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Abstract

We propose a geometrical method for estimating the parameters
of contingency tables. Our method—bisector regression for contingency
tables—is based on a nested structure of models. The nested struc-
ture represents the variables that are independent. This means that a
model includes smaller models allowing stronger independence, which
also means that more parameters are eliminated in smaller models.
Our method estimates parameters corresponding to the interactions of
lower orders after those of higher orders are estimated or eliminated.
Bisector regression generates a sequence of parameter estimates, each
element of which represents a model and an estimate. The length of
the sequence is much smaller than the total number of models. We
describe the algorithm and show examples.

In this paper, contingency tables are considered. We introduce param-
etrization of multinomial distributions and propose an algorithm for esti-
mating parameters. The proposed algorithm is bisector regression for con-
tingency tables (BRCT). The main idea of BRCT comes from our previous
works. In [6, 7], we proposed the bisector regression algorithm, which is
an extension of least angle regression [4]. Least angle regression is an al-
gorithm for parameter estimation, which is related to the [;-regularization
method (lasso, [3, 5, 11, 12]). In problems of contingency tables, our inter-
est is to estimate parameters corresponding to interactions between factors.
Factors, or random variables, are qualitative variables. Parameters are sep-
arated into groups depending on how many factors are involved. We apply
the main idea of bisector regression for generalized linear regression ([6])
and Gaussian graphical models [7] to these parameter groups. We provide
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explanations for three cases: (a) two factors, (b) three factors, and (c¢) K
factors. We first describe cases (a) and (b), and then state the algorithm
for general case (c). We must distinguish the total number of factors from
the number of factors involved with a parameter, especially for the general
case.

The proposed algorithm BRCT is based on the geometry of dually flat
space [1, 2, 9]. We consider a dually flat space of multinomial distributions.
The natural parameter and expectation parameter are used as coordinate
systems in this space. We estimate the natural parameter. BRCT is de-
cided by the total number of factors K; and the number of factors used
by estimated parameters Ky. These two numbers indicate the space where
the BRCT (K1, K2) algorithm works. In case (a), we use the algorithm
BRCT(2,2). In case (b), the algorithms BRCT(3,3) and BRCT(3,2) are
used. In the general case (c) in which the total number of factors is K, we
use BRCT(K7, K») for (a part of) Ko = K7, K1 —1,...,2.

BRCT generates a sequence of parameter estimates. Strictly speaking,
each BRCT (K1, K3) generates a sequence. Each element of the sequence rep-
resents how variables are correlated. As shown in Section 2, BRCT (K, K2)
continuously connects to BRCT (K7, Ko—1). This property helps us sequen-
tially estimate parameters without any extra effort for combining algorithms.
Furthermore, BRCT avoids the difficulty of combinations. The total number
of combinations of independence is too large to consider when the number
of factors is high. The length of a sequence generated by BRCT is the same
as the total number of parameters, which is much smaller than the total
number of models. BRCT helps us narrow down the candidates efficiently.

In Section 1, we consider multinomial distributions and introduce a pa-
rametrization for these. The natural parameter and expectation parameter
are used in our method. The natural parameter is separated into groups
depending on the number of indices. In Section 2, we propose the algorithm
BRCT to estimate parameters and select interactions simultaneously. Each
parameter group is estimated separately. We do not deal with all param-
eters equally. In Section 3, the results of our method are shown for some
datasets. We give the conclusion in Section 4.

1 Introduction

We consider contingency tables and multinomial distributions. First, we
explain them in the case of two factors. The natural parameter and ex-
pectation parameter are introduced. Second, we consider the case of three
factors. Finally, the case of K factors is considered. Parameters in the case
of K factors are confusing, and therefore, we present parameters in the case
of two factors first.

We consider contingency tables of two factors X; and X», and suppose



Table 1: Notations for Two-Factor Contingency Tables. Xi: factor with m + 1
levels, Xy: factor with n + 1 levels, y;;: the number of observations of cell (4, j).

X1\ X2 | 0 1 o n | total
0 Yoo  Yo1 .- Yon | Yo+

1 Yyio Y11 .- Yin | Y1+

m Ym0 Ym1 .- Ymn | Ym+
total | y40 Y41 - Yo | N

that they have m + 1 levels, X; = 0,1,...,m, and n + 1 levels, Xo =

0,1,...,n, respectively (Table 1). In this case, a multinomial distribution is
given as
N' 100 ,.Y01 Ymn
f(y‘p) = yOD!yO]_! e Ymn 'pOO p()l . pmn )

where N is the total number of observations, y;; is the number of obser-
vations of cell (i,7) with constraint 31", >°" (y;; = N, and p;; is the
probability of cell (4, j) with constraint > "> 7% (p;; = 1.

The logarithm of the probability distribution is

N!

log f y| p Z Z Yij Ing’Lj + log

10]0

- Z Z Yijlog pij + Z Yio log pio

11]1

Yoo'yo1! - - - Ymn!

+ 07 log po; + Yoo log poo + 1o
Zyj BP0y Y &P & Yo0!yor! - . . Ymn!

J=1
St PijPo0 | Pio
00 0
“ 3 oS (S ) s,
i=1 j=1 pioboj 324
+ (Zyu)longrNIngooJrlog -
j=1 " i=0 Yoo-Yoi: - - - Ymn-
We introduce the natural parameter as follows:
i Pio Poj  jij PijPoo
0% =log =2, ¢ =log=2, 09 , =log 22
X X poo X2 DioPoj
fori=1,2,...,mand j=1,2,...,n. Let
0 = (0x,;0x,;0x,x,)
1 g2
= (0}(1,93(1,.. . 7037(}1;6)(276)(27' . 9X1’9X1X276X1X27"' 769(1?)(2),



where 0, is an m-dimensional vector, 0, is an n-dimensional vector, and
0x,x, is an mn-dimensional vector. We apply the main idea of bisector
regression to Ox, x,.

The logarithm of f is represented by the natural parameter 6 as follows:

log f(y[0) = Zzym Yxat D (Zyz‘j)%{l
i=1 =0

=1 j=1
|

3 (D), — () +log
j=1 =0

Yoo-Yo1- - - - Ymn-

where 1 is a convex function of 6, the potential function, and it is defined
as

¥(0) = —N log poo

=Nlog [ 1+ exp(y,) + Y exp(6h,) + 33 exp (93(1 + 0%, + 0X1X2>

i=1 j=1 i=1 j=1

It is not difficult to prove the second equality. In fact, from the definition
of the natural parameter, we have

pio = poo exp(f', ), poj = poo exp(6%,),

DioPo; y :
Pij = ;00] exp (0%, x,) = Poo exp (93(1 + 9 T 6X1X2>

fori =1,2,...,m and j = 1,2,...,n. The condition Y 1", > " pij = 1
leads to

Poo 1+Zexp 0%,) +ZGXP H_JXQ +ZZeXp<0X1+9 +9X1X2) =1

=1 j=1

The expectation parameter n corresponding to the natural parameter
is defined as

n n

= E[Zyi]} =N> pyj,
=0 =0
m m

= E[Zym} = szija
=0 =0

gy = E[yu} = Npij

for i = 1,2,...,m and j = 1,2,...,n. The potential function ¢ of the
expectation parameter 7 is given by

¢(n) = —NH(p)

m n
= N> pilogpy,

i=0 j=0
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where H(p) is the entropy in information theory. The cell probabilities p;;
are represented by the expectation parameter 7. In fact, we have

mnin n nnfj(ng
D ILEES DS wp ok
i=1 J=1 =1 j=1

Therefore, ¢ is a function of 7.

Next, we consider contingency tables with three factors. Suppose that
three factors—X1, Xo, and Xs—have m1, ms, and mg levels, respectively. The
natural parameter 6 is defined by

i 00 0420 004
01 =1log P10 gz — 10g P20 s 1og PO
Pooo Pooo Pooo
itie Di1i20P000  piqis DPi10isP000  pinig Poisiz P000
9X1X2 lo . L T X X3 T lo ) L 0X2X3 =lo ) 0
Pi100P0i20 Pi100P00i5 P0i20P00i5
14243 DiyisizPiq 00P0i20P00i3
0X1X2X3 1
Pi1io0Pi10i3P0igiz PO00
foris =1,2,...,mq, 40 =1,2,...,mo, and i3 = 1,2, ..., m3. The logarithm

of the probability function f is represented with respect to the natural pa-
rameter as follows:

mi mo ms mi  mo

08 1010) = 3 3 3 v, + 3 O (3 v )R,
11=112=113=1 11=1122=1 13=0
m1 ms3 m2 ms3 mi
2> (Z Winizis ) %%, + 2 D (D i) 0%,
1= 123 1 =0 izfligfl i1=0
ms3 mi1 ms
Y Y )+ D (03 )
i1=1 12=013=0 12=1 21=013=0

mi1 m2

! Z ( Z Z yl”mg)eld - 1/}(9) + log | IN' 3

|
ism1 " 41=019=0 Yooo:Yoo1: - - - Ymimoms:

where 1(0) = —N log pogo. Similar to the case of two factors, all p;,4,i, can



be represented by the natural parameter 6:
Pi100 = P000 eXp(9§1), P0i0 = P00 eXp(G%)’ P00is = P000 exp(Gé?S),
Pi1in0 = D000 €XP (9_@%1 + 93?2 + 9%%{2) ; Diy0is = P00 €XP (9% + 93?3 + 9%%{3) ;
P0isiz = D000 €XP (93?2 + 9% + 9%3@) )
L — gil 02'2 9i3 9i1i2 9i1i3 9i2i3
Pivigis = Poo0 €XP |\ Uy + 0y, +0x, +0x %, T0x %, T0x,x; )
pooo = {1+ Y exp(0,) + > exp(6%,) + 3 exp(0,)
+exp (0%, +0%, +0%%,) +exp (0%, + 0%, +0%,)
+ exp (93?2 + 9§3 + 9%3}(3)
A . . - . y 1
oxp (0%, + 0%, + 0%, + 0¥, + 0% + 0% )}

The expectation parameter 7 corresponding to the natural parameter 6
is given by

mg  ms mi1 ms3 mi1 ma

X1 _ E E X2 _ § § X3 _
nil =N Piyizis, 771'2 =N Piyigiss 771'3 =N Piyizis,
192=013=0 11=013=0 11=012=0
m3 m2 mi
X1X2_§:'“ X1X3 XoXs3
77@'11'2 - p117,2z37 777;12'3 - p21127,37 771'21'3 - pnzgzga
13=0 i2=0 11=0

ﬁﬁfﬁz& = Diyisiz
forip =1,2,...,my, 42 =1,2,...,mo, and i3 = 1,2, ... ,m3.

We consider the case of K factors: an (mj+1)x (ma+1)x---x(mg+1)-
contingency table. Let a € {1,2,...,K} and i, € {0,1,...,m,}, where
the latter is an index of factors, indicating the level of factor X,. Before
introducing the parameters, we prepare the notations. For [ < h < K, define

h — 1 indices are decided by (iq,, gy, - - -, tay,)s
. . P )
Viiaysiass -+ >iay) = § Pijiy...i7. | | elements of (g ,4g,,. .., i, ) are 0,
-/
ir, =0 for a & {a1,aa,...,an}

For example, when K = 3,h = 2, = 1,a; = 1, and as = 3, we have
Viliaysiay) = Vi(i1,73) = {Piy00, Po0is }. The natural parameter 6 is defined

as

(Hp<q)evo(ia1 7ia27~~~:iaq) p(q)) (Hp(‘Z*Q)EVQ(ial 7ia27~~~:iaq) p(q72)) e

iayiag--iag

= log
Xa1Xa2...Xaq - ) |
<Hp(q—1)€V1(ia1:Z‘azy.u,iaq)p(q 1)) (Hp(q_3)€V3(ia17ia2""’iaq)p(q 3)> o
for ¢ = 1,2,...,K and 1 <, < mg(a = 1,...,K). For example, when
K = q = 3, we have
givizis =1 DPiyi2i3Pi100P0i20P00¢5
X1X2X3 Pi1i20P410i3P0i2i3 P000 ’
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which is the natural parameter in the case of three factors. The expectation
parameter 7 corresponding to the natural parameter 6 is given by

Xay Xag-. X, e
a1<razmetag .. .
Miayiay.iag E E E Yivig...ix

a¢{a1,a2,...,aq} ta=0

Maq
=N Z Zpi1i2...i}(

ag{a1,az2,....aq} ia=0

forgq=1,2,..., K.

2 Proposed Algorithm

First, we provide an algorithm for two-factor contingency tables. The sim-
plest model that we assume is the independent model: for allt =1,2,...,m
and j =1,2,...,n,
DijPoo = PioPoy
which is equivalent to
eij — log DPizjPoo

— -0
XXz DioPoj

foralli=1,2,...,mand j =1,2,...,n. Let S denote the dually flat space
of all multinomial distributions. A submodel N is defined by

N:{@\@@?IXQ:O,1§z‘§m,1§j§n};

this is the independent model (Figure 1). Let éMLE and ég denote the MLE
of S and the MLE of the submodel N, respectively. We define M by the
m-flat subspace that intersects orthogonally with N at 6. It is known that
M includes both éMLE and 90. Points in M can be represented as

((70)7, (70)3 %5 0%, %)

1 2

where (ﬁo)ix and (ﬁo);( are a part of the m-affine coordinate of 6. Our
algorithm BRCT(2) works within M. We apply our method to only 0%1 X
and fix the n;»Xl—coordinate and nj{Q—coordinate. As a notation in the case
jXQ;Hégl X2> is represented by 6. A sequence of
parameter estimates, 0(g),0(1); - -, 0mn), is generated by our algorithm.
Before describing the algorithm, we introduce some submodels. Let

M) ={016¢y, =0 .71 ¢ 1},

M (i), 1) = {01 0% x, = 5. 0, =0, () £ 1}

of two factors, ((770)5(17 (10)
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Figure 1: Submodels for BRCT(2). S: space of all multinomial distributions,
OniLe: MLE of S, N: independent model defined by N = {6 ongz =0,1<:i<
m,1 < j < n}, fo: MLE of the submodel N, M: m-flat subspace that intersects
orthogonally with N at éo. M is known to include both Oy and éo. BRCT(2)
works within M, and it estimates 9;?1)(2 for1<i<m,1<j<n. Pointsin M
can be represented as ((7p);X", (7?0);-(2 ; 9@?1){2), where (70);"* and (770)])-(2 are m-affine

coordinates of éo.

for I C{(,7)]|1<¢ <m,1<j <n}, (i,j) € I, and s € R (Figure 2).
The algorithm BRCT(2) (BRCT with two factors) is given as follows.
Steps 2 to 6 are iterated.

BRCT(2)

input: observation y;; of each cell (3, j)
output: parameter estimates é(o), é(l), cee é(mn)
1. Let O := O, 1= {(i,5)|1 <i<m, 1 <j<n},and k:=0.

2. Calculate the MLE é(_]:)j of the model M (I\ {(i,7)}) for (i,5) € I.

3. Find t* := min; jc; D (é(k) | é(_ki)j> and
(l*,j*) = arg min(iyj)g D (9(@ ‘ é(_kl)])
4. For (i,j) € I, calculate sj; and 5(753 € l(fki)j satisfying both

Dy | 055) = t* and 8,7 € M((3, ), 535, 1)-
5. Let ééiﬂ) 1= sj; for (4,j) € I and ééiﬂ) =0 for (4,7) € I.
6. If k4+1 < mn — 1, then go to step 2 with £k == k+ 1,1 :=
I\ A{(:*,7*)}. f k+1=mn — 1, then go to step 7.



M (INA(@ 30 | M (&, 5"), s50, 1)
O’ | O’ 0
) Or11) Oy =9y

0o M (I\A{(i,4)}) = M((i,),0,1)

Figure 2: Update of an Estimator in BRCT(2). é(k): kth estimate
of 6, Opy1): (k + 1)th estimate of 6, 6p: the MLE of the model N,
M((i,j),s,I) = %ﬂmf:&9”4:0«fdﬁgl%,@$ﬂtheMLEofmemm-
model M (I'\{(,5)}), 9?,57 the projection of é(k) to the submodel M ((z,7), s5:, I).
In this figure, M (I\ {(7,j)}) is nearer to 0 than M(I\{(',j')}). The divergence
to 0(_,:)/j/ from é(k) is the same as the divergence to 9(_]6?. é(k+1) is defined as the

intersection of M ((4,7),0,I) and M((¢',5"), 8%/, I).

i3’

*
1))

7. Let é(mn) := 6. Stop the algorithm.

Note that in step 5, éz;]“) = 0 for (i*,5*) € I that was obtained in step 3.
This fact indicates that one element of 6 becomes 0 in each iteration and
that our method selects covariance models sequentially.

Next, we propose an algorithm for three-factor contingency tables. We
consider an mj X mgy X mg-contingency table. A part of the natural pa-
rameter is estimated first, and the remainder is estimated by an analogy
of BRCT(2) thereafter. We estimate 0’)}38 x, Dy bisector regression under
the condition that complementary elements of the expectation parameter,
nﬁl,ngz,ngi’, 7751(1-12)(2,775253, 771);2;(3, are fixed at the values of the MLE. Note
that two types of elements of the natural parameters, 9%&2 and 9%2}2 X3

are not dealt with equally. The former type, 9%&2, is estimated by an

analogy of BRCT(2) after the latter type, 9%2)’(32 X, 1 estimated. We define
some submodels, similar to NV and M in the case of two factors. A submodel
NB is defined by

NE = {01638 =0, 1 <is <y, 1< <o, 1<y <m



Let Oyrg and é([)3] denote the MLE of S and the MLE of the submodel
NBI, respectively. We define M 3] as the m-flat subspace that intersects

orthogonally with N[B! at é([)g] e NBl Tt is known that M includes both

éMLE and 9[3], similar to the case of two factors. Points in M can be
represented as

A3 ~[13 A3 3. /413 ~[13 3 /A3 3. pnl1i21:
(G B2, D G GBI, G 033, )

where the n-part, (350):0, (D)X, (35X, (XX (K Xa (g XaXs,

is a part of the m-affine coordinate of OA([)?’]. Our algorithm BRCT(3) first

works within M3, We apply bisector regression to «9%%@2 x, under the con-

dition that a part of the expectation parameter, 7]51(1 , 77,52(2 , 772-)3(3, 771-)1(;2)(2 , 771')1(;3)(3:

XoX3
nigig

00, é(l), . ,é(dS), is generated by BRCT(3), where d3 = [[, m; = mimams

, is fixed. Let 01 denote (0’)}:2’)?; x,)- A sequence of estimates of 013!,

is the length of A3, Strictly speaking, parameter estimates é(k) should be

written as égi}

factors. However, the superscript [3] is omitted for simplicity. We define
other submodels MB! (I) and MB! ((iy,is,i3),5,I) in M as

) SO that they can be distinguished from é(k) in the case of two

ME (1) = {0] 5, = 0. (i5.i515) £ 1}
M (i), 1) = {0 ] 0353, = 5, 0, 30x, = 0. (1,00,5) £ 1}

for I C {(2/1,1,2,2{3” 1< le <mi, 1< ’L,2 <mo, 1< Zg < 7713}, (il,ig,ig) el
and s € R.

We provide an algorithm for the setting where contingency tables have
three factors. The algorithm BRCT(3) (BRCT with three factors) is given
as follows. Steps 2 to 6 are iterated, and run BRCT(3, 2) after the iterations.
The algorithm BRCT(3,2) is an analogy of BRCT(2) for the case of three
factors, and it is explained after BRCT(3) is described.

BRCT(3)

input: observation v;,i,i, of each cell (iy,12,13)
output: parameter estimates é(o), é(l), cee é(dg)
1. Let 09 := Oniig, 1= {(i1,i2,3)| 1 < i1 <my, 1 <dpg <myp, 1 <
i3 < ms}, and k := 0.
2. Calculate the MLE 9@31i2i3 of the model MB! (I'\ {(i1,i2,i3)})
for all (iq,149,13) € I.

3. Flnd t* = min(ilyiw?))e[ D (é(k) | 0_(_];;)1i2i3)) and

(13,15, 13) == arg ming, j, i;)er D (é(k) | §@31i2i3).
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4. For all (iy,142,i3) € I, calculate s7 ;. and é@gli?i?’ € l@31i2i3 satis-

fying both D (6 | 6,12") = t* and 6,1 € M((i1, ia, i3) I).

782<1i2i37

5. Let ég}:j’l“) 1= 8] iy, TOT (i1,12,173) € I and éz};j’f’) =0 for (i1,1i2,13) &

6. If k+1 < d3 — 1, then go to step 2 with k := k 4+ 1,1 := 1\
{(i7,15,4%5)}. If k+1 = d3 — 1, then go to step 7.

7. Let é(d3) = HA([)?’}. Run BRCT(3,2) with é([)?’} as the start point.

Note that other elements of the natural parameter are decided by the ele-
ments of the natural and expectation parameters that may be estimated or
fixed.

The algorithm BRCT(3,2) (BRCT with 3 factors and 2-indexed pa-
rameters) is a three-factor version of BRCT(2). BRCT(2) and BRCT(3)
are thus denoted as BRCT(2,2) and BRCT(3,3), respectively. Let dj3 9 =
Zlgr(1)<7(2)§3 M (1)Mr(2) = M1ma + mims + mamsg denote the number of
parameters to be estimated by BRCT(3,2). We define some submodels in
NBl which are similar to Nl and M of BRCT(3). A submodel N®2 is
defined by

[3,2] _ 111213 _ i112 _ 1113 _ 1213 _
NB:2 = 9\ 043k, =0, 0%%, =0, 085 =0,0%3% =0,
1 <ip <my,1<iy < mo, 1§i3§m3}.

Let éﬁﬂ; and é([):s,z} denote the MLE of the model NB! and the model N2,

respectively. Recall that é([)3] is the MLE of the model NP too, that is,
éﬁ}ﬂa = é([)g}. We define M32 as the m-flat subspace of N3 that intersects
orthogonally with N2 at é([)g,z] e NB32l Tt is known that M2 includes

both éﬁﬂl and é([]3’2]. Points in M3 can be represented as
L[32NX1 43,2\ X [ A13,2\ X5, piri i1i joi
(G50, G2, s 0, 0%, 005,50

The model M‘[372] is the model that BRCT(3,2) works within. Let 932 de-
note (0%, 0%, 0%.x,). A sequence of estimates of g[3:2 00y, 01y, - - - 10(d3)7
is generated by BRCT(3,2). Strictly speaking, parameter estimates 0y
should be written as éa’f}, but the superscript [3,2] is omitted for simplic-

ity. We define the submodels of NI, named MB! (1) and MB! ((iy,i2), s, I),

11



as

MBI (1) = {9| 03, =0, 005 =0, 025 =0,

(i.15) # 1, (85, 15) # 1, (i3, %) €1},

MBA ((i1,i0),5,T) = {0] 0473, = s, 008 =0, 635, =0, 085 =0
1,22),S P VX1 Xe T Y XXy T VXX T

(ih.15) # 1, (85,15) 1, (i5.i5) £ 1},

respectively, for I C {(z’l,zé), (i7,15), (1h,15)| 1 <) <m, 1 <if <mg, 1 <
iy < mg}, (i1,39) € I, and s € R. The submodels M2 ((iy,i3),s,1I)

and MB2 ((iy,43), s, I) are defined in the same way as M2 ((i1, i), s,I).
In the definitions of both M2l (I) and M®? ((iy,is),s,I), the condition
9%2)2)(3 = 0 is omitted. Note that MB2 (I) and MB2 ((iy,is),s,I) are
subspaces of NBI.

The algorithm BRCT(3, 2) is described as follows.

BRCT(3,2)
input: observation v;,i,i, of each cell (iy,12,13)
output: parameter estimates é( 0)s é(l), e é(d[g 27)
1. Let Og) = Ok, T = 182 := {(i,1),ir@)| 1 < 7(1) < 7(2) <
3}, and k := 0.
2. Calculate the MLE 6’( )T“ @) 6f the model M132 (I\A{(ir(1),ir2)})

for all ( Lr (1) T( )) el
. . . T(l 7(2) -k —
3. Find t* := mln(‘f(l),;(z))GID( k) | 9 ) and (i (1 )v%(z)) "
arg min; 7(1),7(2))€1D( | 9 (1) r<2)>.

5 ir (1) (2) —ir(1)ir(2)
4. For (ir1),ir(2)) € I, calculate s} ryin) and 0,7 € Ly

satisfying both D(Q(k | 97“(1)17([@) = t* and (9( )T(I)ZT(Kz) €
[3,2]
M= ((ir (1) ir(2))s ZT(I)ZT@)J)-
ir(1)ir(2) . _ ; r(1)ir(2) . _
5. Let 9(k+1) : ST<1) @ for (ir(1),ir(2)) € I and 0(k+1) =0
for (ir(1),ir(2)) & I.
6. If k+1 < djgg — 1, then go to step 2 with k := k+ 1, I :=
I\ {(ij(l),ij@))}. If k+1=dpsg — 1, then go to step 7.

7. Let 6A’(cl[g’g]) = é([)g’2]. Stop the algorithm.

Instep 1, 1532 is strictly given by 132 .= Gy izl 1 <idrq) Sme), 1 <
ir2) < Mr(2), 1 < 7(1) < 7(2) <3} Note that (7(1),7(2)) € {(1,2),(1,3),(2
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In the case of three factors, BRCT(3,2) is completed after dj3,9] iterations
of steps 2 to 6, and thus, BRCT(3) is completed.

Finally, we provide an algorithm for the general case where contingency
tables have K factors. We consider an m; X --- X mg,-contingency table.
For Ky < Kj, we propose an algorithm BRCT (K7, K2) (BRCT with K,
factors and Ks-indexed parameters), which is followed by BRCT (K, K2—1)
unless Ky = 2. Let dig, k,) = ZIST(1)<'”<T(K2)SK1 Mr(1) - - My(K,) denote
the number of parameters to be estimated by BRCT(K7, K3). We define
some submodels. A submodel NE1K2] ig defined by

NIELE:] {9 9;51()1)“)((}{(2; = 0,1<7(1) < - <7(K2) < Kl}

{0|9‘r(1) dr(Ky+1) _071<7-(1)<...<7-(K2_|-1)§K1}

) Xr(Kg+1) =

{e| 0 N, = 0} ,

where the condition that 1 < i, < mg for a = 1,2,..., K3 is omitted for
simplicity. We define SUE1K2] — NIELEKH1] gng SIELK] — 6 where S is
the dually flat space of all multinomial distributions corresponding to the

contingency table (Figure 3). Let él[jfﬁg{ﬂ and 6 K1 K2 qenote the MLE of the

model SIE152] and the model NFUK2l respectively. Note that 01[\5[%]’3}{2]

HgKl’Kﬁl] because of the definitions of SUS1:K2l and NE1LK2]  We define
MFELK2] 1y the m-flat subspace of SU1:K2l that intersects orthogonally
with NELK:] a¢ ééKl’KQ] e NUELE] Tt is known that MUER2] includes

ALK K ALK K .
both 91[\/1ﬁE 2l and 9([) 1K) points in MIETR2] can be represented as
LK1, Ko X r(1) AR KN X (1) X (Ky—1) | plr(1)tr(Ky) L . .
<(770 )1,7_(1) g ey (770 )i‘r(l)"‘i‘f‘(Kz—l) 9 HXT(l)"'XT(KQ)’O’ ey 0 y

where n[Kl’ K2l 5 the m-affine coordinate of é([)Kl’KQ]. The algorithm BRCT (K7,

K») works within MUE1E21 Let glFK152] denote («9;(2)1}1{3}){ )). A sequence
T A T 2

), is generated by BRCT (K71, Ka).
Ko]

of estimates of gLE1 K2, é(o), é(l), e é(d[Kl,KQ]
Strictly speaking, parameter estimates é(k) should be written as é{gl
However, for simplicity, the superscript [K7, K5] is omitted. We define the
submodels of SER2] named MELK2] (1) and M FK1K2] ((z’T(l), e (Ka))s S
I), as

K1 K iz(1)- z,(K) Py :
MIELRE (1) = {0 | 670D =0, (i51)s i) €1
MR ((wl)w ir (k) 5 1)
T(1)lr(Ky) UF(1) IR (Ky) .
{0 0%y Xty = 5 Oy Xty = O 1) 0T (06)) € I}

13



N[K1,K2 S[Kl,KQ—l]

S[KlaKQ]

. é[KviQ]
| é[Kl,Kg] MLE

MK K]

Figure 3: Submodels for BRCT(K;, K»). NIEKuK:2l = {0| 93?2;”;?(2; =01

IN

. . Tr(1)lr(Kot+1) . .
Lr) <ot < Up(Ky) < Kl} N {9| QXT(I)"'XT(2K2+1) =0,1< (1) < < l(Kup—1) <

K o105, =0}, sl - VLK GECISL MLE of the model
Sl K] é([]Kl’KZ]: MLE of the submodel NE1:E2l pfUE1Ke]. m_flat subspace that
intersects orthogonally with NE1E2] at é(gKl’KZ]. MUKl s known to include
both él[\ﬁl’EKz] and é([)Kl’KQ]. BRCT(K, K5) works within M:K2] and it estimates

ir (1) b7 (Ky)
Xry - Xr(xg)

respectively, for I C {(z’;(l), . ,i;(K2))‘ 1<71) <+ <7(Kq9) < Kp,1<
i) < Mz, -0 1 < drg) < m’?(Kz)}7 L<7(l) <. < 7(Kp) < Ky,
(ir(1)>---+ir(iy)) € I, and s € R. In the definitions of both MKl (7)
and MG (i), . i (gy)), 8, 1), the condition that 1 < 7(1) < -+ <
7(K3) < K is omitted. Note again that MFUR2] (1) and MIELE:] ((ir1)s

(K ) S I) are defined as the submodels of SU1-52],

The algorithm BRCT(K71, K») is given as follows. Steps 2 to 6 are iter-
ated, generating the sequence 6y, 0(1), .. ., G(d[Kl o))" Run BRCT (K, Ko —
1) after the iterations unless Ky = 2.

BRCT(K, K2)
input: observation Yir ik, of each cell (i1,...,ix,)
output: parameter estimates é(o), é(l), cee é(d[Kl,KQ])
1 Let Oy = o™, 1 = I = {(i ), ipey)| 1 <

7(1) < - < 7(K3) < K1}, and k := 0.

14



—lr(1)-ir(Ky) of

2. For all (ir(1),..-,ir(K,)) € I, calculate the MLE é(k)

the model M[KI’KQ] (I\ {(iT(l)a ey ZT(K2))})
e j gty
3. Find t* := MinG i) el D (9(k) | 9( ' ’ ) and

k)
(ij(l), . ,i:(KQ)) =argming g er D (é(k) ] é(:ch(l)"'iT(K2>>.
4. For (irqy),---,ir(k,)) € I, calculate Siu)nif(xg) and HN(;Z')T“)"'Z'T(KQ) €
l(;z)f(l)mzf(KQ) satisfying both D(é(k) ] é(;z)f(l)mzf(@)) = t* and
5(—;')T<1>~~%<K2> € MUEVIR (i), i)y 87, ) iy -
5. Let éé;(_il_)l')"iT(Kg) = SZ(1)~~~Z'T(K2) for (ir(1),---,ir(xy)) € I and
Oy T = 0 for (ipqa), e vin(iy) E 1

6. If K+ 1 < dg, k,) — 1, then go to step 2 with k :=k +1, I :=
I\{(ij(l), . ’i:(Kz))}' If k+1 = dg, k, — 1, then go to step 7.

7. Let é(dK) = ééKl’KQ]. If Ko = 2, stop the algorithm. If Ky > 2,
run BRCT (K7, Ko — 1) with é([)Kl’KQ] as the start point.

In step 1, I5152] ig strictly defined by I15152] .= Gy, - ir(r))| 1 <
T(1) < - < 7(K3) < K1, 1 <i, <my(1 <a< Kp)}. Note that we have
é([)Kl’KQ] = él[\fﬁ}’fz_l], which means that our algorithm is connected naturally
with respect to K. In step 5, ézzi)l')nzf(%) =0 for (ij(l), .. ,z’j(KQ)) € I that
was obtained in step 3. This fact indicates that one element of 6 becomes 0
in each iteration

When we have an mj X- - - xmg-contingency table, we can apply BRCT(K,
K) to the contingency table. After BRCT(K, K) is finished, BRCT(K, K —
1) starts next. The algorithms BRCT(K, K), BRCT(K, K—1), ..., BRCT(K,
2) then run in turn. We estimate the parameters with more indices earlier,
and estimate all parameters to be estimated by our method. Parameters
with K indices vanish first and parameters with less indices become zero in
turn.

Another choice for the case of K factors is to apply BRCT(K, K') di-
rectly to the contingency table, where K’ satisfies K/ < K. This choice is
equivalent to the first choice, that is, applying BRCT(K, K) to the contin-
gency table, given that algorithms before BRCT (K, K’ + 1) have already
been finished. If we are not interested in the parameters with more indices
than K’, we can fix such parameters as zero in advance. It is possible for us
to start our algorithm at any point unless we want to start it in the middle
of the BRCT(K, K”) algorithm for a certain K”.
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Table 2: Dataset 1; A Record of Voting in England [13]. The factors X; and
X5 have three levels. Xi: factor indicating the party for which a constituent voted
in 1966, X5: factor indicating the party for which a constituent voted in 1970,
175 observations. Level 1: Conservative, Level 2: Labor, Level 0: Liberal. The
dimension of ¢ is 8, and fx, x, is a 4-dimensional, fx, is a 2-dimensional, and fx,
is a 2-dimensional parameter.

X1 \Xg 0 1 2 | total
0 13 12 3 28
1 1 68 1 70

2 5 12 60 77
total 19 92 64| 175

3 Example

The results of our method are shown for some datasets. We consider only the
case of two factors in this section. We used the software R [10] for computing
the algorithm. Figures show changes in the values of the parameters in our
algorithm. Furthermore, the values of AIC are shown.

3.1 Dataset 1

The first dataset is shown in Table 2. This dataset is a record of voting
in England [13]. The factors X; and X9 have three levels. The factor X;
indicates the party for which a constituent voted in 1966. Level 1 means
Conservative, level 2, Labor, and level 0, Liberal. Similarly, the factor X,
indicates the party for which a constituent voted in 1970. The parameters
to be estimated are 0 0X1X2,9X1X , and 922 Other parameters,
9)(1 , 9X1 , 6X2, and GX , are calculated from the condltlon that 77X1 , 775(1 , nf(z,
and 7; X2 are fixed at the values of the MLE.

The result of the algorithm is shown in Figure 4. The horizontal axis
indicates the square root of the divergence from the estimates to the ori-
gin. The origin corresponds to the MLE for the independent model. The
vertical axis indicates the values of 0)? x, (4,5 = 1,2). Line 1 in the figure
corresponds to 9X X, Line 2, to GX x,» Line 3, to 9X X, and Line 4, to
9X1 x,- The first estimator, the MLE for the full model, is represented on
the right-hand side of Figure 4. The algorithm starts from the right-hand
side and proceeds to the left-hand side in the figure. Each vertical line cor-
responds to an estimate. The algorithm ends when the estimator reaches
the origin. Five estimates, including both ends of the figure, are obtained.
It is clear that one 6 )j( x, Pecomes zero at each iteration. The vertical line
indicates how many elements are not zero. For example, after first iteration,
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Figure 4: The Result of BRCT(2) for Dataset 1 (Table 2). Four elements of 0x, x,
are illustrated. The horizontal axis indicates the square root of the divergence from
an estimate to the origin, which corresponds to the Euclidean distance (I3-norm)
in Euclidean space. The vertical axis indicates the values of 6 (i = 1,2,...,4).
The first estimate is the rightmost one, which is the MLE of S. The last estimate,
fourth estimate, is the leftmost one, which is the MLE of the independent model
N. The algorithm proceeds from right to left in this figure. At each iteration, one
element of Ox, x, becomes zero. The vertical line indicates how many elements are
not zero.

9}(21 X,» corresponding to line 2, is zero and others are not zero. According
i ; ; . pl2 21
to BRCT(2), 0%, x, become zero in the following sequence: 0% ., 0%, x,.
11 22
0%, x,» and 0% x, -

3.2 Dataset 2

The second dataset is shown in Table 3. Dataset 2 appeared on [8] as a
contingency table for a simulation study. The factor X; has four levels, X1 =
0,1,2,3, and the factor Xo has three levels, Xo = 0,1,2. The parameters
to be estimated are 9}(11 XQ’Q}(% XQ,H% X2,9§(21 X2,9§(11 X, and ¢9§<21 x,- Other
parameters, 9}(1,03(1,03 1,9}(2, and (9%(2, are calculated from the fact that
nf(l,ng(l,ng(l,an, and 775(2 are fixed at the values of the MLE.

The result of the algorithm is shown in Figure 5. Seven estimates, in-
cluding both ends of the figure, are obtained. According to BRCT(2), 9;3(1 Xo

: : . p21 11 32 12 22
become zero in the following sequence: 0%, v, 0, x.: 0%, x,+ 0%, x,» 0% x5
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Table 3: Dataset 2; A Contingency Table for a Simulation Study [8]. Xi: factor
having four levels, Xs5: factor having three levels, 1123 observations. The dimension
of § is 11, and Ox, x, is a 6-dimensional, 0y, is a 3-dimensional, and O, is a 2-
dimensional parameter.

X1 \X2 0 1 2 total
0 88 91 84 | 263
1 107 115 92 | 314
2 9 97 82 | 275
3 8 100 86 | 271
total | 376 403 344 | 1123

31
and 0X1X2.

3.3 AIC-Type Selection

We present the values of AIC for the datasets. The AIC for dataset 1
is shown in Figure 6. The horizontal axis indicates an estimate’s num-
ber, which means the order of estimates generated by the BRCT algorithm.
These numbers also mean how far an estimate is from the origin; a smaller
number means that the estimate is farther from the origin. In addition, an
estimate’s number indicates the number of zeros that the estimate has. Note
that an estimate’s number differs from the number on the top of Figure 4.
The zeroth estimate is the MLE of the full model. The fourth estimate is the
MLE of the independence model. The vertical axis indicates the AIC values
of the estimates. The minimum AIC is achieved by the zeroth estimate,
which is the MLE of the full model.

The AIC for dataset 2 is shown in Figure 7. The horizontal axis indicates
an estimate’s number, which means the order of estimates generated by the
BRCT algorithm. The minimum is achieved by the fifth estimate, which
has five zeros.

4 Conclusion

We considered contingency tables and multinomial distributions and intro-
duced natural and expectation parameters for estimation. We proposed
BRCT, and provided explanations for three cases: two factors, three fac-
tors, and K factors. The BRCT(2) algorithm was proposed for the cases
of two factors, and algorithms BRCT(3) and BRCT(3,2) were proposed for
the cases of three factors. In the general case, we proposed the algorithm
BRCT(K, K3) for efficiently estimating parameters. These algorithms are
based on the information geometry of dually flat spaces. The main idea
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Figure 5: The Result of BRCT(2) for Dataset 2 (Table 3). Six elements of 0x, x,
are illustrated. The horizontal axis indicates the square root of the divergence from
an estimate to the origin, which corresponds to the Euclidean distance (I3-norm)
in Euclidean space. The vertical axis indicates the values of 6 (i = 1,2,...,6).
The first estimate is the rightmost one, which is the MLE of S. The last estimate,
sixth estimate, is the leftmost one, which is the MLE of the independent model
N. The algorithm proceeds from right to left in this figure. At each iteration, one
element of fx, x, becomes zero. The vertical line indicates how many elements are
not zero.

of BRCT(K7, K3) came from bisector regression for generalized linear re-
gression [6]. However, we dealt with parameters that are separated into
groups depending on type, or the number of indices, while our previous works
dealt equivalently with all parameters to be estimated. For contingency ta-
bles, we run BRCT(K, K3), BRCT(K;, K2 — 1), ..., BRCT(K1,2), which
means that we estimate parameters with many indices first. Algorithms
BRCT(K, K2) connect continuously and we did not need additional effort
for combining these algorithms. This fact reflected the nested structure of
the models. After these algorithms finish, we obtain the last estimate, the
MLE of the independent model. A sequence of parameter estimates is gener-
ated, the length of which is the number of parameters to be estimated by our
method. The number of our candidates is d(x, x,) +d[x, Ko—1] 1+ T dK; 2
which is much smaller than the total number of all possible submodels. We
also showed the results of our method for two datasets. AIC was applied
for model selection. In the future, we intend to provide an efficient code for
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Figure 6: Value of AIC by BRCT for Dataset 1.

contingency tables with three or more factors. A stable and efficient code
will help us conduct various simulations. It will also help readers analyze
datasets of interest.
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