ζ ≤ y}, (3.32)
Γ−

vl (x, y) = {ζ ∈ C : Re ζ = −x, −y ≤ Im ζ ≤ 0}, (3.33)
Γ±

hr(x, y) = {ζ ∈ C : 0 ≤ Re ζ ≤ x, Im ζ = ±y}, (3.34)
Γ±

hl (x, y) = {ζ ∈ C : −x ≤ Re ζ ≤ 0, Im ζ = ±y}. (3.35)

The directions of them are set to be counterclockwise with respect to the origin (see Figure 9).

| Im ζ| = d exp(−|Re ζ|)

O

i d

−i d

i y

−i y

x−x̃

Γ+
vr

Γ−
vr

Γ+

hl

Γ−
hl

Γ+

vl

Γ−
vl

Γ+

hr

Γ−
hr

R

i R

Figure 9. Integral paths Γ±
vr(x, y), Γ±

vl (x̃, y) (vertical) and Γ±
hr(x, y), Γ±

hl (x̃, y) (horizontal) in the
case x > x̃.

We set xM,h = (⌈M/2⌉ + 1/4)h, xN,h = (⌈N/2⌉ + 1/4)h, xn,h = (⌈n/2⌉ + 1/4)h, yn,h =
d(1 − ϵ) exp(−xn,h) and consider the contour

Γ+
vr(xN,h, yn,h) + Γ+

hr(xN,h, yn,h) + Γ+
hl (xM,h, yn,h) + Γ+

vl (xM,h, yn,h)
+ Γ−

vl (xM,h, yn,h) + Γ−
hl (xM,h, yn,h) + Γ−

hr(xN,h, yn,h) + Γ−
vr(xN,h, yn,h), (3.36)

where 0 < ϵ < 1. For simplicity of the notations, we set k = ⌈M/2⌉, l = ⌈N/2⌉ and omit the
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expressions (xM,h, yn,h) and (xN,h, yn,h). Using complex contour integrals, we have

∫ (l+1/4)h

−(k+1/4)h
F (x) dx = 1

2

{
−
∫
Γ+

vr+Γ+
hr+Γ+

hl +Γ+
vl

F (ζ) dζ +
∫
Γ−

vl +Γ−
hl +Γ−

hr+Γ−
vr

F (ζ) dζ
}
, (3.37)

h
l∑

j=−k
F (jh) = 1

2i

∫
Γ+

vr+Γ+
hr+Γ+

hl +Γ+
vl +Γ−

vl +Γ−
hl +Γ−

hr+Γ−
vr

F (ζ)
tan(πζ/h)

dζ, (3.38)

which follows from Cauchy’s theorem and the residue theorem, respectively. Then we have the
inequality∣∣∣∣∣∣
∫ (l+1/4)h

−(k+1/4)h
F (x) dx− h

l∑
j=−k

F (jh)

∣∣∣∣∣∣
≤
∣∣∣∣∣12
(

−
∫
Γ+

hr+Γ+
hl

F (ζ) dζ +
∫
Γ−

hl +Γ−
hr

F (ζ) dζ
)

− 1
2i

∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
tan(πζ/h)

dζ
∣∣∣∣∣

+
∣∣∣∣∣12
(

−
∫
Γ+

vr+Γ+
vl

F (ζ) dζ +
∫
Γ−

vl +Γ−
vr

F (ζ) dζ
)

− 1
2i

∫
Γ+

vr+Γ+
vl +Γ−

vl +Γ−
vr

F (ζ)
tan(πζ/h)

dζ
∣∣∣∣∣ . (3.39)

The remaining task is to estimate these two terms of the RHS, say Eh and Ev, respectively.
(i) Estimate of the second term Ev. Let us first estimate the second term. Using (3.24) of
Lemma 3.7 and noting the relation among M , N and n, for the integral on Γ+

vr we have∫
Γ+

vr

|F (ζ)||dζ| ≤ K(b− a)α+β−1
∫ yn,h

0
Gα,β(xN,h, y) dy

≤ Kπ(b− a)α+β−1

cosα+β(π2 sin yn,h)

∫ yn,h

0
cosh(xN,h) e−πβ sinh(xN,h) cos(yn,h) dy

= Kπ(b− a)α+β−1

cosα+β(π2 sin yn,h)
d(1 − ϵ)cosh(xN,h)

exp(xn,h)
e−πβ sinh(xN,h) cos(yn,h)

≤ Kπ(b− a)α+β−1d

cosα+β(π2 sin yn,h)
e−πβ sinh((l+1/4)h) cos(yn,h)

≤ Kπ(b− a)α+β−1d e
π
2 ν cos d

cosα+β(π2 sin yn,h)
e−π

2 µ exp(nh/2) cos(yn,h), (3.40)

∫
Γ+

vr

∣∣∣∣ F (ζ)
tan(πζ/h)

∣∣∣∣ |dζ| ≤ Kπ(b− a)α+β−1d e
π
2 ν cos d

cosα+β(π2 sin yn,h)
e−π

2 µ exp(nh/2) cos(yn,h), (3.41)

where µ = min{α, β} and ν = max{α, β}. The estimate of the latter follows from the former
one and the following equality:

|1/ tan(π(xN,h + i y)/h)| =
√

cosh(2πy/h) + cos(2πxN,h/h)
cosh(2πy/h) − cos(2πxN,h/h)

=
√

cosh(2πy/h) + cos(π(2l + 1/2))
cosh(2πy/h) − cos(π(2l + 1/2))

=
√

cosh(2πy/h) + 0
cosh(2πy/h) − 0

= 1, (3.42)
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which holds for xN,h + i y ∈ Γ+
vr. We can also obtain similar estimates for the integrals on Γ−

vr
and Γ±

vl . Moreover, noting

xn,h = (⌈n/2⌉ + 1/4)h ≥ (n/2 + 1/4)h ≥ nh

2
= log(cn)

2
(3.43)

and n > 1/c, we have

yn,h = d(1 − ϵ) exp(−xn,h) ≤ d√
cn

≤ d, (3.44)

which implies cos(yn,h) ≥ cos d. Then we have

lim
ϵ→+0

Ev ≤ 4Kπ(b− a)α+β−1d e
π
2 ν cos d

cosα+β(π2 sin d)
e−π

2 µ exp(nh/2) cos d

= 4Kπ(b− a)α+β−1d e
π
2 ν cos d

cosα+β(π2 sin d)
e−π

2 µ
√
cn cos d. (3.45)

(ii) Estimate of the first term Eh. Next, we bound the first term of the RHS of (3.39). Noting

−
∫
Γ+

hr+Γ+
hl

F (ζ) dζ +
∫
Γ−

hr+Γ−
hl

F (ζ) dζ =
∫ xN,h

−xM,h

{F (x+ i yn,h) + F (x− i yn,h)} dx (3.46)

and∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
tan(πζ/h)

dζ =
∫ xN,h

−xM,h

{
− F (x+ i yn,h)

tan(π(x+ i yn,h)/h)
+ F (x− i yn,h)

tan(π(x− i yn,h)/h)

}
dx,

(3.47)

we have

Eh =
∣∣∣∣∣
∫ xN,h

−xM,h

{
F (x− i yn,h) e−i 2π(x−i yn,h)/h

1 − e−i 2π(x−i yn,h)/h − F (x+ i yn,h) ei 2π(x+i yn,h)/h

1 − ei 2π(x+i yn,h)/h

}
dx
∣∣∣∣∣

≤ e−2πyn,h/h

1 − e−2πyn,h/h

∫ xN,h

−xM,h

{|F (x− i yn,h)| + |F (x+ i yn,h)|} dx. (3.48)

As for the integral of the RHS of (3.48), using (3.24) of Lemma 3.7 we have∫ xN,h

−xM,h

{|F (x− i yn,h)| + |F (x+ i yn,h)|} dx

≤ 2K(b− a)α+β−1
∫ xN,h

−xM,h

Gα,β(x, yn,h) dx

≤ 4Kπ(b− a)α+β−1

cosα+β(π2 sin d)

∫ ∞

0
cosh(x) e−πµ sinh(x) cos d dx

= 4K(b− a)α+β−1

µ cos(d) cosα+β(π2 sin d)
. (3.49)

With this estimate and

yn,h = d(1 − ϵ) exp(−(⌈n/2⌉ + 1/4)h) ≥ d(1 − ϵ) exp(−nh/2) exp(−3h/4), (3.50)

we have

lim
ϵ→+0

Eh ≤ 4K(b− a)α+β−1

µ cos(d) cosα+β(π2 sin d)

{
e−2πd exp(−nh/2) exp(−3h/4)/h

1 − e−2πd exp(−nh/2) exp(−3h/4)/h

}
. (3.51)
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Moreover, noting

exp
(

−3h
4

)
= exp

(
−3c

4
log(cn)

(cn)

)
≥ exp

(
− 3c

4 e

)
, (3.52)

exp(−nh/2)
h

= 1
c

√
cn

log(cn)
= 1

2c

√
cn

log
√
cn

≥ e
2c
, (3.53)

we can bound the denominator of { · } part in (3.51) as
1

(1 − e−2πd exp(−nh/2) exp(−3h/4)/h)
≤ 1

(1 − e−2πd/c′)
, (3.54)

where c′ = 2c/ exp(1 − 3c/(4 e)). To bound the numerator of { · } part in (3.51), we use the fact
that

lim
n→∞

√
c1n

log(c2n)

( 1
(c2n)c3/n

− 1
)

= 0, (3.55)

which is shown by l’Hôpital’s theorem. Then we have

exp
(

−2πd exp(−nh/2) exp(−3h/4)
h

)
= exp

(
−2πd√

c

√
n

log(cn)
1

{(cn)3/4}1/n

)

≤ Cc,d exp
(

−2πd√
c

√
n

log(cn)

)
, (3.56)

for a certain constant Cc,d depending only on c and d. Combining the estimates of the denomi-
nator and the numerator above, we have

lim
ϵ→+0

Eh ≤ 4K(b− a)α+β−1Cc,d
µ cos(d) cosα+β(π2 sin d)(1 − e−2πd/c′)

exp
(

−2πd√
c

√
n

log(cn)

)
. (3.57)

From this estimate and (3.45), we obtain the conclusion. �

4 Existing/new convergence theorems for the Sinc approxima-
tion and the Sinc indefinite integration

The Sinc approximation and the Sinc indefinite integration are approximation formulas fre-
quently combined with the SE transformation or the DE transformation, like the trapezoidal
rule (described later in detail). If the Sinc approximation is combined with the SE transforma-
tion, we call it the “SE-Sinc approximation,” and the same applies to the other combination.

As for these approximation formulas, there also exist functions for which the formulas with
the SE transformation works good but the formulas with DE does not. In this section, for
the DE-Sinc approximation and the DE-Sinc indefinite integration, we give similar results to
Theorem 2.5 under the SE’s assumptions. In a similar manner to Section 2, after reviewing
the standard theorems for the SE/DE-Sinc approximation, we present a new theorem for DE’s
error under the SE’s assumption. After that, we do the same for the SE/DE-Sinc indefinite
integration. We prove these theorems in Sections 5 and 6, respectively.

4.1 Existing convergence theorems for the SE/DE-Sinc approximation under
the standard assumptions

The Sinc approximation is an approximation formula for a function F defined on R as:

F (x) ≈
N∑

j=−M
F (jh)S(j, h)(x), x ∈ R, (4.1)
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where S(j, h) is the so-called Sinc function defined by

S(j, h)(x) = sinπ[(x/h) − j]
π[(x/h) − j]

. (4.2)

Even if a function f is defined on the finite interval (a, b), we can apply the Sinc approximation
combining with the SE/DE transformation as follows:

f(t) = f(ψSE(ψ−1
SE (t))) ≈

N∑
j=−M

f(ψSE(jh))S(j, h)(ψ−1
SE (t)), (4.3)

f(t) = f(ψDE(ψ−1
DE (t))) ≈

N∑
j=−M

f(ψDE(jh))S(j, h)(ψ−1
DE (t)), (4.4)

for t ∈ (a, b). The following convergence theorems have been known for these approximations.

Theorem 4.1 (Stenger [11, Theorem 4.2.5]). Let f ∈ Lα,β(ψSE(Dd)) for d with 0 < d < π. Let
µ = min{α, β}, n be a positive integer, and h be selected by the formula

h =
√

πd

µn
. (4.5)

Furthermore, let M and N be positive integers defined by (2.6). Then there exists a constant
C independent of n such that

sup
a<t<b

∣∣∣∣∣∣f(t) −
N∑

j=−M
f(ψSE(jh))S(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣ ≤ C
√
n e−

√
πdµn. (4.6)

Theorem 4.2 (Okayama et al. [6, Theorem 2.11]). Let f ∈ Lα,β(ψDE(Dd)) for d with 0 < d <
π/2. Let µ = min{α, β}, ν = max{α, β}, n be a positive integer with n > ν/(2d), and h be
selected by the formula

h = log(2dn/µ)
n

. (4.7)

Furthermore, let M and N be positive integers defined by (2.9). Then there exists a constant
C independent of n such that

sup
a<t<b

∣∣∣∣∣∣f(t) −
N∑

j=−M
f(ψDE(jh))S(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣ ≤ C e−πdn/ log(2dn/µ). (4.8)

4.2 New convergence theorem for the DE-Sinc approximation under the SE-
Sinc assumption

The condition on f in Theorem 4.2 is different from the one in Theorem 4.1. Under the same
assumption as Theorem 4.1, we have the next theorem.

Theorem 4.3. Let f ∈ Lα,β(ψSE(Dd)) for d with 0 < d < π , and put d′ = arcsin(d/π). Let
µ = min{α, β}, ν = max{α, β}, and let c be a positive number. For a positive integer n with
n > ν/(cµ), define h as (2.19), and define M and N as (2.9). Then there exists a positive
constant Cα,β,c,d′ depending only on α, β, c, d′ such that

sup
a<t<b

∣∣∣∣∣∣f(t) −
N∑

j=−M
f(ψDE(jh))S(j, h)(ψDE

−1(t))

∣∣∣∣∣∣ ≤ K(b−a)α+βCα,β,c,d′
√
n exp

(
−πd′

√
c

√
n

log(cn)

)
,

(4.9)
where K is the constant in (2.1).
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4.3 Existing convergence theorems for the SE/DE-Sinc indefinite integration
under the standard assumptions

The Sinc indefinite integration is an approximation formula for the indefinite integral, derived
by integrating the both sides of (4.1) as follows:∫ x

−∞
F (ξ) dξ ≈

∫ x

−∞


N∑

j=−M
F (jh)S(j, h)(ξ)

 dξ =
N∑

j=−M
F (jh)J(j, h)(x), (4.10)

where J(j, h)(x) =
∫ x

−∞ S(j, h)(ξ) dξ. This approximation can be also applied to the indefinite
integral over the finite interval, by combining with the SE transformation or the DE transfor-
mation as follows:∫ t

a
f(s) ds =

∫ ψ−1
SE (t)

−∞
f(ψSE(ξ))ψ′

SE(ξ) dξ ≈
N∑

j=−M
f(ψSE(jh))ψ′

SE(jh)J(j, h)(ψ−1
SE (t)), (4.11)

∫ t

a
f(s) ds =

∫ ψ−1
DE(t)

−∞
f(ψDE(ξ))ψ′

DE(ξ) dξ ≈
N∑

j=−M
f(ψDE(jh))ψ′

DE(jh)J(j, h)(ψ−1
DE (t)). (4.12)

For each approximation a convergence theorem has been given as below.
Theorem 4.4 (Okayama et al. [6, Theorem 2.7]). Let fQ ∈ Lα,β(ψSE(Dd)) for d with 0 < d < π.
Let µ = min{α, β}, n be a positive integer, and h be selected by the formula (4.5). Furthermore,
let M and N be positive integers defined by (2.6). Then there exists a constant C independent
of n such that

sup
a<t<b

∣∣∣∣∣∣
∫ t

a
f(s) ds−

N∑
j=−M

f(ψSE(jh))ψ′
SE(jh)J(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣ ≤ C e−
√

πdµn. (4.13)

Theorem 4.5 (Okayama et al. [6, Theorem 2.13]). Let fQ ∈ Lα,β(ψDE(Dd)) for d with 0 < d <
π/2. Let µ = min{α, β}, ν = max{α, β}, n be a positive integer with n > ν/(2d), and h be
selected by the formula (4.7). Furthermore, let M and N be positive integers defined by (2.9).
Then there exists a constant C independent of n such that

sup
a<t<b

∣∣∣∣∣∣
∫ t

a
f(s) ds−

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣ ≤ C
log(2dn/µ)

n
e−πdn/ log(2dn/µ).

(4.14)

4.4 New convergence theorem for the DE-Sinc indefinite integration under
the SE-Sinc assumption

Under the same assumption as Theorem 4.4, we have the next theorem.
Theorem 4.6. Let fQ ∈ Lα,β(ψSE(Dd)) for d with 0 < d < π , and put d′ = arcsin(d/π ).
Let µ = min{α, β}, ν = max{α, β}, and let c be a positive number. For a positive integer n
with n > ν/(cµ), define h as (2.19) and define M and N as (2.9). Then there exists a positive
constant Cα,β,c,d′ depending only on α, β, c, d′ such that

sup
a<t<b

∣∣∣∣∣∣
∫ t

a
f(s) ds−

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣
≤ K(b− a)α+β−1Cα,β,c,d′

log(cn)√
n

exp
(

−πd′
√
c

√
n

log(cn)

)
, (4.15)

where K is the constant in (2.1).
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5 Proof of Theorem 4.3 (for the DE-Sinc approximation)

5.1 Useful inequalities

To prove Theorem 4.3 (in this section) and Theorem 4.6 (in the next section), we use similar
estimates to (3.29), (3.40) and (3.49). Here we prepare a lemma giving such estimates.

Lemma 5.1. Let α, β and c be positive constants, and put µ = min{α, β} and ν = max{α, β}.
For a positive integer n with n > ν/(cµ), let M , N be defined by (2.9), and h be defined
by (2.19). Then we have ∫ −Mh/2

−∞
Gα,β(x, 0) dx ≤ 1

µ
e

π
2 ν e−π

2 µ
√
cn, (5.1)∫ ∞

Nh/2
Gα,β(x, 0) dx ≤ 1

µ
e

π
2 ν e−π

2 µ
√
cn, (5.2)

whereGα,β(x, y) is the function defined in (3.25). Furthermore, for a positive real constant d̃ with
d̃ < π/2 and a real constant δ, set x̃M,h = (⌈M/2⌉+δ)h, x̃N,h = (⌈N/2⌉+δ)h, x̃n,h = (⌈n/2⌉+δ)h,
and ỹn,h = d̃ exp(−x̃n,h). Then we have the following inequalities:

∫ ỹn,h

0
Gα,β(−x̃M,h, y) dy ≤ C̃α,β,c,δπd̃ e

π
2 ν cos d̃

cosα+β(π2 sin d̃)
e−π

2 µ
√
cn cos d̃, (5.3)

∫ ỹn,h

0
Gα,β(x̃N,h, y) dy ≤ C̃α,β,c,δπd̃ e

π
2 ν cos d̃

cosα+β(π2 sin d̃)
e−π

2 µ
√
cn cos d̃, (5.4)∫ x̃N,h

−x̃M,h

Gα,β(x, ỹn,h) dx ≤ 2
µ cos(d̃) cosα+β(π2 sin d̃)

, (5.5)

where C̃α,β,c,δ is a positive constant depending only on α, β, c and δ. Moreover, if δ > 0, C̃α,β,c,δ
can be taken as C̃α,β,c,δ = 1.

Proof. It suffices to prove (5.1), (5.4) and (5.5). First, (5.1) is the same inequality as (3.29)
except for the constant K(b − a)α+β−1. Next, (5.5) is the same inequality as (3.49) except for
the constant 2K(b− a)α+β−1. Finally we prove (5.4). In a similar manner to (3.40), we have

∫ ỹn,h

0
G(x̃N,h, y) dy ≤ πd̃ e−πβ sinh(x̃N,h) cos(ỹn,h)

cosα+β(π2 sin ỹn,h)
≤ πd̃ e−πβ sinh(x̃N,h) cos(d̃)

cosα+β(π2 sin d̃)
. (5.6)

As for β sinh(x̃N,h) in (5.6), we can obtain its lower bound as follows:

β sinh(x̃N,h) ≥ β
ex̃N,h − 1

2

≥ β

2
exp{(⌈N/2⌉ + δ)h} − ν

2

≥ β

2
exp(Nh/2) exp(δh) − ν

2

≥
{

(β/2) exp(nh/2) exp(δh) − ν/2 (α ≥ β)
(β/2) exp(nh/2) exp(− log(β/α)/2) exp(δh) − ν/2 (α < β)

≥ µ

2
exp(nh/2) exp(δh) − ν

2
= µ

2
√
cn · (cn)δ/n − ν

2
. (5.7)
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To see the effect of (cn)δ/n in (5.7), we note that

lim
n→∞

exp(−A
√
cn · (cn)δ/n)

exp(−A
√
cn)

= lim
n→∞

exp{−A
√
cn((cn)δ/n − 1)} = 1 (5.8)

for an arbitrary positive constant A. Combining (5.6), (5.7) and (5.8), we obtain the desired
inequality. Finally, if δ > 0, it follows from (5.7) that

β sinh(x̃N,h) ≥ µ

2
√
cn− ν

2
. (5.9)

Therefore we can take C̃α,β,c,δ as C̃α,β,c,δ = 1. �

In a similar manner to the proof of Theorem 2.5, we write d′ as d and assume that f ∈
Lα,β(ψDE(∆1

d)) throughout the following proofs in this section.

5.2 Sketch of the proof

The idea of the proof is similar to that of Theorem 2.5: we split the error into several terms and
estimate each of them. Setting F (x) = f(ψDE(x)), we have

(The LHS of (4.9)) = sup
−∞<x<∞

∣∣∣∣∣∣F (x) −
N∑

j=−M
F (jh)S(j, h)(x)

∣∣∣∣∣∣
≤ sup

−∞<x<∞

∣∣∣∣∣∣∣F (x) −
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣
+ sup

−∞<x<∞


∣∣∣∣∣∣∣
−⌈ M

2 ⌉−1∑
j=−M

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

N∑
j=⌈ N

2 ⌉+1

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣
 .

(5.10)

The first term of the RHS, say E0(F, n), can be further estimated as

E0(F, n) ≤ max

 sup
−⌈ M

2 ⌉h≤x≤⌈ N
2 ⌉h

∣∣∣∣∣∣∣F (x) −
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣ ,
sup

x≤−⌈ M
2 ⌉h, ⌈ N

2 ⌉h≤x

∣∣∣∣∣∣∣F (x) −
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣


≤ max {E1(F, n), E2(F, n) + E3(F, n)} , (5.11)

where E1(F, n), E2(F, n), E3(F, n) are defined by

E1(F, n) = sup
−⌈ M

2 ⌉h≤x≤⌈ N
2 ⌉h

∣∣∣∣∣∣∣F (x) −
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣ , (5.12)

E2(F, n) = sup
x≤−⌈ M

2 ⌉h, ⌈ N
2 ⌉h≤x

∣∣∣∣∣∣∣
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣ , (5.13)

E3(F, n) = sup
x≤−⌈ M

2 ⌉h, ⌈ N
2 ⌉h≤x

|F (x)| , (5.14)
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respectively. And we define E4(F, n) as

E4(F, n) = sup
−∞<x<∞

∣∣∣∣∣∣∣
−⌈ M

2 ⌉−1∑
j=−M

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣+ sup
−∞<x<∞

∣∣∣∣∣∣∣
N∑

j=⌈ N
2 ⌉+1

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣ . (5.15)

Their estimates are given by the following lemmas.

Lemma 5.2. Under the same assumptions of Theorem 4.3, for F (x) = f(ψDE(x)), there exists
a positive constant C(1)

α,β,c,d depending only on α, β, c, d such that

E1(F, n) ≤ K(b− a)α+βC
(1)
α,β,c,d

√
n exp

(
−πd√

c

√
n

log(cn)

)
. (5.16)

Lemma 5.3. Under the same assumptions of Theorem 4.3, for F (x) = f(ψDE(x)), there exists
a positive constant C(2)

α,β,c,d depending only on α, β, c, d such that

E2(F, n) ≤ K(b− a)α+βC
(2)
α,β,c,d

√
n exp

(
−πd√

c

√
n

log(cn)

)
. (5.17)

Lemma 5.4. Under the same assumptions of Theorem 4.3, for F (x) = f(ψDE(x)), it holds that

E3(F, n) ≤ K(b− a)α+β e
π
2 ν e−π

2 µ
√
cn. (5.18)

Lemma 5.5. Under the same assumptions of Theorem 4.3, for F (x) = f(ψDE(x)), there exists
a positive constant C̃α,β,c depending only on α, β, c such that

E4(F, n) ≤ K(b− a)α+βC̃α,β,c
n

log(cn)
e−π

2 µ
√
cn. (5.19)

By showing each lemma above, we obtain Theorem 4.3.

5.3 Proofs of Lemmas 5.2–5.5

First, we begin with the proof of Lemma 5.4: the estimate of E3.

Proof of Lemma 5.4. Noting

|F (x)| ≤ K(b− a)α+β

(1 + e−π sinhx)α(1 + eπ sinhx)β
≤
{
K(b− a)α+β e

π
2 α e−π

2 α exp(−x) (x < 0)
K(b− a)α+β e

π
2 β e−π

2 β exp(x) (x > 0)
(5.20)

and the relation among M , N and n, we have

E3(F, n) ≤ K(b− a)α+β e
π
2 ν e−π

2 µ exp(nh/2) = K(b− a)α+β e
π
2 ν e−π

2 µ
√
cn. (5.21)

�

Next, we prove Lemma 5.5: the estimate of E4.

Proof of Lemma 5.5. As for the first sum of E4, using (3.26) of Lemma 3.7, we have∣∣∣∣∣∣∣
−⌈ M

2 ⌉−1∑
j=−M

F (jh)S(j, h)(x)

∣∣∣∣∣∣∣ ≤
−⌈ M

2 ⌉−1∑
j=−M

|F (jh)| ≤ K(b− a)α+β

π

−⌈ M
2 ⌉−1∑

j=−∞
Gα,β(jh, 0), (5.22)
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and using a similar manner to (3.28) and applying (5.1) of Lemma 5.1, we have

K(b− a)α+β

πh
h

−⌈ M
2 ⌉−1∑

j=−∞
Gα,β(jh, 0) ≤ K(b− a)α+β

πh
Cα,β,c

∫ −Mh/2

−∞
Gα,β(x, 0) dx

≤ Cα,β,c
K(b− a)α+β e

π
2 ν

πµ

n

log(cn)
e−π

2 µ
√
cn, (5.23)

for some constant Cα,β,c depending only on α, β, c. Here (2.19) is used. As for the second sum
of E4, we can obtain the same estimate as above. Therefore we have the conclusion. �

Next, we prove Lemma 5.2: the estimate of E1.

Proof of Lemma 5.2. We use the paths defined in the proof of Lemma 3.4. We set x′
M,h =

(⌈M/2⌉ + 1/2)h, x′
N,h = (⌈N/2⌉ + 1/2)h, x′

n,h = (⌈n/2⌉ + 1/2)h, y′
n,h = d(1 − ϵ) exp(−x′

n,h) and
consider the contour

Γ+
vr(x′

N,h, y
′
n,h) + Γ+

hr(x
′
N,h, y

′
n,h) + Γ+

hl (x
′
M,h, y

′
n,h) + Γ+

vl (x
′
M,h, y

′
n,h)

+ Γ−
vl (x

′
M,h, y

′
n,h) + Γ−

hl (x
′
M,h, y

′
n,h) + Γ−

hr(x
′
N,h, y

′
n,h) + Γ−

vr(x′
N,h, y

′
n,h), (5.24)

where 0 < ϵ < 1. For simplicity of the notations, we set k = ⌈M/2⌉, l = ⌈N/2⌉ and omit the
expressions (x′

M,h, y
′
n,h) and (x′

N,h, y
′
n,h). For x with −kh ≤ x ≤ lh, we have

F (x) −
l∑

j=−k
F (jh)S(j, h)(x) = sin(πx/h)

2πi

∫
Γ+

vr+Γ+
hr+Γ+

hl +Γ+
vl +Γ−

vl +Γ−
hl +Γ−

hr+Γ−
vr

F (ζ) dζ
(ζ − x) sin(πζ/h)

.

(5.25)

As for the integral on Γ+
vr, noting

|ζ − x| ≥ |(l + 1/2)h− x| ≥ h/2, (5.26)
| sin(πζ/h)| = |(−1)l cosh{π(Im ζ)/h}| ≥ 1 (5.27)

for ζ ∈ Γ+
vr, and using (3.26) of Lemma 3.7 and (5.4) of Lemma 5.1 with δ = 1/2, we have∣∣∣∣sin(πx/h)

2πi

∫
Γ+

vr

F (ζ)
(ζ − x) sin(πζ/h)

dζ
∣∣∣∣ ≤ 1

πh

∫
Γ+

vr

|F (ζ)|| dζ|

≤ K(b− a)α+β

π2h

∫ y′
n,h

0
Gα,β(x′

N,h, y) dy

≤ K(b− a)α+βd e
π
2 ν cos d

π cosα+β(π2 sin d)
n

log(cn)
e−π

2 µ
√
cn cos d. (5.28)

Since we can obtain the same estimates for the integrals on Γ−
vr and Γ±

vl , we have

lim
ϵ→0

∣∣∣∣∣sin(πx/h)
2πi

∫
Γ+

vr+Γ−
vr+Γ−

vl +Γ+
vl

F (ζ)
(ζ − x) sin(πζ/h)

dζ
∣∣∣∣∣

≤ 4K(b− a)α+βd e
π
2 ν cos d

π cosα+β(π2 sin d)
n

log(cn)
e−π

2 µ
√
cn cos d. (5.29)

As for the integral on Γ+
hr + Γ+

hl + Γ−
hl + Γ−

hr, noting

|ζ − x| ≥ y′
n,h, (5.30)

| sin(πζ/h)| =
√

cosh2(πy′
n,h/h) − cos2{π(Re ζ)/h} ≥ sinh(πy′

n,h/h) (5.31)

22



for ζ ∈ Γ+
hr + Γ+

hl + Γ−
hl + Γ−

hr, we have∣∣∣∣∣sin(πx/h)
2πi

∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
(ζ − x) sin(πζ/h)

dζ
∣∣∣∣∣

≤ 1
2πy′

n,h sinh(πy′
n,h/h)

∫ x′
N,h

−x′
M,h

{|F (x− i y′
n,h)| + |F (x+ i y′

n,h)|} dx. (5.32)

As for the integral of this RHS, it follows from (3.26) of Lemma 3.7 and (5.5) of Lemma 5.1 that∫ x′
N,h

−x′
M,h

{|F (x− i y′
n,h)| + |F (x+ i y′

n,h)|} dx ≤ 2K(b− a)α+β

π

∫ x′
N,h

−x′
M,h

Gα,β(x, y′
n,h) dx

≤ 4K(b− a)α+β

πµ cos(d) cosα+β(π2 sin d)
. (5.33)

With this estimate and

y′
n,h = d(1 − ϵ) exp(−(⌈n/2⌉ + 1/2)h) ≥ d(1 − ϵ) exp(−nh/2) exp(−h), (5.34)

we have

lim
ϵ→0

∣∣∣∣∣sin(πx/h)
2πi

∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
(ζ − x) sin(πζ/h)

dζ
∣∣∣∣∣

≤ 4K(b− a)α+β

π2dµ cos(d) cosα+β(π2 sin d)
1

exp(−nh/2) exp(−h)
e−πd exp(−nh/2) exp(−h)/h

1 − e−2πd exp(−nh/2) exp(−h)/h . (5.35)

Furthermore, similarly to (3.52)–(3.56), we have

lim
ϵ→0

∣∣∣∣∣sin(πx/h)
2πi

∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
(ζ − x) sin(πζ/h)

dζ
∣∣∣∣∣

≤
4K(b− a)α+β ec/ eC ′

c,d

π2dµ cos(d) cosα+β(π2 sin d)(1 − e−2πd/c′′)
√
cn exp

(
−πd√

c

√
n

log(cn)

)
, (5.36)

where c′′ = 2c/ exp(1 − c/ e), and C ′
c,d is a certain constant depending only on c and d. Com-

bining (5.29) and (5.36), we obtain the estimate of E1. �

Lastly, we prove Lemma 5.3: the estimate of E2.

Proof of Lemma 5.3. We use again the paths defined in the proof of Lemma 3.4. We set x′′
M,h =

(⌈M/2⌉ − 1/2)h, x′′
N,h = (⌈N/2⌉ − 1/2)h, x′′

n,h = (⌈n/2⌉ − 1/2)h, y′′
n,h = d(1 − ϵ) exp(−x′′

n,h) and
consider the contour

Γ+
vr(x′′

N,h, y
′′
n,h) + Γ+

hr(x
′′
N,h, y

′′
n,h) + Γ+

hl (x
′′
M,h, y

′′
n,h) + Γ+

vl (x
′′
M,h, y

′′
n,h)

+ Γ−
vl (x

′′
M,h, y

′′
n,h) + Γ−

hl (x
′′
M,h, y

′′
n,h) + Γ−

hr(x
′′
N,h, y

′′
n,h) + Γ−

vr(x′′
N,h, y

′′
n,h), (5.37)

where 0 < ϵ < 1. In a similar manner to Lemma 5.2, we set k = ⌈M/2⌉, l = ⌈N/2⌉ and omit
the expressions (x′′

M,h, y
′′
n,h) and (x′′

N,h, y
′′
n,h). For x with x ≤ −kh or lh ≤ x, we have

−
l−1∑

j=−k+1
F (jh)S(j, h)(x) = sin(πx/h)

2πi

∫
Γ+

vr+Γ+
hr+Γ+

hl +Γ+
vl +Γ−

vl +Γ−
hl +Γ−

hr+Γ−
vr

F (ζ)
(ζ − x) sin(πζ/h)

dζ.

(5.38)
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Note that the terms for j = −k and j = l are not included in the LHS of (5.38). As for the
RHS of (5.38), using (3.26) of Lemma 3.7, Lemma 5.1 with δ = −1/2, we can obtain similar
estimates to (5.29) and (5.36) (in similar manners to (3.52)–(3.56)):

lim
ϵ→0

∣∣∣∣∣sin(πx/h)
2πi

∫
Γ+

vr+Γ−
vr+Γ−

vl +Γ+
vl

F (ζ)
(ζ − x) sin(πζ/h)

dζ
∣∣∣∣∣

≤
4K(b− a)α+βC̃α,β,c,−1/2 d e

π
2 ν cos d

π cosα+β(π2 sin d)
n

log(cn)
e−π

2 µ
√
cn cos d, (5.39)

lim
ϵ→0

∣∣∣∣∣sin(πx/h)
2πi

∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
(ζ − x) sin(πζ/h)

dζ
∣∣∣∣∣

≤ 4K(b− a)α+β

π2dµ cos(d) cosα+β(π2 sin d)
1

exp(−nh/2)
e−πd exp(−nh/2)/h

1 − e−2πd exp(−nh/2)/h

≤ 4K(b− a)α+β

π2dµ cos(d) cosα+β(π2 sin d)(1 − e−2πd/c′′′)
√
cn exp

(
−πd√

c

√
n

log(cn)

)
, (5.40)

where c′′′ = 2c/ e. To derive the above estimates, we use the following inequalities:

y′′
n,h = d(1 − ϵ) exp(−(⌈n/2⌉ − 1/2)h)

{
≤ d,

≥ d(1 − ϵ) exp(−nh/2).
(5.41)

Therefore we have

E2(F, n) ≤

∣∣∣∣∣∣
l−1∑

j=−k+1
F (jh)S(j, h)(x)

∣∣∣∣∣∣+ |F (−kh)| + |F (lh)|

≤ (The RHS of (5.39)) + (The RHS of (5.40)) + 2E3(F, n). (5.42)

Thus we obtain the estimate of E2. �

6 Proof of Theorem 4.6 (for the DE-Sinc indefinite integration)

6.1 Useful inequalities

In a similar manner to the proof of Theorem 2.5, we write d′ as d and assume that fQ ∈
Lα,β(ψDE(∆1

d)) throughout the following proofs in this section.
To prove Theorem 4.6, we need some auxiliary propositions as below.

Corollary 6.1. Under the same assumptions as Theorem 4.6, for F (t) = f(ψDE(t))ψ′
DE(t), there

exists a positive constant C̃α,β,c,d depending only on α, β, c, d such that

sup
−∞<t<∞

∣∣∣∣∣∣F (t) −
N∑

j=−M
F (jh)S(j, h)(t)

∣∣∣∣∣∣ ≤ K(b−a)α+β−1C̃α,β,c,d
√
n exp

(
−2πd√

c

√
n

log(cn)

)
. (6.1)

Proof. This can be shown in almost the same manner as that of Theorem 4.3. The difference
between them is the estimate of the absolute value of the transformed function F ; in Lemma 3.7
use (3.24) instead of (3.26). �

Lemma 6.2 (Stenger [11, Lemma 3.6.5]). Let h > 0, j ∈ Z, and x ∈ R, and define J(j, h) as
J(j, h)(x) =

∫ x
−∞ S(j, h)(ξ) dξ. Then

|J(j, h)(x)| ≤ 1.1h. (6.2)
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For h, ξ, η, xu ∈ R with h > 0 and xd ∈ R ∪ {−∞} with xd ≤ xu, define w(h, ξ, η, xd, xu) as

w(h, ξ, η, xd, xu) = 1
2πi

∫ xu

xd

sin(πt/h)
(ξ + ηi ) − t

dt. (6.3)

The following two lemmas are variants of Stenger’s lemma [11, Lemma 3.6.3]. The first one can
be shown in almost the same manner as his lemma [11, Lemma 3.6.3], and we omit its proof.
Since the proof of the second one is long, we like to leave it to the end of this section.
Lemma 6.3. For η ̸= 0, it follows that

|w(h, ξ, η, xd, xu)| ≤ h

4|η|
. (6.4)

Lemma 6.4. Let q ∈ Z and ξq,h = (q + 1/2)h. For x ∈ R and p ∈ Z ∪ {−∞}, we have the
following estimates.
Case I. If p ≤ q and ph ≤ x ≤ qh, we have

|w(h, ξq,h, η, ph, x)| ≤ 1
π

(
2 + 5|η|

h

)
. (6.5)

Case II. If p ≥ q + 1 and x ≥ ph, we have the same estimate as (6.5).
Remark 6.5. Lemma 6.4 is needed for small |η|, and otherwise we use Lemma 6.3.

6.2 Sketch of the proof

The proof is done similarly to the proof of Theorem 2.5. To describe the splitting of the error, we
introduce some notation here. Set F (t) = f(ψDE(t))ψ′

DE(t). We define intervals Ij (j = 1, . . . , 5)
as

I1 = (−∞, −(⌈M/2⌉ + 1)h], (6.6)
I2 = [−(⌈M/2⌉ + 1)h, −⌈M/2⌉h], (6.7)
I3 = [−⌈M/2⌉h, ⌈N/2⌉h], (6.8)
I4 = [⌈N/2⌉h, (⌈N/2⌉ + 1)h], (6.9)
I5 = [(⌈N/2⌉ + 1)h, +∞), (6.10)

and H(F, n; t) as

H(F, n; t) = F (t) −
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(t), (6.11)

and Ej(F, n) (j = 1, . . . , 5) as

Ej(F, n) = sup
x∈Ij

∣∣∣∣∣
∫
Ij∩(−∞,x]

H(F, n; t) dt
∣∣∣∣∣ . (6.12)

Then we have

(The LHS of (4.15)) = sup
−∞<x<∞

∣∣∣∣∣∣
∫ x

−∞
F (t) dt−

N∑
j=−M

F (jh)J(j, h)(x)

∣∣∣∣∣∣
≤ sup

−∞<x<∞

∣∣∣∣∫ x

−∞
H(F, n; t) dt

∣∣∣∣
+ sup

−∞<x<∞


∣∣∣∣∣∣∣
−⌈ M

2 ⌉−1∑
j=−M

F (jh)J(j, h)(x)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

N∑
j=⌈ N

2 ⌉+1

F (jh)J(j, h)(x)

∣∣∣∣∣∣∣
 .

(6.13)
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Moreover, for the first term of (6.13), we have

sup
−∞<x<∞

∣∣∣∣∫ x

−∞
H(F, n; t) dt

∣∣∣∣ ≤ max
1≤j≤5

sup
x∈Ij

∣∣∣∣∫ x

−∞
H(F, n; t) dt

∣∣∣∣
≤ max

1≤j≤5
sup
x∈Ij

j∑
k=1

∣∣∣∣∣
∫
Ik∩(−∞,x]

H(F, n; t) dt
∣∣∣∣∣

≤ max
1≤j≤5

sup
x∈Ij

j∑
k=1

Ek(F, n).

≤
5∑

k=1
Ek(F, n). (6.14)

For the second and third term of (6.13), using Lemmas 6.2 and 5.1 we have (similarly to
Lemma 3.5)

sup
−∞<x<∞

∣∣∣∣∣∣∣
−⌈ M

2 ⌉−1∑
j=−M

F (jh)J(j, h)(x)

∣∣∣∣∣∣∣+ sup
−∞<x<∞

∣∣∣∣∣∣∣
N∑

j=⌈ N
2 ⌉+1

F (jh)J(j, h)(x)

∣∣∣∣∣∣∣
≤ 1.1h

−⌈ M
2 ⌉−1∑

j=−M
|F (jh)| +

N∑
j=⌈ N

2 ⌉+1

|F (jh)|


≤ 1.1Cα,β,cK(b− a)α+β−1

(∫ −Mh/2

−∞
Gα,β(x, 0) dx+

∫ ∞

Nh/2
Gα,β(x, 0) dx

)

≤ 2.2Cα,β,cK(b− a)α+β−1 e
π
2 ν

µ
e−π

2 µ
√
cn, (6.15)

for some constant Cα,β,c depending only on α, β, c. Then what remains is to estimate Ej(F, n) (j =
1, . . . , 5). Their estimates are given by the following lemmas.

Lemma 6.6. Under the same assumptions as Theorem 4.6, for F (t) = f(ψDE(t))ψ′
DE(t), there

exist positive constants C̃(i)
α,β,c,d (i = 1, 5) depending only on α, β, c, d such that for i = 1, 5

Ei(F, n) ≤ K(b− a)α+β−1C̃
(i)
α,β,c,d

log(cn)√
n

exp
(

−πd√
c

√
n

log(cn)

)
. (6.16)

Lemma 6.7. Under the same assumptions as Theorem 4.6, for F (t) = f(ψDE(t))ψ′
DE(t), there

exist positive constants C̃(i)
α,β,c,d (i = 2, 4) depending only on α, β, c, d such that for i = 2, 4

Ei(F, n) ≤ K(b− a)α+β−1C̃
(i)
α,β,c,d

log(cn)√
n

exp
(

−2πd√
c

√
n

log(cn)

)
. (6.17)

Lemma 6.8. Under the same assumptions as Theorem 4.6, for F (t) = f(ψDE(t))ψ′
DE(t), there

exists a positive constant C̃(3)
α,β,c,d depending only on α, β, c, d such that

E3(F, n) ≤ K(b− a)α+β−1C̃
(3)
α,β,c,d

log(cn)√
n

exp
(

−πd√
c

√
n

log(cn)

)
. (6.18)
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6.3 Proofs of Lemmas 6.6–6.8, and 6.4

First, we begin with the proof of Lemma 6.7: estimates of E2 and E4.

Proof of Lemma 6.7. Since E4 can be estimated in almost the same manner as E2, it suffices to
consider E2. We have

E2(F, n) ≤
∫ −⌈ M

2 ⌉h

−(⌈ M
2 ⌉+1)h

∣∣∣∣∣∣∣F (t) −
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(t)

∣∣∣∣∣∣∣ dt

≤ h sup
−∞<t<∞

∣∣∣∣∣∣∣F (t) −
⌈ N

2 ⌉∑
j=−⌈ M

2 ⌉

F (jh)S(j, h)(t)

∣∣∣∣∣∣∣
≤ h sup

−∞<t<∞

∣∣∣∣∣∣F (t) −
N∑

j=−M
F (jh)S(j, h)(t)

∣∣∣∣∣∣
+ h sup

−∞<t<∞

∣∣∣∣∣∣∣
−⌈ M

2 ⌉−1∑
j=−M

F (jh)S(j, h)(t)

∣∣∣∣∣∣∣+ h sup
−∞<t<∞

∣∣∣∣∣∣∣
N∑

j=⌈ N
2 ⌉+1

F (jh)S(j, h)(t)

∣∣∣∣∣∣∣
≤ h sup

−∞<t<∞

∣∣∣∣∣∣F (t) −
N∑

j=−M
F (jh)S(j, h)(t)

∣∣∣∣∣∣+ h

−⌈ M
2 ⌉−1∑

j=−M
|F (jh)| + h

N∑
j=⌈ N

2 ⌉+1

|F (jh)|.

(6.19)

Use Corollary 6.1 for the first term. For the second and third term, use Lemma 5.1 and do the
same discussion in the proof of Lemma 3.5. Then we can establish this lemma. �

Next, we prove Lemma 6.8: the estimate of E3.

Proof of Lemma 6.8. We use again the paths (5.24) used in the proof of Theorem 4.3. Set
k = ⌈M/2⌉, l = ⌈N/2⌉. For x ∈ I3, using a complex contour integral, we have the same
expression as (5.25):

F (x) −
l∑

j=−k
F (jh)S(j, h)(x) = sin(πx/h)

2πi

∫
Γn

F (ζ)
(ζ − x) sin(πζ/h)

dζ, (6.20)

where

Γn = Γ+
vr + Γ+

hr + Γ+
hl + Γ+

vl + Γ−
vl + Γ−

hl + Γ−
hr + Γ−

vr. (6.21)

Therefore we have∫
I3∩(−∞,x]

H(F, n; t) dt =
∫ x

−kh

(sin(πt/h)
2πi

∫
Γn

F (ζ)
(ζ − t) sin(πζ/h)

dζ
)

dt

=
∫
Γn

F (ζ)
sin(πζ/h)

( 1
2πi

∫ x

−kh

sin(πt/h)
ζ − t

dt
)

dζ

=
∫
Γn

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−kh, x) dζ. (6.22)

As for the integral on Γ+
vr in (6.22), it follows from Lemma 6.4 with p = −k, q = l that

|w(h,Re ζ, Im ζ,−kh, x)| ≤ 1
π

(
2 +

5y′
n,h

h

)
(6.23)
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for ζ ∈ Γ+
vr. With this estimate and

| sin(πζ/h)| = |(−1)l cosh{π(Im ζ)/h}| ≥ 1 (6.24)

for ζ ∈ Γ+
vr, using (3.24) of Lemma 3.7 and (5.4) of Lemma 5.1 with δ = 1/2, we have∣∣∣∣∫

Γ+
vr

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−kh, x) dζ
∣∣∣∣

≤ 1
π

(
2 +

5y′
n,h

h

)∫
Γ+

vr

|F (ζ)|| dζ|

≤ 1
π

(
2 +

5y′
n,h

h

)
K(b− a)α+β−1

∫ y′
n,h

0
Gα,β(x′

N,h, y) dy

≤ 1
π

(
2 + 5d

√
n√

c log(cn)

)
K(b− a)α+β−1πd e

π
2 ν cos d

cosα+β(π2 sin d)
e−π

2 µ
√
cn cos d. (6.25)

Using Lemma 6.4 with p = −k, q = l for the integral on Γ−
vr, and Lemma 6.4 with p = −k, q =

−k − 1 for the integrals on Γ±
vl , we can obtain the same estimates as (6.25) for the integrals on

these paths. Then we have

lim
ϵ→0

∣∣∣∣∣
∫
Γ+

vr+Γ+
vl +Γ−

vl +Γ−
vr

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−kh, x) dζ
∣∣∣∣∣

≤
(

2 + 5d
√
n√

c log(cn)

)
4K(b− a)α+β−1d e

π
2 ν cos d

cosα+β(π2 sin d)
e−π

2 µ
√
cn cos(d). (6.26)

As for the integral on Γ+
hr + Γ+

hl + Γ−
hl + Γ−

hr, it follows from Lemma 6.3 that

|w(h,Re ζ, Im ζ,−kh, x)| ≤ h

4y′
n,h

(6.27)

for ζ ∈ Γ+
hr + Γ+

hl + Γ−
hl + Γ−

hr. With this estimate and

| sin(πζ/h)| =
√

cosh2(πy′
n,h/h) − cos2{π(Re ζ)/h} ≥ sinh(πy′

n,h/h) (6.28)

for ζ ∈ Γ+
hr + Γ+

hl + Γ−
hl + Γ−

hr, we have∣∣∣∣∣
∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−kh, x) dζ
∣∣∣∣∣

≤ h

4y′
n,h sinh(πy′

n,h/h)

∫ x′
N,h

−x′
M,h

{|F (x− i y′
n,h)| + |F (x+ i y′

n,h)|} dx. (6.29)

As for the integral of this RHS, it follows from (3.24) of Lemma 3.7 and (5.5) of Lemma 5.1 that∫ x′
N,h

−x′
M,h

{|F (x− i y′
n,h)| + |F (x+ i y′

n,h)|} dx ≤ 2K(b− a)α+β−1
∫ x′

N,h

−x′
M,h

Gα,β(x, y′
n,h) dx

≤ 4K(b− a)α+β−1

µ cos(d) cosα+β(π2 sin d)
. (6.30)
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Then, similarly to (3.52)–(3.56), we have

lim
ϵ→0

∣∣∣∣∣
∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−kh, x) dζ
∣∣∣∣∣

≤ 2K(b− a)α+β−1

dµ cos(d) cosα+β(π2 sin d)
h

exp(−nh/2) exp(−h)
e−πd exp(−nh/2) exp(−h)/h

1 − e−2πd exp(−nh/2) exp(−h)/h

≤
2K(b− a)α+β−1 ec/ eC ′

c,d

√
c

dµ cos(d) cosα+β(π2 sin d)(1 − e−2πd/c′′)
log(cn)√

n
exp

(
−πd√

c

√
n

log(cn)

)
, (6.31)

where c′′ = 2c/ exp(1 − c/ e), and C ′
c,d is a constant depending only on c and d. Note that the

RHS of (6.31) is the same as (5.36) except for π2h/2 = π2 log(cn)/(2n). Thus we obtain the
estimate of E3. �

As the last error estimate, we prove Lemma 6.6: the estimate of E1 and E5.

Proof of Lemma 6.6. Since E5 can be estimated in almost the same manner as E1, it suffices to
consider E1. Noting

E1(F, n) ≤ sup
x∈I1

∣∣∣∣∫ x

−∞
F (t) dt

∣∣∣∣+ sup
x∈I1

∣∣∣∣∣∣
∫ x

−∞

l∑
j=−k

F (jh)S(j, h)(t) dt

∣∣∣∣∣∣ , (6.32)

we estimate each term of (6.32).
As for the first term of the RHS of (6.32), using (3.24) of Lemma 3.7 and (5.1) of Lemma 5.1,

we have ∣∣∣∣∫ x

−∞
F (t) dt

∣∣∣∣ ≤
∫ −(k+1)h

−∞
|F (t)| dt ≤ K(b− a)α+β−1

∫ −(k+1)h

−∞
Gα,β(x, 0) dx

≤ K(b− a)α+β−1 e
π
2 ν

µ
e−π

2 µ
√
cn (6.33)

for x ∈ I1.
As for the second term of the RHS of (6.32), for x ≤ −(k + 1)h we have∣∣∣∣∣∣

∫ x

−∞

l∑
j=−k

F (jh)S(j, h)(t) dt

∣∣∣∣∣∣ =
∣∣∣∣∫ x

−∞

(sin(πt/h)
2πi

∫
Γn

F (ζ)
(ζ − t) sin(πζ/h)

dζ
)

dt
∣∣∣∣

≤
∣∣∣∣∫
Γn

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−∞, x) dζ
∣∣∣∣ , (6.34)

where the contour Γn is defined by (6.21), the one used in the proof of Lemma 6.8. Then, using
Lemma 6.4 with p = −∞, q = −k − 1 or p = −∞, q = l, Lemma 6.3, and similarly to (6.26)
and (6.31), we have

lim
ϵ→0

∣∣∣∣∣
∫
Γ+

vr+Γ+
vl +Γ−

vl +Γ−
vr

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−∞, x) dζ
∣∣∣∣∣

≤
(

2 + 5d
√
n√

c log(cn)

)
4K(b− a)α+β−1d e

π
2 ν cos d

cosα+β(π2 sin d)
e−π

2 µ
√
cn cos(d), (6.35)
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and

lim
ϵ→0

∣∣∣∣∣
∫
Γ+

hr+Γ+
hl +Γ−

hl +Γ−
hr

F (ζ)
sin(πζ/h)

w(h,Re ζ, Im ζ,−∞, x) dζ
∣∣∣∣∣

≤
2K(b− a)α+β−1 ec/ eC ′

c,d

√
c

dµ cos(d) cosα+β(π2 sin d)(1 − e−2πd/c′′)
log(cn)√

n
exp

(
−πd√

c

√
n

log(cn)

)
, (6.36)

where c′′ = 2c/ exp(1 − c/ e), and C ′
c,d is a constant depending only on c and d. Thus we obtain

the estimate of E1. �

Finally we finish this section by proving Lemma 6.4.

Proof of Lemma 6.4. Noting

w(h, ξq,h, η, ph, x) = 1
2πi

{∫ x

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt− i

∫ x

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt

}

= − 1
2π

{
i
∫ x

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt+

∫ x

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt

}
, (6.37)

we estimate each of the imaginary and real parts. Recall that ξq,h = (q+ 1/2)h throughout this
proof.

First, we begin with Case I. As for the imaginary part of (6.37), set a = min{ξq,h−h/2, ξq,h−
|η|} and consider splitting the integral as:∫ x

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt

=



⌊ x
h

⌋−1∑
m=p

(−1)mγm + (−1)⌊ x
h

⌋
∫ x−⌊ x

h
⌋h

0

(ξq,h − s− ⌊xh⌋h) sin(πs/h)
(ξq,h − s− ⌊xh⌋h)2 + η2 ds

(
x ≤ ⌊ ah⌋h

)
,

⌊ a
h

⌋−1∑
m=p

(−1)mγm + (−1)⌊ a
h

⌋
∫ x−⌊ a

h
⌋h

0

(ξq,h − s− ⌊ ah⌋h) sin(πs/h)
(ξq,h − s− ⌊ ah⌋h)2 + η2 ds

(
⌊ ah⌋h < x

)
,

(6.38)

where

γm =
∫ h

0

(ξq,h − s−mh) sin(πs/h)
(ξq,h − s−mh)2 + η2 ds. (6.39)

Since

ξq,h − t

(ξq,h − t)2 + η2 (6.40)

is strictly monotonically increasing on (−∞, ξq,h − |η|] with respect to t, we have

γ⌊ a
h

⌋−1 > γ⌊ a
h

⌋−2 > · · · , (6.41)

and therefore, for m0 ≤ ⌊ ah⌋ − 1,

(−1)m0
m0∑
m=p

(−1)mγm =
{

(γm0 − γm0−1) + (γm0−2 − γm0−3) + · · · > 0,
γm0 − (γm0−1 − γm0−2) − (γm0−3 − γm0−4) − · · · < γm0 .

(6.42)
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Then, noting a ≤ ξq,h − h/2, for m0 ≤ ⌊ ah⌋ − 1, we have∣∣∣∣∣(−1)m0
m0∑
m=p

(−1)mγm

∣∣∣∣∣ ≤ |γm0 | ≤
∫ h

0

∣∣∣∣∣(ξq,h − s−m0h) sin(πs/h)
(ξq,h − s−m0h)2 + η2

∣∣∣∣∣ ds

≤
∫ h

0

1
|ξq,h − s−m0h|

ds ≤ 2
h

· h = 2. (6.43)

Moreover, in a similar manner to the above argument, if x ≤ ⌊ ah⌋h, we have∣∣∣∣∣
∫ x−⌊ x

h
⌋h

0

(ξq,h − s− ⌊xh⌋h) sin(πs/h)
(ξq,h − s− ⌊xh⌋h)2 + η2 ds

∣∣∣∣∣ ≤ 2 (6.44)

and if ⌊ ah⌋h < x,∣∣∣∣∣
∫ x−⌊ a

h
⌋h

0

(ξq,h − s− ⌊ ah⌋h) sin(πs/h)
(ξq,h − s− ⌊ ah⌋h)2 + η2 ds

∣∣∣∣∣ ≤ 2
h

·
(
x−

⌊
a

h

⌋
h

)
≤ 2
h

· (x− a+ h)

≤ 2
h

max
{

|η| − h

2
, 0
}

≤ 2|η|
h
. (6.45)

Combining (6.43), (6.44), and (6.45), we have∣∣∣∣∣
∫ x

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt

∣∣∣∣∣ ≤ 2 + max
{

2, 2|η|
h

}
. (6.46)

As for the real part of (6.37), we set b = ξq,h − h/2 and consider∫ x

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt

=



⌊ x
h

⌋−1∑
m=p

(−1)mγ′
m + (−1)⌊ x

h
⌋
∫ x−⌊ x

h
⌋h

0

η sin(πs/h)
(ξq,h − s− ⌊xh⌋h)2 + η2 ds

(
x ≤ ⌊ bh⌋h

)
,

⌊ b
h

⌋−1∑
m=p

(−1)mγ′
m + (−1)⌊ b

h
⌋
∫ x−⌊ b

h
⌋h

0

η sin(πs/h)
(ξq,h − s− ⌊ bh⌋h)2 + η2 ds

(
⌊ bh⌋h < x

)
,

(6.47)

where

γ′
m =

∫ h

0

η sin(πs/h)
(ξq,h − s−mh)2 + η2 ds. (6.48)

Since
η

(ξq,h − t)2 + η2 (6.49)

is strictly monotonically increasing on (−∞, ξq,h] with respect to t, in a similar manner to (6.43),
(6.44), and (6.45), for m0 ≤ ⌊ bh⌋ − 1, we have∣∣∣∣∣

m0∑
m=p

(−1)mγ′
m

∣∣∣∣∣ ≤ |γ′
m0 | ≤

∫ h

0

|η|
|ξq,h − s−m0h|2

ds ≤ 4|η|
h2 · h = 4|η|

h
, (6.50)

and moreover, if x ≤ ⌊ bh⌋h∣∣∣∣∣
∫ x−⌊ x

h
⌋h

0

η sin(πs/h)
(ξq,h − s− ⌊xh⌋h)2 + η2 ds

∣∣∣∣∣ ≤ 4|η|
h
, (6.51)
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and if ⌊ bh⌋h < x∣∣∣∣∣
∫ x−⌊ b

h
⌋h

0

η sin(πs/h)
(ξq,h − s− ⌊ bh⌋h)2 + η2 ds

∣∣∣∣∣ ≤ 4|η|
h2 · (x− b+ h) ≤ 4|η|

h2 · h = 4|η|
h
. (6.52)

Combining (6.50), (6.51), and (6.52) we have∣∣∣∣∣
∫ x

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt

∣∣∣∣∣ ≤ 8|η|
h
. (6.53)

Finally, combining (6.46) and (6.53), we have

|w(h, ξq,h, η, ph, x)| ≤ 1
2π

(
2 + max

{
2, 2|η|

h

}
+ 8|η|

h

)
≤ 1

2π

(
4 + 2|η|

h
+ 8|η|

h

)
, (6.54)

which is the desired estimate.
Next, we treat Case II. As for the imaginary part of (6.37), set ã = max{ξq,h+h/2, ξq,h+ |η|}

and consider∫ x

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt

=



∫ x

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt (x ≤

⌈
ã
h

⌉
h),

∫ ⌈ ã
h

⌉h

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt+

⌊ x
h

⌋−1∑
m=⌈ ã

h
⌉

(−1)mγm + (−1)⌊ x
h

⌋γ⌊ x
h

⌋(x) (
⌈
ã
h

⌉
h < x),

(6.55)

where γm is defined by (6.39) and

γ⌊ x
h

⌋(x) =
∫ x−⌊ x

h
⌋h

0

(ξq,h − s− ⌊xh⌋h) sin(πs/h)
(ξq,h − s− ⌊xh⌋h)2 + η2 ds. (6.56)

Since

− ξq,h − t

(ξq,h − t)2 + η2 (6.57)

is strictly monotonically decreasing on [ξq,h+ |η|,+∞) with respect to t, using similar techniques
to (6.43), (6.44), and (6.45), we have∣∣∣∣∣∣∣

⌊ x
h

⌋−1∑
m=⌈ ã

h
⌉

(−1)mγm + (−1)⌊ x
h

⌋γ⌊ x
h

⌋(x)

∣∣∣∣∣∣∣ ≤
∣∣∣γ⌈ ã

h
⌉

∣∣∣ ≤
∫ h

0

1
|ξq,h − s− ⌈ ãh⌉h|

ds ≤ 2
h

· h = 2 (6.58)

and

sup
ph≤x≤⌈ ã

h
⌉h

∣∣∣∣∣
∫ x

ph

(ξq,h − t) sin(πt/h)
(ξq,h − t)2 + η2 dt

∣∣∣∣∣ ≤ 2
h

max
{

|η| − h

2
, 0
}

≤ 2|η|
h
. (6.59)

Combining (6.58) and (6.59), we have the same estimate as (6.46).
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As for the real part of (6.37), set b̃ = ξq,h + h/2 and consider∫ x

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt

=



∫ x

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt (x ≤

⌈
b̃
h

⌉
h),

∫ ⌈ b̃
h

⌉h

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt+

⌊ x
h

⌋−1∑
m=⌈ b̃

h
⌉

(−1)mγ′
m + (−1)⌊ x

h
⌋γ′

⌊ x
h

⌋(x) (
⌈
b̃
h

⌉
h < x),

(6.60)

where γ′
m is defined by (6.48) and

γ′
⌊ x

h
⌋(x) =

∫ x−⌊ x
h

⌋h

0

η sin(πs/h)
(ξq,h − s− ⌊xh⌋h)2 + η2 ds. (6.61)

Since
η

(ξq,h − t)2 + η2 (6.62)

is strictly monotonically decreasing on [ξq,h,+∞) with respect to t, using similar techniques
to (6.50), (6.51), and (6.52), we have∣∣∣∣∣∣∣

⌊ x
h

⌋−1∑
m=⌈ b̃

h
⌉

(−1)mγ′
m + (−1)⌊ x

h
⌋γ′

⌊ x
h

⌋(x)

∣∣∣∣∣∣∣ ≤
∣∣∣∣γ′

⌈ b̃
h

⌉

∣∣∣∣ ≤
∫ h

0

|η|
|ξq,h − s− ⌈ b̃h⌉h|2

ds ≤ 4|η|
h

(6.63)

and

sup
ph≤x≤⌈ b̃

h
⌉h

∣∣∣∣∣
∫ x

ph

η sin(πt/h)
(ξq,h − t)2 + η2 dt

∣∣∣∣∣ ≤ 4|η|
h
. (6.64)

Combining (6.63) and (6.64), we have the same estimate as (6.53). Thus we obtain the same
estimate as Case I. �

7 Numerical examples
In this section, we show numerical results that confirm the existing/new theorems. In addition to
the examples for the SE/DE formula in Section 2, we present the following two examples for each
of the SE/DE-Sinc approximation and the SE/DE-Sinc indefinite integration: (i) an example
that can be explained by the existing theorems, and (ii) an example requiring the new theorem
for the DE case. In each example, we consider a function defined on (−1, 1). All computation
programs used in this section were written in C with double-precision floating-point arithmetic.
Throughout this section, for computation, ϵ is set to ϵ = 0.001, and c in the formula of h is set
optimally as described in Remark 2.7, i.e., c = 4d′/µ in the DE formula, and similarly c = 2d′/µ
in the DE-Sinc approximation and the DE-Sinc indefinite integration.

7.1 Examples for the SE/DE formula

Firstly let us consider Example 1 (presented in Section 2.2), which can be naturally approxi-
mated by both of the SE and DE formulas. The result is shown in Figure 10. According to
Theorems 2.2 and 2.3, the convergence rates of the SE and DE formulas are O(exp(−c0

√
n))
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and O(exp(−c1n/ log(c2n))), respectively. From the graph we can observe the expected rates in
both formulas.

Secondly consider Example 2 (presented in Section 2.3). The integrand f2 satisfies the
assumptions in Theorem 2.2 (SE case), but does not those in Theorem 2.3 (DE case). In this
case Theorem 2.5 is useful. The result is shown in Figure 11. From the graph we can observe
O(exp(−c0

√
n)) in the SE formula, but the DE formula does not converge at the usual rate:

O(exp(−c1n/ log(c2n))). However, it seems to converge at a similar rate to the SE formula,
which agrees with Theorem 2.5.

7.2 Examples for the SE/DE-Sinc approximation

For the SE/DE-Sinc approximation, we consider the following two examples.

Example 3. Consider the function

f3(t) = (1 − t2)1/
√

2
√

1 + t2. (7.1)

The function f3 belongs to L1/
√

2(ψSE(Dπ/2)) and L1/
√

2(ψDE(Dπ/6)).

Example 4. Consider the function [7, Example 9.6]

f4(t) = (1 − t2)1/
√

2
√

cos(4 arctanh t) + cosh(2). (7.2)

The function f4 belongs to L1/
√

2(ψSE(Dπ/2)), but does not belong to L1/
√

2(ψDE(Dd)) for any
d > 0.

The results are shown in Figures 12 and 13, respectively. In each figure, “maximum error”
denotes the maximum of the absolute values of the approximation errors evaluated at 20,000
equally-spaced points on (−1, 1). We can confirm Theorems 4.1 (SE case) in both figures.
Theorem 4.2 (DE case) can be confirmed in Figure 12, but not in Figure 13. The result in
Figure 13 seems to behave consistently with Theorem 4.3.

7.3 Examples for the SE/DE-Sinc indefinite integration

For the SE/DE-Sinc indefinite integration, we consider the following two examples.

Example 5. Consider the function

f5(t) = − t{(
√

2 + 1)t2 + (
√

2 − 1)}
(1 − t2)(

√
2−1)/

√
2
√

1 + t2
(7.3)

and its indefinite integral on (−1, 1): ∫ t

−1
f5(s) ds = f3(t). (7.4)

The function f5 satisfies f5Q ∈ L1/
√

2(ψSE(D(π−ϵ)/2)) and f5Q ∈ L1/
√

2(ψDE(D(π−ϵ)/6)) for any ϵ
with 0 < ϵ < 1.

Example 6. Consider the function

f6(t) = −
√

2{t cosh(π) + t cos(4 arctanh t) +
√

2 sin(4 arctanh t)}
(1 − t2)(

√
2−1)/

√
2
√

cos(4 arctanh t) + cosh(π)
(7.5)
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and its indefinite integral on (−1, 1): ∫ t

−1
f6(s) ds = f4(t). (7.6)

The function f6 satisfies f6Q ∈ L1/
√

2(ψSE(D(π−ϵ)/2)) for any ϵ with 0 < ϵ < 1, but does not
satisfy f6Q ∈ L1/

√
2(ψDE(Dd)) for any d > 0.

The results are shown in Figures 14 and 15, respectively. In each figure, in the same manner
as in the SE/DE-Sinc approximation, “maximum error” denotes the maximum of the absolute
values of the approximation errors evaluated at 20,000 equally-spaced points on (−1, 1). We
can confirm Theorems 4.4 (SE case) in both figures. Theorem 4.5 (DE case) can be confirmed
in Figure 14, but not in Figure 15. The result in Figure 15 seems to behave consistently with
Theorem 4.6.

8 Concluding remarks
As the first contribution of this paper, we revealed the theoretical convergence rate of the DE
formula under the same assumption as the SE formula. The usual convergence rates of the SE
formula and the DE formula have been known as O(exp(−c0

√
n)) and O(exp(−c1n/ log(c2n))),

respectively, as seen in Example 1. However, as seen in Example 2, there exists a case where
the SE formula attains the standard rate O(exp(−c0

√
n)) but the DE formula does not attain

O(exp(−c1n/ log(c2n))). Our result: Theorem 2.5 can explain the case, and prove the DE
formula converges with the rate: O(exp(−c3

√
n/ log(c4n))) in such a case. This rate is slightly

worse than the SE’s rate: O(exp(−c0
√
n)), but the difference is not so critical.

As the second contribution, we also analyzed the convergence rates in the following two cases:
(i) DE-Sinc approximation under the same assumption as the SE-Sinc approximation, and (ii) the
DE-Sinc indefinite integration under the same assumption as the SE-Sinc indefinite integration.
The results are the same as above: O(exp(−c3

√
n/ log(c4n))), as shown in Theorems 4.3 and 4.6.

The results given in this paper are also useful to analyze other situations. Firstly, in this
paper only the SE and DE formulas for the the integral over a finite interval: (a, b) are consid-
ered, but the SE/DE formulas have also been proposed for the integral over the semi-infinite
interval (0, ∞) and the infinite interval (−∞, ∞) [11,17]. And in these cases as well, the same
phenomenon can happen as Example 2, i.e., the SE formula works good while the DE formula
does not (an example can be found in Bornemann et al. [1, Eq. (3.24)]). The analysis strategies
given in Sections 3.2 and 3.3 are quite useful to obtain the same result as Theorem 2.5 in such
a case. Secondly, with the aid of Theorem 2.5, we can rigorously prove the convergence rate of
the DE-Sinc scheme for weakly Volterra integral equations of the second kind [3]. We are now
working on the latter issue, and the result will be reported somewhere else soon.
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