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Abstract

In this paper, we consider solving the integer linear systems, i.e., given a matrix A ∈
Rm×n, a vector b ∈ Rm, and a positive integer d, to compute an integer vector x ∈ Dn

such that Ax ≥ b, where m and n denote positive integers, R denotes the set of reals, and
D = {0, 1, . . . , d − 1}. The problem is one of the most fundamental NP-hard problems in
computer science.

For the problem, we propose a complexity index η which is based only on the sign pattern
of A. For a real γ, let ILS=(γ) denote the family of the problem instances I with η(I) = γ.
We then show the following trichotomy:

• ILS=(γ) is linearly solvable, if γ < 1,

• ILS=(γ) is weakly NP-hard and pseudo-polynomially solvable, if γ = 1, and

• ILS=(γ) is strongly NP-hard, if γ > 1.

This, for example, includes the existing results that quadratic systems and Horn systems can
be solved in pseudo-polynomial time.

1 Introduction

Integer linear systems

Let A denote a matrix A ∈ Rm×n, b denote a vector b ∈ Rm, where m and n denote positive
integers, and R denote the set of reals. For a positive integer d, let D = {0, 1, . . . , d−1}. In this
paper, we consider the problem of computing an integer vector x ∈ Dn such that Ax ≥ b, which
we denote by ILS. The ILS problem is one of the most fundamental and important problems in
computer science, and have been studied extensively from both theoretical and practical points
of view [18, 27]. It is known that the ILS problem is strongly NP-hard, and can be solved in
polynomial time, if m or n are bounded by some constant [23], or A is totally unimodular and

∗A preliminary version appears in Proceedings of the 29th Symposium on Theoretical Aspects of Computer
Science (STACS 2012) [20].
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b is integral [15]. When A is quadratic (also called TVPI, i.e., each row of A contains at most
two nonzero elements) or Horn (i.e., each row of A contains at most one positive element), the
ILS problem is known to be weakly NP-hard, but it can be solved in time polynomial in the
input length and d, and hence in pseudo-polynomial time [21, 14, 30]. The best known bounds
for quadratic and Horn systems require O(md) time [2] and O(n2md) time, respectively. For
unit linear systems, i.e., A ∈ {0,−1,+1}m×n, it is known that the problem is still strongly
NP-hard, but it can be solved in O(nm) [22] and O(n log n + m) time [28] if A is in addition
quadratic, and can be solved in O(n2m) time [9, 29] if A is in addition Horn. Finally, for the
difference constraint systems, i.e., A ∈ {0,−1,+1}m×n and each row of A contains one positive
element and one negative element, it is known that the problem is equivalent to the negative
cycle detection in network theory and can be solved in O(nm) [3, 11, 25] and O(

√
nm logC)

[12], where C denotes the maximum absolute value of the negative elements in b.

A complexity index for integer linear systems

In this paper, we introduce a complexity index η for the ILS problem, which sharply distinguishes
between the classes of easy, semi-hard and hard integer linear systems. The complexity index is
based only on the sign pattern of A.

For a real a, its sign is defined as

sgn(a) =


+ (a > 0)
0 (a = 0)
− (a < 0),

(1)

and the sign of a real matrix A ∈ Rm×n is the matrix sgn(A) ∈ {0,−,+}m×n which is obtained
from A by replacing each element by its sign. For example, for a matrix

A =

(
1 −3 0
4 2 −5

)
, (2)

we have

sgn(A) =

(
+ − 0
+ + −

)
. (3)

Given an instance I = (A, b, d) of the ILS problem, the index η(I) is the optimal value of the
following linear programming problem.

min. Z
s.t.

∑
j:sgn(aij)=+ αj +

∑
j:sgn(aij)=−(1− αj) ≤ Z (i = 1, . . . ,m)

0 ≤ αj ≤ 1 (j = 1, . . . , n).

(4)

We note that neither numerical information ofA, b nor d is used for our index η(I), and it depends
only on sgn(A), i.e., two problem instances I and I ′ have η(I) = η(I ′) if the corresponding
matrices have the same sign pattern.

The idea of this index originates from the works by Boros et al. [5], which introduced a com-

plexity index for the Boolean satisfiability problem (SAT): Given a CNF φ =
∧m

i=1

(∨
j∈Pi

xj ∨∨
j∈Ni

xj

)
of n variables, where Pi, Ni ⊆ {1, 2, . . . , n} with Pi ∩ Ni = ∅, determine whether or

not φ is satisfiable, i.e., whether or not there is x ∈ {0, 1}n such that φ(x) = 1. Their index
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distinguishes between the classes of easy and hard SAT instances. We can see that our index is
a generalization of theirs to integer linear systems, since the Boolean satisfiability problem can
be represented as integer linear systems with unit matrices A ∈ {0,−1,+1}m×n.

The results obtained in this paper

For a real γ, let ILS=(γ) denote the family of the problem instances I with η(I) = γ. We then
have the following main result.

Theorem 1. (1) ILS=(γ) is linearly solvable, if γ < 1,

(2) ILS=(γ) is weakly NP-hard and pseudo-polynomially solvable, if γ = 1, and

(3) ILS=(γ) is strongly NP-hard, if γ > 1.

Here we assume that ILS=(γ) ̸= ∅ holds.
We also show that η(I) < 1, = 1, and > 1 can be checked in linear time. This theorem

implies the existing results [2, 14, 30] that quadratic (i.e., TVPI) systems and Horn systems can
be solved in pseudo-polynomial time, since quadratic systems and Horn systems are included in
ILS=(γ) with γ ≤ 1, which will be discussed later.

If we restrict integer linear systems to Boolean satisfiability problem, then Boros et al. [5]
showed that ILS=(γ) is linearly solvable if γ ≤ 1, and ILS=(γ) is strongly NP-hard if γ > 1.
Instead of their result, which partitions the SAT problem into two classes of easy and hard
SAT instances, we partition integer linear systems into three classes of easy, semi-hard and hard
systems.

For unit linear systems, i.e., A ∈ {0,−1,+1}m×n, we have the following result.

Theorem 2. Let A be a unit matrix, i.e., A ∈ {0,−1,+1}m×n. Then we have

(1) ILS=(γ) is polynomially solvable if γ ≤ 1.

(2) ILS=(γ) is strongly NP-hard if γ > 1.

We note that Theorem 2 includes polynomial solvability for Horn and quadratic unit systems
[1, 8, 9, 17, 22, 28, 29], and tractability of SAT problem (i.e., the satisfiability problem for 2-,
Horn, renamable Horn, and q-Horn CNFs can be solved in polynomial time) [10, 13, 24, 4].

We generalize the results above by considering nonconstant γ. More precisely, we regard γ
as a function of the number of variables n and d, and for such γ, let ILS≤(γ) denotes the family
of the problem instances I with η(I) ≤ γ. We have the following results.

Theorem 3. (1) ILS≤(γ) is linearly solvable, if γ < 1.

(2) ILS≤(γ) is weakly NP-hard and pseudo-polynomially solvable, if 1 ≤ γ ≤ 1+ c logd n
n for some

constant c > 0.

(3) ILS≤(γ) is strongly NP-hard, if γ ≥ 1 + 1
nδ for some constant δ < 1.

Theorem 4. Let A be a unit matrix, i.e., A ∈ {0,−1,+1}m×n. Then we have

(1) ILS≤(γ) is polynomially solvable, if γ ≤ 1 + c logd n
n .

3



(2) ILS≤(γ) is strongly NP-hard, if γ ≥ 1 + 1
nδ for some constant δ < 1.

Finally, we mention that there exists a line of research for sign solvability for linear systems
[7, 26], linear programming problem [16], and linear complementarity problem [19]. They mainly
study sign patterns of the input data, that always determine sign patterns of solutions. Their
works are motivated by the fact that the input data are uncertain but the structural properties
are preserved in most practical situations. While both their and our works concern the sign
patterns of the input, ours differs from theirs in that our work studies the integer solutions and
does not concern sign patterns of the solutions.

2 Integer linear systems with index smaller than 1

For a given problem instance I = (A, b, d), we denote by (Z,α1, . . . , αn) an optimal solution of
(4). Let V = {1, . . . , n}. In this paper, we assume without loss of generality that each variable
is not redundant, i.e., A contains no column whose elements are all 0, since otherwise we can fix
all redundant variables to 0, for example.

In this section, we consider the case in which η(I) < 1, i.e., Z < 1, and prove (1) in Theorem
3, which implies Theorems 1, 2, 4 when η(I) < 1.

2.1 The case of η(I) < 1/2

Let us first consider the case in which Z = η(I) < 1/2. Then, there exists no j ∈ V with
αj = 1/2, since otherwise we have Z ≥ 1/2, a contradiction. If αj > 1/2 for some j ∈ V , then
by Z < 1/2, the j-th column of A is nonpositive. Similarly, αj < 1/2 implies that the j-th column
of A is nonnegative. These imply that Z = 0, αj > 1/2 ⇒ αj = 1, and αj < 1/2 ⇒ αj = 0.
Therefore, we have the following lemma.

Lemma 1. If Problem (4) has the optimal value Z < 1/2, then we have Z = 0, and there exists
a unique 0-1 optimal solution for (4).

Moreover, η(I) < 1/2 (and hence η(I) = 0) holds if and only if each column of A is either
nonnegative or nonpositive. Let y be a n-dimensional vector such that yj = d− 1 if j-th column
of A is nonnegative, and 0, otherwise (i.e., if j-th column of A is nonpositive). Then it is not
difficult to see that there exists a vector x ∈ Dn with Ax ≥ b if and only if y satisfies Ay ≥ b.
These lead to the following lemma.

Lemma 2. Let I = (A, b, d) be a problem instance. Then we can check whether η(I) < 1/2 in
linear time, and if so, the problem can be solved in linear time.

2.2 The case of η(I) = 1/2

We next consider the case in which Z = η(I) = 1/2.
If αj > 1/2 (resp., αj < 1/2) for some j ∈ V , then Z = 1/2 implies that the j-th column of

A is nonpositive (resp., nonnegative). Define a vector α∗ ∈ Rn by α∗
j = 1 if the j-th column of

A is nonpositive, 0 if the j-th column of A is nonnegative, and 1/2, otherwise. Then we can see
that this α∗ is also an optimal solution of (4).

Lemma 3. If Problem (4) has the optimal value Z = 1/2, then it has a half-integral optimal
solution.
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Moreover, α∗
j = 1/2 if and only if the j-th column of A contains both positive and negative

elements, and if aij ̸= 0 for such j, then the i-th row of A contains no nonzero element aik with
k ̸= j and α∗

k = 1/2. Let us fix xj = 0 for all j ∈ V with α∗
j = 1, and xj = d − 1 for all j ∈ V

with α∗
j = 0. Then each inequality of the resulting integer linear system contains at most one

variable, and hence it can be easily solved.

Lemma 4. Let I = (A, b, d) be a problem instance. Then we can check whether η(I) = 1/2 in
linear time, and if so, the problem can be solved in linear time.

2.3 The case of 1/2 < η(I) < 1

In this section, we consider the case in which 1/2 < Z = η(I) < 1. Note that in this case
Problem (4) might have no (half-)integral optimal solution. For example, let A be a (n+1)×n
matrix such that aij = −1 if i = j, 1 if i = n + 1, and 0 otherwise. Then the problem has a
unique optimal solution Z = n

n+1 and αj =
1

n+1 for all j.
For a subset S ⊂ R, let VS = {j ∈ V | αj ∈ S}. For two reals a and b with a < b,

[a, b) = {z ∈ R | a ≤ z < b}, (a, b] = {z ∈ R | a < z ≤ b} and [a, b] = {z ∈ R | a ≤ z ≤ b}. Let
ε be a positive number that satisfies Z ≤ 1− ε and 2kε = 1 for some integer k, where we note
that ε might depend on m and n. We then partition [0, 1] into 2k + 1 sets

[0, 1] =

k∪
ℓ=1

[(ℓ− 1)ε, ℓε) ∪ {1/2} ∪
k∪

ℓ=1

(1− ℓε, 1− (ℓ− 1)ε]. (5)

For i = 1, 2, . . . ,m, let Pi = {j ∈ V | aij > 0} and Ni = {j ∈ V | aij < 0}. Then we have
the following properties.

Lemma 5. Let I = (A, b, d) be a problem instance with 1/2 < η(I) < 1, and let ε be defined as
above. Then

(i) V(1−ε,1] ∩ Pi = ∅ and V[0,ε) ∩Ni = ∅ hold for all i = 1, 2, . . . ,m.

(ii) If j ∈ V(1−(ℓ+1)ε,1−ℓε]∩Pi for some ℓ = 1, 2, . . . , k and i = 1, 2, . . . ,m, then we have Pi−{j} ⊆
V[0,ℓε) and Ni ⊆ V(1−ℓε,1].

(iii) If j ∈ V[ℓε,(ℓ+1)ε) ∩Ni for some ℓ = 1, 2, . . . , k and i = 1, 2, . . . ,m, then we have Pi ⊆ V[0,ℓε)

and Ni − {j} ⊆ V(1−ℓε,1].

Proof. (i), (ii), and (iii) follow from Z ≤ 1− ε.

By (i) in Lemma 5, if j ∈ V(1−ε,1], then the j-th column of A is nonpositive, and hence we
can fix xj = 0. Similarly, if j ∈ V[0,ε), then the j-th column of A is nonnegative, and hence we
can fix xj = d − 1. After fixing variables in V(1−ε,1] ∪ V[0,ε), if aij > 0 for some j ∈ V(1−2ε,1−ε],
then (ii) in Lemma 5 implies that the i-th inequality of the resulting system contains only one
variable xj . By solving such inequalities, we have a lower bound xj ≥ pj (∈ D). Since all the
other inequalities have aij ≤ 0, we can fix xj = pj . Similarly, if aij < 0 for some j ∈ V[ε,2ε),
then (iii) in Lemma 5 implies that the i-th inequality of the resulting system contains only one
variable xj . By solving such inequalities, we have an upper bound xj ≤ pj (∈ D). Since all
the other inequalities have aij ≥ 0, we can fix xj = pj . By repeatedly applying this argument
to variables in V(1−(ℓ+1)ε,1−ℓε] and V[ℓε,(ℓ+1)ε) for ℓ = 2, 3, . . . k, we can fix all the variables in
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V \V{1/2}. Note that by (ii) and (iii) in Lemma 5, each inequality of the resulting system consists
of at most one variable. Hence we can solve it in linear time.

Formally, we describe the algorithm in Algorithm 1. We note that the algorithm uses no
information of (Z,α1, . . . , αn) of (4).

We remark that if the algorithm above solved the integer linear system, then we have η(I) <
1. Since we can check whether η(I) ≤ 1/2 in linear time by Lemmas 2 and 4, we have the
following result.

Lemma 6. Let I = (A, b, d) be a problem instance. Then we can check whether 1/2 < η(I) < 1
in linear time, and if so, the problem can be solved in linear time.

By combining Lemmas 2, 4, and 6, we have (1) in Theorem 3.

Algorithm 1.
Step 1.

for 1 ≤ j ≤ n do
if j-th column of A is nonpositive then xj := 0
else if j-th column of A is nonnegative then xj := d− 1
end if

end for
if the resulting system has an inconsistent inequality (with no variable) then output
“infeasible” and halt
else remove inequalities with no variable from the system
end if

Step 2.
while the resulting system has j ∈ V such that aij′ = 0 for all i and j′ with aij > 0 and
j′ ̸= j do

compute a lower bound xj ≥ p by solving inequalities in {i | aij > 0}
if p ≤ d then xj := max{⌈p⌉, 0}
else output “infeasible” and halt
end if
if the resulting system has an inconsistent inequality (with no variable) then output
“infeasible” and halt
else remove inequalities with no variable from the system
end if

end while
Step 3.

while the resulting system has j ∈ V such that aij′ = 0 for all i and j′ with aij < 0 and
j′ ̸= j do

compute an upper bound xj ≤ p by solving inequalities in {i | aij < 0}
if p ≥ 0 then xj := min{⌊p⌋, d− 1}
else output “infeasible” and halt
end if
if the resulting system has an inconsistent inequality (with no variable) then output
“infeasible” and halt
else remove inequalities with no variable from the system
end if

end while
Step 4. /* Note that each inequalities of the resulting system has exactly one variable.*/

Solve the resulting system.
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It is not difficult to see that the algorithm 1 above can be implemented in linear time in the
input length and the number of nonzero elements of A.

3 Integer linear systems with index 1

In this section, we assume that integer linear systems have index 1, and prove Theorems 1 and
2 for this case.

Let (Z,α1, . . . , αn) be an optimal solution of (4). Then we note that |Pi ∩ V(1/2,1]| ≤ 1,
|Ni∩V[0,1/2)| ≤ 1, and |(Pi∪Ni)∩V{1/2}| ≤ 2 holds for all i = 1, 2, . . .m, since otherwise we have
Z > 1, a contradiction. Moreover, (Pi ∪Ni) ∩ V{1/2} ̸= ∅ implies Pi ∩ V(1/2,1], Ni ∩ V[0,1/2) = ∅,
which again follows from Z = 1. Define a vector α∗ ∈ Rn by α∗

j = 0 if αj < 1/2, α∗
j = 1/2 if

αj = 1/2, and α∗
j = 1, otherwise (i.e., if αj > 1/2). It is not difficult to see that α∗ is also an

optimal solution of (4).

Lemma 7 ([5]). If Problem (4) has the optimal value Z = 1, then it has a half-integral optimal
solution.

Moreover, such a solution can be computed in linear time.

Lemma 8 ([6]). We can decide whether Problem (4) has the optimal value Z = 1 in linear time,
and if so, we can compute a half-integral optimal solution in linear time.

Let α ∈ {0, 1/2, 1}n denote an optimal solution of Problem (4). To make discussion clear, we
may assume α ∈ {1/2, 1}n without loss of generality. To see this, assume that αj = 0 holds for
some j. We then replace the variable xj to a new variable x′j (= d− 1− xj), i.e., we substitute
xj := d− 1−x′j in the system. It is not difficult to see that the feasibility of the original integer
linear system is equivalent to the one of the resulting system. Since the coefficient matrix of
the resulting system differs A only by the sign of the j-th column of matrix A, we have a half-
integral optimal solution with αj = 1 for the new LP problem (4). By replacing all variables j
with αj = 0, we have the integer linear system such that problem (4) has an optimal solution
α ∈ {1/2, 1}n. We remark that this replacement can be done in linear time.

Let Q = V{1/2} and H = V{1}. By α ∈ {1/2, 1}n, V can be partitioned into Q and H:

V = Q ∪H. (6)

Then by the discussion at the beginning of this section, we have the following properties.

Lemma 9 (QH-partition [5]). A partition V = Q ∪H satisfies the following three conditions:

(a) Each row i of A contains at most two nonzero elements aij with j ∈ Q. Or equivalently,
|(Pi ∪Ni) ∩Q| ≤ 2 holds for all i = 1, 2, . . . ,m.

(b) Each row i of A contains at most one positive element aij with j ∈ H. Or equivalently,
|Pi ∩H| ≤ 1 holds for all i = 1, 2, . . . ,m.

(c) If row i of A contains a positive element aij with j ∈ H, then the elements aik with k ∈ Q
are all zeros. Or equivalently, Pi ∩H ̸= ∅ ⇒ (Pi ∪Ni) ∩Q = ∅ for all i = 1, 2, . . . ,m.
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For a QH-partition of V , let S denote the set of rows i of A such that aij = 0 for all j ∈ Q.
Let A[S,H] denote the submatrix of A whose row and column sets are S and H, respectively,
and let bH and xH respectively denote the restriction of b and x to H. Then by Lemma 9 (a),
linear system A[S,H]xH ≥ bH is Horn, i.e., each row of A[S,H] contains at most one positive
element. It is known that any Horn system has a unique minimal solution if it is feasible. Let
x∗H ∈ DH be such a solution for A[S,H]xH ≥ bH . Since Lemma 9 (c) implies that any element
aij with i ̸∈ S and j ∈ H is nonpositive, we can see that the original integer linear system is
feasible if and only if so is the system obtained from it by substituting xH = x∗H . Thus we
consider the system obtained by fixing xH = x∗H . Since the resulting system is quadratic (i.e.,
each row contains at most two nonzero elements), we can solve it, for example, by the algorithm
proposed in [14]. We summarize this algorithm in Algorithm 2.

Algorithm 2.
Step 1.

Compute a QH-partition of V
Step 2.

if the integer linear system xH ∈ DH and A[S,H]xH ≥ bH is infeasible then output
“infeasible” and halt
else compute a unique minimal solution x∗H ∈ DH of the system and substitue xH := x∗H
end if

Step 3.
if the resulting system is infeasible then output “infeasible” and halt
else compute an integer solution x∗Q ∈ DQ of the resulting system, and output the vector
(x∗H , x∗Q) and halt
end if

Lemma 10. Algorithm 2 solves the integer linear system with index 1 in time polynomial in n,
m and d.

Proof. Since the correctness of algorithm 2 follows from the discussion before the description of
the algorithm, we discuss its time complexity only.

By [6], Step 1 can be executed in linear time. Steps 2 and 3 can be done in polynomial time
in n, m, and d [30, 14]. Therefore, in total, the algorithm requires polynomial time in n, m, and
d.

Lemma 11. For unit matrix A, Algorithm 2 solves the integer linear system with index 1 in
polynomial time.

Proof. The lemma follows from the fact that Horn and quadratic integer linear systems are
solvable in polynomial time, if A is unit [8, 17].

We next show the weak NP-hardness of the problem.

Lemma 12. ILS=(1) is weakly NP-hard.

Proof. It is known [21] that solving Horn or quadratic system is weakly NP-hard. We show that
Horn and quadratic systems both have index at most 1. Since the integer linear system with
index less than 1 is solvable in linear time, this proves the lemma.
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Let I = (A, b, d) be a Horn system. Then we assign all the variables αj to 1. Since each
row of A contains at most one positive element, we have η(I) ≤ 1. On the other hand if I is
quadratic, then by assigning all the variables αj to 1/2, we have η(I) ≤ 1, since each row of A
contains at most two nonzero elements.

4 Integer linear systems with index η with 1 < η ≤ 1 + c logd n
n

In this section, we consider the case in which 1 < η(I) ≤ 1 + c logd n
n , and complete the proof of

(2) in Theorem 3 and (1) in Theorem 4. Our positive results can be regarded as generalizations
of the ones for ILS=(1).

A partition of V into Q, H, and Y , i.e., V = Q ∪H ∪ Y is called QHY -partition, if Q and
H satisfy all the conditions in Lemma 9.

If we have a QHY -partition with small Y , then the integer linear system can be solved
by assigning all possible assignments to variables in Y . For this purpose, we make use of the
following result.

Lemma 13 ([5]). A QHY -partition with |Y | < 6n(η(I) − 1) can be computed in polynomial
time.

By using this lemma, if γ is a function of n with γ ≤ 1+ c logd n
n , then we have aQHY -partition

with |Y | ≤ 6c logd n. Note that each of the d|Y | assignments to the variables of Y produces a
problem instance I∗ with η(I∗) ≤ 1. Each such instance is solvable in pseudo-polynomial time
by Lemma 10, and if A is unit, it is solved in polynomial time by Lemma 11. Moreover, since
d|Y | ≤ n6c, we have that the integer linear systems can be solved in pseudo-polynomial time
if the system has index at most 1 + c logd n

n for some constant c, and in polynomial time if the
system is in addition unit.

5 Strong NP-hardness for integer linear systems

In this section, we show the strong NP-hardness for the integer linear systems, i.e., we prove (2)
in Theorems 2 and 4, which implies (3) in Theorems 1 and 3.

We first show that ILS≤(γ) is NP-hard, if γ ≥ 1 + 1
nδ for some constant δ < 1. To do this,

we reduce the Boolean satisfiability problem (SAT) to our problem.

Given a CNF φ =
∧m

i=1

(∨
j∈Pi

xj ∨
∨

j∈Ni
xj

)
, we construct an integer linear system as

follows:

∑
j∈Pi

xj +
∑

j∈Ni
(1− xj) ≥ 1 (i = 1, . . . ,m)

x ∈ {0, 1}n. (7)

Namely, A is a matrix defined by

aij =


1 j ∈ Pi

−1 j ∈ Ni

0 otherwise,
(8)

b is a vector defined by
bi = 1− |Ni| (i = 1, . . . ,m), (9)
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and d = 2.
It is not difficult to see that φ is satisfiable if and only if there exists a x ∈ Dn such that

Ax ≥ b. Since this reduction is polynomial, solving the integer linear system is in general
NP-hard. Moreover, as mentioned in the introduction, our index η is a generalization of the
complexity index of SAT defined by Boros et al. [5].

Lemma 14. Let Z(φ) denote the complexity index of CNF φ defined in [5], and η(I) denote
the complexity index of the integer linear system defined as (7). Then we have Z(φ) = η(I).

We now refer the following theorem due to Boros et al. [5], where SAT(γ) denotes the set of
instances φ of SAT such that Z(φ) ≤ γ.

Theorem 5 ([5]). SAT(γ) is strongly NP-hard, if γ ≥ 1 + 1
nδ for some constant δ < 1.

By combining Theorem 5 with Lemma 14, we have the following result.

Lemma 15. Let γ be a function of n such that γ ≥ 1 + 1
nδ for some constant δ < 1. Then

ILS≤(γ) is strongly NP-hard, even if A is unit.

Note that Lemma 15 implies that for any constant γ > 1, ILS≤(γ) is NP-hard, even if A is
unit. In order to show (2) in Theorems 2, we consider the following simple reduction.

Let A (resp., A′) be a unit m×n (resp., m′×n′) matrix with the optimal value γ (resp., γ′)
of (4). Consider the following integer linear system:(

A 0
0 A′

)(
x
x′

)
≥

(
0
b′

)
,

where 0 denote a zero matrix (or vector) of appropriate size, and b′ denote a vector in Rm′
. We

can see that this system has a solution if and only if A′x′ ≥ b′ has a solution, since x = 0 clearly
satisfies Ax ≥ 0. If we choose A′x′ ≥ b′ from strongly NP-hard instances with γ′ ≤ γ, we have
the following results.

Lemma 16. Let γ be a constant with γ > 1 and ILS=(γ) ̸= ∅. Then ILS=(γ) is strongly
NP-hard, even if A is unit.

6 Conclusion

We have introduced a complexity index for the integer linear systems. The index is defined as
the optimal value of a linear programming problem whose input is based only on the sign pattern
of the coefficient matrix. We have shown that the complexity index partitions the integer linear
systems into three classes of easy, semi-hard and hard systems, and if all entries of the coefficient
matrix are −1, 0 or 1, then it partitions the integer linear systems into two classes of easy and
hard systems. Our results contain the existing ones for quadratic systems, Horn systems and
Boolean satisfiability problem.
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