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Abstract

We propose a betting strategy based on Bayesian logistic regression modeling for the
probability forecasting game in the framework of game-theoretic probability by Shafer and
Vovk [16]. We prove some results concerning the strong law of large numbers in the prob-
ability forecasting game with side information based on our strategy. We also apply our
strategy for assessing the quality of probability forecasting by the Japan Meteorological
Agency. We find that our strategy beats the agency by exploiting its tendency of avoiding
clear-cut forecasts.

Keywords and phrases: exponential family, game-theoretic probability, Japan Meteorological
Agency, probability of precipitation, strong law of large numbers.

1 Introduction
In this paper we consider assessing quality of probability forecasting for binary outcomes. A
primary example of probability forecasting is the probability of precipitation announced by
weather forecasting agencies. The binary outcomes are either “rain” (more precisely, precipita-
tion above certain amount during a specified period at a particular location) or “no rain”. In the
United States the National Weather Service started to announce probability of precipitation in
1965 (cf. [6]), whereas the Japan Meteorological Agency started probability forecasting in 1980
for Tokyo area and extended it to the whole Japan in 19861. How can we assess the quality of
probability forecasting? We propose to assess probability forecasting by setting up a hypothet-
ical betting game against forecasting agencies in the framework of game-theoretic probability
by Shafer and Vovk [16].

We can regard the capital process of a betting strategy as a test statistic of a statistical hy-
pothesis ([15], [17]). Our null hypothesis is that given the probability pn announced by the

∗Japanese Association for Promoting Quality Assurance in Statistics
†Graduate School of Information Science and Technology, University of Tokyo
‡Emeritus, Faculty of Economics, University of Tokyo
1http://www.jma.go.jp/jma/kishou/intro/gyomu/index2.html (in Japanese)
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agency, the outcome is indistinguishable from the Bernoulli trial with success probability pn. If
this hypothesis is true, then the capital process becomes a non-negative martingale and the capi-
tal process converges to a finite value almost surely. However if the announced probability pn is
not good, then a clever strategy may be able to beat the forecasting agency in the betting game.
In our game we construct a betting strategy based on Bayesian logistic regression modeling,
which is a very standard statistical model for analyzing binary responses. We will prove some
results on the strong law of large numbers in probability forecasting game with side information
based on our betting strategy. We also see that our strategy works well against probability of
precipitation announced by the Japan Meteorological Agency.

Organization of this paper is as follows. In Section 2 we formulate the probability forecast-
ing game with side information and derive some basic properties of betting strategies. It also
serves as a brief introduction to game-theoretic probability theory. In Section 3 we introduce
our betting strategy based on logistic regression model. In Section 4 we prove some properties
of our logistic betting strategy in the framework of game-theoretic probability. In Section 5
we give numerical studies of our strategy. In particular we apply our strategy to the data on
probability of precipitation announced by the Japan Meteorological Agency. We end the paper
with some discussions in Section 6.

2 Formulation of the probability forecasting game and sum-
mary of preliminary results

In this section we formulate the probability forecasting game and extend it to include side
information. We mostly follow the results in [10].

At the beginning of day n (or at the end of day n − 1) an agency (we call it “Forecaster”)
announces a probability pn of certain event in day n, such as precipitation in day n. Let xn = 0, 1
be the indicator variable for the event, i.e., xn = 1 if the event occurs and xn = 0 otherwise. We
suppose that a player “Reality” decides the binary outcome xn. When Forecaster announces pn,
it also sells a ticket with the price of pn per ticket. The ticket pays one monetary unit when
the event occurs in day n, i.e., the value of the ticket at the end of day n is xn. A bettor or
gambler, called “Skeptic”, buys Mn tickets with the price of pn per ticket. Then the payoff to
Skeptic in day n is Mn(xn − pn). We allow Mn to be negative, so that Skeptic can bet also on
the non-occurrence of the event. If the probability announced by the agency is appropriate, it is
hard for Skeptic to make money in this game. On the other hand, if the probability is biased in
some way, Skeptic may be able to increase his capital denoted by Kn. Hence we can measure
the quality of probability forecasting in terms of Kn.

We now give a protocol of the game, following the notational convention of [16].

Binary Probability Forecasting (BPF)
Protocol:

Skeptic announces his initial capital K0 = 1.
FOR n = 1, 2, . . .:

Forecaster announces pn ∈ (0, 1).
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Skeptic announces Mn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + Mn(xn − pn).

Collateral Duty: Skeptic must keep Kn non-negative.

Forecaster is supposed to decide its forecast pn based on all relevant side information avail-
able at the time of announcement. We modify the above protocol so that Forecaster also dis-
closes the relevant side information cn, which is a d-dimensional column vector, together with
the probability pn. Furthermore we define auxiliary capital processes Sn andVn.

Binary Probability ForecastingWith Side Information (BPFSI)
Protocol:
K0 := 1,S0 := 0,V0 := 0.
FOR n = 1, 2, . . .:

Forecaster announces pn ∈ (0, 1) and cn ∈ Rd.
Skeptic announces Mn.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + Mn(xn − pn).
Sn := Sn−1 + cn(xn − pn).
Vn := Vn−1 + cnc′n pn(1 − pn).

Collateral Duty: Skeptic must keep Kn non-negative.

In the protocol, c′n denotes the transpose of cn, Kn is a scalar, Sn is a d-dimensional column
vector andVn is a d × d symmetric matrix.

If d = 1 and cn ≡ 1, then Sn =
∑n

i=1(xi − pi). When we study the usual strong law of
large numbers in game-theoretic probability, we are interested in the convergence Sn/n → 0
as n → ∞. Generalizing this case, in the presence of side information, we are interested in
the convergence V−1

n Sn → 0, although the order of Vn may be different from O(n). We call
this convergence the usual form of the strong law of large numbers in BPFSI. See Theorem
4.1 in Section 4.1. However, as we prove in Theorem 4.2 of Section 4.2, under mild regularity
conditions, we can prove a stronger result

lim
n

g(Vn)−1Sn = 0,

where g(V) is close toV1/2 such as g(V) = V1/2+ε , ε > 0.
Let

νn =
Mn

Kn−1

denote the fraction of the capital Skeptic bets on day n. Then the capital process Kn is written
as

Kn =

n∏
i=1

(1 + νi(xi − pi)). (1)
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Now suppose that Skeptic himself models Reality’s move as a Bernoulli variable with the
success probability p̂n ∈ (0, 1). If Skeptic totally trusts Forecaster, then he sets p̂n = pn. How-
ever if Skeptic does not totally trust Forecaster he may formulate p̂n differently from pn. Fur-
thermore suppose that Skeptic uses the “Kelly criterion” ([12], [9]) to determine νn so as to
maximize the expected value of the logarithm of the capital growth under p̂n:

νn : E p̂n[log(1 + ν(xn − pn))] → max .

Writing

E p̂n[log(1 + ν(xn − pn))] = p̂n log(1 + ν(1 − pn)) + (1 − p̂n) log(1 − νpn)

and differentiating this with respect to ν, the unique maximizer νn is obtained as

νn =
p̂n − pn

pn(1 − pn)
=

p̂n

pn
− 1 − p̂n

1 − pn
. (2)

With this choice of νn we have

1 + νn(xn − pn) =

p̂n/pn if xn = 1
(1 − p̂n)/(1 − pn) if xn = 0

=
p̂xn

n (1 − p̂n)1−xn

pxn
n (1 − pn)1−xn

.

Hence (1) is written as

Kn =

∏n
i=1 p̂xi

i (1 − p̂i)1−xi∏n
i=1 pxi

i (1 − pi)1−xi
.

In the case that Skeptic models the joint probability p̂(x1, . . . , xn) of Reality’s moves, p̂n is
given as the conditional probability

p̂n =
p̂(x1, . . . , xn−1, 1)
p̂(x1, . . . , xn−1)

.

In this case
p̂xn

n (1 − p̂n)1−xn =
p̂(x1, . . . , xn−1, xn)

p̂(x1, . . . , xn−1)
, xn = 0, 1,

and Kn is written as

Kn =
p̂(x1, . . . , xn)∏n

i=1 pxi
i (1 − pi)1−xi

. (3)

For the rest of this section we introduce some terminology of game-theoretic probability.
An infinite sequence of Forecaster’s moves and Reality’s moves

ξ = p1c1x1 p2c2x2 . . .
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is called a path. The set Ω of all paths is called the sample space. A subset E ⊂ Ω is an event.
A strategy P of Skeptic determines p̂n based on a partial path p1c1x1 . . . pn−1cn−1xn−1 pncn:

P : p1c1x1 . . . pn−1cn−1xn−1 pncn 7→ p̂n, n = 1, 2, . . . .

KPn = KPn (ξ) denotes the capital process when Skeptic adopts the strategy P. We say that
Skeptic can weakly force an event E by a strategy P if KPn is never negative and

lim sup
n
KPn (ξ) = ∞ ∀ξ < E.

For two events E1, E2 ⊂ Ω, EC
1 ∪ E2 is denoted as E1 ⇒ E2, where EC

1 is the complement of
E1. We say that by a strategy P Skeptic can weakly force a conditional event E1 ⇒ E2 if KPn is
never negative and

lim sup
n
KPn (ξ) = ∞ ∀ξ ∈ E1 ∩ EC

2 .

E1 is interpreted as a set of regularity conditions for the event E2 to hold.
Let λmax,n and λmin,n denote the maximum and the minimum eigenvalues ofVn. In this paper

we consider the following regularity conditions:

i) limn λmin,n = ∞.

ii) lim supn λmax,n/λmin,n < ∞.

iii) {c1, c2, . . . } is a bounded set.

Namely we take E1 as

E1 = {ξ | lim
n
λmin,n = ∞, lim sup

n
λmax,n/λmin,n < ∞ and c1, c2, . . . are bounded}. (4)

The condition i) makes the meaning of “Vn → ∞” precise. The condition ii) means that Vn

stays away from being singular. For d = 1 ii) is trivial and not needed.

3 Logistic betting strategy
In this section we introduce a betting strategy based on logistic modeling of Reality’s moves.

As in the previous section Skeptic models xn as a Bernoulli variable with the success proba-
bility p̂n. Furthermore we specify that Skeptic uses the following logistic regression model for
the logarithm of the odds ratio:

log
p̂n

1 − p̂n
= log

pn

1 − pn
+ θ′cn, (5)

where θ ∈ Rd is a parameter vector.
In previous studies in game-theoretic probability, many strategies of Skeptic depend only

on xi − pi, i ≤ n − 1, and do not depend on pn. However obviously it is more reasonable to
consider Skeptic’s strategies which depend on pn. Strategies explicitly depending on pn are also

5



important from the viewpoint of defensive forecasting ([20], [18]). We again discuss this point
in Section 4.3.

We now consider the capital process K θ
n of (5) for a fixed θ ∈ Rd. Solving for p̂n we have

p̂n =
pneθ

′cn

1 + pn(eθ′cn − 1)
, 1 − p̂n =

1 − pn

1 + pn(eθ′cn − 1)
. (6)

Then

p̂xn
n (1 − p̂n)1−xn = pxn

n (1 − pn)1−xn
eθ
′cn xn

1 + pn(eθ′cn − 1)

and the capital process is written as

K θ
n =

n∏
i=1

p̂xi
i (1 − p̂i)1−xi

pxi
i (1 − pi)1−xi

=
eθ
′∑n

i=1 ci xi∏n
i=1(1 + pi(eθ

′ci − 1))
. (7)

Naturally it is better for Skeptic to choose the value of θ depending on the moves of other
players. In this paper we consider a Bayesian strategy, which specifies a prior distribution
π(θ) for θ. Bayesian strategies for Binary Probability Forecasting with constant pn ≡ p was
considered in [10]. Bayesian strategy is basically the same as the universal portfolio by Cover
and his coworkers ([3], [4], [5]). In the universal portfolio, a prior is put on the betting ratio
ν itself, where as we put a prior on the parameter of Skeptic’s model. Furthermore differently
from [4] we allow continuous side information.

In the Bayesian logistic strategy with the prior density function π(θ) of θ, the capital process
Kπ

n is written as

Kπ
n =

∫
Rd
K θ

nπ(θ)dθ =
∫
Rd

eθ
′∑n

i=1 ci xi∏n
i=1(1 + pi(eθ

′ci − 1))
π(θ)dθ.

Kπ
n is of the form (3) where

p̂(x1, . . . , xn) =
n∏

i=1

pxi
i (1 − pi)1−xi

∫
Rd

eθ
′∑n

i=1 ci xi∏n
i=1(1 + pi(eθ

′ci − 1))
π(θ)dθ.

In this paper we consider a prior density which is positive in a neighborhood of the origin.
We call such π “a prior supporting a neighborhood of the origin”.

4 Properties of logistic betting strategy from the viewpoint of
game-theoretic probability

In this section we prove game-theoretic properties of our Bayesian logistic strategy.
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4.1 Weak forcing of the usual form of the strong law of large numbers
The first theoretical result on our logistic betting strategy is the following theorem.

Theorem 4.1. In BPFSI, by a Bayesian logistic strategy with a prior supporting a neighborhood
of the origin, Skeptic can weakly force

E1 ⇒ lim
n
V−1

n Sn = 0,

where E1 is given in (4).

The rest of this subsection is devoted to a proof of this theorem. The basic logic of our proof
is the same as in Section 3.2 of [16].

We first consider the logarithm of K θ
n in (7) for a fixed θ:

logK θ
n = θ

′
n∑

i=1

cixi −
n∑

i=1

log(1 + pi(eθ
′ci − 1)).

For notational simplicity we write
u(θ) = logK θ

n .

We investigate the behavior of u(θ) for θ close the origin. Fix θ ∈ Rd with unit length (i.e.
‖θ‖ = 1) and consider u(sθ), 0 ≤ s ≤ ε. Note that u(0) = 0. We will choose ε appropriately later
in (11).

The derivative of u(sθ) with respect to s is written as follows.

∂

∂s
u(sθ) = θ′

n∑
i=1

cixi −
n∑

i=1

θ′ci piesθ′ci

1 + pi(esθ′ci − 1)

= θ′
n∑

i=1

ci(xi − pi) −
n∑

i=1

θ′ci piesθ′ci − θ′ci pi(1 + pi(esθ′ci − 1))
1 + pi(esθ′ci − 1)

= θ′Sn −
n∑

i=1

θ′ci pi(1 − pi)
esθ′ci − 1

1 + pi(esθ′ci − 1)
. (8)

Note that θ′ci and esθ′ci − 1 have the same sign and hence each summand in the second term on
the right-hand side of (8) is non-negative.

Let
γp(y) =

ey − 1
1 + p(ey − 1)

be a function of y ∈ R depending on the parameter p ∈ [0, 1]. Note γp(0) = 0. Its derivative is
computed as

γ′p(y) =
ey

(1 + p(ey − 1))2 > 0. (9)

Hence
γp(y) =

∫ y

0
γ′p(z)dz =

∫ y

0

ez

(1 + p(ez − 1))2 dz,

7



where for negative y < 0 we interpret
∫ y

0
(· · · )dz as −

∫ 0

y
(· · · )dz. Now γ′p(z) in (9) is monotone

in p with γ′0(z) = ez and γ′1(z) = e−z. Hence

e−|z| = min(e−z, ez) ≤ γ′p(z) ≤ max(e−z, ez) = e|z|.

Then for z between 0 and y we have

e−|y| ≤ γ′p(z) ≤ e|y|. (10)

Using the upper bound e|y| and integrating γ′p(z) we obtain

|γp(y)| = |ey − 1|
1 + p(ey − 1)

≤ |y|e|y| and 0 ≤ yγp(y) = y
ey − 1

1 + p(ey − 1)
≤ y2e|y|.

Let Lc,n = max1≤i≤n ‖ci‖. Then

∂

∂s
u(sθ) ≥ θ′Sn − s

n∑
i=1

(θ′ci)2 pi(1 − pi)eεLc,n = θ′Sn − sθ′VnθeεLc,n

and integrating this for 0 ≤ s ≤ ε we have (for any θ and ε > 0)

u(εθ) ≥ εθ′Sn −
ε2

2
θ′VnθeεLc,n .

For the rest of our proof we arbitrary choose and fix a path ξ ∈ E1, where E1 is given in
(4). Various constants (ε’s, L’s etc.) below may depend on ξ. By iii) there exists Lc such that
Lc,n < Lc for all n. Also there exist n0 and Lλ such that λmax,n/λmin,n < Lλ for all n ≥ n0. Now
suppose that V−1

n Sn 9 0 for this ξ. Then for some ε1 > 0 and for infinitely many n we have
‖V−1

n Sn‖ ≥ ε1. Let N1 = {n1, n2, . . . } be a subsequence such that ‖V−1
n Sn‖ ≥ ε1 for n ∈ N1. The

normalized vectors

ηn =
V−1

n Sn

‖V−1
n Sn‖

, n ∈ N1,

have an accumulation point η, ‖η‖ = 1, and hence along a further subsequence N2 ⊂ N1 we have

lim
n→∞, n∈N2

ηn = η.

By Cauchy-Schwarz, for three vectors a, b, c ∈ Rd, we have
|b′Vnc|
a′Vna

≤ λmax,n‖b‖‖c‖
λmin,n‖a‖2

< Lλ
‖b‖‖c‖
‖a‖2 , ∀n ≥ n0.

Then we can choose 0 < ε2 < 1/4 such that for all sufficiently large n ∈ N2 and for all η̃,
‖η̃‖ = 1, sufficiently close to η, we have

u(εη̃) ≥ εη̃′Sn −
ε2

2
η̃′Vnη̃eεLc,n

= ε‖V−1
n Sn‖η̃′Vnηn −

ε2

2
η̃′Vnη̃eεLc,n

≥ εε1η
′Vnη(1 − ε2) − ε

2

2
η′Vnη(1 + ε2)eεLc

= εη′Vnη
(
ε1(1 − ε2) − ε

2
(1 + ε2)eεLc

)
.
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We now choose small enough ε > 0 such that

ε1(1 − ε2) − ε
2

(1 + ε2)eεLc >
ε1

2
. (11)

Then
u(εη̃) ≥ εε1

2
λmin,n → ∞ (n→ ∞, n ∈ N2).

Note that the convergence is uniform for η̃ in some neighborhood N(η) of η. Since our prior π
puts a positive weight to N(εη), Kπ

n → ∞ along n ∈ N2. This completes our proof of Theorem
4.1.

4.2 Weak forcing of a more precise form of the strong law of large num-
bers

As discussed in Section 2, we can establish a much more precise rate of convergence of the
strong law of large numbers based on our Bayesian logistic strategy. Our main theorem of this
paper is stated as follows.

Theorem 4.2. In BPFSI, by a Bayesian logistic strategy with a prior distribution supporting a
neighborhood of the origin, Skeptic can weakly force

E1 ⇒ lim sup
n

S′nV−1
n Sn

log detVn
≤ 1,

where E1 is given in (4).

We give a proof of this theorem in the following three subsections.

4.2.1 Bounding the maximum likelihood estimate

We now consider the behavior of K θ
n in (7), when K θ

n is maximized with respect to θ. Let

θ̂∗n = argmaxK θ
n .

We call θ̂∗n the maximum likelihood estimate, since K θ
n is of the form of the likelihood function

of the logistic regression model. It is easily seen that the maximizer θ̂∗n is finite except for a
special case that the vectors in {ci | xi = 1} ∪ {−ci | xi = 0} lie on a half-space defined by a
hyperplane containing the origin. More specifically in Lemma 4.3 we prove that ‖θ̂∗n‖ is small
when ‖V−1

n Sn‖ is small.
The maximizing θ̂∗n can only be computed at the end of day n after seeing all the data

p1, c1, x1, . . . , pn, cn, xn. Hence we call a strategy using θ̂∗n a “hindsight strategy”, which is the
same as the best constant rebalanced portfolio (BCRP) in the terminology of the universal port-
folio.

We prove the following lemma.
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Lemma 4.3. Let Lc,n = max1≤i≤n ‖ci‖ and Lλ,n = λmax,n/λmin,n, where we assume λmin,n > 0. Then

‖V−1
n Sn‖ ≤

1
3Lc,nLλ,n

⇒ ‖θ̂∗n‖ ≤ 3Lλ,n‖V−1
n Sn‖.

For any fixed ξ ∈ E1, there exist Lc, Lλ, such that Lc,n < Lc and Lλ,n < Lλ for all sufficiently
large n. Also in Theorem 4.1 we proved that Skeptic can weakly force E1 ⇒ limnV−1

n Sn = 0.
From these results we have the following proposition.

Proposition 4.4. In the same setting as in Theorem 4.1 Skeptic can weakly force E1 ⇒
limn θ̂

∗
n = 0.

The rest of this subsection is devoted to a proof of Lemma 4.3. Consider the inner product
θ′∇u(θ) = θ′ grad u(θ) of θ and the gradient of u(θ). If θ′∇u(θ) ≤ 0, then the gradient points
toward the interior of the ball with radius r = ‖θ‖ as shown in Figure 1. If θ′∇u(θ) ≤ 0 for all
θ with ‖θ‖ = r, then ‖θ̂∗n‖ ≤ r. This can be seen as follows. Suppose ‖θ̂∗n‖ > r. Let θ̃ be the

θ
grad u(θ)

0

Figure 1: Gradient of u(θ)

maximizer of u(θ) on the sphere (the boundary of the ball). Then at θ̃ the gradient of ∇u(θ̃) is a
positive multiple of θ and this contradicts θ̃′∇u(θ̃) ≤ 0.

As in the previous subsection, using this time the lower bound in (10), we have

θ′∇u(θ) ≤ θ′Sn − θ′Vnθe−Lc,n‖θ‖.

Now
|θ′Sn| = |θ′VnV−1

n Sn| ≤ ‖θ′Vn‖ · ‖V−1
n Sn‖

and
‖θ′Vn‖2 = θ′V2

nθ ≤ ‖θ‖2λ2
max,n.

Hence
|θ′Sn| ≤ ‖θ‖λmax,n‖V−1

n Sn‖.
Furthermore

θ′Vnθe−Lc,n‖θ‖ ≥ λmin,n‖θ‖2e−Lc,n‖θ‖.
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Therefore
θ′∇u(θ) ≤ λmin,n‖θ‖

(
Lλ,n‖V−1

n Sn‖ − ‖θ‖e−Lc,n‖θ‖).
For ‖θ‖ = 3Lλ,n‖V−1

n Sn‖

Lλ,n‖V−1
n Sn‖ − ‖θ‖e−Lc,n‖θ‖ = Lλ,n‖V−1

n Sn‖(1 − 3e−3Lc,nLλ,n‖V−1
n Sn‖)

Then for ‖V−1
n Sn‖ ≤ 1/(3Lc,nLλ,n)

3e−3Lλ,nLc,n‖V−1
n Sn‖ ≥ 3e−1 > 1.

Hence, if ‖V−1
n Sn‖ ≤ 1/(3Lc,nLλ,n), we have θ′∇u(θ) < 0 for all θ with ‖θ‖ = 3Lλ,n‖V−1

n Sn‖. By
the remark just after Proposition 4.4, this completes the proof of Lemma 4.3.

4.2.2 Behavior of the hindsight strategy

We summarize properties of logK θ̂∗n
n in view of the standard theory of exponential families ([2])

in statistical inference. Define

ψi(θ) = log(1 + pi(eθci − 1)), ψ(θ) =
n∑

i=1

ψi(θ).

Note that ψi(θ) is the cumulant generating function (potential function) for the logistic regres-
sion model, which is an exponential family model with the natural parameter θ. Hence each
ψi(θ) and ψ(θ) are convex in θ. Indeed by (9), the Hessian matrix Hψi(θ) of ψi is given as

Hψi(θ) = cic′i
pi(1 − pi)eθ

′ci

(1 + pi(eθ
′ci − 1))2 ,

which is non-negative definite. The Hessian matrix

Hψ(θ) =
n∑

i=1

Hψi(θ)

of ψ is positive definite ifVn is positive definite, which is the Fisher information matrix in terms
of the natural parameter θ.

Convexity of ψi implies concavity of logK θ
n = θ

′Tn − ψ(θ), where

Tn =

n∑
i=1

cixi = Sn +

n∑
i=1

ci pi.

Hence if the maximum of logK θ
n is attained at a finite value θ̂∗n, then the “maximum likelihood

estimate” θ̂∗n satisfies “the likelihood equation”

∂

∂θ
logK θ

n = 0

11



or equivalently
Tn = ∇ψ(θ̂∗n). (12)

The likelihood equation can also be written as

0 =
n∑

i=1

(xi − p̂∗i )ci, p̂∗i = p̂∗i;n =
pieθ̂

∗
nci

1 + pi(eθ̂
∗
nci − 1)

.

From this it follows that θ̂∗n = 0 if and only if Tn =
∑n

i=1 ci pi.
Regard (12) as determining θ̂∗n in terms of t = Tn, i.e., θ̂∗n = θ̂

∗
n(t), t = Tn. This is the inverse

map of t = ∇ψ(θ). Differentiating t = ∇ψ(θ) again with respect to θ we obtain the Jacobi matrix

J =
∂t
∂θ
= Hψ(θ)

as the Hessian matrix of ψ. Hence the Jacobi matrix ∂θ̂∗n/∂Tn is written as

∂θ̂∗n
∂Tn
= Hψ(θ̂∗n(Tn))−1. (13)

Now logK θ̂∗n
n = logK θ̂∗n(Tn)

n is the Legendre transformation (cf. Chapter 3 of [1]) of logK θ
n :

logK θ̂∗n(t)
n = θ̂∗n(t)′t − ψ(θ̂∗n(t)), t = Tn.

Differentiating logK θ̂∗n(t)
n with respect to t, by (12) we obtain

∂

∂t
logK θ̂∗n(t)

n = θ̂∗n(t) + (t − ∇ψ(θ̂∗n(t))
∂θ̂∗n
∂t
= θ̂∗n(t). (14)

By (13) the Hessian matrix of logK θ̂∗n(t)
n is given by Hψ(θ̂∗n(t))−1.

We are now ready to prove the following proposition.

Proposition 4.5. With the same setting as in Lemma 4.3,

‖V−1
n Sn‖ ≤

1
3Lc,nLλ,n

⇒ e−Cn‖V−1
n Sn‖ ≤ logK θ̂∗n

n

S′nVnSn/2
≤ eCn‖V−1

n Sn‖,

where Cn = 3Lc,nLλ,n.

Proof. For given Tn, T̄0 =
∑n

i=1 ci pi and for s ∈ [0, 1], consider

g(s) = θ̂∗n(T̄0 + sSn)′(T̄0 + sSn) − ψ(θ̂∗n(T̄0 + sSn)).

Then logK θ̂∗n(Tn)
n = g(1). It is easily seen that g(0) = 0. By (14)

g′(s) = θ̂∗n(T̄0 + sSn)′Sn.

12



Again it is easily seen that g′(0) = 0, since θ̂∗n(T̄0) = 0. Then

g(1) =
∫ 1

0

∫ s

0
g′′(u)duds.

Now
g′′(u) = S′nHψ(θ̂∗n(T̄0 + uSn))−1Sn.

By (10)

e−‖θ̂
∗
n(T̄0+uSn)‖Lc,nS′nV−1

n Sn ≤ S′nHψ(θ̂∗n(T̄0 + uSn))−1Sn

≤ e‖θ̂
∗
n(T̄0+uSn)‖Lc,nS′nV−1

n Sn.

Also
∫ 1

0

∫ s

0
1duds = 1/2. Furthermore by Lemma 4.3, if ‖V−1

n Sn‖ ≤ 1/(3Lc,nLλ,n) then ‖θ̂∗n(T̄0 +

uSn)‖ ≤ 3Lλ,n‖V−1
n Sn‖ for all 0 ≤ u ≤ 1. Combining these results we have the proposition. �

As in Proposition 4.5 we have the following corollary.

Corollary 4.6. In the same setting as in Theorem 4.1 Skeptic can weakly force

E1 ⇒ lim
n

logK θ̂∗n
n

S′nV−1
n Sn/2

= 1.

4.2.3 Laplace method for evaluating the difference of the hindsight strategy and the lo-
gistic strategy

In the last subsection we clarified the behavior of the capital process for the hindsight strategy.
Now we employ the standard Laplace method to evaluate the difference of the hindsight strategy
and the logistic strategy (Section 5 of [3], Chapter 3.1 of [8]).

Lemma 4.7. Let π be a prior density supporting a neighborhood of the origin and letKπ
n denote

its capital process. For ξ ∈ E1 such that limnV−1
n Sn = 0,

lim
n

logK θ̂∗n
n − logKπ

n

(1/2) log detVn
= 0. (15)

Proof. For θ close to the origin, expanding logK θ
n around θ̂∗n we have

logK θ
n = logK θ̂∗n

n −
1
2

(θ − θ̂∗n)′Hψ(θ̃n)(θ − θ̂∗n),

where θ̃n is on the line segment joining θ and θ̂∗n. Hence

K θ
n = K

θ̂∗n
n × exp(−1

2
(θ − θ̂∗n)′Hψ(θ̃n)(θ − θ̂∗n)).

Now by the standard Laplace method we obtain (15). �

13



Finally we give a proof of Theorem 4.2.

Proof of Theorem 4.2. By Corollary 4.6 and Lemma 4.7

logKπ
n =

1
2

log detVn
( S′nV−1

n Sn

log detVn
− 1 + o(1)

)
.

Hence if lim supn S′nV−1
n Sn/ log detVn > 1, then lim supn logKπ

n = ∞. �

4.3 Monotonicity with respect to the forecast probability
Here we consider the case that log(pn/(1 − pn)) itself is an element of the vector of the side
information cn and hence is multiplied by a coefficient in (5). For notational convenience we
here eliminate log(pn/(1 − pn)) from cn and write (5) as

log
p̂n

1 − p̂n
= β log

pn

1 − pn
+ τn, (16)

where τn denotes the effect of side information other than log(pn/(1 − pn)). Intuitively β rep-
resents how much trust Skeptic puts in Forecaster. If β = 0 then Skeptic entirely ignores Fore-
caster’s pn and if β = 1 then Skeptic takes pn for granted. The value of β ∈ (0, 1) corresponds
to partial trust in pn. It is somewhat surprising to see that β > 1 in the case of probability of
precipitation announced by the Japan Meteorological Agency in Section 5.2.

We now investigate how νn in (2) behaves with respect to pn for given p1, c1, x1, . . . , pn−1, cn−1,
xn−1. This is an important question from the viewpoint of defensive forecasting ([20], [18]), be-
cause in defensive forecasting we want to obtain pn for which νn = 0. For notational simplicity
we now omit the subscript n and write (6) as

p̂ =
p
(

p
1−p

)β−1
eτ

1 + p
(

p
1−p

)β−1
eτ
.

Then

ν(p) =
p̂ − p

p(1 − p)
=

pβ−1eτ − (1 − p)β−1

pβeτ + (1 − p)β
.

Differentiating this with respect to p we obtain

dν(p)
dp

=
−e2τp2(β−1) + eτpβ−2(1 − p)β−2(β − 2 + 2p(1 − p)) − (1 − p)2β−2

(pβeτ + (1 − p)β)2 .

The numerator of dν(p)/dp can be written as

−(eτpβ−1 − (1 − p)β−1)2 + eτ(β − 1)pβ−2(1 − p)β−2,

which is non-positive for β ≤ 1. Hence we have the following proposition.

14



Proposition 4.8. Under the logistic regression model (16), for β ≤ 1 the betting ratio νn(pn) is
monotone decreasing in pn.

It is natural that νn is monotone decreasing in pn, because if pn is too high and Skeptic does
not believe it, then Skeptic will bet on the non-occurrence xn = 0.

For the special case of β = 1,

νn(pn) =
eτn − 1

1 + pn(eτn − 1)
,

which is bounded and monotone in pn ∈ [0, 1]. For β < 1, νn(pn) is unbounded and it can be
easily seen that

lim
pn↓0

νn(pn)
1/pn

= 1, lim
pn↑1

νn(pn)
1/(1 − pn)

= −1.

We can interpret the first limit as follows. Suppose that pn = 1/1000, i.e. the price of a ticket is
1/1000 of a dollar. In this case Skeptic can buy 1000 tickets with one dollar and has the chance
of winning 1000 dollars. Hence Skeptic may want to buy 1000 tickets. Thus it is reasonable
that ν and pn are inversely proportional when pn is small.

5 Experiments
In this section we give some numerical studies of our strategy. In Section 5.1 we present some
simulation results and in Section 5.2 we apply our strategy against probability forecasting by
the Japan Meteorological Agency.

5.1 Some simulation studies
We consider three cases and apply three strategies to these examples. In our simulation studies
Reality chooses her moves probabilistically, either by Bernoulli trials or by a Markov chain
model.

• Case 1: xn is a Bernoulli variable with the success probability 0.7 and pn alternates be-
tween 0.4 and 0.6 (i.e. 0.4 = p1 = p3 = · · · and 0.6 = p2 = p4 = · · · ).

• Case 2: xn is a Bernoulli variable with the success probability 0.5 and pn alternates be-
tween 0.4 and 0.6.

• Case 3: pn = 0.5 and xn is generated by a Markov chain model with transition probabili-
ties shown in Figure 2.

• Strategy 1: θ is a scalar and cn = 1 in (5). Assume that the prior density for θ is given as
uniform distribution for [0,1]. The capital process is written as

Kπ
n =

∫ 1

0

eθ
∑n

i=1 xi∏n
i=1(1 + pi(eθ − 1))

dθ.
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Figure 2: Transition probabilities for xn

• Strategy 2: θ′ = [θ1, β − 1] and c′n = [1, log pn
1−pn

]. Assume independent priors for θ1 and
β, which are uniform distributions over [0,1]. The capital process is written as

Kπ
n =

∫ 1

0

∫ 1

0

eθ1
∑n

i=1 xi+(β−1)
∑n

i=1 xi log pi
1−pi∏n

i=1(1 + pi(e
θ1+(β−1) log pi

1−pi − 1))
dθ1dβ.

• Strategy 3: θ′ = [θ1, β − 1, θ3] and c′n = [1, log pn
1−pn

, xn−1]. Assume independent priors for
θ1, β and θ3, which are uniform distributions over [0,1]. The capital process is written as

Kπ
n =

∫ 1

0

∫ 1

0

∫ 1

0

eθ1
∑n

i=1 xi+(β−1)
∑n

i=1 xi log pi
1−pi
+θ3
∑n

i=1 xi xi−1∏n
i=1(1 + pi(e

θ1+(β−1) log pi
1−pi
+θ3 xi−1 − 1))

dθ1dβdθ3.
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Figure 3: Case 1 with strategy 1
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Figure 4: Case 2 with strategy 1

As shown in Figure 3 and Figure 4, we can beat Reality by strategy 1 only in case 1. So we
improve our strategy and apply strategy 2 to case 2. We can see from Figure 5 and Figure 6 that
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Figure 5: Case 2 with strategy 2
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Figure 6: Case 3 with strategy 2
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Figure 7: Case 3 with strategy 3

strategy 2 can work well in case 2 but still not effective in case 3. Finally, we use strategy 3 in
case 3 and observe that it shows a good result for Skeptic in Figure 7.

From these simulations, we see that Skeptic can beat Reality with more flexible strategy
utilizing more side information.

5.2 Betting against probability of precipitation by the Japan Meteorolog-
ical Agency

Now we apply our strategy to probability of precipitation provided by the Japan Meteorological
Agency. We collected the forecast probabilities for the Tokyo area from archives of the morning
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edition of the Mainichi Daily News and the actual weather data on 9:00 and 15:00 of each
day for Tokyo area from http://www.weather-eye.com/ for the period of three years from
January 1, 2009 to December 31, 2011. We counted a day as rainy if the data on this site records
rain on 9:00 or on 15:00 of that day in Tokyo area.

The forecast probability pn is only announced as multiples of 10% (i.e. 0%, 10%, . . . , 90%,
100%) by JMA. The data are summarized in Table 1. pn represents the probability of precipita-
tion on day n and xn indicates the actual precipitation. Actual ratio is calculated from the ratio
of the number of rainy days to all days for a given value of pn.

Table 1: Actual ratio of rainy days

pn(%) xn = 1 xn = 0 Actual Ratio(%)
0 1 61 1.6
10 10 324 3.0
20 24 193 11.1
30 36 117 23.5
40 20 26 43.5
50 67 56 54.5
60 38 14 73.1
70 36 7 85.7
80 36 4 90.0
90 22 1 95.6
100 3 0 100

The distinct feature of the prediction by JMA is that that pn tends to be closer to 50%
than the actual ratio. For example, when JMA announces pn = 20%, the actual ratio is only
11.1%. Similarly when JMA announces pn = 80%, the actual ratio is 90%. Hence JMA has the
tendency of avoiding clear-cut forecasts.

In the hindsight strategy, the value of β, which is a coefficient for log(pn/(1− pn)) in strategy
3 is close to 1.5. Hence we modified strategy 3 of the previous section, so that the prior for β
is uniform between 0 and 2. We also substituted pn = 1% and pn = 99% for pn = 0% and
pn = 100%, respectively, because our strategy is not defined for pn = 0% or 100%. Figure 8
shows the behavior of strategy 3 and the approximation S′nV−1

n Sn/2. We see that our strategy
works very well against JMA by exploiting its tendency of avoiding clear-cut forecasts. It is
also of interest that the capital process shows a seasonal fluctuation and it does not perform well
for the rainy season (June and July) in Tokyo area.

6 Summary and discussion
In this paper we proposed a Bayesian logistic betting strategy in the binary probability fore-
casting game with side information (BPFSI). We proved some theoretical results and showed
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Figure 8: Beating JMA by strategy 3 with β uniform over [0, 2]

good performance of our strategy against probability forecasting by Japanese Meteorological
Agency.

Here we discuss some topics for further investigation.
We considered implications of a single Bayesian logistic betting strategy in BPFSI. We

can also take a look at the sequential optimizing strategy (SOS) of [11] in BPFSI. Under the
condition θ̂∗n → 0, Bayesian strategy and SOS should behave in the same way. However we
could not succeed to prove weak forcing of θ̂∗n → 0 by SOS alone.

For the case of d = 1 we could employ approaches of [14] to prove results similar to The-
orem 4.2. In [14] we also discussed Reality’s strategies. It is of interest to study strategies of
Forecaster or Reality in the binary probability forecasting game with side information. Defen-
sive forecasting ([20], [18]) can be considered as a strategy of Forecaster.

We extended the binary probability forecasting game by including side information. In our
formulation side information cn is announced by Forecaster and in our logistic betting strategy
cn is used as regressors in a logistic regression. However Skeptic can use any transformation
of cn in his strategy. In this sense, it might be more natural to formulate the game, where
cn is announced by Skeptic. Binary probability forecasting game is often considered from the
viewpoint of prequential probability ([7]) and leads to the notion of randomness of the sequence
p1x1 p2x2 . . . ([19], [13]). From the viewpoint of prequential probability it might also be natural
to consider side information cn as a part of moves by Skeptic for testing the randomness of
p1x1 p2x2 . . . .

We assumed multidimensional cn. However from the viewpoint of game-theoretic probabil-
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ity, we do not lose much generality by restricting cn to be a scalar, since if Skeptic can weakly
force events E1, . . . , Ed then he can weakly force E1 ∩ · · · ∩ Ed. By the same reasoning we can
also consider d = ∞, because if Skeptic can weakly force E1, E2, . . . , then he can weakly force
∩∞i=1Ei. Interpretation and formulation of side information in game-theoretic probability needs
further investigation.
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