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Abstract

In circuit simulation, differential-algebraic equations (DAEs) arising from the modified

nodal analysis (MNA) have been analyzed from the viewpoint of index, which is a measure

of the numerical difficulty of DAEs. While MNA is the most popular method, the hybrid

analysis has been shown to have inherent advantage over MNA in terms of index.

For nonlinear time-varying circuits with dependent sources, we give a necessary con-

dition for DAEs arising from the hybrid analysis to have index at most two. Moreover,

we show that this condition is also sufficient for linear time-invariant circuits if dependent

sources satisfy the genericity assumption. This result remains valid for nonlinear time-

varying circuits unless unlucky numerical cancellations occur. The obtained necessary and

sufficient condition is simple and reasonable, and is satisfied by commonly-used circuits.

Thus, the hybrid analysis results in a DAE with index at most two in most cases, while

MNA is known to lead to DAEs with index greater than two in some cases.

1 Introduction

Mathematical modeling and numerical computation are of great importance in circuit sim-

ulation. Circuits are described by differential-algebraic equations (DAEs), which consist of

algebraic equations and differential operations. The numerical difficulty of DAEs is measured

by the index . In general, the higher the index is, the more difficult it is to solve the DAE.

Numerical computation step for DAEs has been actively studied. For example, Gear [5]

proposed the backward difference formulae, which were implemented in the DASSL code by

Petzold (cf. [2]). Hairer and Wanner [7] implemented an implicit Runge-Kutta method in their

RADAU5 code. These methods are applicable to DAEs with low index, and more general

methods for high index DAEs have been developed recently (see [11, Chapter 8]).

While many DAE solvers have been implemented, modeling step is very critical to accuracy

of numerical solutions, because the difficulty of a DAE increases with its index. In circuit

simulation, the most popular method in modeling step is to apply the modified nodal analy-

sis (MNA). It is shown in [4] that the tractability index of a DAE obtained by applying MNA
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Figure 1: A circuit with a dependent current source.

to nonlinear time-varying circuits that may contain a large class of dependent sources does not

exceed two. However, for a circuit with dependent sources which are not included in this class,

MNA sometimes leads to a DAE with index greater than two. Figure 1 depicts an example of

such a circuit with index three [6], which contains a dependent current source I.

The wide use of MNA is attributed to an automatic setup of model equations. To put

it the other way around, however, MNA has no flexibility in modeling step. In contrast, the

hybrid analysis has an advantage that we can choose a model description which reduces the

numerical difficulties. In the hybrid analysis, we select a partition of elements and a reference

tree in the network. This selection determines DAEs, called the hybrid equations, to be solved

numerically.

Recently, the index of the hybrid equations has been analyzed to make a comparison with

MNA theoretically. An algorithm for finding an optimal pair of a partition and a reference tree

which minimizes the index of the hybrid equations is proposed in [9] for linear time-invariant

circuits that may contain dependent sources. For linear time-invariant RLC circuits, it is proved

in [14] that the index of the hybrid equations is at most one. A structural characterization

of circuits with index zero is also given in [14]. It is also shown that the index of the hybrid

equations never exceeds the index of DAEs arising from MNA. The structural characterizations

given in [14] are extended to nonlinear time-varying circuits with dependent sources in [10].

In this paper, for nonlinear time-varying circuits, we give a necessary condition for the

hybrid equations to have tractability index at most two. Moreover, we show that this condition

is also sufficient for linear time-invariant circuits if dependent sources satisfy the genericity

assumption. By combining these results with [10], we obtain criteria for tractability index

zero/one/two.

The genericity assumption on dependent sources is motivated by the fact that dependent

sources are inherently different from the other elements such as resistors, capacitors, and induc-

tors. In contrast to the latter elements, dependent sources are used to describe an equivalent

circuit model of an active device such as a transistor. The constitutive equations of dependent

sources are determined by a voltage-amplification factor, a current gain, and so on. We assume

that these values are independent parameters in the proof of a sufficient condition. We remark

that this genericity assumption makes sense only for linear time-invariant circuits, but our

results remain valid for nonlinear time-varying circuits unless unlucky numerical cancellations

occur.
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The organization of this paper is as follows. In Section 2, we describe nonlinear time-

varying circuits and present the hybrid equations. Section 3 is devoted to the definition of the

tractability index of DAEs. We analyze the hybrid equations in Section 4. Section 5 gives

structural characterizations of the hybrid equations with index at most two. Finally, Section 6

concludes this paper.

2 Hybrid Analysis of Nonlinear Time-Varying Circuits

In this section, we describe nonlinear time-varying circuits composed of resistors, inductors,

capacitors, and independent/dependent voltage/current sources.

We denote the vector of currents through all branches of the circuit by i, and the vector

of voltages across all branches by u. Let V , J , C, and L denote the sets of independent volt-

age sources, independent current sources, capacitors, and inductors, respectively. Dependent

voltage/current sources are denoted by SU and SI . We define the set of resistors later.

The vectors of currents through V , J , C, L, SU , and SI are denoted by iV , iJ , iC , iL,

iU , and iI . Similarly, the vectors of voltages are denoted by uV , uJ , uC , uL, uU , and uI .

Independent voltage and current sources simply read as

uV = vs(t) and iJ = js(t). (1)

We assume that the constitutive equations of capacitors and inductors are described by

iC =
d

dt
q(uC , t) and uL =

d

dt
ϕ(iL, t). (2)

Dependent current sources and dependent voltage sources are modeled by

iI = jI(uC ,uV , iL, iJ , t) and uU = vU (uC ,uV , iL, iJ , t). (3)

Such dependent current/voltage sources appear in many circuits [13, §6.2.6.3].
In order to provide constitutive equations of resistors, we describe the definition of an

admissible partition. Let Γ = (W,E) be the network graph with vertex set W and edge set E.

An edge in Γ corresponds to a branch that contains one element in the circuit. For a consistent

model description, Γ contains no cycles consisting only of independent voltage sources and no

cutsets consisting only of independent current sources, where a cutset is a set of edges whose

deletion increases the number of connected components in Γ. We denote the set of edges

corresponding to independent voltage sources and independent current sources by Ev and Ej ,

respectively. We split E∗ := E \ (Ev ∪Ej) into Ey and Ez, i.e., Ey ∪Ez = E∗ and Ey ∩Ez = ∅.
A partition (Ey, Ez) is called an admissible partition, if Ey includes all the capacitors and all

the dependent current sources, and Ez includes all the inductors and all the dependent voltage

sources.

We split i and u into

i = (iV , iC , iI , iY , iZ , iU , iL, iJ)
⊤ and u = (uV ,uC ,uI ,uY ,uZ ,uU ,uL,uJ)

⊤,

where the subscripts Y and Z correspond to the resistors in Ey and Ez. Resistors are modeled

by constitutive equations in the form of

iY = g(iZ ,uY , t) and uZ = h(iZ ,uY , t). (4)
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A vector (i,u) satisfying (1), (3), (4), and Kirchhoff’s current/voltage laws at a given time

t is called an operating point at t [13]. For a matrix A, we denote the (i, j) entry of A by (A)ij .

For a vector valued function f , we denote the ith component of f by (f)i. The capacitance

matrix C and the inductance matrix L are given by

(C)ij =
∂(q)i
∂(uC)j

and (L)ij =
∂(ϕ)i
∂(iL)j

.

The matrices Z, H, G, Y are defined by

(Z)ij =
∂(h)i
∂(iZ)j

, (H)ij =
∂(h)i
∂(uY )j

, (G)ij =
∂(g)i
∂(iZ)j

, (Y )ij =
∂(g)i
∂(uY )j

.

A square matrix A is called positive definite if x⊤Ax > 0 for all x ̸= 0. We assume the

following conditions throughout this paper.

Assumption 2.1. The capacitance matrix C and the inductance matrix L are positive definite

at all operating points.

Assumption 2.2. The hybrid immittance matrix

(
Z H

G Y

)
is positive definite at all operating

points and H = −G⊤.

The positive definiteness in Assumptions 2.1 and 2.2 means that capacitors, inductors, and

resistors are strictly locally passive elements at all operating points. For dependent sources,

we do not assume the positive definiteness, but impose the genericity assumption in the proof

of a sufficient condition for the hybrid equations with index at most two. This assumption is

given in Section 5.4.

A spanning tree in a connected graph is a maximal set of edges which contains no cycles.

We call a spanning tree T of the network graph Γ a reference tree if T contains all edges

in Ev, no edges in Ej , and as many edges in Ey as possible. Note that a reference tree T

may contain some edges in Ez. A reference tree is called normal if it contains as many edges

as possible in the order corresponding to V , C, SI , Y , Z, SU , and L. The cotree of T is

denoted by T = E \ T . Normal trees have already been used in [3] for state approaches for

linear RLC networks. The results have been extended in [12] for linear circuits containing

ideal transformers, nullors, independent/dependent sources, resistors, inductors, capacitors,

and, under a topological restriction, gyrators.

The hybrid equations are determined by an admissible partition (Ey, Ez) and a reference

tree T , which is not necessarily normal. In this paper, we adopt a normal reference tree. With

respect to a normal reference tree T , we further split i and u into

i = (iV , i
τ
C , i

τ
I , i

τ
Y , i

τ
Z , i

τ
U , i

τ
L, i

λ
C , i

λ
I , i

λ
Y , i

λ
Z , i

λ
U , i

λ
L, iJ)

⊤

and

u = (uV ,u
τ
C ,u

τ
I ,u

τ
Y ,u

τ
Z ,u

τ
U ,u

τ
L,u

λ
C ,u

λ
I ,u

λ
Y ,u

λ
Z ,u

λ
U ,u

λ
L,uJ)

⊤,

where the superscripts τ and λ designate the tree T and the cotree T . With respect to a

normal reference tree T , the vector valued function g is also split into gτ and gλ. This means
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iτY = gτ (iZ ,uY , t) and iλY = gλ(iZ ,uY , t). Similarly, we split h, q, ϕ, jI , and vU . The matrix

Y is written in the form of

(
Y τ
τ Y τ

λ

Y λ
τ Y λ

λ

)
, where

(Y τ
τ )ij =

∂(gτ )i
∂(uτ

Y )j
, (Y τ

λ )ij =
∂(gτ )i

∂(uλ
Y )j

, (Y λ
τ )ij =

∂(gλ)i
∂(uτ

Y )j
, (Y λ

λ )ij =
∂(gλ)i

∂(uλ
Y )j

.

The matrices C, L, Z, H, G are written in a similar way.

By the definition of a normal reference tree, the fundamental cutset matrix F is given by

F =



iV iτC iτI iτY iτZ iτU iτL iλC iλI iλY iλZ iλU iλL iJ

I O O O O O O AV C AV I AV Y AV Z AV U AV L AV J

O I O O O O O ACC ACI ACY ACZ ACU ACL ACJ

O O I O O O O O AII AIY AIZ AIU AIL AIJ

O O O I O O O O O AY Y AY Z AY U AY L AY J

O O O O I O O O O O AZZ AZU AZL AZJ

O O O O O I O O O O O AUU AUL AUJ

O O O O O O I O O O O O ALL ALJ


.

Then Kirchhoff’s current law is written as F i = 0. Performing the hybrid analysis described

in [9], we obtain the hybrid equations (or hybrid equation system)

−A⊤
V Lvs(t)−A⊤

CLu
τ
C −A⊤

ILu
τ
I −A⊤

Y Lu
τ
Y −A⊤

ZLh
τ −A⊤

ULv
τ
U −A⊤

LL

d

dt
ϕτ +

d

dt
ϕλ = 0,

−A⊤
V Uvs(t)−A⊤

CUu
τ
C −A⊤

IUu
τ
I −A⊤

Y Uu
τ
Y −A⊤

ZUh
τ −A⊤

UUv
τ
U + vλ

U = 0,

−A⊤
V Zvs(t)−A⊤

CZu
τ
C −A⊤

IZu
τ
I −A⊤

Y Zu
τ
Y −A⊤

ZZh
τ + hλ = 0,

gτ +AY Y g
λ +AY Zi

λ
Z +AY U i

λ
U +AY Li

λ
L +AY Jjs(t) = 0,

jτI +AIIj
λ
I +AIY g

λ +AIZi
λ
Z +AIU i

λ
U +AILi

λ
L +AIJjs(t) = 0,

d

dt
qτ +ACC

d

dt
qλ +ACIj

λ
I +ACY g

λ +ACZi
λ
Z +ACU i

λ
U +ACLi

λ
L +ACJjs(t) = 0.

Here, qτ , qλ, gτ , gλ, hτ , hλ, ϕτ , ϕλ, jτI , j
λ
I , v

τ
U , v

λ
U are given by

q∗ = q∗(uτ
C , A

⊤
V Cvs(t) +A⊤

CCu
τ
C , t),

g∗ = g∗(α, iλZ ,u
τ
Y ,β, t),

h∗ = h∗(α, iλZ ,u
τ
Y ,β, t),

ϕ∗ = ϕ∗(−ALLi
λ
L −ALJjs(t), i

λ
L, t),

j∗I = j∗I (u
τ
C , A

⊤
V Cvs(t) +A⊤

CCu
τ
C ,uV ,−ALLi

λ
L −ALJjs(t), i

λ
L, iJ , t),

v∗
U = v∗

U (u
τ
C , A

⊤
V Cvs(t) +A⊤

CCu
τ
C ,uV ,−ALLi

λ
L −ALJjs(t), i

λ
L, iJ , t),

where

α = −AZZi
λ
Z −AZU i

λ
U −AZLi

λ
L −AZJjs(t),

β = A⊤
V Y vs(t) +A⊤

CY u
τ
C +A⊤

IY u
τ
I +A⊤

Y Y u
τ
Y ,
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and ∗ represents τ or λ. The idea of its derivation is to use all constitutive equations so that

Kirchhoff’s current/voltage laws provide a system that depends only on uτ
C , u

τ
I , u

τ
Y and iλZ ,

iλU , i
λ
L.

3 DAEs with Properly Stated Leading Term

In this section, we briefly explain DAEs with properly stated leading term and the tractability

index. Consider a DAE in the form of

A(x(t), t)
d

dt
d(x(t), t) + b(x(t), t) = 0 (5)

for x ∈ D ⊆ Rm and t ∈ I ⊆ R. Let A(x(t), t) be an m× n matrix. We define

D(x, t) =
∂d(x, t)

∂x
, B(x, t) =

∂b(x, t)

∂x
, and M0(x, t) = A(x, t)D(x, t).

A matrix Q(x, t) satisfying Q(x, t)2 = Q(x, t) is called a projector . A projector Q(x, t) is called

a projector onto a subspace Π if ImQ(x, t) = Π.

Definition 3.1 ([8, Definition 26, Lemma A.1]). The equation (5) is said to be a DAE with

properly stated leading term if the size of D(x, t) is n×m, the three conditions

ImM0(x, t) = ImA(x, t), KerM0(x, t) = KerD(x, t), KerA(x, t) ∩ ImD(x, t) = {0}

hold for all x ∈ D and t ∈ I, and there is an n × n projector function P (t) continuously

differentiable with respect to t such that KerP (t) = KerA(x, t), ImP (t) = ImD(x, t), and

d(x, t) = P (t)d(x, t) for all x ∈ D and t ∈ I.

We focus on a further special form of a DAE:

A
d

dt
d(x(t), t) + b(x(t), t) = 0, (6)

where A is invariant of x(t) and t. Most DAEs which appear in circuit simulation are in the

form of (6). DAEs with index at most two are characterized as follows.

Proposition 3.2 ([15, Definition A.14, Remark A.18]). The DAE (6) has tractability index at

most two if and only if there exist continuous projectors Qi(x, t) onto KerMi(x, t) for i = 0, 1

such that

M2(x, t) := M1(x, t) +B(x, t)(I −Q0(x, t))Q1(x, t) (7)

is nonsingular for all x ∈ D and t ∈ I, where

M1(x, t) = M0(x, t) +B(x, t)Q0(x, t).

This characterization makes it easier to analyze a DAE with index at most two. The reader

is referred to [15] for the precise definition of the tractability index.
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4 Hybrid Equations with Properly Stated Leading Term

In this section, we rewrite the hybrid equation system as a DAE with properly stated leading

term. A reflexive generalized inverse [1] of a matrix A is a matrix A− which satisfies AA−A = A

and A−AA− = A−. We now define

A =



O −A⊤
LL I O O O

O O O O O O

O O O O O O

O O O O O O

O O O O O O

O O O I ACC O


, x(t) =



iλL
iλU
iλZ
uτ
Y

uτ
I

uτ
C


, d(x, t) = A−A



0

ϕτ

ϕλ

qτ

qλ

0


,

and

b(x, t) =



−A⊤
V Lvs(t)−A⊤

CLu
τ
C −A⊤

ILu
τ
I −A⊤

Y Lu
τ
Y −A⊤

ZLh
τ −A⊤

ULv
τ
U

−A⊤
V Uvs(t)−A⊤

CUu
τ
C −A⊤

IUu
τ
I −A⊤

Y Uu
τ
Y −A⊤

ZUh
τ −A⊤

UUv
τ
U + vλ

U

−A⊤
V Zvs(t)−A⊤

CZu
τ
C −A⊤

IZu
τ
I −A⊤

Y Zu
τ
Y −A⊤

ZZh
τ + hλ

gτ +AY Y g
λ +AY Zi

λ
Z +AY U i

λ
U +AY Li

λ
L +AY Jjs(t)

jτI +AIIj
λ
I +AIY g

λ +AIZi
λ
Z +AIU i

λ
U +AILi

λ
L +AIJjs(t)

ACIj
λ
I +ACY g

λ +ACZi
λ
Z +ACU i

λ
U +ACLi

λ
L +ACJjs(t)


.

By A = AA−A, this gives the hybrid equation system in the form of (6), where D denotes the

set of x(t) such that (i,u) is an operating point at t.

The matrix M0(x, t) is given by

M0(x, t) = AD(x, t) =



ML(x, t) O O O O O

O O O O O O

O O O O O O

O O O O O O

O O O O O O

O O O O O MC(x, t)


,

where

ML(x, t) =
(
−A⊤

LL I
)(Lτ

τ Lτ
λ

Lλ
τ Lλ

λ

)(
−ALL

I

)
,

MC(x, t) =
(
I ACC

)(Cτ
τ Cτ

λ

Cλ
τ Cλ

λ

)(
I

A⊤
CC

)
.

Lemma 4.1 ([10, Lemma 4.2]). Under Assumption 2.1, ML(x, t) and MC(x, t) are positive

definite.

We now have the following proposition.

Proposition 4.2 ([10, Proposition 4.6]). Under Assumption 2.1, the hybrid equation system

in the form of (6) is a DAE with properly stated leading term.
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We conclude this section by summarizing necessary and sufficient conditions for the hybrid

equations with index zero and at most one, which are given in [10]. Let us describe the

Resistor-Acyclic condition below.

[Resistor-Acyclic condition]

• Each resistor in Y and each dependent current source in SI belong to a cycle

consisting of independent voltage sources, capacitors, and itself.

• Each resistor in Z and each dependent voltage source in SU belong to a cutset

consisting of inductors, independent current sources, and itself.

A necessary and sufficient condition for index zero is as follows.

Theorem 4.3 ([10, Theorem 5.2]). Under Assumption 2.1, the tractability index of the hybrid

equations is zero if and only if the admissible partition (Ey, Ez) satisfies the Resistor-Acyclic

condition.

We define a CVU-loop as a cycle consisting of capacitors, independent voltage sources,

and/or dependent voltage sources, and an LJI-cutset as a cutset consisting of inductors, inde-

pendent current sources, and/or dependent current sources. In order to describe a necessary

and sufficient condition for index at most one, we further assume the following condition for

resistors.

Assumption 4.4. The principal submatrices Z and Y of the hybrid immittance matrix(
Z H

G Y

)
are symmetric.

Theorem 4.5 ([10, Corollary 5.7]). Under Assumptions 2.1, 2.2, and 4.4, the tractability index

of the hybrid equations is at most one if and only if the network graph Γ contains neither CVU-

loops with at least one dependent voltage source nor LJI-cutsets with at least one dependent

current source.

5 Criteria for index at most two

This section gives a necessary and sufficient condition for the hybrid equations to have index

at most two. In Section 5.1, we give projectors Q0(x, t), Q1(x, t) and compute M2(x, t). After

giving some lemmas in Section 5.2, we present a necessary condition for nonlinear time-varying

circuits in Section 5.3. In Section 5.4, we prove that the necessary condition is also sufficient

for linear time-invariant circuits if dependent sources satisfy the genericity assumption.
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5.1 Computation of M2(x, t)

In this section, we define projectors Q0 and Q1(x, t) and compute M2(x, t). The matrix Q0

given by

Q0 =



O O O O O O

O I O O O O

O O I O O O

O O O I O O

O O O O I O

O O O O O O


is a projector onto KerM0(x, t). Let us define

AZ =

(
−A⊤

ZU O

−A⊤
ZZ I

)
, AY =

(
I AY Y

O AIY

)
, N =

(
AY U AY Z

AIU AIZ

)
.

The computation of M1(x, t) gives

M1(x, t) =


O O O O O O

O O O −N⊤ O

O N O O O

O O O O O O

+


O O O O O O

O AZZA⊤
Z AZHA⊤

Y O

O AY GA⊤
Z AY Y A⊤

Y O

O O O O O O



+


ML(x, t) A⊤

ZLZ
τ
τAZU ∗ ∗ −A⊤

IL −A⊤
ZLH

τ
λA

⊤
IY O

O O O O O O

O O O O O O

O −ACY G
λ
τAZU +ACU ∗ ∗ ACY Y

λ
λ A⊤

IY MC(x, t)

 .

Let QU and QI be projectors onto Ker

AIU

AY U

AZU

 and Ker

A⊤
IY

A⊤
IZ

A⊤
IU

, respectively. We define

Q1(x, t) by

Q1(x, t) =



O O O O RLI(x, t) O

O QU O O O O

O O O O O O

O O O O O O

O O O O QI O

O RCU (x, t) O O O O


,

where

RCU (x, t) = −MC(x, t)
−1ACUQU and RLI(x, t) = ML(x, t)

−1A⊤
ILQI .

Then Q1(x, t) is a projector onto KerM1(x, t) under Assumptions 2.1 and 2.2, which is shown

in Appendix A.

We now compute M2(x, t) in the following. Let us define

AU =

(
−AUU

I

)
, AI =

(
I

A⊤
II

)
, AL =

(
−ALL

I

)
, AC =

(
I

A⊤
CC

)
.
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We also define the Jacobian matrices V , V̄ , J , J̄ for dependent sources by

(V )ij =
∂(vU )i
∂(uC)j

, (V̄ )ij =
∂(vU )i
∂(iL)j

, (J)ij =
∂(jI)i
∂(iL)j

, (J̄)ij =
∂(jI)i
∂(uC)j

.

Then M2(x, t) is given by ML(x, t) ∗ O

O M̃2(x, t) O

O ∗ MC(x, t)

 ,

where

M̃2(x, t) =

(
O −N⊤

N O

)
+

(
AZ O

O AY

)(
Z H

G Y

)(
A⊤

Z O

O A⊤
Y

)

+

(
AZ O

O AY

)(
Z H

G Y

)
O O O −AZLRLI(x, t)

O O O O

O O O O

A⊤
CY RCU (x, t) O O O



+


−A⊤

CURCU (x, t) O O O

−A⊤
CZRCU (x, t) O O O

O O O AY LRLI(x, t)

O O O AILRLI(x, t)



+


A⊤

U O

O O

O O

O A⊤
I


(
V V̄

J̄ J

)(
ACRCU (x, t) O O O

O O O ALRLI(x, t)

)
.

By Lemma 4.1, the nonsingularity of M2(x, t) is equivalent to that of M̃2(x, t).

5.2 Preliminaries

We hereafter denote


wU

wZ

wY

wI

 by w. Let us define

Θ = {w | RCU (x, t)wU = 0, RLI(x, t)wI = 0,wU ∈ ImQU ,wI ∈ ImQI ,wZ = 0,wY = 0} .

We use

FU =


ACU

AIU

AY U

AZU

 and FI =


A⊤

IY

A⊤
IZ

A⊤
IU

A⊤
IL


for convenience. Then Θ is rewritten as follows.

Lemma 5.1. Under Assumption 2.1, Θ = {w | wU ∈ KerFU ,wI ∈ KerFI ,wZ = 0,wY = 0}
holds.
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Proof. Let wU satisfy RCU (x, t)wU = 0 and wU ∈ ImQU . By wU ∈ ImQU , there exist a

vector x such that wU = QUx. Hence we have RCU (x, t)QUx = 0, which is equivalent to

ACUQ
2
Ux = 0 by Lemma 4.1. Since QU is a projector, ACUwU = 0 holds. Hence we have

wU ∈ KerACU , which implies wU ∈ KerFU because wU ∈ ImQU .

Next, let wU ∈ KerFU . Then we have wU ∈ ImQU and RCU (x, t)wU = 0. Thus,

wU ∈ KerFU is equivalent to RCU (x, t)wU = 0,wU ∈ ImQU .

We can prove a similar statement for wI , which completes the proof.

Let us define a VU-loop as a cycle consisting of independent voltage sources and/or de-

pendent voltage sources, and a JI-cutset as a cutset consisting of independent current sources,

and/or dependent current sources. An equivalent condition for Θ = {0} is given by the follow-

ing lemma.

Lemma 5.2. Under Assumption 2.1, Θ = {0} holds if and only if the network graph Γ contains

neither VU-loops nor JI-cutsets.

Proof. By Lemma 5.1, Θ = {0} is equivalent to KerFU = {0} and KerFI = {0}. The former

condition holds if and only if FU is of full column rank, which is equivalent to the condition

that 

I O AV U

O O ACU

O O AIU

O O AY U

O O AZU

O I AUU


is of full column rank. This is a submatrix of F with the column set corresponding to V ∪
SU , and hence it is of full column rank if and only if Γ contains no cycles that consist of

independent/dependent voltage sources. Similarly, KerFI = {0} is equivalent to Γ contains no

cutsets that consist of independent/dependent current sources.

5.3 A necessary condition

In order to give a necessary condition for the hybrid equations to have index at most two, we

provide the following lemma.

Lemma 5.3. It holds that Ker M̃2(x, t) ⊇ Θ.

Proof. Let w ∈ Θ. Since RCU (x, t)wU = 0, RLI(x, t)wI = 0, wZ = 0, and wY = 0, we have

M̃2(x, t)w =

(
O −N⊤

N O

)
w +

(
AZ O

O AY

)(
Z H

G Y

)(
A⊤

Z O

O A⊤
Y

)
w

=


−A⊤

IUwI

−A⊤
IZwI

AY UwU

AIUwU

+

(
AZ O

O AY

)(
Z H

G Y

)
−AZUwU

0

0

A⊤
IY wI


= 0,
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where the last step is due to wU ∈ ImQU and wI ∈ ImQI . Thus we obtain w ∈ Ker M̃2(x, t).

Lemma 5.3 leads to the following proposition.

Proposition 5.4. Suppose that the tractability index of the hybrid equations is at most two.

Under Assumptions 2.1 and 2.2, the network graph Γ contains neither VU-loops nor JI-cutsets.

Proof. Since M̃2(x, t) is nonsingular, Ker M̃2(x, t) = {0} holds. Hence Θ = {0} follows from

Lemma 5.3. Thus, the network graph Γ contains neither VU-loops nor JI-cutsets by Lemma 5.2.

5.4 A sufficient condition

We now focus on linear time-invariant circuits. Then, the necessary condition given in Sec-

tion 5.3 is shown to be sufficient under the genericity assumption on dependent sources. For

linear time-invariant circuits, the capacitance matrix C, the inductance matrix L, and the hy-

brid immittance matrix

(
Z H

G Y

)
are real matrices. The Jacobian matrices V , V̄ , J , J̄ for

dependent sources are also real matrices.

Let K be a field and F be an extension field of K. A subset (a1, . . . , aq) of F is called

algebraically independent over K if there exists no nontrivial polynomial f(p1, . . . , pq) in q

indeterminates over K such that f(a1, . . . , aq) = 0, where f(p1, . . . , pq) is called nontrivial if

some of its coefficients are distinct from zero. For a subset Y of F, we denote by K(Y) the field

adjunction, that is, K(Y) is the extension field of K generated by Y over K.

Let S ⊆ R be the set of nonzero entries which appear in C, L, and

(
Z H

G Y

)
, and D ⊆ R

be that for

(
V V̄

J̄ J

)
. We assume the following condition.

Assumption 5.5. The set D is algebraically independent over Q(S).

Assumption 5.5 means that nonzero entries of

(
V V̄

J̄ J

)
are regarded as independent pa-

rameters. We give a key lemma as follows.

Lemma 5.6. Let K be a field and F be an extension field of K. In addition, let A, B, and K

be an n× n matrix, an n×m matrix, and an m× n matrix over K, respectively. We assume

that W is an m × m matrix over F such that the set of its nonzero entries is algebraically

independent over K. If A is nonsingular, then A+BWK is nonsingular.

Proof. Let us define

Ã =

A O B

O W I

K I O

 .
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The row set and the column set of Ã are denoted by R(Ã) and C(Ã), and those of A are

denoted by R(A) and C(A). Since we have I −B O

O I O

O O I

 Ã

 I O O

−K I O

O O I

 =

A+BWK −BW O

−WK W I

O I O

 ,

the nonsingularity of A+BWK is equivalent to that of Ã. By the generalized Laplace expan-

sion,

det Ã =
∑

Q⊆C(Ã),|Q|=|P |

sgn(P,Q) · det Ã[P,Q] · det Ã[R(Ã) \ P,C(Ã) \Q],

where Ã[P,Q] denotes the submatrix of Ã with row set P and column set Q, and sgn(P,Q) =

±1. If A is nonsingular, there exists a nonzero term ã corresponding to P = R(A) and

Q = C(A). The other nonzero terms contain at least one nonzero entry of W . By the genericity

assumption on W , ã does not vanish by numerical cancellations. Hence Ã is nonsingular, which

implies that A+BWK is also nonsingular.

Let us define

M̃ ′
2(x, t) =

(
O −N⊤

N O

)
+

(
AZ O

O AY

)(
Z H

G Y

)(
A⊤

Z O

O A⊤
Y

)

+

(
AZ O

O AY

)(
Z H

G Y

)
O O O −AZLRLI(x, t)

O O O O

O O O O

A⊤
CY RCU (x, t) O O O



+


−A⊤

CURCU (x, t) O O O

−A⊤
CZRCU (x, t) O O O

O O O AY LRLI(x, t)

O O O AILRLI(x, t)

 .

Lemma 5.6 leads to the following lemma.

Lemma 5.7. Under Assumption 5.5, if M̃ ′
2(x, t) is nonsingular, then M̃2(x, t) is nonsingular.

Proof. In Lemma 5.6, we set K = Q(S) and F = R. By Assumption 5.5, we can apply

Lemma 5.6 to M̃2(x, t), where A = M̃ ′
2(x, t),

B =


A⊤

U O

O O

O O

O A⊤
I

 , W =

(
V V̄

J̄ J

)
, K =

(
ACRCU (x, t) O O O

O O O ALRLI(x, t)

)
.

This completes the proof.

The following lemma gives a sufficient condition for the nonsingularity of M̃ ′
2(x, t).
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Lemma 5.8. Under Assumptions 2.1 and 2.2, if Θ = {0} holds, the matrix M̃ ′
2(x, t) is non-

singular.

Proof. We prove Ker M̃ ′
2(x, t) ⊆ Θ. Let w :=


wU

wZ

wY

wI

 ∈ Ker M̃ ′
2(x, t). Then M̃ ′

2(x, t)w = 0

holds. Now we have 
Q⊤

U O O O

O O O O

O O O O

O O O Q⊤
I

 M̃ ′
2(x, t)w =


0

0

0

0

 ,

which is equivalent to Q⊤
UA

⊤
CURCU (x, t)wU = 0 and Q⊤

I AILRLI(x, t)wI = 0. By the definition

of RCU (x, t) and RLI(x, t), it holds that

w⊤
UQ

⊤
UA

⊤
CUMC(x, t)

−1ACUQUwU = 0 and w⊤
I Q

⊤
I AILML(x, t)

−1A⊤
ILQIwI = 0.

Since MC(x, t) and ML(x, t) are positive definite by Lemma 4.1, we obtain ACUQUwU = 0

and A⊤
ILQIwI = 0, which implies

RCU (x, t)wU = 0 and RLI(x, t)wI = 0. (8)

By substituting (8) to w⊤M̃ ′
2(x, t)w = 0, we obtain

w⊤

(
O −N⊤

N O

)
w +w⊤

(
AZ O

O AY

)(
Z H

G Y

)(
A⊤

Z O

O A⊤
Y

)
w = 0.

Since the first term is equal to zero and

(
Z H

G Y

)
is positive definite by Assumption 2.2,(

A⊤
Z O

O A⊤
Y

)
w = 0 holds. Hence we have

AZUwU = 0, wZ = 0, wY = 0, A⊤
IY wI = 0. (9)

By substituting (8) and (9) to M̃ ′
2(x, t)w = 0, we obtain

(
O −N⊤

N O

)
w = 0, which implies

AIUwU = 0, AY UwU = 0, A⊤
IZwI = 0, A⊤

IUwI = 0. (10)

Thus, w ∈ Θ follows from (8)–(10). Hence we obtain Ker M̃ ′
2(x, t) ⊆ Θ. It follows from

Θ = {0} that Ker M̃ ′
2(x, t) = {0}, which implies that M̃ ′

2(x, t) is nonsingular.

We now obtain a sufficient condition for the hybrid equations with index at most two.

Theorem 5.9. Under Assumptions 2.1, 2.2, and 5.5, if the network graph Γ contains neither

VU-loops nor JI-cutsets, the tractability index of the hybrid equations is at most two.
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Proof. Lemmas 5.2 and 5.8 indicate that if the network graph Γ contains neither VU-loops nor

JI-cutsets, then M̃ ′
2(x, t) is nonsingular. By Lemma 5.7, if M̃ ′

2(x, t) is nonsingular, M̃2(x, t) is

nonsingular and hence the tractability index of the hybrid equations is at most two.

Since commonly-used circuits contain neither VU-loops nor JI-cutsets, the hybrid analysis

results in a DAE with index at most two in most cases. Proposition 5.4 and Theorem 5.9 lead

to the following theorem.

Theorem 5.10. Under Assumptions 2.1, 2.2, and 5.5, the tractability index of the hybrid

equations is at most two if and only if the network graph Γ contains neither VU-loops nor

JI-cutsets.

Remark 5.11. Although we focus on linear time-invariant circuits satisfying Assumption 5.5

in the proof of Theorem 5.9, Theorem 5.9 is applicable to nonlinear time-varying circuits if

Lemma 5.7 holds. Note that, without Assumption 5.5, Lemma 5.7 possibly does not hold

because of unlucky numerical cancellations. In practical situations, however, such numerical

cancellations seldom occur.

Let us discuss Assumption 5.5, which ensures Lemma 5.7. Assumption 5.5 makes sense

for linear time-invariant circuits, because all the matrices C, L,

(
Z H

G Y

)
, and

(
V V̄

J̄ J

)
are

constant. On the other hand, nonlinear time-varying circuits do not satisfy Assumption 5.5 in

general. In fact, since nonzero entries of

(
V V̄

J̄ J

)
vary with t, there exists a time t when some

nonzero entries become rational numbers, which contradicts Assumption 5.5.

Remark 5.12. As described in Introduction, MNA often results in a DAE with tractability

index greater than two. Figure 1 shows a circuit with a dependent current source I controlled

by the current through V . When we apply MNA to this circuit, we obtain a DAE with index

three [6]. On the other hand, the hybrid analysis results in a DAE with index two. We remark

that we cannot apply Theorem 5.10 to this circuit, because we assume that the constitutive

equations of dependent sources are given by (3), where the arguments are only uC and iL
besides uV , iJ , and t.

Next, suppose that the dependent current source I in Figure 1 is controlled by the voltage

across C. Then this dependent current source is described in the form of (3). While MNA

results in a DAE with index three, the hybrid analysis results in a DAE with index two.

In fact, since the network graph Γ of this circuit contains neither VU-loops nor JI-cutsets,

Theorem 5.10 implies that the index is at most two. Moreover, the index is shown to be at

least two by Theorem 4.5. Thus, we can easily determine that the index of the hybrid equations

is exactly two in this case.

6 Conclusion

For nonlinear time-varying circuits with dependent sources, we give a necessary condition

for the hybrid equations to have tractability index at most two. Moreover, we prove that

the necessary condition is also sufficient for linear time-invariant circuits if dependent sources
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Table 1: Relation between our results and the previous works.

MNA
• Γ has neither CVU-loops nor LJI-cutsets

and additional conditions (see [4] for details)
=⇒ index ≤ 2 [4]

For circuits consisting of elements given by (1)–(4),

• Γ has neither CVU-loops nor LJI-cutsets ⇐⇒ index ≤ 1 [10]

Hybrid analysis (under Assumptions 2.1, 2.2, and 4.4)

• Γ has neither VU-loops nor JI-cutsets ⇐⇒ index ≤ 2 this

(under Assumptions 2.1, 2.2, and 5.5) paper

satisfy the genericity assumption. Our results also remain valid for nonlinear time-varying

circuits unless unlucky numerical cancellations occur.

The sufficient condition given in this paper indicates that DAEs arising from the hybrid

analysis have index at most two in most cases, because commonly-used circuits contain neither

VU-loops nor JI-cutsets. By combining our results with [10], we obtain criteria for tractability

index zero/one/two.

Let us summarize relations between our results and the previous works [4, 10] in Table 1.

In [4], the index of a DAE arising from MNA is shown to be at most two, if dependent sources

satisfy certain conditions. One of these conditions is that the network graph Γ has neither CVU-

loops nor LJI-cutsets. This condition appears in the characterization of the hybrid equations

with index at most one (Theorem 4.5). For the hybrid analysis, we can check that the necessary

and sufficient conditions for index at most two is weaker than that for index at most one.

As discussed in Remark 5.12, we restrict the constitutive equations of dependent sources to

the form of (3). Extending the results in this paper to circuits containing dependent sources

controlled by other variables, such as iV , iZ , and uY , is left for future investigation.
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A Proof for a projector Q1(x, t)

Under Assumptions 2.1 and 2.2, we show that Q1(x, t) is a projector onto KerM1(x, t). We

compute KerM1(x, t) in the following.
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Let w :=



wL

wU

wZ

wY

wI

wC


∈ KerM1(x, t). We use w1 =

(
wU

wZ

)
and w2 =

(
wY

wI

)
for convenience.

Since KerM1(x, t)w = 0 holds, we have

−N⊤w2 +AZZA⊤
Zw1 +AZHA⊤

Y w2 = 0, (11)

Nw1 +AY GA⊤
Zw1 +AY Y A⊤

Y w2 = 0. (12)

By computing w⊤
1 × (11) +w⊤

2 × (12), we obtain

w⊤
1 AZZA⊤

Zw1 +w⊤
1 AZHA⊤

Y w2 +w⊤
2 AY GA⊤

Zw1 +w⊤
2 AY Y A⊤

Y w2 = 0,

which is equivalent to

w⊤
1 AZZA⊤

Zw1 +w⊤
2 AY Y A⊤

Y w2 = 0,

because H = −G⊤ by Assumption 2.2. Since Z and Y are positive definite, A⊤
Zw1 = 0 and

A⊤
Y w2 = 0 hold. Hence we obtain

AZUwU = 0, wZ = 0, wY = 0, A⊤
IY wI = 0. (13)

By substituting (13) into KerM1(x, t)w = 0, we have

ML(x, t)wL −A⊤
ILwI = 0, (14)

A⊤
IUwI = 0, A⊤

IZwI = 0, AY UwU = 0, AIUwU = 0, (15)

A⊤
CUwU +MC(x, t)wC = 0. (16)

The conditions (13)–(16) are equivalent to

wZ = 0, wY = 0,

wU ∈ Ker

AIU

AY U

AZU

 = ImQU , wI ∈ Ker

A⊤
IY

A⊤
IZ

A⊤
IU

 = ImQI ,

wL = ML(x, t)
−1A⊤

ILwI , wC = −MC(x, t)
−1A⊤

CUwU ,

because ML(x, t) and MC(x, t) are nonsingular by Lemma 4.1. Thus, we obtain KerM1(x, t) =

ImQ1(x, t).
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