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Abstract

In this paper we consider stochastic multiarmed bandit problems. Recently a policy,
DMED, is proposed and proved to achieve the asymptotic bound for the model that each
reward distribution is supported in a known bounded interval, e.g. [0, 1]. However, the
derived regret bound is described in an asymptotic form and the performance in finite time
has been unknown. We inspect this policy and derive a finite-time regret bound by refin-
ing large deviation probabilities to a simple finite form. Further, this observation reveals
that the assumption on the lower-boundedness of the support is not essential and can be
replaced with a weaker one, the existence of the moment generating function.

1 Introduction

In the multiarmed bandit problem a gambler pulls arms of a slot machine sequentially so that the
total reward is maximized. There is a tradeoff between exploration and exploitation since he cannot
know the most profitable arm unless pulling all arms infinitely many times.

There are two main formulations for this problem: stochastic and nonstochastic bandits. In the
stochastic setting rewards of each arm follow an unknown distribution (Gittins, 1989; Agrawal, 1995;
Vermorel and Mohri, 2005), whereas the rewards are detemined by an adversary in the nonstochastic
setting (Auer et al., 2002b). In this paper we consider the stochastic bandit, where rewards of arm
i ∈ {1, . . . ,K} are i.i.d. sequence from unknown distribution Fi ∈ F with expectation µi for a model
F known to the gambler. For the maximum expectation µ∗ ≡ maxi µi, we call an arm i optimal if
µi = µ∗ and suboptimal otherwise. If the gambler knows each µi beforehand, it is best to choose
optimal arms at every round. A policy is a strategy of the gambler for choosing arms based on the
past result of plays. The performance of a policy is measured by the loss called expected regret or
regret, in short, given by ∑

i:µi<µ∗

(µ∗ − µi)E[Ti(n)] ,

where Ti(n) is the number of plays of arm i through the first n rounds. Since we regard each µi as
a unknown constant fixed in advance, we consider how we can reduce E[Ti(n)] for each suboptimal
arm i to achieve a small regret.

Robbins (1952) first considered this setting and Lai and Robbins (1985) gave a framework for
determining an optimal policy by establishing a theoretical bound for the regret. Later this theoret-
ical bound was extended to multiparameter or nonparametric models F by Burnetas and Katehakis
(1996). In their paper, it was proved that any policy satisfying a mild regularity condition satisfies

E[Ti(n)] ≤
1− o(1)

Dinf(Fi, µ∗;F)
log n , (1)

where Dinf(F, µ;F) is defined in terms of Kullback-Leibler divergence D(·∥·) by

Dinf(Fi, µ
∗;F) = inf

G∈F :EG[X]>µ∗
D(Fi∥G) .

The most popular model in the nonparametric setting is the family of distributions with supports
contained in a known bounded interval, e.g. [0, 1]. For this model, which we denote by A0, it is known



that fine performance can be obtained by policies called Upper Confidence Bound (UCB) (Auer et al.,
2002a; Audibert et al., 2009; Garivier and Cappé, 2011). However, although some bounds for regrets
of UCB policies have been obtained in a non-asymptotic form, they do not necessarily achieve the
asymptotic theoretical bound.

Recently Honda and Takemura (2010) proposed Deterministic Minimum Empirical Divergence

(DMED) policy, which chooses arms based on an indexDinf(F̂i, µ;A0), or simply written asDinf(F̂i, µ),

for empirical distribution F̂i of arm i. Whereas DMED achieves the theoretical bound asymptot-
ically, the evaluation heavily depends on an asymptotic analysis and any finite-time regret bound
has been unknown. Further, in the analysis of DMED, the assumption on the lower bound of the
support seems to be a technical one needed for the proof. For example, the gambler does not have
to know that the lower bound of the support is zero if he knows that the upper bound is one.

Our Contribution. Based on the above observation, we consider the family A of distributions
on (−∞, 1] instead of A0. We first show that Dinf(F, µ;A0) = Dinf(F, µ;A) for all F ∈ A0. Thus,
although the gambler has more candidates for the true distribution of each arm in the model A than
in A0, the theoretical bound (1) does not vary between A0 and A.

Next we provide a finite-time regret bound of DMED for all distributions in A with moment
generating functions existing in some neighborhood of the origin. Since nonstochastic bandits in-
evitably require the boundedness of the support, we can now assert that an advantage of assuming
stochastic bandits is that the semi-bounded rewards can be dealt with in the nonparametric setting.

Technical Approach. In the evaluation of DMED it is essential to evaluate the probability
that Dinf(F̂i, µ) deviates from Dinf(Fi, µ). Note that for policies based on the index Dinf(F̂i, µ),
finite-time regret bounds have been derived for the case that each distribution is supported in a
finite subset of [0, 1] (Maillard et al., 2011; Honda and Takemura, 2011). The advantage of assuming
finiteness is that Sanov’s theorem gives a non-asymptotic large deviation probability. However the
regret bounds derived by this technique contain a finite but exceedingly large term

∞∑
t=1

t|supp(Fi)| e−at ,

where |supp(Fi)| denotes the size of the support of Fi and the polynomial t|supp(F )| appears as a
total number of possible empirical distributions from t samples from Fi. Similarly, whereas non-
asymptotic Sanov’s theorem is also known for continuous support distributions (see Dembo and
Zeitouni (1998, Ex. 6.2.19)), it requires the total number of ϵ-balls to cover a set of distributions
as a coefficient. Thus, although it is not impossible to derive a finite-time regret bound by a naive
application of the non-asymptotic Sanov’s theorem, it becomes very complicated and unrealistic.

To avoid counting or covering the possible empirical distributions, we exploit the following fact

Dinf(F̂i, µ) = max
0≤ν≤ 1

1−µ

EF̂i
[log(1− (X − µ)ν)] . (2)

Although it involves a maximization operation, it is merely an empirical mean of random variables
log(1− (Xt − µ)ν) where each Xt follows distribution Fi. By Cramér’s theorem we can bound the
large deviation probability for such a finite dimensional empirical mean by an exponential function
with a simple coefficient.

Another difficulty for our setting is that Dinf(F, µ) = Dinf(F, µ;A) is neither bounded nor con-
tinuous in F ∈ A unlike the case of A0, which makes the evaluation of the exponential rate for
the large deviation probability of Dinf(F̂i, µ) much harder. The key to this problem also lies in (2).
Since it is an expectation of a logarithmic function on X, the effect of the tail weight is weaker
than the polynomial function X1 = X. Thus the large deviation probability of the joint distribution
of (Dinf(F̂i, µ),EF̂i

[X]) can be evaluated on the same regularity condition as that for the empir-

ical mean EF̂i
[X] alone, namely, the existence of the moment generating function of Fi in some

neighborhood of the origin.
Paper Outline. In Sect. 2 we give definitions used throughout this paper and introduce DMED

policy proposed for distributions on [0, 1]. In Sect. 3, we give the main results of this paper on
the finite-time regret bound of DMED for distributions on (−∞, 1]. The remaining sections are
devoted to the proof of the main results. We extend some results for the support [0, 1] to (−∞, 1] in
Sect. 4. We derive a large deviation probability for Dinf(F, µ) in a non-asymptotic form in Sect. 5.
We conclude this paper in Sect. 6. We give some results on large deviation principle in Appendix A.
A proof of the main theorem is given in Appendix B.



Algorithm 1 DMED Policy

Parameter: r ∈ (0, 1).
Initialization: LC , LR := {1, · · · ,K}, LN := ∅, n := K. Pull each arm once.
Loop:
1. For i ∈ LC in ascending order,

1.1. n := n+ 1 and pull arm i. LR := LR \ {i}.
1.2. LN := LN ∪ {j} for all j /∈ LR such that the following J ′

n(j) occurs:

J ′
n(j) ≡ {(1− r)Ti(n)Dinf(F̂i(n), µ̂

∗(n);Aa) ≤ log n}. (4)

2. LC , LR := LN and LN := ∅.

2 Preliminaries

Let Aa, a ∈ (−∞, 1), be the family of probability distributions on [a, 1]. We denote the family of
distributions on (−∞, 1] by A−∞ or simply A. For x ∈ R and F ∈ A, the cumulative distribution
is denoted by F (x) = F ((−∞, x]). For the metric of Aa we use Lévy distance

dL(F,G) ≡ inf{h > 0 : F (x− h)− h ≤ G(x) ≤ F (x+ h) + h} .

EF [·] denotes the expectation under F ∈ A. When we write e.g. EF [u(X)] for a function u : R → R,
X denotes a random variable with distribution F . The expectation of F is denoted by E(F ) ≡ EF [X].
We always assume that the moment generating function EF [e

λX ] is finite in some neighborhood of
the origin λ = 0.

Let Ti(n) be the number of times that arm i has been pulled through the first n rounds. F̂i,t

and µ̂i,t denote the empirical distribution and the mean of arm i when arm i is pulled t times.

F̂i(n) ≡ F̂i,Ti(n) and µ̂i(n) ≡ µ̂i,Ti(n) denote the empirical distribution and the mean of arm i at the
n-th round. The largest empirical mean after the first n rounds is denoted by µ̂∗(n) ≡ maxi µ̂i(n).

In this paper we analyze DMED policy proposed by Honda and Takemura (2010). It is described
as Algorithm 1, where

Dinf(F, µ;Aa) ≡ inf
G∈Aa:E(G)>µ

D(F∥G) . (3)

Note that this policy is parametrized by r ∈ (0, 1) in this paper, which was fixed to r = 0 in
the original proposal. This parameter arises because some properties on Dinf(F, µ;Aa), such as
boundedness and continuity, do not hold for a = −∞. For r > 0 we conservatively (i.e. more often)
choose seemingly suboptimal arms. As a result, the coefficient of the logarithmic term becomes
1/(1− r) times the theoretical bound.

Another minor change is that log n in (4) was log n − log Ti(n) in the original proposal. It
is described in Honda and Takemura (2010) that the term log Ti(n) is only for improvement of
simulation results and has no importance for the asymptotic analysis. In this paper we avoid this
term since it makes the constant term in the finite-time analysis much more complicated.

For the setting of a = 0, the regret of DMED is evaluated as follows.

Proposition 1 (Honda and Takemura (2010, Theorem 4)) Let ϵ > 0 be arbitrary. Under
DMED policy with r = 0, it holds for all (F1, . . . , FK) ∈ AK

0 and suboptimal arms i that

E[Ti(n)] ≤
1 + ϵ

Dinf(Fi, µ∗;A0)
log n+O(1).

This bound is asymptotically optimal in view of the theoretical bound (1).
Now define

L(ν;F, µ) ≡ EF [log(1− (X − µ)ν)] ,

Lmax(F, µ) ≡ max
0≤ν≤ 1

1−µ

L(ν;F, µ) . (5)

Functions L and Lmax correspond to the Lagrangian function and the dual problem of Dinf(F, µ;Aa),
respectively.

Proposition 2 (Honda and Takemura (2010, Theorem 5)) For all F ∈ A0 and µ < 1 it
holds that Dinf(F, µ;A0) = Lmax(F, µ).



3 Main Results

We now state the main result of this paper in Theorems 3 and 4. We show that the theoretical
bound does not depend on knowledge of the lower bound of the support in Theorem 3 and that the
theoretical bound is actually achievable by DMED in Theorem 4.

Theorem 3 Let a ∈ [−∞, 1) and F ∈ Aa be arbitrary. (i) Dinf(F, µ;Aa) = Dinf(F, µ;A). (ii) If
µ < 1 then Dinf(F, µ;A) = Lmax(F, µ).

We prove this theorem in the next section. The part (i) of this theorem means that the theoretical
bound does not depend on whether we know that the support of distributions is bounded from
below by a or we have to consider the possibility that the support of distributions may not be
lower-bounded. Furthermore, from (ii), we can express the theoretical bound in the same expression
as A0 for any distribution in A. In view of this theorem we sometimes write Dinf(F, µ) instead of
more precise Dinf(F, µ;Aa) or Dinf(F, µ;A).

Let Iopt ≡ {i : µi = µ∗} ⊂ {1, · · · ,K} be the set of optimal arms and µ′ ≡ maxi/∈Iopt
µi be

the second optimal expected value. Define Fenchel-Legendre transform of the moment generating
function of Fk as

Λ∗
k(x) ≡ sup

λ∈R
{λx− log EFk

[eλX ]} . (6)

Then E[Ti(n)] is bounded for ξi,ϵ,δ ≡ ϵDinf(Fi, µ
∗)− δ/(1− µ∗) as follows.

Theorem 4 Assume that µ∗ < 1. Let ϵ > 0 and i /∈ Iopt be arbitrary and fix any δ ∈ (0, µ∗ − µ′)
such that ξi,ϵ,δ > 0. Then for all n > 0

E[Ti(n)] ≤
log n

(1− ϵ)(1− r)Dinf(Fi, µ∗)
+ C ,

where, for Λ̃∗(·, ·, ·) defined in (13), the constant term is given by

C =
1

1− e−Λ̃∗(ξi,ϵ,δ , µi, µ∗)
+

∑
k∈Iopt

K

1− e−Λ∗
k(µ

∗−δ)
+

∑
k/∈Iopt

K

1− e−Λ∗
k(µ

′+δ)

+ min
k∈Iopt

{
2(1 +K)

1− e−Λ∗
k(µ

′+δ)
+

2e

r
(
1− e−rΛ∗

k(µ
′+δ)

)2
}

.

We prove this theorem in Appendix B. The proof is largely the same as that of Honda and Takemura
(2010, Theorem 4), with difference that asymptotic large deviation probabilities are replaced with
non-asymptotic forms in Theorems 11 and 12.

As described in Prop. 14 (iii) of Appendix A, Λ∗
k(·) corresponds to the exponential rate of the

probability on the sample size that the empirical mean of arm k deviates from its expectation. We
can bound this rate in an explicit form for some cases. For example, it can be bounded by the
variance for the case that the support of Fk is bounded from below (Hoeffding, 1963, Theorem 1).
However, it seems to be impossible to bound the rate by its finite-degree moments for an optimal
arms k ∈ Iopt in general case, although it is possible for suboptimal arms k /∈ Iopt (Hoeffding, 1963,
Theorem 3).

Remark 5 The derived bound is somewhat weaker than that for the bounded support model in
Prop. 1 since the bound in this theorem contains the coefficient 1/(1 − r) in the logarithmic term.
We can remove the effect of the parameter r from the logarithmic term by letting r depend on Ti(n),

e.g., r = 1/
√
Ti(n). However, it makes the analysis longer and we omit the evaluation of this version

for lack of space.

4 Properties of Dinf in the Semi-bounded Support Model

In the analysis of DMED it is essential to investigate the function Dinf(F, µ;A). In this section we
extend some results on Dinf(F, µ;A0) in Honda and Takemura (2010) for our model A = A−∞ and
prove Theorem 3.

First we consider the function L(ν;F, µ) = EF [log(1 − (X − µ))ν]. The integrand l(x, ν) ≡
log(1− (x− µ)ν) is differentiable in ν ∈ (0, (1− µ)−1) for all x ∈ (−∞, 1] with

∂l(x, ν)

∂ν
= − x− µ

1− (x− µ)ν
,

∂2l(x, ν)

∂ν2
= − (x− µ)2

(1− (x− µ)ν)2
.



Since they are bounded in x ∈ (−∞, 1], the integral L(ν;F, µ) is differentiable in ν with

L′(ν;F, µ) ≡ ∂L(ν;F, µ)

∂ν
= −EF

[
X − µ

1− (X − µ)ν

]
,

L′′(ν;F, µ) ≡ ∂2L(ν;F, µ)

∂ν2
= −EF

[
(X − µ)2

(1− (X − µ)ν)2

]
.

From these derivatives the optimal solution ν∗(F, µ) ≡ argmax0≤ν≤(1−µ)−1 L(ν;F, µ) of (5) exists
uniquely and satisfies the following lemma.

Lemma 6 Assume that E(F ) ≤ µ < 1 holds. If EF [(1 − µ)/(1 − X)] ≤ 1 then ν∗(F, µ) =
(1 − µ)−1 and therefore EF [1/(1 − (X − µ)ν∗)] ≤ 1. Otherwise, L′(ν∗;F, µ) = 0 and
EF [1/(1− (X − µ)ν∗)] = 1.

The differentiability of Lmax(F, µ) in µ also holds as in the case of bounded support.

Lemma 7 For µ > E(F ), Dinf(F, µ) is differentiable with

dDinf(F, µ)

dµ
= ν∗(F, µ) ≤ 1

1− µ
.

We omit the proofs of Lemmas 6 and 7 since they are the same as Theorems 3 and 5 of Honda and
Takemura (2011) where the assumption on the support is not exploited.

Define F(a) ∈ Aa as the distribution obtained by transferring the probability of (−∞, a) under
F to x = a, that is,

F(a)(x) ≡
{
0 x < a ,

F (x) x ≥ a .

Now we give the key to extension for the semi-bounded support in the following lemma, which shows
that the effect of the tail weight is bounded uniformly if the expectation is bounded from below.

Lemma 8 Fix arbitrary µ, µ̃ < 1 and ϵ > 0. Then there exists a(ϵ) such that |Lmax(F(a), µ) −
Lmax(F, µ)| ≤ ϵ for all a ≤ a(ϵ) and F ∈ A such that E(F ) ≥ µ̃ .

Proof: Take sufficiently small a < min{0, µ} and define A = (−∞, a), B = [a, 1]. Note that
F (A) + F (B) = 1. First we have

F (A) ≤ 1− µ̃

1− a
(7)∫

A

xdF (x) ≥ µ̃− 1 + F (A) (8)

from

E(F ) ≤ aF (A) + 1 · F (B) = 1− (1− a)F (A) , E(F ) ≤
∫
A

xdF (x) + 1 · F (B) ,

respectively. Next, Lmax(F, µ) can be written as

Lmax(F, µ) = max
0≤ν≤ 1

1−µ

EF [log(1− (X − µ)ν)]

= max
0≤ν≤ 1

1−µ

{∫
A

log
1− (x− µ)ν

1− (a− µ)ν
dF (x) +

∫
B

log(1− (x− µ)ν)dF(a)(x)

}
. (9)

Since (1− (x− µ)ν)/(1− (a− µ)ν) is increasing in ν for x ≤ a, substituting 0 and (1− µ)−1 into ν,
we can bound the first term as

0 ≤
∫
A

log
1− (x− µ)ν

1− (a− µ)ν
dF (x) ≤

∫
A

log
1− x

1− a
dF (x)

≤ F (A)

∫
A

log(1− x)
dF (x)

F (A)
(by a ≤ 0)

≤ F (A) log

(∫
A

(1− x)
dF (x)

F (A)

)
(Jensen’s inequality)

≤ F (A) log
1− µ̃

F (A)
. (by (8))



From limx→0 x log x = 0 and (7), the first term of (9) converges to 0 as a → −∞. The second term
of (9) equals Lmax(F(a), µ) and the proof is completed. ■
Now we show Theorem 3 based on the preceding lemmas.
Proof of Theorem 3: (i) The proof is straightforward since D(F∥G) ≥ D(F∥G(a)) always holds
for F ∈ Aa.

(ii) First we consider the case that F has a bounded support, i.e. F ∈ Aa for some a ∈ (−∞, 1).
It is easily checked that Lmax(F, µ) defined in (5) is invariant under the scale transformation [0, 1] →
[a, 1] : x 7→ a + (1 − a)x. Further, Dinf(F, µ;Aa) defined in (3) is also invariant with respect to
scale from the invariance of the divergence. Since Dinf(F, µ;Aa) = Lmax(F, µ) holds for a = 0 from
Prop. 2, it also holds for all finite a < 1.

Next we consider the case that the support F is not bounded from below. We show Dinf

(F, µ;A) ≤ Lmax(F, µ) and Dinf(F, µ;A) ≥ Lmax(F, µ) separately. We omit the proof for the former
part for lack of space, but it can be proved in a similar procedure as the proof of Honda and Takemura
(2010, Theorem 8).

Now we consider the latter inequality. Take arbitrary ϵ > 0 and let a < µ be sufficiently small.
Partitioning (−∞, 1] into A = (−∞, a) and B = [a, 1] we can bound Dinf(F, µ;A) as

inf
G∈A:E(G)>µ

D(F∥G) ≥ inf
G∈A:E(G)>µ

D(F(a)∥G(a))

≥ inf
G(a)∈Aa:E(G(a))>µ

D(F(a)∥G(a)) (by E(G) ≤ E(G(a)))

= Lmax(F(a), µ)

≥ Lmax(F, µ)− ϵ (by Lemma 8)

and we complete the proof by letting ϵ ↓ 0. ■
Finally we consider the continuity of Dinf(F, µ;A) in F .

Lemma 9 If a < 1 is finite then Dinf(F, µ;Aa) is continuous in F ∈ Aa.

This lemma is proved for the case a = 0 in Honda and Takemura (2010, Theorem 7). The extension
for general bounded supports is straightforward from the scale transformation.

For the case of semi-bounded support distributions, the continuity does not hold any more.
However, we can show the continuity over distributions with expectations bounded from below.
Here recall that in view of Theorem 3 we write Dinf(F, µ) instead of Dinf(F, µ;A−∞) = Lmax(F, µ)
when no confusion arises.

Lemma 10 Let ϵ > 0 and µ, µ̃ < 1 be arbitrary. There exists δ > 0 such that

|Dinf(G,µ)−Dinf(F, µ)| ≤ ϵ (10)

for all G ∈ A such that E(G) ≥ µ̃ and dL(F,G) ≤ δ.

Proof: Applying Lemma 8 twice to F and G, there exists a(ϵ) such that

|Dinf(G,µ)−Dinf(F, µ)| ≤ |Dinf(G(a), µ)−Dinf(F(a), µ)|+ ϵ/2 (11)

for all a ≤ a(ϵ) and G such that E(G) ≥ µ̃. From the continuity of Dinf(·, µ) for bounded distribution
in Lemma 9, there exists δ(ϵ, F(a)) such that

|Dinf(G(a), µ)−Dinf(F(a), µ)| ≤ ϵ/2 (12)

for all G(a) such that dL(G(a), F(a)) ≤ δ(ϵ, F(a)). Note that dL(G(a), F(a)) ≤ dL(G,F ) obviously
holds from the definition of Lévy distance. Therefore, from (11) and (12), we obtain (10) for all
G ∈ A such that E(G) ≥ µ̃ and dL(F,G) ≤ δ(ϵ, F(a(ϵ))). ■

5 Large Deviation Probabilities for Dinf

In this section we consider the behavior of Dinf(F̂t, µ) where F̂t is the empirical distribution of t
samples from distribution F , which approaches Dinf(F, µ) as t increases. For our case of semi-
bounded support, it is sometimes convenient to consider the joint distribution of empirical mean
µ̂t = E(F̂t) and distribution F̂t, since the convergence of the empirical distribution does not mean
that of the empirical mean.

Note that, in this section and Appendix A, we sometimes consider moment generating functions
and their Fenchel-Legendre transforms of random variables on domains other than R. Since the
underlying distribution is obvious from the context, we write e.g. Λ∗

R2 to clarify the domain, whereas
the subscript was used to indicate the arm such as Λ∗

k in previous sections.



Theorem 11 If µ < E(F ) and u > Dinf(F, µ) then

PF [Dinf(F̂t, µ) ≥ u ∩ µ̂t ≤ µ] ≤
{
2e−tΛ∗

R(µ) u ≤ Λ∗
R(µ),

2e(1 + t)e−tu otherwise,

where Λ∗
R(x) ≡ supλ∈R{λx− log EF [e

λX ]}.

Theorem 12 Fix arbitrary µ > E(F ) and v > 0. Then it holds for c0 ≥ 2.163 that

PF [Dinf(F̂t, µ) ≤ Dinf(F, µ)− v] ≤ e−tΛ̃∗(v,E(F ), µ)

where

Λ̃∗(v,E(F ), µ) ≡


v2

2(c0+
1−E(F )

1−µ )
v ≤ 1

2 (c0 +
1−E(F )
1−µ ) ,

v
2 − 1

8 (c0 +
1−E(F )
1−µ ) , otherwise.

(13)

We prove these theorems using Prop. 14, Theorem 15 and Prop. 16 in Appendix A. Before proving
Theorem 11, we show its asymptotic version in the following.

Lemma 13 If µ < E(F ) and u > Dinf(F, µ) then

lim sup
t→∞

1

t
logPF [Dinf(F̂t, µ) ≥ u ∩ µ̂t ≤ µ] ≤ −max{u,Λ∗

R(µ)} .

Proof: Define C ≡ {(G,E(G)) : G ∈ A, Dinf(G,µ) ≥ u ∩ E(G) ≤ µ} ⊂ A × R and let C̄ be its
closure. First we show that Dinf(G,µ) ≥ u and v ≤ µ for all (G, v) ∈ C̄.

From the definition of closure, there exists a sequence {(Gl,E(Gl)) ∈ C}l such that (Gl,E(Gl)) →
(G, v), i.e., Gl → G and E(Gl) → v. Thus E(Gl) ≥ v− ϵ holds for all sufficiently large l where ϵ > 0
is arbitrary. Therefore, from Lemma 10 we obtain

Dinf(G,µ) = lim
l→∞

Dinf(Gl, µ) ≥ lim inf
l→∞

u = u .

The inequality v ≤ µ is obvious from E(Gl) → v and E(Gl) ≤ µ.
Now we obtain from Theorem15 that

lim sup
t→∞

1

t
logPF [Dinf(F̂t, µ) ≥ u ∩ µ̂t ≤ µ]

≤ lim sup
t→∞

1

t
logPF [(F̂t, µ̂t) ∈ C̄]

≤ − inf
(G,v) :Dinf (G,µ)≥u∩ v≤µ

sup
(ϕ,λ)∈Cb(R)×R

{∫
ϕ(x)dG(x) + λv − log

∫
eϕ(x)+λxdF (x)

}
≤ − inf

(G,v) :Dinf (G,µ)≥u∩ v≤µ
max{Λ∗

R(v), D(G∥F )} (14)

≤ − inf
(G,v) :Dinf (G,µ)≥u∩ v≤µ

max{Λ∗
R(v), Dinf(G,µ)} (by µ < E(F ))

≤ −max{Λ∗
R(µ), u} , (Λ∗

R(v) is decreasing in v ≤ µ < E(F ))

where (14) follows from ({0} × R) ∪ (Cb(R)× {0}) ⊂ Cb(R)× R and Prop. 16. ■
Proof of Theorem 11: Let δ > 0 be arbitrary and define νi ≡ 1/(2(1−µ))+iδ for i = −Mδ,−Mδ+
1, . . . ,Mδ − 1,Mδ, where Mδ ≡ ⌊1/(2(1− µ)δ)⌋. Further define ν−Mδ−1 ≡ 0 and νMδ+1 ≡ 1/(1−µ).
Then {[νi, νi+1]} partitions [0, (1− µ)−1] into intervals with length not larger than δ. Therefore the
event {Dinf(F, µ) ≥ u} can be expressed as

{Dinf(F̂t, µ) ≥ u} =
{
∃ν ∈

[
0, 1

1−µ

]
, L(ν; F̂t, µ) ≥ u

}
=

−1∪
i=−Mδ−1

{
∃ν ∈ [νi, νi+1] , L(ν; F̂t, µ) ≥ u

}
∪

Mδ+1∪
i=1

{
∃ν ∈ [νi−1, νi] , L(ν; F̂t, µ) ≥ u

}
. (15)

Since νi+1 − νi ≤ δ and L(ν; F̂t, µ) is concave in ν, it holds for i ≤ −1 that{
∃ν ∈ [νi, νi+1] , L(ν; F̂t, µ) ≥ u

}
⊂

{
L(νi+1; F̂t, ν)− δmin{0, L′(νi+1; F̂t, ν)} ≥ u

}
⊂

{
L(νi+1; F̂t, ν)− δmin{0, L′(ν0; F̂t, ν)} ≥ u

}
. (16)



Similarly it holds for i ≥ 1 that{
∃ν ∈ [νi−1, νi] , L(ν; F̂t, µ) ≥ u

}
⊂

{
L(νi−1; F̂t, µ) + δmax{0, L′(ν0; F̂t, µ)} ≥ u

}
. (17)

Here the derivative is written as

L′(ν; F̂t, µ) = −EF̂t

[
X − µ

1− (X − µ)ν

]
=

1

ν
− 1

ν
EF̂t

[
1

1− (X − µ)ν

]
.

Since 1/(1− (x− µ)ν) is positive and increasing in x ≤ 1, it is bounded as

1

ν
≥ L′(ν; F̂t, µ) ≥

1

ν
− 1

ν

1

1− (1− µ)ν
= − 1− µ

1− (1− µ)ν
.

Thus L′(ν0; F̂t, µ) = L′(1/(2(1− µ)); F̂t, µ) is bounded as

2(1− µ) ≥ L′(ν0; F̂t, µ) ≥ −2(1− µ) .

Combining this inequality with (15), (16) and (17) we obtain

PF [Dinf(F̂t, µ) ≥ u ∩ µ̂t ≤ µ]

≤
∑

−Mδ−1≤i≤Mδ+1, i ̸=0

PF

[
L(νi; F̂t, µ) ≥ u− 2(1− µ)δ ∩ µ̂t ≤ µ

]
. (18)

Now regard Y = (Y (1), Y (2)) ≡ (log(1−(X−µ)νi), X) as a random variable on R2. Define a closed
set C ≡ [u−2(1−µ)δ, ∞)×(−∞, µ] ⊂ R2 and its α-blowup Cα ≡ (u−2(1−µ)δ−α,∞)×(−∞, µ+α)

for α > 0. Then the event {L(νi; F̂t, µ) ≥ u−2(1−µ)δ ∩ µ̂t ≤ µ} is equivalent to the event that the
empirical mean of Y is contained in the closed convex set C. Thus we obtain from Prop. 14 (i) that

PF [L(νi; F̂t, µ) ≥ u− 2(1− µ)δ ∩ µ̂t ≤ µ] ≤ exp

(
−t inf

y∈C
Λ∗
R2(y)

)
, (19)

where Λ∗
R2(y) is defined by (27). Since Cα ⊃ C is open, the exponential rate is bounded as

− inf
y∈C

Λ∗
R2(y) ≤ − inf

y∈Cα
Λ∗
R2(y)

≤ lim inf
t→∞

1

t
logPF [L(νi; F̂t, µ) > u− 2(1− µ)δ − α ∩ µ̂t < µ+ α]

(by Prop. 14 (ii))

≤ lim sup
t→∞

1

t
logPF [Dinf(F̂t, µ) ≥ u− 2(1− µ)δ − α ∩ µ̂t ≤ µ+ α]

≤ −max{u− 2(1− µ)δ − α,Λ∗
R(µ+ α)} . (by Lemma 13)

Letting α ↓ 0 we obtain

− inf
y∈C

Λ∗
R2(y) ≤ −max{u− 2(1− µ)δ,Λ∗

R(µ)} . (20)

Finally we obtain from (18), (19) and (20) that

PF [Dinf(F̂t, µ) ≥ x ∩ µ̂t ≤ µ] ≤ 2

(
1 +

1

2(1− µ)δ

)
exp (−tmax{u− 2(1− µ)δ,Λ∗

R(µ)})

and we complete the proof by letting δ → ∞ for u ≤ Λ∗
R(µ) and δ = 1/(2t(1− µ)) for u > Λ∗

R(µ). ■
Proof of Theorem 12: Let u ≡ Dinf(F, µ)− v. First we obtain for ν∗ = ν∗(F, µ) that

PF [Dinf(F̂t, µ) ≤ Dinf(F, µ)− v] = PF

[
max

0≤ν≤(1−µ)−1
EF̂t

[log(1− (X − µ)ν)] ≤ u

]
≤ PF

[
EF̂t

[log(1− (X − µ)ν∗)] ≤ u
]
.

Define random variables Y ≡ 1− (X − µ)ν∗ and Z ≡ log Y = log(1 − (X − µ)ν∗) where X follows
the distribution F . Let Z̄t be the mean of t i.i.d. copies of Z. Then, from Prop. 14 (iii), the above
probability is bounded as

PF [Dinf(F̂t, µ) ≤ Dinf(F, µ)− v] ≤ PF [Z̄t ≤ u] ≤ e−tΛ∗
R(u) , (21)



where Λ∗
R(u) = supλ

{
λu− log EF [e

λZ ]
}
= supλ

{
λu− log EF [Y

λ]
}
.

Note that EF [e
−1·Z ] = EF [(1−(X−µ)ν∗)−1] ≤ 1 from Prop. 6 and EF [e

1·Z ] = EF [1−(X−µ)ν∗] =
1 − (E(F ) − µ)ν∗. Since they are finite, the moment generating function EF [e

λZ ] = EF [Y
λ] exists

for all λ ∈ [−1, 1] and infinitely differentiable in λ ∈ (−1, 1).
Before evaluating Λ∗(u) we bound EF [Y

λ] for λ ∈ [−1, 1]. For λ ∈ [−1, 0], we obtain from
EF [Y

−1] ≤ 1 and the convexity of yλ in λ that

EF [Y
λ] ≤ EF [(−λ)Y −1 + (1 + λ)Y 0] ≤ −λ+ (1 + λ) = 1 . (22)

Similarly, we obtain for λ ∈ (0, 1] that

EF [Y
λ] ≤ EF [(1− λ)Y 0 + λY 1]

= (1− λ) + λ(1− (E(F )− µ)ν∗)

= 1 + λ(µ− E(F ))ν∗

≤ 1 + 1 · µ− E(F )

1− µ
=

1− E(F )

1− µ
.

(
by µ > E(F ) and ν∗ ≤ 1

1−µ

)
(23)

Define the objective function in Λ∗
R(u) as R(λ) ≡ λu− log EF [Y

λ]. Then, for λ ∈ [−1, 0],

R′(λ) = u− EF [Y
λ log Y ]

EF [Y λ]
≤ u− EF [Y

λ log Y ] . (by (22)) (24)

We bound R(λ) from below for λ ∈ [−1/2, 0] in the following. For the second term of the right-hand
side of (24), it holds for λ ∈ [−1/2, 0] that

EF [Y
λ log Y ] ≥ EF [Y

0 log Y ]−
∫ 0

λ

max
λ∈[− 1

2 ,0]

{
dEF [Y

λ log Y ]

dλ

}
dλ

= Dinf(F, µ) + λ max
λ∈[− 1

2 ,0]
EF [Y

λ(log Y )2] . (25)

Note that (log y)2 is smaller than y−1/2 for y → +0 and smaller than y for y → ∞. Therefore
there exists c0 > 0 such that (log y)2 ≤ c0y

−1/2 + y for all y > 0. In fact, this inequality holds by
letting c0 ≥ 2.163. Then we obtain from (22) and (23) that

EF [Y
λ(log Y )2] ≤ EF [Y

λ(c0Y
−1/2 + Y )] ≤ c0 +

1− E(F )

1− µ
. (26)

Combining (24), (25) and (26) with R(λ) = 0 we obtain

R′(λ) ≤ u−Dinf(F, µ)− λ

(
c0 +

1− E(F )

1− µ

)
= −v − λ

(
c0 +

1− E(F )

1− µ

)
,

R(λ) = 0 +

∫ λ

0

R′(λ)dλ ≥ −λv − λ2

2

(
c0 +

1− E(F )

1− µ

)
.

Finally,

Λ∗
R(u) = sup

λ
R(λ) ≥ sup

λ∈[− 1
2 ,0]

R(λ) ≥


v2

2(c0+
1−E(F )

1−µ )
, v ≤ 1

2 (c0 +
1−E(F )
1−µ ) ,

v
2 − 1

8 (c0 +
1−E(F )
1−µ ) , otherwise,

and we obtain the theorem with (21). ■

6 Concluding Remarks

We proved that the theoretical bound only depends on the upper bound of the support in the
nonparametric stochastic bandits. We refined the analysis of DMED policy to a non-asymptotic
form for all distributions with moment generating functions in this model.



A Large Deviation Principle and its Application to a Joint Distribution

In this appendix we consider large deviation principle (LDP) for the empirical mean and the distri-
bution based on Dembo and Zeitouni (1998) (DZ, hereafter). We first summarize results on LDP for
empirical means of finite dimentional random variables and then we derive LDP for joint distribution
of the empirical distribution and the mean in Theorem 15.

Let Ŝt be the empirical mean of i.i.d. random variables X1, · · · , Xt ∈ X with distribution F ,
where X is a general topological vector space. For a distribution on R, we can regard its empirical
distribution as the empirical mean of delta measures δXi ∈ A ⊂ V, where V is the space of all finite

measures on (−∞, 1]. We write µ̂t and F̂t instead of Ŝt for empirical means of Xi ∈ R and δXi ∈ A,
respectively.

Define the logarithmic moment generating function and its Fenchel-Legendre transform for dis-
tribution F by

ΛX (λ) = log

∫
X
e⟨λ,u⟩dF (u) ,

Λ∗
X (x) = sup

λ∈X∗
{⟨λ, x⟩ − Λ(λ)} ,

where X ∗ is the space of linear continuous functions on X . Especially, for the case X = Rd it is
expressed for X ∗ = Rd as

⟨λ, x⟩ =
∑
i

λixi , λ, x ∈ Rd . (27)

Similarly, for the case X = V, it is expressed for X ∗ = Cb(R) as

⟨ϕ,G⟩ =
∫

ϕ(u)dG(u) , ϕ ∈ Cb(R), G ∈ A ,

where Cb(R) is the space of bounded continuous functions on R. Note that it is shown in DZ that
in the scope of our paper Λ∗

X (x) is always a rate function, that is, a lower semicontinuous function
with range [0,∞], although we omit this statement in the following.

Proposition 14 (DZ, Ex. 2.2.38, Theorem 2.2.30 and Lemma 2.2.5) Let X = Rd and as-
sume that ΛRd(λ) exists around λ = 0. (i) For any convex closed C ⊂ Rd

1

t
logPF [Ŝt ∈ C] ≤ − inf

x∈C
Λ∗
Rd(x) .

(ii) For any open A ⊂ Rd

lim inf
t→∞

1

t
logPF [Ŝt ∈ A] ≥ − inf

x∈A
Λ∗
Rd(x) .

(iii) For the case d = 1, Λ∗
R(x) is decreasing at x < E(F ) and increasing at x > E(F ). Consequently,

1

t
logPF [µ̂t ≤ x] ≤ −Λ∗

R(x) , if x < E(F ) ,

1

t
logPF [µ̂t ≥ x] ≤ −Λ∗

R(x) , if x > E(F ) .

In well-known Sanov’s theorem, LDP for the empirical distribution is considered. On the other
hand, in the proof of theorem 11, we have to consider the joint probability that the empirical
distribution and the mean deviate from a subset of A × R. Theorem 15 below is an extension of
Sanov’s theorem for this purpose. This theorem is derived from Cramér’s theorem in the same way
as the derivation of Sanov’s theorem.

Recall that we assume that R is equipped with the standard topology and A is equipped with
the topology induced by Lévy metric dL(F,G) for F,G ∈ A. For the space A×R we use the product
topology ofA and R, which is equivalent to the topology induced by the metric max{dL(F,G), |x−y|}
for (F, x), (G, y) ∈ A× R.

Theorem 15 Let F be arbitrary distribution on R such that the moment generating function exists
in some neighborhood of λ = 0. For any closed set C ⊂ A× R, it holds that

lim sup
t→∞

1

t
logPF [(F̂t, µ̂t) ∈ C] ≤ − inf

(G,x)∈C
Λ∗
V×R((G, x)) , (28)



where

Λ∗
V×R((G, x)) = sup

(ϕ,λ)∈Cb(R)×R

{∫
ϕ(u)dG(u) + λx− log

∫
eϕ(u)+λudF (u)

}
.

For the actual computation of Λ∗
V×R(·) the following proposition is useful.

Proposition 16 (DZ, Lemma 6.2.13) For all F,G ∈ A,

sup
ϕ∈Cb(R)

{∫
ϕ(u)dG(u)− log

∫
eϕ(u)dF (u)

}
= D(G∥F ) .

For the rest of this section we prove Theorem 15. We start with Cramér’s theorem for general
Hausdorff topological vector spaces X and probability measures F on X .

Proposition 17 (DZ, Theorem 6.1.3) Assume that following (a), (b) hold. (a) X is locally con-
vex and there exists a closed convex subset E of X such that PF (E) = 1. Further, E can be made into
a Polish space with respect to the topology induced by E. (b) The closed convex hull of each compact
K ⊂ E is compact. Then it holds for all compact closed set that

lim sup
t→∞

1

t
logPF [Ŝt ∈ C] ≤ − inf

x∈C
Λ∗
X (x) . (29)

The assertion of this proposition is restricted to compact sets and is called weak LDP. We can remove
this restriction to full LDP if the exponential tightness is satisfied. The laws of Ŝt are exponentially
tight if, for every α < ∞, there exists a compact set Kα ⊂ X such that

lim sup
t→∞

1

t
logPF [Ŝt ∈ Kc

α] < −α ,

where superscript “c” denotes the complement of the set.

Proposition 18 (DZ, Lemma 1.2.18) If the laws of Ŝt are exponentially tight then (29) holds
for all closed set C.

Proposition 19 (DZ, Lemma 6.2.6 and Discussion after Eq. (2.2.33)) (i) The laws of the

empirical distributions F̂t ∈ A are exponentially tight for all F ∈ A. (ii) The laws of the em-
pirical means µ̂t ∈ R are exponentially tight if the moment generating function EF [e

λX ] exists in
some neighborhood of λ = 0.

Proof of Theorem 15: First we can obtain (28) for all closed compact C ⊂ A × R as a direct
application of Prop. 17 with X := V × R with E := A× R by the following argument.

For the case X := V and E := A, it is shown as Sanov’s theorem that the assumption of Prop. 17
is satisfied when A is equipped with the topology induced by Lévy metric (see DZ, Sect. 6.1). The
essential point in the proof of Sanov’s theorem is that the local convexity in the assumption is
satisfied if a vector space X is equipped with a topology called weak topology (see, e.g., Dunford and
Schwartz (1988, Chap.V) for detail of weak topologies). Since the relative topology on A of the
weak topology of V is equivalent to the topology induced by the Lévy metric, Prop. 17 is applicable
for the case of Sanov’s theorem. Here note that the weak topology of V × R is equivalent to the
product topology of the weak topologies of V and R. Thus it is shown in a parallel way that the
assumption is also satisfied in our case.

In view of Prop. 18, we complete the proof if the exponential tightness of the laws of (F̂t, µ̂t) is
proved. From Prop. 19, for every α < ∞ there exist compact Aα ⊂ A and Bα ⊂ R such that

lim sup
t→∞

1

t
logPF [F̂t ∈ Ac

α] < −α , lim sup
t→∞

1

t
logPF [µ̂t ∈ Bc

α] < −α . (30)

Letting Kα := Aα ×Bα we obtain

PF [(F̂t, µ̂t) ∈ Kc
α] ≤ PF [F̂t ∈ Ac

α] + PF [µ̂t ∈ Bc
α] .

Combining this inequality with (30) we see that the laws of (F̂t, µ̂t) are exponentially tight. ■



B Proof of Theorem 4

Define events An, Bn, Cn, Dn for any δ > 0 as

An ≡ {µ̂∗(n) ≥ µ∗ − δ}

Bn ≡ {µ̂∗(n) ≤ µ′ + δ} =
K∩

k=1

{µ̂k(n) ≤ µ′ + δ}

Cn =
∪

k/∈Iopt

{µ̂∗(n) = µ̂k(n) ≥ µ′ + δ}

Dn =
∪

k∈Iopt

{µ̂∗(n) = µ̂k(n) ≤ µ∗ − δ} .

It is easily checked that {An ∪Bn ∪Cn ∪Dn} is the whole sample space. Let Jn(i) denote the event
that arm i is pulled at the n-th round and recall that J ′

n(i) is given in Algorithm 1. Then, except for
the first 2K rounds, the event Jn(i) implies that J ′

n′(i) occurred for some K+1 ≤ n′ < n. Therefore
Ti(n) is bounded as

Ti(n)

= 2 +
∞∑
t=2

11

[
n−1∪

m=2K

{Ti(m) = t ∩ Jm+1(i)}

]

≤ 2 +
∞∑
t=2

11

[
n−1∪

m=K+1

{Ti(m) = t ∩ J ′
m(i)}

]

≤ 2 +
∞∑
t=2

11

[
n−1∪

m=K+1

{Ti(m) = t ∩ J ′
m(i) ∩Am}

]
+

∞∑
t=2

11

[
n−1∪

m=K+1

{Ti(m) = t ∩ J ′
m(i) ∩Ac

m}

]
and we obtain for the last term that

∞∑
t=2

11

[
n−1∪

m=K+1

{Ti(m) = t ∩ J ′
m(i) ∩ Ac

m}

]
≤

n−1∑
m=K+1

11 [Ac
m]

≤
n−1∑

m=K+1

11 [Bm] +
n−1∑

m=K+1

11 [Cm] +
n−1∑

m=K+1

11 [Dm] .

In the following Lemmas 20–23 we bound the expectations of these summations and they prove the
theorem with 2− 2e/r < 0.

Lemma 20 Let i /∈ Iopt be arbitrary. If ξi,ϵ,δ = ϵDinf(Fi, µ
∗)− δ/(1− µ∗) > 0 then

E

[ ∞∑
t=2

11

[
n−1∪

m=K+1

{Ti(m) = t ∩ J ′
m(i) ∩ Am}

]]

≤ logn

(1− ϵ)(1− r)Dinf(Fi, µ∗)
+

1

1− e−Λ̃∗(ξi,ϵ,δ , µi, µ∗)
.

Lemma 21 If δ < µ∗ − µ′ then

E

[
n−1∑

m=K+1

11 [Bm]

]
≤ min

k∈Iopt

{
2(1 +K)

1− e−Λ∗
k(µ

′+δ)
+

2e

r
(
1− e−rΛ∗

k(µ
′+δ)

)2
}

− 2e

r
.

Lemma 22

E

[
n−1∑

m=K+1

11 [Cm]

]
≤ K

∑
k/∈Iopt

1

1− e−Λ∗
k(µ

′+δ)
.

Lemma 23

E

[
n−1∑

m=K+1

11 [Dm]

]
≤ K

∑
k∈Iopt

1

1− e−Λ∗
k(µ

∗−δ)
.



Proof of Lemma 20: In the same way as Honda and Takemura (2010, Lemma 15), we obtain
∞∑
t=2

11

[
n−1∪

m=K+1

{J ′
m(i) ∩ Ti(m) = t ∩ Am}

]

≤ log n

(1− ϵ)(1− r)Dinf(Fi, µ∗)

+
∞∑

t= log n
(1−ϵ)(1−r)Dinf (Fi,µ

∗)

11

[
logn

(1− ϵ)(1− r)Dinf(Fi, µ∗)
(1− r)Dinf(F̂i,t, µ

∗ − δ) ≤ logn

]

≤ log n

(1− ϵ)(1− r)Dinf(Fi, µ∗)
+

∞∑
t=1

11
[
Dinf(F̂i,t, µ) ≤ (1− ϵ)Dinf(Fi, µ

∗)
]
. (31)

Note that it holds from Lemma 7 and Theorem 12 that

PFi

[
Dinf(F̂i,t, µ

∗ − δ) ≤ (1− ϵ)Dinf(Fi, µ
∗)
]

≤ PFi

[
Dinf(F̂i,t, µ

∗)− δ

1− µ∗ ≤ (1− ϵ)Dinf(Fi, µ
∗)

]
≤ PFi

[
Dinf(F̂i,t, µ

∗) ≤ Dinf(Fi, µ
∗)−

(
ϵDinf(Fi, µ

∗)− δ

1− µ∗

)]
≤ e−tΛ̃∗(ξi,ϵ,δ , µi, µ

∗) . (32)

From (31) and (32), we obtain

E

[ ∞∑
t=2

11

[
n−1∪

m=K+1

{Ti(m) = t ∩ J ′
i(m) ∩ Am}

]]

≤ log n

(1− ϵ)(1− r)Dinf(Fi, µ∗)
+

∞∑
t=1

e−tΛ̃∗(ξi,ϵ,δ , µi, µ
∗)

=
log n

(1− ϵ)(1− r)Dinf(Fi, µ∗)
+

1

1− e−Λ̃∗(ξi,ϵ,δ , µi, µ∗)
.

Proof of Lemma 21: First we simply bound
∑n−1

m=K+1 11 [Bm] by

n−1∑
m=K+1

11 [Bm] ≤
∞∑
t=1

∞∑
m=K+1

11 [Bm ∩ Tk(m) = t] , (33)

where k ∈ Iopt is arbitrary. By the same argument as Honda and Takemura (2010, Lemma 16), the

event {Dinf(F̂k,t, µ
′ + δ) ≤ u ∩ µ̂k,t ≤ µ′ + δ} implies

∞∑
m=K+1

11 [Bm ∩ Tk(m) = t] ≤ etu(1−r) +K .

Let P (u) ≡ PFk
[Dinf(F̂k,t, µ

′ + δ) ≥ u ∩ µ̂k,t ≤ µ′ + δ]. When we simply write Λ∗
k for Λ∗

k(µ
′ + δ)

given in (6), it holds from Theorem 11 that

E

[ ∞∑
m=K+1

11 [Bm ∩ Tk(m) = t]

]

≤
∫ 0

∞
(etu(1−r) +K)dP (u)

=
[
(etu(1−r) +K)P (u)

]0
∞

+ t(1− r)

∫ ∞

0

etu(1−r)P (u)du

≤ 2(1 +K)e−tΛ∗
k + 2t(1− r)

∫ Λ∗
k

0

e−t(Λ∗
k−(1−r)u)du+ 2et(1− r)(1 + t)

∫ ∞

Λ∗
k

e−trudu

≤ 2(1 +K)e−tΛ∗
k + 2e−trΛ∗

k +
2e(1− r)

r
(1 + t)e−trΛ∗

k

≤ 2(1 +K)e−tΛ∗
k +

2e

r
(1 + t)e−trΛ∗

k .



Taking the summation over t with formula

∞∑
t=1

(1 + t)ρt =
1

(1− ρ)2
− 1 ,

we obtain from (33) that

EF

[
n−1∑

m=K+1

11 [Bm]

]
≤ 2(1 +K)

1− e−Λ∗
k
+

2e

r
(
1− e−rΛ∗

k

)2 − 2e

r
. (34)

We complete the proof by taking k ∈ Iopt such that (34) is minimized. ■
Proof of Lemmas 22 and 23: We obtain from the definition of Cn that

n−1∑
m=K+1

11 [Cm] ≤
∑

k/∈Iopt

∞∑
m=K+1

11 [µ̂∗(m) = µ̂k(m) ≥ µ′ + δ]

≤
∑

k/∈Iopt

∞∑
t=1

∞∑
m=K+1

11 [µ̂∗(m) = µ̂k,t ≥ µ′ + δ ∩ Tk(m) = t] . (35)

By the same argument as Honda and Takemura (2010, Lemma 17), we have

∞∑
m=K+1

11 [µ̂∗(m) = µ̂k,t ∩ Tk(m) = t] ≤ K . (36)

On the other hand, from Prop. 14 (iii) we have

PFk
[µ̂k,t ≥ µ′ + δ] ≤ e−tΛ∗

k(µ
′+δ) , (37)

where Λ∗
k(x) is given in (6). Finally we obtain from (35)–(37) that

E

[
n−1∑

m=K−1

11 [Cm]

]
≤ K

∑
k/∈Iopt

∞∑
t=1

PFk
[µ̂k,t ≥ µ′ + δ] ≤ K

∑
k/∈Iopt

1

1− e−Λ∗
k(µ

′+δ)

and Lemma 22 is proved. In the same way, we obtain Lemma 23 from

E

[
n−1∑

m=K−1

11 [Dm]

]
≤ K

∑
k∈Iopt

∞∑
t=1

PFi [µ̂k,t ≤ µ∗ − δ]

≤ K
∑

k/∈Iopt

∞∑
t=1

e−tΛ∗
k(µ

∗−δ)

≤ K
∑

k/∈Iopt

1

1− e−Λ∗
k(µ

∗−δ)
.
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