
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Dijkstra’s Algorithm and
L-concave Function Maximization

Kazuo MUROTA and Akiyoshi SHIOURA

METR 2012–05 March 2012

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Dijkstra’s Algorithm and

L-concave Function Maximization

Kazuo MUROTA

Graduate School of Information Science and Technology
University of Tokyo, Tokyo 113-8656, Japan

and

Akiyoshi SHIOURA

Graduate School of Information Sciences
Tohoku University, Sendai 980-8579, Japan

March 2012

Abstract

Dijkstra’s algorithm is a well-known algorithm for the single-source
shortest path problem in a directed graph with nonnegative edge length.
We investigate Dijkstra’s algorithm from the viewpoint of discrete con-
vex analysis, and point out that it can be regarded as an implementa-
tion of the steepest ascent algorithm for L-concave function maximiza-
tion.

1 Introduction

The single-source shortest path problem in a directed graph with nonneg-
ative edge length is a classical combinatorial optimization problem formu-
lated as follows: given a directed graph G = (V,E) with edge length ℓ(e) ≥ 0
(e ∈ E) and a vertex s ∈ V called a source, we want to compute the shortest
path length from the source vertex s to each vertex v ∈ V . Among many
algorithms for the shortest path problem, Dijkstra’s algorithm [2] described
below is most fundamental (see, e.g., [1, 9]).

Dijkstra’s Algorithm

Step 0: Set U := V . Set π(s) := 0, π(v) = +∞ (v ∈ V \ {s}).

Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .

1

Step 2: If X = ∅, then stop; for v ∈ V , π(v) is the shortest path length
from s to v.

Step 3: Set U := X. For v ∈ U , set

π(v) := min{π(v),min{π(u) + ℓ(u, v) | (u, v) ∈ E, u ∈ W}}.

Go to Step 1.

In this note, we discuss Dijkstra’s algorithm from the viewpoint of dis-
crete convex analysis. Discrete convex analysis is a theoretical framework
for well-solved combinatorial optimization problems introduced by Murota
(see [5]; see also [6]), where the concept of discrete convexity called L♮-
convexity plays a central role. As is well known, the single-source shortest
path problem can be formulated as a linear programming (LP) problem. We
observe first that the dual of the LP formulation can be seen as a special
case of L♮-concave function maximization (see Section 2 for the definition
of L♮-concavity). Then we point out that the steepest ascent algorithm for
L♮-concave function maximization, when applied to the LP dual of the short-
est path problem and implemented with some auxiliary variables, coincides
exactly with Dijkstra’s algorithm.

2 Review of L♮-convexity

In this section we review the concepts of L♮-convex sets and L♮-concave
functions, and present some useful properties. See [6] for more account of
these concepts.

2.1 L♮-convex Sets

Let V be a finite set. A set S ⊆ ZV of integral vectors is said to be L♮-convex
if it is nonempty and satisfies the following condition:

if p, q ∈ S, then

⌈
p+ q

2

⌉
,

⌊
p+ q

2

⌋
∈ S, (2.1)

where for x ∈ RV , ⌈x⌉ and ⌊x⌋ denote, respectively, the integer vectors
obtained from x by component-wise round-up and round-down to the nearest
integers. The condition (2.1) is called the discrete midpoint convexity for a
set.

Discrete midpoint convexity (2.1) implies the following property. For
p, q ∈ RV , we denote by p∨q and p∧q, respectively, the vectors of component-
wise maximum and minimum of p and q, i.e.,

(p ∨ q)(v) = max{p(v), q(v)}, (p ∧ q)(v) = min{p(v), q(v)} (v ∈ V).

2

Proposition 2.1 (cf. [6, Chapter 5]). Let S ⊆ ZV be an L♮-convex set. If
p, q ∈ S, then it holds that p ∨ q, p ∧ q ∈ S.

This property implies, in particular, that a maximal vector in a bounded
L♮-convex set is uniquely determined.

The following proposition gives a polyhedral description of L♮-convex
sets.

Proposition 2.2 (cf. [6, Chapter 5]). A set S ⊆ ZV is an L♮-convex set if
and only if S is a nonempty set represented as

S = {p ∈ ZV | p(v)− p(u) ≤ a(u, v) (u, v ∈ V, u ̸= v),
b(v) ≤ p(v) ≤ c(v) (v ∈ V)}

with some a(u, v) ∈ Z∪{+∞} (u, v ∈ V, u ̸= v), b(v) ∈ Z∪{−∞} (v ∈ V),
and c(v) ∈ Z ∪ {+∞} (v ∈ V).

2.2 L♮-concave Functions

Let g : ZV → R ∪ {−∞} be a function defined on the integer lattice points,
and denote dom g = {p ∈ ZV | g(p) > −∞}. We say that g is an L♮-concave
function if dom g ̸= ∅ and it satisfies the following condition:

g(p) + g(q) ≤ g

(⌈
p+ q

2

⌉)
+ g

(⌊
p+ q

2

⌋)
(∀p, q ∈ dom g).

In the maximization of an L♮-concave function g : ZV → R ∪ {−∞}, a
maximizer of g can be characterized by a local optimality.

Theorem 2.3. Let g : ZV → R∪{−∞} be an L♮-concave function. A vector
p ∈ dom g is a maximizer of g if and only if g(p) ≥ g(p + χX) (∀X ⊆ V)
and g(p) ≥ g(p− χX) (∀X ⊆ V).

A maximizer of g can be computed by the following steepest ascent
algorithm. For X ⊆ V , we denote by χX ∈ {0,+1}V the characteristic
vector of X. We suppose that an initial vector p0 ∈ dom g is given in
advance.

Algorithm 0
(Steepst Ascent Algorithm for L♮-concave Function Maximization)

Step 0: Set p := p0.

Step 1: Find ε ∈ {+1,−1} and X ⊆ V that maximizes g(p+ εχX).

Step 2: If g(p) ≥ g(p+ εχX), then stop; p is a maximizer of g.

Step 3: Set p := p+ εχX . Go to Step 1.

3

It is noted that Step 1 can be done in (strongly) polynomial time by using
any of polynomial-time algorithms for submodular set function minimization
[3, 8] since the set functions ρ+, ρ− : 2V → R ∪ {+∞} defined by

ρ+(X) = g(p)− g(p+ χX), ρ−(X) = g(p)− g(p− χX) (X ⊆ V)

are submodular functions with ρ+(∅) = ρ−(∅) = 0.
The steepest ascent algorithm above terminates in a finite number of

iterations if dom g is a finite set. The obtained vector p is indeed a maximizer
of g by Theorem 2.3. See [4, 7] for the time complexity of the algorithms of
this type.

3 Shortest Path Problem and L♮-convexity

We show the connection of the single-source shortest path problem with
L♮-convex sets and L♮-concave functions.

A linear programming formulation of the single-source shortest path
problem is given as follows:

(P)

Minimize
∑

(u,v)∈E

ℓ(u, v)x(u, v)

subject to
∑

{x(u, s) | (u, s) ∈ E, u ∈ V }
−
∑

{x(s, u) | (s, u) ∈ E, u ∈ V } = −(n− 1),∑
{x(u, v) | (u, v) ∈ E, u ∈ V }
−
∑

{x(v, u) | (v, u) ∈ E, u ∈ V } = 1 (v ∈ V \ {s}),
x(u, v) ≥ 0 ((u, v) ∈ E).

This LP can be seen as a minimum-cost flow problem, where a unit of flow
is sent from the source vertex s to each vertex v ∈ V \{s}, and the flow cost
on edge (u, v) ∈ E is given by ℓ(u, v).

The LP dual of (P) is given as follows:

Maximize
∑

v∈V \{s}

{p(v)− p(s)}

subject to p(v)− p(u) ≤ ℓ(u, v) ((u, v) ∈ E),
p(v) ∈ R (v ∈ V).

In this LP, we can fix p(s) = 0 without loss of generality, which yields the
following LP:

(D)

Maximize
∑

v∈V \{s}

p(v)

subject to p(v)− p(u) ≤ ℓ(u, v) ((u, v) ∈ E),
p(s) = 0,
p(v) ∈ R (v ∈ V \ {s}).

4

This problem will be the main object of our discussion.
We denote by S ⊆ RV the feasible region of (D), i.e.,

S = {p ∈ RV | p(v)− p(u) ≤ ℓ(u, v) ((u, v) ∈ E), p(s) = 0}. (3.1)

By Proposition 2.2, S is an L♮-convex set. Hence, the problem (D) can be
seen as maximization of a linear function with positive coefficients over an
L♮-convex set.

We assume that there exists a directed path from s to every v ∈ V \{s}.
Then, (P) has a feasible (and optimal) solution, and by LP duality, the
optimal value of (D) is finite. Hence, the set S is bounded from above, and
Proposition 2.1 implies that S has a unique maximal vector p∗, which is an
optimal solution of (D). It is also noted that the zero vector 0 is contained
in S since ℓ(u, v) ≥ 0 for (u, v) ∈ E.

We define a function g : ZV → R ∪ {−∞} by

gD(p) =


∑

v∈V \{s}

p(v) (if p ∈ S),

−∞ (otherwise).

(3.2)

We see that the maximization of gD is equivalent to the problem (D). Since
S satisfies the discrete midpoint convexity (2.1), gD satisfies the inequality

gD(p) + gD(q) ≤ gD

(⌈
p+ q

2

⌉)
+ gD

(⌊
p+ q

2

⌋)
for all p, q ∈ dom gD; in fact, the inequality above holds with equality. This
means that gD is an L♮-concave function. Hence, the problem (D) can be
seen as a special case of L♮-concave function maximization.

4 Dijkstra’s Algorithm and Steepest Ascent Algo-
rithm

4.1 Steepest Ascent Algorithm Applied to Shortest Path
Problem

We apply the steepest ascent algorithm in Section 2 to the maximization
of the L♮-concave function gD in (3.2) associated with the shortest path
problem, where the zero vector 0 ∈ S is used as the initial vector p0. Then,
we observe the following properties.

Proposition 4.1.
(i) The condition gD(p) ≥ gD(p−χY) (∀Y ⊆ V) holds in each iteration, and
therefore we may assume ε = +1 in Step 1.
(ii) In Step 1, we have

X ∈ argmax{|Y | | Y ⊆ V, p+ χY ∈ S}. (4.1)

5

In particular, in Step 2 it holds that gD(p) ≥ gD(p + χX) if and only if
X = ∅.
(iii) Denote by Xk the set X found in Step 1 of the k-th iteration. Then, it
holds that Xk ⊆ Xk−1 for all k ≥ 2.

Proof. [Proof of (i)] The vector p is always contained in S in each iteration.
Hence, we have gD(p) =

∑
v∈V \{s} p(v). If p − χY ̸∈ S, then gD(p − χY) =

−∞ < gD(p). If p− χY ∈ S, then

gD(p− χY) =
∑

v∈V \{s}

p(v)− |Y \ {s}| ≤ gD(p).

[Proof of (ii)] Since X ∈ argmax{g(p+χY) | Y ⊆ V, p+χY ∈ S}, we
have s ̸∈ X. For Y ⊆ V \ {s} with p+ χY ∈ S, it holds that

gD(p+ χY) =
∑

v∈V \{s}

p(v) + |Y | = gD(p) + |Y |.

Hence, the equation (4.1) follows. Then the latter statement is obvious.
[Proof of (iii)] For a fixed k ≥ 2, let p′ =

∑k−2
i=1 χXi . Since p′ and

p′+χXk−1
+χXk

are in S, the discrete midpoint convexity (2.1) for S implies
that p′+χXk−1∪Xk

∈ S. By the choice ofXk−1, we have |Xk−1∪Xk| = |Xk−1|
(see the claim (ii)), implying that Xk ⊆ Xk−1.

From the observation above, the steepest ascent algorithm in Section 2
applied to the function gD in (3.2) can be rewritten as follows with a variable
U and a step size λ.

Algorithm 1 (Steepest Ascent Algorithm for (D))

Step 0: Set p := 0, U := V .

Step 1: Let X ∈ argmax{|Y | | Y ⊆ U, p+ χY ∈ S}.

Step 2: If X = ∅, then stop; p is an optimal solution of (D).

Step 3: Set p := p + λχX with λ = max{µ ∈ Z+ | p + µχX ∈ S}. Set
U := X. Go to Step 1.

It is noted that if v ∈ U , the value p(v) may possibly be incremented in
the following iterations, and if v ∈ V \ U , the value p(v) remains the same
in the following iterations. We also have s ̸∈ U in each iteration, except for
the first iteration.

Remark 4.2. Algorithm 1 can be applied to the following more general
problem:

Maximize
∑
v∈V

w(v)p(v) subject to p ∈ S,

where w ∈ RV is a positive vector and S ⊆ ZV is an L♮-convex set containing
the zero vector.

6

4.2 Implementation with Auxiliary Variables

We present an implementation of Algorithm 1 by using auxiliary variables.
This reveals the connection between the steepest ascent algorithm for L♮-
concave function maximization and Dijkstra’s algorithm.

In Steps 1 and 2 of Algorithm 1, we need to compute a set X and a step
size λ. This can be done easily by using auxiliary variables π(v) (v ∈ V)
that satisfy the following conditions at the beginning of each iteration:

π(s) = 0, (4.2)

π(v) = min{p(u) + ℓ(u, v) | (u, v) ∈ E, u ∈ V \ U} (v ∈ U \ {s}). (4.3)

Proposition 4.3. Suppose that π(v) (v ∈ V) satisfy the conditions (4.2)
and (4.3) with respect to p ∈ S and U ⊆ V .
(i) p(v) ≤ π(v) holds for all v ∈ U .
(ii) For Y ⊆ U and µ ∈ Z+, we have p + µχY ∈ S if and only if µ ≤
min{π(v)− p(v) | v ∈ Y }.

Proof. [Proof of (i)] Since p ∈ S, we have p(s) = 0 and p(u)+ℓ(u, v) ≥ p(v)
for (u, v) ∈ E with u ∈ V \ U and v ∈ U \ {s}. Hence, we have p(s) = π(s)
and p(v) ≤ π(v) for all v ∈ U \ {s} by (4.2) and (4.3).

[Proof of (ii)] If s ∈ Y , then we have p+µχY ∈ S if and only if µ = 0,
which is equivalent to

µ ≤ min{π(v)− p(v) | v ∈ Y } = π(s)− p(s) = 0.

Hence, we consider the case with s ̸∈ Y . Put q = p + µχY . We have
q ∈ S if and only if

q(v)− q(u) ≤ ℓ(u, v) (∀(u, v) ∈ E, u ∈ Y, v ∈ V \ Y), (4.4)

since, for other edges (u, v), it holds that q(v)−q(u) ≤ p(v)−p(u) ≤ ℓ(u, v).
For (u, v) ∈ E with u ∈ Y and v ∈ V \Y , we have q(v)−q(u) = p(v)−p(u)+µ,
and therefore the condition (4.4) can be rewritten as

µ ≤ p(u) + ℓ(u, v)− p(v) (∀(u, v) ∈ E, u ∈ Y, v ∈ V \ Y),

which is equivalent to µ ≤ min{π(v)− p(v) | v ∈ Y } by (4.3).

Proposition 4.4. Suppose that π(v) (v ∈ V) satisfy the conditions (4.2)
and (4.3) at the beginning of an iteration of Algorithm 1. Then, we have
X = {v | v ∈ U, p(v) < π(v)} in Step 1, and λ = min{π(v)− p(v) | v ∈ X}
in Step 3.

Proof. Let Z = {v | v ∈ U, p(v) < π(v)}. By Proposition 4.3 (ii), we have
p + χY ∈ S if and only if Y ⊆ Z. Hence, X in Step 1 is equal to Z. By
Proposition 4.3 (ii) again, we have p+µχX ∈ S if and only if µ ≤ min{π(v)−
p(v) | v ∈ X}. Hence, λ in Step 3 is equal to min{π(v)− p(v) | v ∈ X}.

7

Based on Proposition 4.4, Algorithm 1 can be implemented by using the
auxiliary variables π(v) (v ∈ V) as follows. As shown in Proposition 4.5
below, π(v) (v ∈ V) satisfy the conditions (4.2) and (4.3) at the beginning
of each iteration, which guarantees that Algorithm 2 computes an optimal
solution of (D).

Algorithm 2 (Implementation of Algorithm 1 with auxiliary variables)

Step 0: Set p := 0, U := V . Set π(s) := 0, π(v) = +∞ (v ∈ V \ {s}).

Step 1: Set X := {v | v ∈ U, p(v) < π(v)} and W := U \X.

Step 2: If X = ∅, then stop; p is an optimal solution of (D).

Step 3: Set p := p+λχX with λ = min{π(v)− p(v) | v ∈ X}. Set U := X.
For v ∈ U , set

π(v) := min{π(v),min{π(u) + ℓ(u, v) | (u, v) ∈ E, u ∈ W}}.

Go to Step 1.

Proposition 4.5. In Step 1 of each iteration in Algorithm 2, the following
properties hold:
(i) The values p(v) (v ∈ U) are the same.
(ii) Auxiliary variables π(v) (v ∈ V) satisfy the conditions (4.2) and (4.3).

Proof. We prove the claims inductively in each iteration.
We consider the first iteration. Since U = V , the right-hand side of (4.3)

is given as +∞. Hence, (i) and (ii) follow from the setting of p and π in Step
0. We note that p(s) = π(s) holds at the beginning of the first iteration,
and therefore we have s ̸∈ X; this means that s is never contained in the set
U in the following iterations. Hence, the condition (4.2) is always satisfied
until the algorithm terminates.

Suppose that (i) and (ii) hold at the beginning of some iteration. We
show that p and π satisfy these properties at the end of this iteration (i.e.,
after Step 3 is executed). We denote by p′, π′, and U ′, respectively, the
vectors p, π, and the set U after the update in Step 3, i.e., p′ = p + λχX ,
U ′ = X, and

π′(v) = min{π(v),min{π(u)+ ℓ(u, v) | (u, v) ∈ E, u ∈ W}} (v ∈ U ′). (4.5)

Since p′ = p + λχX and U ′ = X, the property (i) for p and U implies
that (i) holds for p′ and U ′ at the end of the iteration.

Since (ii) holds in Step 1, we have p(v) ≤ π(v) holds for all v ∈ U by
Proposition 4.3 (i). Hence, the set W = U \X is given as

W = {v | v ∈ U, p(v) = π(v)}. (4.6)

8

Let v ∈ U ′. It holds that

π′(v) = min{π(v),min{p(u) + ℓ(u, v) | (u, v) ∈ E, u ∈ W}}
= min{min{p(u) + ℓ(u, v) | (u, v) ∈ E, u ∈ V \ U},

min{p(u) + ℓ(u, v) | (u, v) ∈ E, u ∈ W}}
= min{p′(u) + ℓ(u, v) | (u, v) ∈ E, u ∈ V \ U ′},

where the first equality is by (4.5) and (4.6), the second by (ii) for π, and
the third by V \ U ′ = (V \ U) ∪W and p′(u) = p(u) for u ∈ V \ U ′. Hence,
the condition (4.3) holds at the end of this iteration.

In Algorithm 2, Step 1 can be rewritten as follows:

Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .

This is possible due to the following facts:

• values in {p(v) | v ∈ U} are the same (by Proposition 4.5 (i)),

• the inequality p(v) ≤ π(v) holds for v ∈ U (by Proposition 4.3 (i)),

• W = {v | v ∈ U, p(v) = π(v)} (by (4.6) in the proof of Proposition
4.5).

Moreover, the following property implies that the variables p(v) (v ∈ V)
are not needed to compute an optimal solution of (D).

Proposition 4.6. We have π(v) = p(v) for all v ∈ V when Algorithm 2
terminates.

Proof. In Step 1 of each iteration, we have π(v) = p(v) for all v ∈ W
(cf. (4.6)). All elements in W are deleted from the set U in Step 3 of the
iteration, and for any v ∈ V , the value p(v) does not change once v is deleted
from U . Hence, the claim follows.

Hence, the variables p(v) (v ∈ V) can be eliminated from Algorithm 2,
and the resulting algorithm coincides with Dijkstra’s algorithm described in
Section 1. That is, Dijkstra’s can be recognized as an algorithm which
implicitly computes an optimal solution of the L♮-concave maximization
problem (D) in a greedy way.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

9

[2] E.W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik 1 (1959) 269–271.

[3] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial, strongly
polynomial-time algorithm for minimizing submodular functions. Jour-
nal of the ACM 48 (2001) 761–777.

[4] V. Kolmogorov and A. Shioura. New algorithms for convex cost tension
problem with application to computer vision. Discrete Optimization 6
(2009) 378–393.

[5] K. Murota. Discrete convex analysis. Mathematical Programming 83
(1998) 313–371.

[6] K. Murota. Discrete Convex Analysis. Society for Industrial and Ap-
plied Mathematics, 2003.

[7] K. Murota. On steepest descent algorithms for discrete convex func-
tions. SIAM Journal on Optimization 14 (2003) 699–707.

[8] A. Schrijver. A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time. Journal of Combinatorial Theory
Series B 80 (2000) 346–355.

[9] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, Berlin, 2003.

10

