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Abstract

We propose a geometrical method for estimating the parameters
of contingency tables. Our method–bisector regression for contingency
tables–is based on a nested structure of models. The nested struc-
ture represents the variables that are independent. This means that a
model includes smaller models allowing stronger independence, which
also means that more parameters are eliminated in smaller models.
Our method estimates parameters corresponding to the interactions of
lower orders after those of higher orders are estimated or eliminated.
Bisector regression generates a sequence of parameter estimates, each
element of which represents a model and an estimate. The length of
the sequence is much smaller than the total number of models. We
describe the algorithm and show examples.

In this paper, contingency tables are considered. We introduce param-
etrization of multinomial distributions and propose an algorithm for esti-
mating parameters. The proposed algorithm is bisector regression for con-
tingency tables (BRCT). The main idea of BRCT comes from our previous
works. In [6, 7], we proposed the bisector regression algorithm, which is
an extension of least angle regression [4]. Least angle regression is an al-
gorithm for parameter estimation, which is related to the l1-regularization
method (lasso, [3, 5, 11, 12]). In problems of contingency tables, our inter-
est is to estimate parameters corresponding to interactions between factors.
Factors, or random variables, are qualitative variables. Parameters are sep-
arated into groups depending on how many factors are involved. We apply
the main idea of bisector regression for generalized linear regression ([6])
and Gaussian graphical models [7] to these parameter groups. We provide
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explanations for three cases: (a) two factors, (b) three factors, and (c) K
factors. We first describe cases (a) and (b), and then state the algorithm
for general case (c). We must distinguish the total number of factors from
the number of factors involved with a parameter, especially for the general
case.

The proposed algorithm BRCT is based on the geometry of dually flat
space [1, 2, 9]. We consider a dually flat space of multinomial distributions.
The natural parameter and expectation parameter are used as coordinate
systems in this space. We estimate the natural parameter. BRCT is de-
cided by the total number of factors K1 and the number of factors used
by estimated parameters K2. These two numbers indicate the space where
the BRCT(K1,K2) algorithm works. In case (a), we use the algorithm
BRCT(2, 2). In case (b), the algorithms BRCT(3, 3) and BRCT(3, 2) are
used. In the general case (c) in which the total number of factors is K1, we
use BRCT(K1,K2) for (a part of) K2 = K1,K1 − 1, . . . , 2.

BRCT generates a sequence of parameter estimates. Strictly speaking,
each BRCT(K1,K2) generates a sequence. Each element of the sequence rep-
resents how variables are correlated. As shown in Section 2, BRCT(K1,K2)
continuously connects to BRCT(K1,K2−1). This property helps us sequen-
tially estimate parameters without any extra effort for combining algorithms.
Furthermore, BRCT avoids the difficulty of combinations. The total number
of combinations of independence is too large to consider when the number
of factors is high. The length of a sequence generated by BRCT is the same
as the total number of parameters, which is much smaller than the total
number of models. BRCT helps us narrow down the candidates efficiently.

In Section 1, we consider multinomial distributions and introduce a pa-
rametrization for these. The natural parameter and expectation parameter
are used in our method. The natural parameter is separated into groups
depending on the number of indices. In Section 2, we propose the algorithm
BRCT to estimate parameters and select interactions simultaneously. Each
parameter group is estimated separately. We do not deal with all param-
eters equally. In Section 3, the results of our method are shown for some
datasets. We give the conclusion in Section 4.

1 Introduction

We consider contingency tables and multinomial distributions. First, we
explain them in the case of two factors. The natural parameter and ex-
pectation parameter are introduced. Second, we consider the case of three
factors. Finally, the case of K factors is considered. Parameters in the case
of K factors are confusing, and therefore, we present parameters in the case
of two factors first.

We consider contingency tables of two factors X1 and X2, and suppose
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Table 1: Notations for Two-Factor Contingency Tables. X1: factor with m + 1
levels, X2: factor with n+ 1 levels, yij : the number of observations of cell (i, j).

X1\X2 0 1 . . . n total

0 y00 y01 . . . y0n y0+
1 y10 y11 . . . y1n y1+
...

...
...

. . .
...

...
m ym0 ym1 . . . ymn ym+

total y+0 y+1 . . . y+n N

that they have m + 1 levels, X1 = 0, 1, . . . ,m, and n + 1 levels, X2 =
0, 1, . . . , n, respectively (Table 1). In this case, a multinomial distribution is
given as

f(y| p) = N !

y00!y01! . . . ymn!
py0000 p

y01
01 . . . pymn

mn ,

where N is the total number of observations, yij is the number of obser-
vations of cell (i, j) with constraint

∑m
i=0

∑n
j=0 yij = N , and pij is the

probability of cell (i, j) with constraint
∑m

i=0

∑n
j=0 pij = 1.

The logarithm of the probability distribution is

log f(y| p) =
m∑
i=0

n∑
j=0

yij log pij + log
N !

y00!y01! . . . ymn!

=

m∑
i=1

n∑
j=1

yij log pij +

m∑
i=1

yi0 log pi0

+
n∑

j=1

y0j log p0j + y00 log p00 + log
N !

y00!y01! . . . ymn!

=
m∑
i=1

n∑
j=1

yij log
pijp00
pi0p0j

+
m∑
i=1

( n∑
j=0

yij

)
log

pi0
p00

+

n∑
j=1

( m∑
i=0

yij

)
log

p0j
p00

+N log p00 + log
N !

y00!y01! . . . ymn!
.

We introduce the natural parameter as follows:

θiX1
= log

pi0
p00

, θjX2
= log

p0j
p00

, θijX1X2
= log

pijp00
pi0p0j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Let

θ = (θX1 ; θX2 ; θX1X2)

=
(
θ1X1

, θ2X1
, . . . , θmX1

; θ1X2
, θ2X2

, . . . , θnX1
; θ11X1X2

, θ12X1X2
, . . . , θmn

X1X2

)
,
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where θX1 is an m-dimensional vector, θX2 is an n-dimensional vector, and
θX1X2 is an mn-dimensional vector. We apply the main idea of bisector
regression to θX1X2 .

The logarithm of f is represented by the natural parameter θ as follows:

log f(y| θ) =
m∑
i=1

n∑
j=1

yijθ
ij
X1X2

+

m∑
i=1

( n∑
j=0

yij

)
θiX1

+

n∑
j=1

( m∑
i=0

yij

)
θjX2

− ψ(θ) + log
N !

y00!y01! . . . ymn!
,

where ψ is a convex function of θ, the potential function, and it is defined
as

ψ(θ) = −N log p00

= N log

1 +

m∑
i=1

exp(θiX1
) +

n∑
j=1

exp(θjX2
) +

m∑
i=1

n∑
j=1

exp
(
θiX1

+ θjX2
+ θijX1X2

) .

It is not difficult to prove the second equality. In fact, from the definition
of the natural parameter, we have

pi0 = p00 exp(θ
i
X1

), p0j = p00 exp(θ
j
X2

),

pij =
pi0p0j
p00

exp(θijX1X2
) = p00 exp

(
θiX1

+ θjX2
+ θijX1X2

)
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The condition

∑m
i=0

∑n
j=0 pij = 1

leads to

p00

1 +

m∑
i=1

exp(θiX1
) +

n∑
j=1

exp(θjX2
) +

m∑
i=1

n∑
j=1

exp
(
θiX1

+ θjX2
+ θijX1X2

) = 1.

The expectation parameter η corresponding to the natural parameter θ
is defined as

ηX1
i = E

[ n∑
j=0

yij

]
= N

n∑
j=0

pij ,

ηX2
j = E

[ m∑
i=0

yij

]
= N

m∑
i=0

pij ,

ηX1X2
ij = E

[
yij

]
= Npij

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The potential function ϕ of the
expectation parameter η is given by

ϕ(η) = −NH(p)

= N

m∑
i=0

n∑
j=0

pij log pij ,
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where H(p) is the entropy in information theory. The cell probabilities pij
are represented by the expectation parameter η. In fact, we have

p00 = 1−
m∑
i=1

ηX1
i

N
−

n∑
j=1

ηX2
j

N
+

m∑
i=1

n∑
j=1

ηX1X2
ij

N
,

pi0 =
ηX1
i

N
−

n∑
j=1

ηX1X2
ij

N
,

p0j =
ηX2
j

N
−

m∑
i=1

ηX1X2
ij

N
,

pij =
ηX1X2
ij

N
.

Therefore, ϕ is a function of η.
Next, we consider contingency tables with three factors. Suppose that

three factors–X1, X2, and X3–havem1, m2, andm3 levels, respectively. The
natural parameter θ is defined by

θi1X1
= log

pi100
p000

, θi2X2
= log

p0i20
p000

, θi3X3
= log

p00i3
p000

,

θi1i2X1X2
= log

pi1i20p000
pi100p0i20

, θi1i3X1X3
= log

pi10i3p000
pi100p00i3

, θi2i3X2X3
= log

p0i2i3p000
p0i20p00i3

,

θi1i2i3X1X2X3
= log

pi1i2i3pi100p0i20p00i3
pi1i20pi10i3p0i2i3p000

for i1 = 1, 2, . . . ,m1, i2 = 1, 2, . . . ,m2, and i3 = 1, 2, . . . ,m3. The logarithm
of the probability function f is represented with respect to the natural pa-
rameter as follows:

log f(y| θ) =
m1∑
i1=1

m2∑
i2=1

m3∑
i3=1

yi1i2i3θ
i1i2i3
X1X2X3

+

m1∑
i1=1

m2∑
i2=1

( m3∑
i3=0

yi1i2i3

)
θi1i2X1X2

+

m1∑
i1=1

m3∑
i3=1

( m2∑
i2=0

yi1i2i3

)
θi1i3X1X3

+

m2∑
i2=1

m3∑
i3=1

( m1∑
i1=0

yi1i2i3

)
θi2i3X2X3

+

m1∑
i1=1

( m2∑
i2=0

m3∑
i3=0

yi1i2i3

)
θi1X1

+

m2∑
i2=1

( m1∑
i1=0

m3∑
i3=0

yi1i2i3

)
θi2X2

+

m3∑
i3=1

( m1∑
i1=0

m2∑
i2=0

yi1i2i3

)
θi3X3

− ψ(θ) + log
N !

y000!y001! . . . ym1m2m3 !
,

where ψ(θ) = −N log p000. Similar to the case of two factors, all pi1i2i3 can
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be represented by the natural parameter θ:

pi100 = p000 exp(θ
i1
X1

), p0i20 = p000 exp(θ
i2
X2

), p00i3 = p000 exp(θ
i3
X3

),

pi1i20 = p000 exp
(
θi1X1

+ θi2X2
+ θi1i2X1X2

)
, pi10i3 = p000 exp

(
θi1X1

+ θi3X3
+ θi1i3X1X3

)
,

p0i2i3 = p000 exp
(
θi2X2

+ θi3X3
+ θi2i3X2X3

)
,

pi1i2i3 = p000 exp
(
θi1X1

+ θi2X2
+ θi3X3

+ θi1i2X1X2
+ θi1i3X1X3

+ θi2i3X2X3

)
,

p000 =
{
1 +

∑
exp(θi1X1

) +
∑

exp(θi2X2
) +

∑
exp(θi3X3

)

+ exp
(
θi1X1

+ θi2X2
+ θi1i2X1X2

)
+ exp

(
θi1X1

+ θi3X3
+ θi1i3X1X3

)
+ exp

(
θi2X2

+ θi3X3
+ θi2i3X2X3

)
+ exp

(
θi1X1

+ θi2X2
+ θi3X3

+ θi1i2X1X2
+ θi1i3X1X3

+ θi2i3X2X3

)}−1
.

The expectation parameter η corresponding to the natural parameter θ
is given by

ηX1
i1

= N

m2∑
i2=0

m3∑
i3=0

pi1i2i3 , η
X2
i2

= N

m1∑
i1=0

m3∑
i3=0

pi1i2i3 , η
X3
i3

= N

m1∑
i1=0

m2∑
i2=0

pi1i2i3 ,

ηX1X2
i1i2

=

m3∑
i3=0

pi1i2i3 , η
X1X3
i1i3

=

m2∑
i2=0

pi1i2i3 , η
X2X3
i2i3

=

m1∑
i1=0

pi1i2i3 ,

ηX1X2X3
i1i2i3

= pi1i2i3

for i1 = 1, 2, . . . ,m1, i2 = 1, 2, . . . ,m2, and i3 = 1, 2, . . . ,m3.
We consider the case ofK factors: an (m1+1)×(m2+1)×· · ·×(mK+1)-

contingency table. Let a ∈ {1, 2, . . . ,K} and ia ∈ {0, 1, . . . ,ma}, where
the latter is an index of factors, indicating the level of factor Xa. Before
introducing the parameters, we prepare the notations. For l ≤ h ≤ K, define

Vl(ia1 , ia2 , . . . , iah) =


h− l indices are decided by (ia1 , ia2 , . . . , iah),

pi′1i′2...i′K l elements of (i′a1 , i
′
a2 , . . . , i

′
ah
) are 0,

i′a = 0 for a ̸∈ {a1, a2, . . . , ah}

 .

For example, when K = 3, h = 2, l = 1, a1 = 1, and a2 = 3, we have
Vl(ia1 , ia2) = V1(i1, i3) = {pi100, p00i3}. The natural parameter θ is defined
as

θ
ia1 ia2 ...iaq
Xa1Xa2 ...Xaq

= log

(∏
p(q)∈V0(ia1 ,ia2 ,...,iaq )

p(q)
)(∏

p(q−2)∈V2(ia1 ,ia2 ,...,iaq )
p(q−2)

)
. . .(∏

p(q−1)∈V1(ia1 ,ia2 ,...,iaq )
p(q−1)

)(∏
p(q−3)∈V3(ia1 ,ia2 ,...,iaq )

p(q−3)
)
. . .
,

for q = 1, 2, . . . ,K and 1 ≤ ia ≤ ma (a = 1, . . . ,K). For example, when
K = q = 3, we have

θi1i2i3X1X2X3
= log

pi1i2i3pi100p0i20p00i3
pi1i20pi10i3p0i2i3p000

,
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which is the natural parameter in the case of three factors. The expectation
parameter η corresponding to the natural parameter θ is given by

η
Xa1Xa2 ...Xaq

ia1 ia2 ...iaq
= E

 ∑
a ̸∈{a1,a2,...,aq}

ma∑
ia=0

yi1i2...iK


= N

∑
a ̸∈{a1,a2,...,aq}

ma∑
ia=0

pi1i2...iK

for q = 1, 2, . . . ,K.

2 Proposed Algorithm

First, we provide an algorithm for two-factor contingency tables. The sim-
plest model that we assume is the independent model: for all i = 1, 2, . . . ,m
and j = 1, 2, . . . , n,

pijp00 = pi0p0j ,

which is equivalent to

θijX1X2
= log

pijp00
pi0p0j

= 0

for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Let S denote the dually flat space
of all multinomial distributions. A submodel N is defined by

N =
{
θ| θijX1X2

= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n
}
;

this is the independent model (Figure 1). Let θ̂MLE and θ̂0 denote the MLE
of S and the MLE of the submodel N , respectively. We define M by the
m-flat subspace that intersects orthogonally with N at θ̂0. It is known that
M includes both θ̂MLE and θ̂0. Points in M can be represented as

((η̂0)
X1
i , (η̂0)

X2
j ; θijX1X2

),

where (η̂0)
X1
i and (η̂0)

X2
j are a part of the m-affine coordinate of θ̂0. Our

algorithm BRCT(2) works within M . We apply our method to only θijX1X2

and fix the ηX1
i -coordinate and ηX2

j -coordinate. As a notation in the case

of two factors, ((η̂0)
X1
i , (η̂0)

X2
j ; θijX1X2

) is represented by θ. A sequence of

parameter estimates, θ̂(0), θ̂(1), . . . , θ̂(mn), is generated by our algorithm.
Before describing the algorithm, we introduce some submodels. Let

M (I) =
{
θ | θi

′j′

X1X2
= 0, (i′, j′) ̸∈ I

}
,

M ((i, j), s, I) =
{
θ | θijX1X2

= s, θi
′j′

X1X2
= 0, (i′, j′) ̸∈ I

}
7
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Figure 1: Submodels for BRCT(2). S: space of all multinomial distributions,

θ̂MLE: MLE of S, N : independent model defined by N = {θ| θijX1X2
= 0, 1 ≤ i ≤

m, 1 ≤ j ≤ n}, θ̂0: MLE of the submodel N , M : m-flat subspace that intersects

orthogonally with N at θ̂0. M is known to include both θ̂MLE and θ̂0. BRCT(2)
works within M , and it estimates θijX1X2

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Points in M

can be represented as ((η̂0)
X1
i , (η̂0)

X2
j ; θijX1X2

), where (η̂0)
X1
i and (η̂0)

X2
j are m-affine

coordinates of θ̂0.

for I ⊆ {(i′, j′)| 1 ≤ i′ ≤ m, 1 ≤ j′ ≤ n}, (i, j) ∈ I, and s ∈ R (Figure 2).
The algorithm BRCT(2) (BRCT with two factors) is given as follows.

Steps 2 to 6 are iterated.

BRCT(2)

input: observation yij of each cell (i, j)

output: parameter estimates θ̂(0), θ̂(1), . . . , θ̂(mn)

1. Let θ̂(0) := θ̂MLE, I := {(i, j)| 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and k := 0.

2. Calculate the MLE θ̄−ij
(k) of the modelM (I \ {(i, j)}) for (i, j) ∈ I.

3. Find t∗ := min(i,j)∈I D
(
θ̂(k) | θ̄

−ij
(k)

)
and

(i∗, j∗) := argmin(i,j)∈I D
(
θ̂(k) | θ̄

−ij
(k)

)
.

4. For (i, j) ∈ I, calculate s∗ij and θ̃−ij
(k) ∈ l−ij

(k) satisfying both

D(θ̂(k) | θ̃
−ij
(k) ) = t∗ and θ̃−ij

(k) ∈M((i, j), s∗ij , I).

5. Let θ̂ij(k+1) := s∗ij for (i, j) ∈ I and θ̂ij(k+1) := 0 for (i, j) ̸∈ I.

6. If k + 1 < mn − 1, then go to step 2 with k := k + 1, I :=
I \ {(i∗, j∗)}. If k + 1 = mn− 1, then go to step 7.

8
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⊡
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⊢

≍ ∨≉ ≮ ≦∨≩∰∻ ≪ ∰∩≧∩

≞⊵∰

≞⊵∨≫∫∱∩

≍ ∨≉ ≮ ≦∨≩∻ ≪∩≧∩ ∽ ≍ ∨∨≩∻ ≪∩∻ ∰∻ ≉∩

⊹⊵⊡≩≪∨≫∩ ∽
≾⊵⊡≩≪∨≫∩

Figure 2: Update of an Estimator in BRCT(2). θ̂(k): kth estimate

of θ, θ̂(k+1): (k + 1)th estimate of θ, θ̂0: the MLE of the model N ,

M((i, j), s, I) =
{
θ
∣∣ θij = s, θi

′j′ = 0 ((i′, j′) ̸∈ I)
}
, θ̄−ij

(k) : the MLE of the sub-

model M (I \ {(i, j)}), θ̃−ij
(k) : the projection of θ̂(k) to the submodel M((i, j), s∗ij , I).

In this figure, M(I \{(i, j)}) is nearer to θ̂(k) than M(I \{(i′, j′)}). The divergence
to θ̃−i′j′

(k) from θ̂(k) is the same as the divergence to θ̄−ij
(k) . θ̂(k+1) is defined as the

intersection of M((i, j), 0, I) and M((i′, j′), s∗i′j′ , I).

7. Let θ̂(mn) := θ̂0. Stop the algorithm.

Note that in step 5, θ̂i
∗j∗

(k+1) = 0 for (i∗, j∗) ∈ I that was obtained in step 3.
This fact indicates that one element of θ becomes 0 in each iteration and
that our method selects covariance models sequentially.

Next, we propose an algorithm for three-factor contingency tables. We
consider an m1 × m2 × m3-contingency table. A part of the natural pa-
rameter is estimated first, and the remainder is estimated by an analogy
of BRCT(2) thereafter. We estimate θi1i2i3X1X2X3

by bisector regression under
the condition that complementary elements of the expectation parameter,
ηX1
i1
, ηX2

i2
, ηX3

i3
, ηX1X2

i1i2
, ηX1X3

i1i3
, ηX2X3

i2i3
, are fixed at the values of the MLE. Note

that two types of elements of the natural parameters, θi1i2X1X2
and θi1i2i3X1X2X3

,

are not dealt with equally. The former type, θi1i2X1X2
, is estimated by an

analogy of BRCT(2) after the latter type, θi1i2i3X1X2X3
, is estimated. We define

some submodels, similar to N andM in the case of two factors. A submodel
N [3] is defined by

N [3] =
{
θ| θi1i2i3X1X2X3

= 0, 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, 1 ≤ i3 ≤ m3

}
.

9



Let θ̂MLE and θ̂
[3]
0 denote the MLE of S and the MLE of the submodel

N [3], respectively. We define M [3] as the m-flat subspace that intersects

orthogonally with N [3] at θ̂
[3]
0 ∈ N [3]. It is known that M [3] includes both

θ̂MLE and θ̂
[3]
0 , similar to the case of two factors. Points in M [3] can be

represented as(
(η̂

[3]
0 )X1

i1
, (η̂

[3]
0 )X2

i2
, (η̂

[3]
0 )X3

i3
; (η̂

[3]
0 )X1X2

i1i2
, (η̂

[3]
0 )X1X3

i1i3
, (η̂

[3]
0 )X2X3

i2i3
; θi1i2i3X1X2X3

)
,

where the η-part, (η̂
[3]
0 )X1

i1
, (η̂

[3]
0 )X2

i2
, (η̂

[3]
0 )X3

i3
, (η̂

[3]
0 )X1X2

i1i2
, (η̂

[3]
0 )X1X3

i1i3
, (η̂

[3]
0 )X2X3

i2i3
,

is a part of the m-affine coordinate of θ̂
[3]
0 . Our algorithm BRCT(3) first

works within M [3]. We apply bisector regression to θi1i2i3X1X2X3
under the con-

dition that a part of the expectation parameter, ηX1
i1
, ηX2

i2
, ηX3

i3
, ηX1X2

i1i2
, ηX1X3

i1i3
,

ηX2X3
i2i3

, is fixed. Let θ[3] denote (θi1i2i3X1X2X3
). A sequence of estimates of θ[3],

θ̂(0), θ̂(1), . . . , θ̂(d3), is generated by BRCT(3), where d3 =
∏

imi = m1m2m3

is the length of θ[3]. Strictly speaking, parameter estimates θ̂(k) should be

written as θ̂
[3]
(k) so that they can be distinguished from θ̂(k) in the case of two

factors. However, the superscript [3] is omitted for simplicity. We define
other submodels M [3] (I) and M [3] ((i1, i2, i3), s, I) in M

[3] as

M [3] (I) =
{
θ | θi

′
1i

′
2i

′
3

X1X2X3
= 0, (i′1, i

′
2, i

′
3) ̸∈ I

}
,

M [3] ((i1, i2, i3), s, I) =
{
θ | θi1i2i3X1X2X3

= s, θ
i′1i

′
2i

′
3

X1X2X3
= 0, (i′1, i

′
2, i

′
3) ̸∈ I

}
for I ⊆ {(i′1, i′2, i′3)| 1 ≤ i′1 ≤ m1, 1 ≤ i′2 ≤ m2, 1 ≤ i′3 ≤ m3}, (i1, i2, i3) ∈ I,
and s ∈ R.

We provide an algorithm for the setting where contingency tables have
three factors. The algorithm BRCT(3) (BRCT with three factors) is given
as follows. Steps 2 to 6 are iterated, and run BRCT(3, 2) after the iterations.
The algorithm BRCT(3, 2) is an analogy of BRCT(2) for the case of three
factors, and it is explained after BRCT(3) is described.

BRCT(3)

input: observation yi1i2i3 of each cell (i1, i2, i3)

output: parameter estimates θ̂(0), θ̂(1), . . . , θ̂(d3)

1. Let θ̂(0) := θ̂MLE, I := {(i1, i2, i3)| 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, 1 ≤
i3 ≤ m3}, and k := 0.

2. Calculate the MLE θ̄−i1i2i3
(k) of the model M [3] (I \ {(i1, i2, i3)})

for all (i1, i2, i3) ∈ I.

3. Find t∗ := min(i1,i2,i3)∈I D
(
θ̂(k) | θ̄−i1i2i3

(k)

)
, and

(i∗1, i
∗
2, i

∗
3) := argmin(i1,i2,i3)∈I D

(
θ̂(k) | θ̄−i1i2i3

(k)

)
.
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4. For all (i1, i2, i3) ∈ I, calculate s∗i1i2i3 and θ̃−i1i2i3
(k) ∈ l−i1i2i3

(k) satis-

fying bothD(θ̂(k) | θ̃−i1i2i3
(k) ) = t∗ and θ̃−i1i2i3

(k) ∈M((i1, i2, i3), s
∗
i1i2i3

, I).

5. Let θ̂i1i2i3(k+1) := s∗i1i2i3 for (i1, i2, i3) ∈ I and θ̂i1i2i3(k+1) := 0 for (i1, i2, i3) ̸∈
I.

6. If k + 1 < d3 − 1, then go to step 2 with k := k + 1, I := I \
{(i∗1, i∗2, i∗3)}. If k + 1 = d3 − 1, then go to step 7.

7. Let θ̂(d3) := θ̂
[3]
0 . Run BRCT(3, 2) with θ̂

[3]
0 as the start point.

Note that other elements of the natural parameter are decided by the ele-
ments of the natural and expectation parameters that may be estimated or
fixed.

The algorithm BRCT(3, 2) (BRCT with 3 factors and 2-indexed pa-
rameters) is a three-factor version of BRCT(2). BRCT(2) and BRCT(3)
are thus denoted as BRCT(2, 2) and BRCT(3, 3), respectively. Let d[3,2] =∑

1≤τ(1)<τ(2)≤3mτ(1)mτ(2) = m1m2 +m1m3 +m2m3 denote the number of
parameters to be estimated by BRCT(3, 2). We define some submodels in
N [3], which are similar to N [3] and M [3] of BRCT(3). A submodel N [3,2] is
defined by

N [3,2] =
{
θ
∣∣ θi1i2i3X1X2X3

= 0, θi1i2X1X2
= 0, θi1i3X1X3

= 0, θi2i3X2X3
= 0,

1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, 1 ≤ i3 ≤ m3

}
.

Let θ̂
[3,2]
MLE and θ̂

[3,2]
0 denote the MLE of the model N [3] and the model N [3,2],

respectively. Recall that θ̂
[3]
0 is the MLE of the model N [3] too, that is,

θ̂
[3,2]
MLE = θ̂

[3]
0 . We define M [3,2] as the m-flat subspace of N [3] that intersects

orthogonally with N [3,2] at θ̂
[3,2]
0 ∈ N [3,2]. It is known that M [3,2] includes

both θ̂
[3,2]
MLE and θ̂

[3,2]
0 . Points in M [3,2] can be represented as(

(η̂
[3,2]
0 )X1

i1
, (η̂

[3,2]
0 )X2

i2
, (η̂

[3,2]
0 )X3

i3
; θi1i2X1X2

, θi1i3X1X3
, θi2i3X2X3

; 0
)
.

The model M [3,2] is the model that BRCT(3, 2) works within. Let θ[3,2] de-
note (θi1i2X1X2

, θi1i3X1X3
, θi2i3X2X3

). A sequence of estimates of θ[3,2]– θ̂(0), θ̂(1), . . . , θ̂(d3)–

is generated by BRCT(3, 2). Strictly speaking, parameter estimates θ̂(k)

should be written as θ̂
[3,2]
(k) , but the superscript [3, 2] is omitted for simplic-

ity. We define the submodels of N [3], named M [3] (I) and M [3] ((i1, i2), s, I),
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as

M [3,2] (I) =
{
θ | θi

′
1i

′
2

X1X2
= 0, θ

i′1i
′
3

X1X3
= 0, θ

i′2i
′
3

X2X3
= 0,

(i′1, i
′
2) ̸∈ I, (i′1, i

′
3) ̸∈ I, (i′2, i

′
3) ̸∈ I

}
,

M [3,2] ((i1, i2), s, I) =
{
θ | θi1i2X1X2

= s, θ
i′1i

′
2

X1X2
= 0, θ

i′1i
′
3

X1X3
= 0, θ

i′2i
′
3

X2X3
= 0,

(i′1, i
′
2) ̸∈ I, (i′1, i

′
3) ̸∈ I, (i′2, i

′
3) ̸∈ I

}
,

respectively, for I ⊆
{
(i′1, i

′
2), (i

′
1, i

′
3), (i

′
2, i

′
3)| 1 ≤ i′1 ≤ m, 1 ≤ i′2 ≤ m2, 1 ≤

i′3 ≤ m3

}
, (i1, i2) ∈ I, and s ∈ R. The submodels M [3,2] ((i1, i3), s, I)

and M [3,2] ((i2, i3), s, I) are defined in the same way as M [3,2] ((i1, i2), s, I).
In the definitions of both M [3,2] (I) and M [3,2] ((i1, i2), s, I), the condition
θi1i2i3X1X2X3

= 0 is omitted. Note that M [3,2] (I) and M [3,2] ((i1, i2), s, I) are

subspaces of N [3].
The algorithm BRCT(3, 2) is described as follows.

BRCT(3, 2)

input: observation yi1i2i3 of each cell (i1, i2, i3)

output: parameter estimates θ̂(0), θ̂(1), . . . , θ̂(d[3,2])

1. Let θ̂(0) := θ̂
[3,2]
MLE, I = I [3,2] := {(iτ(1), iτ(2))| 1 ≤ τ(1) < τ(2) ≤

3}, and k := 0.

2. Calculate the MLE θ̄
−iτ(1)iτ(2)
(k) of the modelM [3,2]

(
I \ {(iτ(1), iτ(2))}

)
for all (iτ(1), iτ(2)) ∈ I.

3. Find t∗ := min(iτ(1),iτ(2))∈I D
(
θ̂(k) | θ̄

−iτ(1)iτ(2)
(k)

)
and (i∗τ(1), i

∗
τ(2)) :=

argmin(iτ(1),iτ(2))∈I D
(
θ̂(k) | θ̄

−iτ(1)iτ(2)
(k)

)
.

4. For (iτ(1), iτ(2)) ∈ I, calculate s∗iτ(1)iτ(2) and θ̃
−iτ(1)iτ(2)
(k) ∈ l

−iτ(1)iτ(2)
(k)

satisfying both D(θ̂(k) | θ̃−iτ(1)iτ(K2)

(k) ) = t∗ and θ̃
−iτ(1)iτ(K2)

(k) ∈
M [3,2]((iτ(1), iτ(2)), s

∗
iτ(1)iτ(2)

, I).

5. Let θ̂
iτ(1)iτ(2)
(k+1) := s∗iτ(1)iτ(2) for (iτ(1), iτ(2)) ∈ I and θ̂

iτ(1)iτ(2)
(k+1) := 0

for (iτ(1), iτ(2)) ̸∈ I.

6. If k + 1 < d[3,2] − 1, then go to step 2 with k := k + 1, I :=
I \ {(i∗τ(1), i

∗
τ(2))}. If k + 1 = d[3,2] − 1, then go to step 7.

7. Let θ̂(d[3,2]) := θ̂
[3,2]
0 . Stop the algorithm.

In step 1, I [3,2] is strictly given by I [3,2] := {(iτ(1), iτ(2))| 1 ≤ iτ(1) ≤ mτ(1), 1 ≤
iτ(2) ≤ mτ(2), 1 ≤ τ(1) < τ(2) ≤ 3}. Note that (τ(1), τ(2)) ∈ {(1, 2), (1, 3), (2, 3)}.
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In the case of three factors, BRCT(3, 2) is completed after d[3,2] iterations
of steps 2 to 6, and thus, BRCT(3) is completed.

Finally, we provide an algorithm for the general case where contingency
tables have K1 factors. We consider an m1 × · · · ×mK1-contingency table.
For K2 ≤ K1, we propose an algorithm BRCT(K1,K2) (BRCT with K1

factors andK2-indexed parameters), which is followed by BRCT(K1,K2−1)
unless K2 = 2. Let d[K1,K2] =

∑
1≤τ(1)<···<τ(K2)≤K1

mτ(1) . . .mτ(K2) denote
the number of parameters to be estimated by BRCT(K1,K2). We define
some submodels. A submodel N [K1,K2] is defined by

N [K1,K2] =
{
θ| θiτ(1)...iτ(K2)

Xτ(1)...Xτ(K2)
= 0, 1 ≤ τ(1) < · · · < τ(K2) ≤ K1

}
∩
{
θ| θiτ(1)...iτ(K2+1)

Xτ(1)...Xτ(K2+1)
= 0, 1 ≤ τ(1) < · · · < τ(K2 + 1) ≤ K1

}
. . .

∩
{
θ| θi1...iK1

X1...XK1
= 0

}
,

where the condition that 1 ≤ ia ≤ ma for a = 1, 2, . . . ,K1 is omitted for
simplicity. We define S[K1,K2] = N [K1,K2+1] and S[K1,K1] = S, where S is
the dually flat space of all multinomial distributions corresponding to the

contingency table (Figure 3). Let θ̂
[K1,K2]
MLE and θ̂

[K1,K2]
0 denote the MLE of the

model S[K1,K2] and the model N [K1,K2], respectively. Note that θ̂
[K1,K2]
MLE =

θ̂
[K1,K2+1]
0 because of the definitions of S[K1,K2] and N [K1,K2]. We define
M [K1,K2] by the m-flat subspace of S[K1,K2] that intersects orthogonally

with N [K1,K2] at θ̂
[K1,K2]
0 ∈ N [K1,K2]. It is known that M [K1,K2] includes

both θ̂
[K1,K2]
MLE and θ̂

[K1,K2]
0 . Points in M [K1,K2] can be represented as(

(η̂
[K1,K2]
0 )

Xτ(1)

iτ(1)
; . . . ; (η̂

[K1,K2]
0 )

Xτ(1)...Xτ(K2−1)

iτ(1)...iτ(K2−1)
; θ

iτ(1)...iτ(K2)

Xτ(1)...Xτ(K2)
; 0; . . . ; 0

)
,

where η̂
[K1,K2]
0 is the m-affine coordinate of θ̂

[K1,K2]
0 . The algorithm BRCT(K1,

K2) works withinM
[K1,K2]. Let θ[K1,K2] denote

(
θ
iτ(1)...iτ(K2)

Xτ(1)...Xτ(K2)

)
. A sequence

of estimates of θ[K1,K2], θ̂(0), θ̂(1), . . . , θ̂(d[K1,K2]
), is generated by BRCT(K1,K2).

Strictly speaking, parameter estimates θ̂(k) should be written as θ̂
[K1,K2]
(k) .

However, for simplicity, the superscript [K1,K2] is omitted. We define the
submodels of S[K1,K2], namedM [K1,K2] (I) andM [K1,K2]

(
(iτ(1), . . . , iτ(K2)), s,

I
)
, as

M [K1,K2] (I) =
{
θ | θiτ̃(1)...iτ̃(K2)

Xτ̃(1)...Xτ̃(K2)
= 0, (iτ̃(1), . . . , iτ̃(K2)) ̸∈ I

}
,

M [K1,K2]
(
(iτ(1), . . . , iτ(K2)), s, I

)
=

{
θ | θiτ(1)...iτ(K2)

Xτ(1)...Xτ(K2)
= s, θ

iτ̃(1)...iτ̃(K2)

Xτ̃(1)...Xτ̃(K2)
= 0, (iτ̃(1), . . . , iτ̃(K2)) ̸∈ I

}
,

13



≞⊵
≛≋∱∻≋∲≝
≍≌≅

≎
≛≋∱∻≋∲≝ ∽ ≓

≛≋∱∻≋∲⊡∱≝

≓
≛≋∱∻≋∲≝

≞⊵
≛≋∱∻≋∲≝
∰

≍≌≅

≍
≛≋∱∻≋∲≝

Figure 3: Submodels for BRCT(K1,K2). N
[K1,K2] =

{
θ| θiτ(1)...iτ(K2)

Xτ(1)...Xτ(K2)
= 0, 1 ≤

iτ(1) < · · · < iτ(K2) ≤ K1

}
∩
{
θ| θiτ(1)...iτ(K2+1)

Xτ(1)...Xτ(K2+1)
= 0, 1 ≤ iτ(1) < · · · < iτ(K2−1) ≤

K1

}
∩ . . . ∩

{
θ| θi1...iK1

X1...XK1
= 0

}
, S[K1,K2] = N [K1,K2+1], θ̂

[K1,K2]
MLE : MLE of the model

S[K1,K2], θ̂
[K1,K2]
0 : MLE of the submodel N [K1,K2], M [K1,K2]: m-flat subspace that

intersects orthogonally with N [K1,K2] at θ̂
[K1,K2]
0 . M [K1,K2] is known to include

both θ̂
[K1,K2]
MLE and θ̂

[K1,K2]
0 . BRCT(K1,K2) works withinM

[K1,K2], and it estimates

θ
iτ(1)...iτ(K2)

Xτ(1)...Xτ(K2)
.

respectively, for I ⊆
{
(iτ̃(1), . . . , iτ̃(K2))

∣∣ 1 ≤ τ̃(1) < · · · < τ̃(K2) ≤ K1, 1 ≤

iτ̃(1) ≤ mτ̃(1), . . . , 1 ≤ iτ̃(K2) ≤ mτ̃(K2)

}
, 1 ≤ τ(1) < · · · < τ(K2) ≤ K1,

(iτ(1), . . . , iτ(K2)) ∈ I, and s ∈ R. In the definitions of both M [K1,K2] (I)

and M [K1,K2]
(
(iτ(1), . . . , iτ(K2)), s, I

)
, the condition that 1 ≤ τ̃(1) < · · · <

τ̃(K2) ≤ K1 is omitted. Note again that M [K1,K2] (I) and M [K1,K2]
(
(iτ(1),

. . . , iτ(K2)), s, I
)
are defined as the submodels of S[K1,K2].

The algorithm BRCT(K1,K2) is given as follows. Steps 2 to 6 are iter-
ated, generating the sequence θ̂(0), θ̂(1), . . . , θ̂(d[K1,K2]

). Run BRCT(K1,K2−
1) after the iterations unless K2 = 2.

BRCT(K1,K2)

input: observation yi1...iK1
of each cell (i1, . . . , iK1)

output: parameter estimates θ̂(0), θ̂(1), . . . , θ̂(d[K1,K2]
)

1. Let θ̂(0) := θ̂
[K1,K2]
MLE , I = I [K1,K2] := {(iτ(1), . . . , iτ(K2))| 1 ≤

τ(1) < · · · < τ(K2) ≤ K1}, and k := 0.
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2. For all (iτ(1), . . . , iτ(K2)) ∈ I, calculate the MLE θ̄
−iτ(1)...iτ(K2)

(k) of

the model M [K1,K2]
(
I \ {(iτ(1), . . . , iτ(K2))}

)
.

3. Find t∗ := min(iτ(1),...,iτ(K2)
)∈I D

(
θ̂(k) | θ̄

−iτ(1)...iτ(K2)

(k)

)
and

(i∗τ(1), . . . , i
∗
τ(K2)

) := argmin(iτ(1),...,iτ(K2)
)∈I D

(
θ̂(k) | θ̄

−iτ(1)...iτ(K2)

(k)

)
.

4. For (iτ(1), . . . , iτ(K2)) ∈ I, calculate s∗iτ(1)...iτ(K2)
and θ̃

−iτ(1)...iτ(K2)

(k) ∈

l
−iτ(1)...iτ(K2)

(k) satisfying both D(θ̂(k) | θ̃
−iτ(1)...iτ(K2)

(k) ) = t∗ and

θ̃
−iτ(1)...iτ(K2)

(k) ∈M [K1,K2]((iτ(1), . . . , iτ(K2)), s
∗
iτ(1)...iτ(K2)

, I).

5. Let θ̂
iτ(1)...iτ(K2)

(k+1) := s∗iτ(1)...iτ(K2)
for (iτ(1), . . . , iτ(K2)) ∈ I and

θ̂
iτ(1)...iτ(K2)

(k+1) := 0 for (iτ(1), . . . , iτ(K2)) ̸∈ I.

6. If k + 1 < d[K1,K2] − 1, then go to step 2 with k := k + 1, I :=
I \ {(i∗τ(1), . . . , i

∗
τ(K2)

)}. If k+ 1 = d[K1,K2] − 1, then go to step 7.

7. Let θ̂(dK) := θ̂
[K1,K2]
0 . If K2 = 2, stop the algorithm. If K2 > 2,

run BRCT(K1,K2 − 1) with θ̂
[K1,K2]
0 as the start point.

In step 1, I [K1,K2] is strictly defined by I [K1,K2] := {(iτ(1), . . . , iτ(K2))| 1 ≤
τ(1) < · · · < τ(K2) ≤ K1, 1 ≤ ia ≤ ma (1 ≤ a ≤ K1)}. Note that we have

θ̂
[K1,K2]
0 = θ̂

[K1,K2−1]
MLE , which means that our algorithm is connected naturally

with respect to K2. In step 5, θ̂
i∗
τ(1)

...i∗
τ(K2)

(k+1) = 0 for (i∗τ(1), . . . , i
∗
τ(K2)

) ∈ I that
was obtained in step 3. This fact indicates that one element of θ becomes 0
in each iteration

When we have anm1×· · ·×mK-contingency table, we can apply BRCT(K,
K) to the contingency table. After BRCT(K,K) is finished, BRCT(K,K−
1) starts next. The algorithms BRCT(K,K), BRCT(K,K−1), . . . , BRCT(K,
2) then run in turn. We estimate the parameters with more indices earlier,
and estimate all parameters to be estimated by our method. Parameters
with K indices vanish first and parameters with less indices become zero in
turn.

Another choice for the case of K factors is to apply BRCT(K,K ′) di-
rectly to the contingency table, where K ′ satisfies K ′ < K. This choice is
equivalent to the first choice, that is, applying BRCT(K,K) to the contin-
gency table, given that algorithms before BRCT(K,K ′ + 1) have already
been finished. If we are not interested in the parameters with more indices
than K ′, we can fix such parameters as zero in advance. It is possible for us
to start our algorithm at any point unless we want to start it in the middle
of the BRCT(K,K ′′) algorithm for a certain K ′′.
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Table 2: Dataset 1; A Record of Voting in England [13]. The factors X1 and
X2 have three levels. X1: factor indicating the party for which a constituent voted
in 1966, X2: factor indicating the party for which a constituent voted in 1970,
175 observations. Level 1: Conservative, Level 2: Labor, Level 0: Liberal. The
dimension of θ is 8, and θX1X2 is a 4-dimensional, θX1 is a 2-dimensional, and θX2

is a 2-dimensional parameter.

X1\X2 0 1 2 total

0 13 12 3 28
1 1 68 1 70
2 5 12 60 77

total 19 92 64 175

3 Example

The results of our method are shown for some datasets. We consider only the
case of two factors in this section. We used the software R [10] for computing
the algorithm. Figures show changes in the values of the parameters in our
algorithm. Furthermore, the values of AIC are shown.

3.1 Dataset 1

The first dataset is shown in Table 2. This dataset is a record of voting
in England [13]. The factors X1 and X2 have three levels. The factor X1

indicates the party for which a constituent voted in 1966. Level 1 means
Conservative, level 2, Labor, and level 0, Liberal. Similarly, the factor X2

indicates the party for which a constituent voted in 1970. The parameters
to be estimated are θ11X1X2

, θ12X1X2
, θ21X1X2

, and θ22X1X2
. Other parameters,

θ1X1
, θ2X1

, θ1X2
, and θ2X2

, are calculated from the condition that ηX1
1 , ηX1

2 , ηX2
1 ,

and ηX2
2 are fixed at the values of the MLE.

The result of the algorithm is shown in Figure 4. The horizontal axis
indicates the square root of the divergence from the estimates to the ori-
gin. The origin corresponds to the MLE for the independent model. The
vertical axis indicates the values of θijX1X2

(i, j = 1, 2). Line 1 in the figure

corresponds to θ11X1X2
, Line 2, to θ12X1X2

, Line 3, to θ21X1X2
, and Line 4, to

θ22X1X2
. The first estimator, the MLE for the full model, is represented on

the right-hand side of Figure 4. The algorithm starts from the right-hand
side and proceeds to the left-hand side in the figure. Each vertical line cor-
responds to an estimate. The algorithm ends when the estimator reaches
the origin. Five estimates, including both ends of the figure, are obtained.
It is clear that one θijX1X2

becomes zero at each iteration. The vertical line
indicates how many elements are not zero. For example, after first iteration,
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Figure 4: The Result of BRCT(2) for Dataset 1 (Table 2). Four elements of θX1X2

are illustrated. The horizontal axis indicates the square root of the divergence from
an estimate to the origin, which corresponds to the Euclidean distance (l2-norm)
in Euclidean space. The vertical axis indicates the values of θi (i = 1, 2, . . . , 4).
The first estimate is the rightmost one, which is the MLE of S. The last estimate,
fourth estimate, is the leftmost one, which is the MLE of the independent model
N . The algorithm proceeds from right to left in this figure. At each iteration, one
element of θX1X2 becomes zero. The vertical line indicates how many elements are
not zero.

θ12X1X2
, corresponding to line 2, is zero and others are not zero. According

to BRCT(2), θijX1X2
become zero in the following sequence: θ12X1X2

, θ21X1X2
,

θ11X1X2
, and θ22X1X2

.

3.2 Dataset 2

The second dataset is shown in Table 3. Dataset 2 appeared on [8] as a
contingency table for a simulation study. The factorX1 has four levels, X1 =
0, 1, 2, 3, and the factor X2 has three levels, X2 = 0, 1, 2. The parameters
to be estimated are θ11X1X2

, θ12X1X2
, θ21X1X2

, θ22X1X2
, θ31X1X2

, and θ32X1X2
. Other

parameters, θ1X1
, θ2X1

, θ3X1
, θ1X2

, and θ2X2
, are calculated from the fact that

ηX1
1 , ηX1

2 , ηX1
3 , ηX2

1 , and ηX2
2 are fixed at the values of the MLE.

The result of the algorithm is shown in Figure 5. Seven estimates, in-
cluding both ends of the figure, are obtained. According to BRCT(2), θijX1X2

become zero in the following sequence: θ21X1X2
, θ11X1X2

, θ32X1X2
, θ12X1X2

, θ22X1X2
,

17



Table 3: Dataset 2; A Contingency Table for a Simulation Study [8]. X1: factor
having four levels, X2: factor having three levels, 1123 observations. The dimension
of θ is 11, and θX1X2 is a 6-dimensional, θX1 is a 3-dimensional, and θX2 is a 2-
dimensional parameter.

X1\X2 0 1 2 total

0 88 91 84 263
1 107 115 92 314
2 96 97 82 275
3 85 100 86 271

total 376 403 344 1123

and θ31X1X2
.

3.3 AIC-Type Selection

We present the values of AIC for the datasets. The AIC for dataset 1
is shown in Figure 6. The horizontal axis indicates an estimate’s num-
ber, which means the order of estimates generated by the BRCT algorithm.
These numbers also mean how far an estimate is from the origin; a smaller
number means that the estimate is farther from the origin. In addition, an
estimate’s number indicates the number of zeros that the estimate has. Note
that an estimate’s number differs from the number on the top of Figure 4.
The zeroth estimate is the MLE of the full model. The fourth estimate is the
MLE of the independence model. The vertical axis indicates the AIC values
of the estimates. The minimum AIC is achieved by the zeroth estimate,
which is the MLE of the full model.

The AIC for dataset 2 is shown in Figure 7. The horizontal axis indicates
an estimate’s number, which means the order of estimates generated by the
BRCT algorithm. The minimum is achieved by the fifth estimate, which
has five zeros.

4 Conclusion

We considered contingency tables and multinomial distributions and intro-
duced natural and expectation parameters for estimation. We proposed
BRCT, and provided explanations for three cases: two factors, three fac-
tors, and K factors. The BRCT(2) algorithm was proposed for the cases
of two factors, and algorithms BRCT(3) and BRCT(3, 2) were proposed for
the cases of three factors. In the general case, we proposed the algorithm
BRCT(K1,K2) for efficiently estimating parameters. These algorithms are
based on the information geometry of dually flat spaces. The main idea
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Figure 5: The Result of BRCT(2) for Dataset 2 (Table 3). Six elements of θX1X2

are illustrated. The horizontal axis indicates the square root of the divergence from
an estimate to the origin, which corresponds to the Euclidean distance (l2-norm)
in Euclidean space. The vertical axis indicates the values of θi (i = 1, 2, . . . , 6).
The first estimate is the rightmost one, which is the MLE of S. The last estimate,
sixth estimate, is the leftmost one, which is the MLE of the independent model
N . The algorithm proceeds from right to left in this figure. At each iteration, one
element of θX1X2 becomes zero. The vertical line indicates how many elements are
not zero.

of BRCT(K1,K2) came from bisector regression for generalized linear re-
gression [6]. However, we dealt with parameters that are separated into
groups depending on type, or the number of indices, while our previous works
dealt equivalently with all parameters to be estimated. For contingency ta-
bles, we run BRCT(K1,K2), BRCT(K1,K2 − 1), . . . , BRCT(K1, 2), which
means that we estimate parameters with many indices first. Algorithms
BRCT(K1,K2) connect continuously and we did not need additional effort
for combining these algorithms. This fact reflected the nested structure of
the models. After these algorithms finish, we obtain the last estimate, the
MLE of the independent model. A sequence of parameter estimates is gener-
ated, the length of which is the number of parameters to be estimated by our
method. The number of our candidates is d[K1,K2]+d[K1,K2−1]+ · · ·+d[K1,2],
which is much smaller than the total number of all possible submodels. We
also showed the results of our method for two datasets. AIC was applied
for model selection. In the future, we intend to provide an efficient code for
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Figure 6: Value of AIC by BRCT for Dataset 1.

contingency tables with three or more factors. A stable and efficient code
will help us conduct various simulations. It will also help readers analyze
datasets of interest.
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