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Abstract

Indirect reciprocity is a reputation-based mechanism for cooperation in social dilemma

situations when individuals do not repeatedly meet. The conditions under which cooper-

ation based on indirect reciprocity occurs has been examined in great details. Previous

theoretical analysis assumed for mathematical tractability that an individual possesses a

binary reputation value, i.e., good or bad, which depends on their past actions and other

factors. However, in real situations, reputations of individuals may be multiple valued.

Another puzzling discrepancy between the theory and experiments is the status of the
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so-called image scoring, in which cooperation and defection are judged to be good and

bad, respectively, independent of other factors. Such an assessment rule is found in be-

havioral experiments, whereas it is known to be unstable in theory. In the present study,

we fill both gaps by theoretical analysis of a trinary reputation model. By an exhaustive

search, we identify all the cooperative and stable equilibria composed of a homogeneous

population or a heterogeneous population containing two types of players. Some results

derived for the trinary reputation model are direct extensions of those for the binary

model. However, we find that, the trinary model allows cooperation under image scoring

without special conditions.

1 Introduction

Humans and other animals often cooperate even when cooperation is more costly than defection.

In such social dilemma situations, direct reciprocity is among main accounts for cooperation

between pairs of individuals that repeatedly meet each other [1, 2]. However, individuals, in

particular humans, cooperate with others even when the same pair of individuals seldom meet

more than once, as is the case for large populations. Reputation-based indirect reciprocity

(also called downstream reciprocity; we simply call it indirect reciprocity in this paper) seems

to be a dominant mechanism that enables cooperation in this situation. In indirect reciprocity,

individuals cooperate with others with good reputations and they in turn gain good reputations

if they appositely behave (e.g., cooperate) toward somebody else. The conditions under which

indirect reciprocity realizes cooperation have been theoretically and numerically clarified in

great details [3–19].

Under the so-called image scoring, cooperation and defection are regarded to be good and

bad behavior, respectively [3,4]. Laboratory experiments suggest that humans use image scoring

to evaluate others’ behavior [20–22]. However, main theories attain that image scoring does

not stabilize cooperation [5, 6, 9, 10, 12]. Although some studies have shown the viability of

cooperation under image scoring [3, 8, 14–17], the situations in which cooperation occurs is,

in our view, quite restricted (but see [19]; we discuss this reference in Discussion). Under

image scoring, cooperation occurs only when individuals always cooperate in the first round [3],
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unconditional defectors sometimes cooperate [8], the number of interaction obeys the binomial

distribution [14] or Poisson distribution [16], the probability that individuals recognize others’

reputations increases in time [15], or the reputations of individuals are almost invisible to

others [17]. Therefore, the reason for the discrepancy between the experiments and theory

remains obscure.

For mathematical tractability and presumed influences of the first seminal theoretical pa-

pers on this subject [3, 4], most theoretical results of indirect reciprocity are derived from the

analysis of binary reputation models. In other words, individuals are endowed with the binary

reputation, i.e., good (G) or bad (B), depending on the last action toward others and other

factors. However, the binary reputation may not be realistic in that only the last behavior

of an individual in the social dilemma situation determines the reputation of the individual.

In fact, experimental [20–28] and numerical [29] studies of indirect reciprocity in the context

of online marketplaces often assume that the reputations are many valued, which complies

with the reality of online marketplaces [30, 31]. Many valued reputations have also been em-

ployed in numerical studies of indirect reciprocity in theoretical-biology oriented papers [4,5,7].

Nevertheless, these studies are not concerned with the relationships between the possibility of

cooperation and the variety of reputation values.

In this paper we analyze a trinary reputation model to identify stable populations that

realize cooperation. The difference between the present results and those derived from the

binary reputation models is remarkable. In particular, we find that image scoring can stabilize

cooperation in the trinary reputation model.

2 Model

2.1 Donation Game with Reputations

We consider an infinitely large population. In each generation, the so-called donation game is

repeated for sufficiently many rounds. Figure 1(A) illustrates the interaction in each round.

Two players are randomly selected from the population, one as donor and the other as recipient,

with the equal probability. The donor intends to cooperate (C) or defect (D) to the recipient ac-
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cording to the action rule σ, which we define below. We assume that the donor misimplements

intended C such that the donor actually defects with probability ϵi > 0 and that the intended

defection is always correctly implemented. We seek the possibility of cooperation in the pop-

ulation under this kind of implementation error, which is adverse to cooperation [6, 8–17, 19].

If the donor implements C, the donor pays cost c, and the recipient obtains benefit b. If the

donor implements D, the payoffs to the donor and recipient do not change. We assume that

0 < c < b such that the donation game is essentially the prisoner’s dilemma.

We assume that each player possesses a reputation that takes one of the three values, i.e., +,

0, or −. The action rule σ is a function from the recipient’s reputation to the donor’s intended

action (i.e., C or D). Therefore, there are 23 = 8 action rules, as shown in Fig. 1(B). For example,

the AllC and AllD intend C and D regardless of the recipient’s reputation, respectively. The

so-called generous discriminator (gDisc) intends C when the recipient’s reputation is either + or

0 and D otherwise. The so-called rigorous discriminator (rDisc) intends C when the recipient’s

reputation is + and D otherwise.

At the end of each round, the observer assesses the donor to be G or B depending on the

donor’s implemented action (i.e., C or D) and the recipient’s reputation (i.e., +, 0, or −). Such

an assessment rule is a function from the donor’s implemented action and the recipient’s rep-

utation to the observer’s assessment and is called the second-order social norm, which extends

the concept in the case of binary reputation [5, 13]. There are 22×3 = 64 social norms. For

example, under the social norm called image scoring (Fig. 1(C)), the observer assigns G and

B to the donor’s action C and D, respectively, regardless of the recipient’s reputation. An-

other social norm named scoring–standing is also shown in Fig. 1(C). Finally, we assume that

the assessment that the donor receives is opposite to the one assigned by the observer with

probability ϵa > 0 [10,12,18].

We repeat many rounds of the game and define the payoff to each player as the sum of the

payoff obtained in the games in which the player is involved. Because the population is infinite,

each pair of players plays the game at most once such that direct reciprocity is excluded.

For a later use, we mention four representative second-order social norms in the binary

reputation model (Fig. 1(D)). Image scoring (“scoring” in Fig. 1(D)) does not stabilize cooper-
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ation [6,9,10,12] unless somewhat strong conditions are met [3,8,14–17] (but see [19]). Simple

standing (“standing” in Fig. 1(D)) and stern judging (“judging” in Fig. 1(D); also called Kan-

dori [32]) are known to stabilize cooperation [10]. Shunning stabilizes cooperation under certain

conditions [12,18].

2.2 Reputation Dynamics

After each round, the donor’s reputation is updated on the basis of the observer’s assessment.

Basically, the donor’s reputation shifts upward and downward if the donor receives G and B,

respectively. When the reputation is binary (i.e., + and −), + and − correspond to G and B

that the donor receives in the last game, respectively [3,13]. However, the relationship between

the reputation and assessment is not straightforward in the trinary reputation model. We

assume that reputation dynamics obey a Markov chain. We consider the reputation dynamics

illustrated in Fig. 2.

In the reputation dynamics shown in Fig. 2(A), which we call the gradual dynamics, the

reputation is assumed to move by at most one level in each round. The reputation is unchanged

with probability α (0 ≤ α < 1).

In the reputation dynamics shown in Fig. 2(B), which we call the saltatory dynamics, the

donor’s reputation can transit from + to − or vice versa in one step. When a + donor receives

B, the donor’s new reputation becomes − and 0 with probabilities βd and 1− βd, respectively

(0 ≤ βd ≤ 1). When a − donor receives G, the donor’s new reputation becomes + and 0 with

probabilities βu and 1 − βu, respectively (0 ≤ βu ≤ 1). When (βd, βu) = (1, 0), the reputation

dynamics are similar to the so-called T -period punishment with T = 2 [32] in which players

have either state 0 (innocent), 1 (guilty and no repent), ..., or T (guilty and T − 1 times of

repentant behavior). Guilty players in state 1 regain the innocent state by cooperating with

innocent players successive T times. Therefore, the states 0, 1, and 2 are similar to reputations

+, −, and 0, respectively, in our model. When (βd, βu) = (0, 1), the reputation dynamics are

similar to the so-called tolerant scoring [19] because the donor’s reputation becomes − if and

only if the donor receives B in the last two rounds, and the donor obtains a + reputation if the

donor cooperates just once.
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3 Analysis Methods

3.1 Homogeneous Populations

We first examine the stability of a homogeneous population of resident players with action

rule σ against mutants with different action rules under a given social norm. Let p+, p0, and

p− be the probabilities that the reputation of a resident player is +, 0, and −, respectively.

After a transient of the reputation dynamics, the three probabilities converge to the equilibrium

values denoted by p∗+, p
∗
0, and p∗−. For expository purposes, we focus on the gradual reputation

dynamics (Fig. 2(A)) in this section. The following calculations are similar for the saltatory

reputation dynamics (Fig. 2(B)); the corresponding results are shown in Appendix A. For the

gradual reputation dynamics, we obtain
p∗+ = p∗+[α + (1− α)Φ∗] + p∗0(1− α)Φ∗,
p∗0 = p∗+(1− α)(1− Φ∗) + p∗0α + p∗−(1− α)Φ∗,
p∗− = p∗0(1− α)(1− Φ∗) + p∗−[α+ (1− α)(1− Φ∗)],

(1)

where Φ∗ is the probability that the donor receives G in the equilibrium. It should be noted

that Eq. (1) and the following results are independent of the value of α. Equation (1) and the

normalization p∗+ + p∗0 + p∗− = 1 lead to

(p∗+, p
∗
0, p

∗
−) =

(
Φ∗2

1− Φ∗ + Φ∗2 ,
Φ∗(1− Φ∗)

1− Φ∗ + Φ∗2 ,
(1− Φ∗)2

1− Φ∗ + Φ∗2

)
. (2)

Equation (2) implies that the distribution of the reputation is monotonous in the sense that

p∗+ > p∗0 > p∗− if Φ∗ > 0.5 and p∗+ < p∗0 < p∗− if Φ∗ < 0.5.

Φ∗ is given by

Φ∗ =
∑

r∈{+,0,−}

p∗r[ζrΦC,r + (1− ζr)ΦD,r], (3)

where ζr represents the probability that the donor’s implemented action is C when the recipient

has reputation r ∈ {+, 0,−}. ζr has a one-to-one correspondence with action rule σ. For

example, AllC, gDisc, rDisc, and AllD are equivalent to (ζ+, ζ0, ζ−) = (1 − ϵi, 1 − ϵi, 1 − ϵi),

(1 − ϵi, 1 − ϵi, 0), (1 − ϵi, 0, 0), and (0, 0, 0), respectively. ΦC,r and ΦD,r in Eq. (3) are the

probabilities that the donor receives G when the donor’s action is C and D, respectively, and
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the recipient has reputation r ∈ {+, 0,−}. For example, under image scoring (Fig. 1(C)),

ΦC,r = 1 − ϵa and ΦD,r = ϵa for any r. Under the so-called scoring–standing (see Sec. 4.1 for

the notation of the social norms) shown in Fig. 1(C), ΦC,r = 1− ϵa for any r, ΦD,+ = ΦD,0 = ϵa,

and ΦD,− = 1 − ϵa. Each term on the right-hand side of Eq. (3) is a multiplication of three

probabilities, i.e., (i) probability p∗r that a recipient with reputation r is selected, (ii) probability

ζr or 1 − ζr that a donor implements C or D, respectively, and (iii) probability ΦC,r or ΦD,r

that the observer assigns G to the donor.

We substitute p∗+, p
∗
0, and p∗− obtained from Eq. (2) in the right-hand side of Eq. (3), which

we denote by f(Φ∗). We obtain Φ∗ by solving x = f(x), 0 ≤ x ≤ 1. Because f(x) is quadratic

in x, equation x = f(x) has at most three solutions. Under any pair of action rule and social

norm, to which we refer as action–norm pair in the following, 0 < ϵa ≤ f(x) ≤ (1−ϵi)(1−ϵa) < 1

holds true for any 0 ≤ x ≤ 1. Therefore, the iteration scheme, in which we start with an initial

x value (0 ≤ x ≤ 1) and repeatedly apply f , always converges. If the iteration starting from

x = 0 and that starting from x = 1 converge to the same value, the solution specified by Φ∗

and {p∗+, p∗0, p∗−} is unique. We confirmed that for each of the 8 × 64 = 512 action–norm pair,

x = f(x) has a unique solution.

Let Ψ(σ, {p+, p0, p−}) be the probability that a donor with action rule σ cooperates with a

recipient with reputation distribution {p+, p0, p−}. We obtain

Ψ(σ, {p+, p0, p−}) = p+ζ+ + p0ζ0 + p−ζ−. (4)

The average payoff per round to a resident player in the homogeneous population is given by

π = −cΨ(σ, {p∗+, p∗0, p∗−}) + bΨ(σ, {p∗+, p∗0, p∗−}). (5)

To examine the stability of the homogeneous population, we consider an infinitesimally small

fraction of mutants with action rule σ′(̸= σ) that invades the homogeneous resident population.

The equilibrium probability distribution of the mutant’s reputation, denoted by {p′∗+, p′∗0 , p′∗−},
the equilibrium probability that a mutant receives G, denoted by Φ′∗, and payoff to a mutant

player, denoted by π′, are given by

(p′∗+, p
′∗
0 , p

′∗
−) =

(
Φ′∗2

1− Φ′∗ + Φ′∗2 ,
Φ′∗(1− Φ′∗)

1− Φ′∗ + Φ′∗2 ,
(1− Φ′∗)2

1− Φ′∗ + Φ′∗2

)
, (6)
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Φ′∗ =
∑

r∈{+,0,−}

p∗r[ζ
′
rΦC,r + (1− ζ ′r)ΦD,r], (7)

and

π′ = −cΨ(σ′, {p∗+, p∗0, p∗−}) + bΨ(σ, {p′∗+, p′∗0 , p′∗−}), (8)

respectively. In Eq. (7), ζ ′r represents the probability that a mutant cooperates with a recipient

with reputation r. It should be noted that p∗r in Eq. (7) is the solution of Eqs. (2) and (3) and

that ΦC,r and ΦD,r also refer to the values for the resident population.

Action rule σ adopted by the resident players is strict Nash equilibrium if the payoff to a

resident player (i.e., π) is larger than the payoff to any mutant player (i.e., π′). Using Eqs. (5)

and (8), we obtain this condition as follows:

b

c

[
Ψ(σ, {p′∗+, p′∗0 , p′∗−})−Ψ(σ, {p∗+, p∗0, p∗−})

]
<Ψ(σ′, {p∗+, p∗0, p∗−})−Ψ(σ, {p∗+, p∗0, p∗−}) for any σ′ ̸= σ.

(9)

3.2 Heterogeneous Populations Composed of Two Action Rules

We also examine the stability of heterogeneous populations in which two action rules, denoted

by σ1 and σ2, coexist with fraction q1 and q2, respectively (q1 + q2 = 1). For each of (q1, q2) =

(0.01, 0.99), (0.02, 0.98), ..., (0.99, 0.01)), we first calculate the equilibrium probabilities of G

for σ1 and σ2 by an iteration scheme similar to that described in Sec. 3.1. Under the gradual

reputation dynamics, the distribution of the reputation values is given by

(p∗+,i, p
∗
0,i, p

∗
−,i) =

(
Φ∗

i
2

1− Φ∗
i + Φ∗

i
2 ,

Φ∗
i (1− Φ∗

i )

1− Φ∗
i + Φ∗

i
2 ,

(1− Φ∗
i )

2

1− Φ∗
i + Φ∗

i
2

)
, (10)

where p∗r,i is the equilibrium probability that a player with action rule i (i = 1, 2) possesses

reputation r ∈ {+, 0,−}, and Φ∗
i represents the equilibrium probability that a σi player receives

G. The equivalent of Eq. (10) and the following results can be obtained similarly for the saltatory

reputation dynamics. Φ∗
i is given by

Φ∗
i =

2∑
j=1

∑
r∈{+,0,−}

qjp
∗
r,j[ζr,iΦC,r + (1− ζr,i)ΦD,r], (11)
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where ζr,i is the probability that a σi donor implements C when the recipient has reputation r.

Substitution of Eq. (10) in Eq. (11) leads to
−→
Φ∗ = g(

−→
Φ∗), where

−→
Φ∗ = (Φ∗

1,Φ
∗
2).

It should be noted that
−→
Φ∗ = g(

−→
Φ∗) may have multiple fixed points. An example is given by

the population composed of the equal fraction of σ1 = gDisc and σ2 = rDisc, i.e., q1 = q2 = 0.5,

under image scoring. In this case, both a cooperative population (i.e., Φ∗
1,Φ

∗
2 ≈ (1− ϵi)(1− ϵa))

and a defective population (i.e., Φ∗
1,Φ

∗
2 ≈ ϵa) satisfy

−→
Φ∗ = g(

−→
Φ∗). Because of the multistability,

we adopt 112 = 121 initial conditions for the iteration scheme, i.e.,
−→
Φ = (0.1i, 0.1j), 0 ≤ i, j ≤

10, to identify all the fixed points. In fact, we find that the multistability does not cause a

severe problem. We will show in Results that five mixed populations composed of two action

rules are stable and realize a sufficiently large probability of cooperation. Among them, only

one population, which consists of gDisc and rDisc and is stable under the so-called scoring-

shunning social norm, yields the bistable equilibria. One equilibrium yields a large cooperation

probability (> 0.93) and the other equilibrium yields a low cooperation probability (< 0.03).

These results are qualitatively the same for the gradual and saltatory reputation dynamics. For

this social norm, we only keep the more cooperative equilibrium.

Then, we obtain the trinary distribution of reputation for each of the two action rules by

substituting Φ∗
i in Eq. (11). The average payoff per round to a σi resident player (i = 1, 2) is

given by

πi = −c

2∑
j=1

qjΨ(σi, {p∗+,j, p
∗
0,j, p

∗
−,j}) + b

2∑
j=1

qjΨ(σj, {p∗+,i, p
∗
0,i, p

∗
−,i}), (12)

where Ψ(σi, {p∗+,j, p
∗
0,j, p

∗
−,j}) is the probability that a σi donor cooperates with a σj recipient.

In the equilibrium, the payoffs to the players with the different action rules are the same.

Therefore, we calculate the value of b/c for which π1 = π2. If d(π1 − π2)/dq1 > 0, the mixed

population is unstable against an infinitesimally small drift of the fraction of the two action

rules. We are concerned with the pairs of σ1 and σ2 that satisfy d(π1 − π2)/dq1 < 0 at the

obtained b/c value.

The mixed population is strict Nash when the payoff to any of the six mutants with a third
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action rule is smaller than that to a resident player. By substituting Eq. (6) in

Φ′∗ =
2∑

j=1

∑
r∈{+,0,−}

qjp
∗
r,j[ζ

′
rΦC,r + (1− ζ ′r)ΦD,r], (13)

we obtain the equilibrium probability that a mutant receives G (i.e., Φ′∗) and the equilibrium

distribution of the mutant’s reputation (i.e., {p′∗+, p′∗0 , p′∗−}). The payoff to a mutant player is

given by

π′ = −c
2∑

j=1

qjΨ(σ′, {p∗+,j, p
∗
0,j, p

∗
−,j}) + b

2∑
j=1

qjΨ(σj, {p′∗+, p′∗0 , p′∗−}). (14)

We do not examine the mixed population composed of more than two action rules.

4 Results

We refer to each action rule by concatenating three letters, either C or D. The first, second,

and the third letter represent the intended action toward a recipient with reputation +, 0, and

−, respectively. For example, gDisc = CCD, and rDisc = CDD.

4.1 Gradual Reputation Dynamics

4.1.1 Enumeration of Stable Populations

We set ϵi = ϵa = 0.02 and consider the gradual reputation dynamics (Fig. 2(A)). We found

that the homogeneous population is stable against invasion by mutants for some benefit-to-

cost values b/c for 108 out of 8 × 64 = 512 action–norm pairs. We exclude 64 pairs with

σ = AllD from the 108 pairs because of the lack of cooperation. The entire game is symmetric

with respect to the simultaneous flipping of G ↔ B and + ↔ − [10]. Therefore, there are

(108−64)/2 = 22 essentially distinct pairs. The 22 pairs are listed in Table 1. In addition, there

are nine essentially distinct mixtures of two action rules that are stable under a certain social

norm. Among these stable populations, there are 12 homogeneous populations composed of a

single action rule and five heterogeneous populations composed of two action rules that realize

a probability of cooperation larger than 0.5 for a b/c value smaller than 20. Our additional
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numerical simulations suggest that the probability of cooperation tends to unity if and only if

this criterion is satisfied (Appendix B).

The cooperative equilibria, i.e., stable populations satisfying this criterion under a given

social norm, are summarized in Fig. 3(A). In Fig. 3(A), a social norm is represented by a

combination of s+, s0, and s−, each of which takes either GG, BG, BB, or GB. For example,

s+ = BG indicates that donor’s implemented action C and D toward a + recipient is assessed

to be B and G, respectively. In fact, all the cooperative equilibria require s+ = GB such that

only s0 and s− are indicated in Fig. 3(A).

4.1.2 s0 = GG or BG

Six action–norm pairs having σ = rDisc, s+ = GB, s0 = GG or BG, and s− = GG, BG, or BB

realize a large probability of cooperation (≈ 0.94), a large probability of G (≈ 0.98), and a

mild restriction on b/c (i.e., b/c > 1.004). In these equilibria, most resident players have the

+ reputation because the probability of G is large. A small fraction of players possesses the

0 reputation owing to error (see Model for the definition of two types of error), and an even

smaller fraction of players possesses the − reputation.

We call the six social norms standing–standing, standing–judging, standing–shunning, judging–

standing, judging–judging, and judging–shunning. The first (second) half of the name repre-

sents the social norm represented by s+ and s0 (s+ and s−) in the case of the binary reputation

model. For example, the combination of s+ = GB and s0 = GG represents the standing social

norm in the binary model if 0 is identified with − in the binary model (Fig. 1(D)). Similarly, the

combination of s+ = GB and s− = BG represents the judging social norm in the binary model.

Therefore, we call the social norm given by s+ = GB, s0 = GG, and s− = BG standing–judging.

The six norms realize nearly perfect cooperation because the first half of the social norm

(i.e., combination of s+ and s0) is either standing or judging and the rDisc donor cooperates

with + recipients, but not 0 recipients. It should be noted that standing and judging are

the only second-order social norms that stabilize cooperation without special conditions in the

binary reputation model [10]. Even if the donor’s reputation transits from 0 to − owing to

error, the donor regains the 0 reputation by cooperating with a + recipient, which occupies the
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majority of the population. Although donors meeting recipients with the − reputation receive

B under s− = BB, cooperation at the population level is maintained because few players have

the − reputation.

4.1.3 s0 = BB

Two cooperative action–norm pairs, i.e., σ = rDisc, s+ = GB, s0 = BB, and s− = GG or BG,

are also stable under a mild condition on b/c, i.e., b/c > 1.018. However, the probability of G

(≈ 0.74) and that of cooperation (≈ 0.66) are not as large as those for the previous six action–

norm pairs. This is intuitively because, under the current social norms, i.e., shunning–standing

and shunning–judging, a donor whose recipient has a 0 reputation always receives B except in

the case of the assessment error. This behavior of the model is similar to that under shunning

in the binary reputation model. Nevertheless, different from the case of the binary model, the

cooperation probability tends to unity in the error-free limit (Appendix B) for the two norms

in the trinary reputation model. We discuss this point further in Discussion.

4.1.4 s0 = GB

The other cooperative equilibria are four homogeneous populations and five heterogeneous

populations, which are stable under social norms satisfying s+ = s0 = GB (Fig. 3(A)). For

each of s− = GG (scoring–standing), BG (scoring–judging), and BB (scoring–shunning), a

homogeneous population composed of gDisc and a mixed population composed of gDisc and

rDisc are stable for large b/c (b/c > 8.480 under s− = GG or BG, and b/c > 8.108 under

s− = BB) and small b/c (b/c < 8.480 under s− = GG or BG, and b/c < 8.108 under s− = BB),

respectively. The fraction of gDisc increases with b/c under scoring–standing and is unity when

b/c > 8.480, as shown in Fig. 3(B). The results shown in Fig. 3(B) are indistinguishable from

those for scoring–judging and similar to those for scoring–shunning. For the three social norms,

the fraction of gDisc converges to 1 − c/b in the limit ϵi, ϵa → 0 (Appendix C), which implies

that only the mixed population of gDisc and rDisc is stable in the error-free limit. Consistent

with this, the threshold value of b/c above which the homogeneous gDisc population is stable

diverges as the error probabilities become small (Appendix B).
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If we hypothetically merge + and 0, our result that cooperation is stable under scoring–

standing and scoring–judging corresponds to the fact that the cooperation is stable under

standing and judging, respectively, in the binary model [10]. Under scoring–shunning, cooper-

ation is not undermined by s− = BB for the same reason as that for standing–shunning and

judging–shunning (see Sec. 4.1.2 and Discussion).

Under scoring–scoring (i.e., s+ = s0 = s− = GB), which we also call the image scoring

(Fig. 1(C)), there are three types of stable populations depending on the b/c value. When

1.941 < b/c < 8.230, the mixed population composed of gDisc and CDC is stable (Fig. 3(C)).

We regard CDC as a variant of rDisc because there are few players having the − reputation in

the stable population; a CDC player obtains a slightly larger payoff than an rDisc player. In

fact, the mixed population of gDisc and rDisc is stable against invasion by all but CDC mutants.

When 8.230 < b/c < 12.53, the homogeneous population of gDisc is stable (Fig. 3(C)). When

b/c > 12.53, the mixed population composed of gDisc and AllC is stable (Fig. 3(C)). In all

the three cases, cooperation occurs with a large probability (> 0.94). This result is in a stark

contrast with that in the binary reputation model, whereby image scoring does not usually

support cooperation [6, 9, 10,12]. We discuss this discrepancy in Discussion.

Under image scoring, the values of b/c and the error probabilities under the assumption

ϵi = ϵa, for which one of the three populations is stable are shown in Fig. 4. For small error,

the homogeneous population of gDisc and the mixed population composed of gDisc and AllC

are invaded by rDisc mutants. Only the heterogeneous population composed of gDisc and

CDC survives the error-free limit. In this limit, the fraction of gDisc is given by 1 − c/b for

the same reason as that for the heterogeneous population composed of gDisc and rDisc under

scoring–standing (Sec. 4.1; also see Appendix C).

4.2 Saltatory Reputation Dynamics

Under the saltatory reputation dynamics (Fig. 2(B)), we set βd = 0.5, βu = 0, ϵi = ϵa = 0.02 and

identify stable populations under each social norm. To select cooperative equilibria, we imposed

the same condition as that in the case of the gradual reputation dynamics, i.e., a cooperation

probability larger than 0.5 for some b/c < 20. We find that the set of cooperative equilibria is
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the same as that for the gradual reputation dynamics (Fig. 3(A)). The cooperation probability

is equal to 0.9237 for rDisc under standing–standing, 0.8614 for rDisc under standing–shunning,

0.6804 for rDisc under shunning–standing, 0.9340 for gDisc under scoring–standing, and 0.9340

for gDisc under scoring–shunning or image scoring. The cooperation probability is preserved

if we replace standing by judging. Because a + reputation can turn into a − reputation in

one step, the probability of cooperation is somewhat smaller than in the case of the gradual

reputation dynamics. The difference in the cooperation probability between the two reputation

dynamics is relatively large when s− is BB or GB. This is because players with the − reputation,

albeit occupying a small fraction, can make other players with the + reputation to transit to

the − reputation in one step under these social norms.

We also identified the stable populations under the saltatory reputation dynamics with

βd = 0, βu = 0.5, ϵi = ϵa = 0.02. The set of cooperative equilibria and the corresponding social

norms is the same as that for the gradual reputation dynamics. The cooperation probabilities

in stable and cooperative populations are equal to 0.9416 for rDisc under standing–standing,

0.9401 for rDisc under standing–shunning, 0.7605 for rDisc under shunning–standing, 0.9785 for

gDisc under scoring–standing, and 0.9783 for gDisc under scoring–shunning or image scoring.

The cooperation probability is preserved if we replace standing by judging. Because a −
reputation can turn into a + reputation in one step, the probability of cooperation is a little

larger than in the case of the gradual dynamics. The difference is relatively large when s0 = BB.

5 Discussion

We analyzed a trinary reputation model of indirect reciprocity and identified cooperative Nash

equilibria composed of a single action rule or mixture of two action rules. Independent of details

of the reputation dynamics (i.e., gradual or saltatory), we found at a small error level (i.e.,

ϵi = ϵa = 0.02) that 12 homogeneous populations and five mixed populations are cooperative

and stable under different social norms (Fig. 3(A)). When the error probabilities are even

smaller, eight homogeneous populations and four mixed populations remain stable (Appendix

B). In particular, under image scoring the heterogeneous population composed of gDisc and
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CDC (a variant of rDisc) is stable in the error-free limit (Fig. 4; see Fig. 1(B) for the definition

of gDisc, CDC, and rDisc).

The results derived from the trinary reputation model and those derived from the binary

reputation model [3] are similar in some aspects. For example, the standing–standing social

norm (i.e., s+ = GB, s0 = s− = GG) in the trinary model is almost equivalent to the standing

social norm in the binary model (Fig. 1(D)) if we merge the 0 and − reputations in the trinary

model. Therefore, the result that standing–standing enables cooperation is not surprising.

Similarly, scoring–judging (i.e., s+ = s0 = GB, s− = BG), for example, is almost equivalent to

judging in the binary model if we merge + and 0 reputations in the trinary model. However,

the results for the trinary and binary models are fundamentally different in the following two

aspects.

First, shunning (see Fig. 1(D) in the case of the binary reputation model) is more supportive

of cooperation in the trinary than binary model. In the binary model, shunning results in

a cooperation probability of ≈ 1/2 in the error-free limit unless a cooperation prone initial

condition and a finite number of rounds are combined [12] or reputations of players are only

partially visible to others [18]. In the trinary model, shunning–standing and shunning–judging

stabilize full cooperation in the error-free limit (see Appendix B). Under these social norms,

a donor meeting a recipient with a 0 reputation receives B irrespective of the action, which is

common to the behavior of the binary model. In the trinary model, however, even if a donor

obtains a − reputation, the donor easily receives G either by cooperating with a + recipient or

justifyingly defecting against a − recipient. Owing to the contribution of the justified defection,

a donor gains G more often than B on average. If players with the + reputation increase in

number owing to this mechanism, players more likely receive G than B. This positive feedback

sustains cooperation under shunning–related social norms in the trinary model.

Second, and the more important, image scoring is capable of supporting cooperation in

our model. This conclusion is consistent with the results derived from behavioral experiments

[20–22] and those derived from numerical simulations [4,29] but opposite to those derived from

the binary reputation model [6, 9, 10, 12]. We reached this conclusion by simply introducing a

third reputation to the standard binary model of indirect reciprocity. The cooperation under
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image scoring in our model does not require forced cooperation in the first round [3], partial

cooperation of defective players [8], binomially or Poisson distributed number of rounds [14,16],

growth of social networks used for reputation passing [15], or almost invisible reputations

[17]. In our model, cooperation under image scoring occurs for the following intuitive reason.

Although the composition of the stable population depends on the benefit-to-cost ratio and

the error probabilities, the main action rule present in the stable population is gDisc, which

cooperates with + and 0 recipients and defects against − recipients. In the equilibrium, most

gDisc resident players possess the + reputation. If some AllD mutants are present, a − player

in the population is likely to be AllD and not gDisc. With the trinary reputation, gDisc players

distinguish a player that justifyingly defects (i.e., D against a − recipient) from a player that

selfishly defects (i.e., D against a + or 0 recipient). A donor that has justifyingly defected

would receive a 0 reputation but not a − reputation because few players have the − reputation

in the population. Because gDisc donors are generous enough to cooperate with both + and

0 recipients, gDisc players would not obtain the − reputation. gDisc players that happen to

obtain the 0 reputation, when selected as donor, likely meets a recipient with a + reputation

such that they regain the + reputation. In contrast, AllD players would obtain the − reputation

such that they are not helped by others. This contrasts with the case of the binary reputation

model, in which a discriminating donor that justifyingly defects immediately receives the worst

reputation (i.e., −) and then is defected by others.

The mechanism of cooperation under image scoring in our model is similar to that under the

so-called tolerant scoring proposed by Berger [19]. The population of tolerant discriminator,

which defects against a recipient if the recipient has defected in the last two rounds, and

cooperates otherwise, is stable. Berger assumed three action rules, i.e., tolerant discriminator,

which is similar to gDisc, AllC, and AllD and investigated the behavior of the model under

tolerant scoring. In contrast, we carried out an exhaustive search of the space of the action

rule and social norms to find the viability of image scoring. In contrast to [19], cooperation is

stable even if the reputation moves only one step in a round, and cooperation is realized by

mixture of two types of discriminative players (i.e., gDisc and CDC) rather than by one type.
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Appendix A: Distribution of the Reputation for the Salta-

tory Reputation Dynamics

Under the saltatory reputation dynamics (Fig. 2(B)), we obtain
p∗+ = p∗+Φ

∗ + p∗0Φ
∗ + p∗−βuΦ

∗,
p∗0 = p∗+(1− βd)(1− Φ∗) + p∗−(1− βu)Φ

∗,
p∗− = p∗+βd(1− Φ∗) + p∗0(1− Φ∗) + p∗−(1− Φ∗).

(15)

Equation (15) and the normalization p∗+ + p∗0 + p∗− = 1 lead to p∗+
p∗0
p∗−

 =
1

Z

 (1− βu)Φ
∗2 + βuΦ

∗

(1− βdβu)Φ
∗(1− Φ∗)

(1− βd)(1− Φ∗)2 + βd(1− Φ∗)

 , (16)

where Z = 1− (1− βd)(1− βu)Φ
∗(1− Φ∗).

Appendix B: Justification of the Criterion of Equilibrium

Selection

We defined cooperative equilibrium as stable population in which the probability of cooper-

ation is larger than 0.5 for some b/c such that b/c < 20. To justify this criterion, we carry

out additional numerical simulations with various error probabilities satisfying ϵi = ϵa. The

cooperation probability in the stable homogeneous populations under the corresponding social

norms is shown for various error probability values in Fig. 5. Figure 5 shows that under 13

out of the 22 action–norm pairs, the probability of cooperation seems to converge to unity in

the error-free limit. It should be noted that we identified 12, not 13, cooperative homogeneous

populations in the main text. One of the 13 action–norm pairs is excluded by our definition of

the cooperative equilibrium because it is stable only for large b/c values (i.e., b/c > 52.63) at

ϵ
i
= ϵa = 0.02 (Table. 1). In the stable heterogeneous populations, under five out of the nine

action–norm pairs the probability of cooperation is larger than 0.5 for some b/c.

Next, we consider the conditions on b/c. In the homogeneous populations, under eight out

of the 13 social norms for which the probability of cooperation seems to converge to unity

17



in the error-free limit, i.e., standing–standing, standing–judging, standing–shunning, judging–

standing, judging–judging, judging–shunning, shunning–standing, and shunning–judging, the

range of b/c in which the corresponding action rule is stable tends to b/c > 1 as the error

probabilities become small. For example, under standing–standing, standing–judging, judging–

standing, and judging–judging, the homogeneous population of rDisc is stable in the range b/c >

1.00006 when ϵi = ϵa = 0.0025; the corresponding range is b/c > 1.004 when ϵi = ϵa = 0.02

(Table 1). However, under the other five social norms, i.e., standing–scoring, scoring–standing,

scoring–judging, scoring–shunning, and scoring–scoring, stable cooperation requires a large

value of b/c when the error probabilities are small. For example, under standing–scoring, the

homogeneous population of CDC is stable in the range b/c > 402.1 when ϵi = ϵa = 0.0025; the

corresponding range is b/c > 52.63 when ϵi = ϵa = 0.02 (Table 1). Under image scoring, the

homogeneous population of gDisc is stable in the range b/c > 66.51 when ϵi = ϵa = 0.0025; the

corresponding range is 8.230 < b/c < 12.53 when ϵi = ϵa = 0.02 (Table 1, Fig. 4).

In the heterogeneous populations, four out of five equilibria, i.e., mixture of gDisc and rDisc

under scoring–standing, mixture of gDisc and rDisc under scoring–judging, mixture of gDisc

and rDisc under scoring–shunning, and mixture of gDisc and CDC under image scoring, realize

a large probability of cooperation in a wide range of b/c when ϵi = ϵa = 0.02 (Figs. 3(B)

and 3(C)). This is also the case when the error probabilities are smaller. For example, the

heterogeneous population composed of gDisc and CDC is stable under image scoring in the

range b/c > 1.994 when ϵi = ϵa = 0.0025; the corresponding range is b/c > 1.941 when

ϵi = ϵa = 0.02.

Appendix C: Fraction of Two Action Rules in the Error-

free Limit

We consider a social norm given by s+ = s0 = GB and s− = GG, BG, or BB. In the limit

ϵi, ϵa → 0, the fraction of gDisc, denoted by qgDisc, and that of rDisc converge to 1 − c/b and

c/b, respectively, for the following reason. In the equilibrium, few players possess the 0 or −
reputation. The behavior of rDisc players and that of gDisc players differ only toward recipients
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with reputation 0. An rDisc donor with a + reputation defects against a recipient with a 0

reputation, receives B, and transits to the 0 reputation. If this rDisc player is selected as

recipient, an rDisc donor defects and a gDisc donor cooperates. If selected as donor, this rDisc

player would cooperate because most recipients have the + reputation, receive G, and transit

to +. Because the rDisc player with a 0 reputation is selected as recipient once on average

before selected as donor, the expected payoff to the rDisc donor during this period is equal to

qgDiscb on average. In contrast, a gDisc donor with a + reputation cooperates with a recipient

with a 0 reputation, pay c, receives G, and keeps a + reputation. Then, the gDisc gains benefit

b when selected as recipient. By equating the payoffs to rDisc and gDisc players, we obtain

qgDiscb = −c+ b, which leads to qgDisc = 1− c/b.
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Figure 1: Rule of the donation game with trinary reputations. (A) Illustration of the interaction

in a single game. (B) Eight action rules. (C) Representative social norms. The rows represent

the donor’s actions (i.e., C and D), the columns represent the recipient’s reputations (+, 0,

and −), and G and B represent the assessments that observer assigns to the donor. (D)

Representative social norms in the binary reputation model.
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Figure 2: Two types of reputation dynamics. (A) Gradual reputation dynamics. (B) Saltatory

reputation dynamics. Φ represents the probability that the donor receives G.
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and stable action rules under different social norms. All the shown social norms own s+ = GB.

(B) Average cooperation probability and the fraction of gDisc players under scoring–standing

(i.e., s+ = s0 = GB and s− = GG). It should be noted that the fraction of gDisc and that

of rDisc sum to unity. (C) Average cooperation probability and the fraction of gDisc players

under scoring–scoring (also called image scoring; s+ = s0 = s− = GB). The fraction of gDisc

and that of CDC or AllC sum to unity.
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the 22 stable homogeneous populations. We assume the gradual reputation dynamics and set
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Table 1: Stable action–norm pairs. We also show the range of b/c in which action rule σ

is stable, probability of C, and mean G assessment (i.e., Φ∗) under the gradual reputation

dynamics. An asterisk represents either G or B. We set ϵi = ϵa = 0.02.

σ s+ s0 s− range of b/c %C Φ∗

CCD GB GB

∗G 8.480 < b/c 0.9784 0.9800

BB 8.108 < b/c
0.9783 0.9783

GB 8.230 < b/c < 12.53

CDC GB GG GB 52.63 < b/c 0.9424 0.9808

CDD GB

∗G ∗G 1.004 < b/c 0.9409 0.9808

∗G BB 1.004 < b/c 0.9392 0.9792

BB ∗G 1.018 < b/c 0.6571 0.7445

DCD

∗B

GB

∗G 3.716 < b/c 0.3191 0.5688

GB ∗B 1.137 < b/c < 1.296

0.1833 0.1833BB BB 1.120 < b/c

BB GB 1.120 < b/c < 11.66

CDD GB BB BB 25.54 < b/c 0.0004 0.0004
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