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Abstract

Network synthesis problem is the problem of constructing a minimum cost net-
work satisfying a given flow-requirement. A classical result of Gomory and Hu is
that if the cost is uniform and the flow requirement is integer-valued, then there
exists a half-integral optimal solution. They also gave a simple algorithm to find a
half-integral optimal solution.

In this note, we show that this half-integrality and Gomory-Hu algorithm can
be extended to a class of fractional cut-covering problems.

1 Introduction

Let KV be a complete (undirected) graph on node set V . We are given a nonnegative
integer-valued flow-requirement rij ∈ Z+ for each (unordered) pair ij of nodes. A
nonnegative edge-capacity x : E(KV )→ R+ is said to be feasible if, for every node-pair
ij, the maximum value of an (i, j)-flow under the capacity x is at least rij . We are also
given a nonnegative edge-cost a : E(KV )→ R+. The network synthesis problem (NSP)
is the problem of finding a feasible edge-capacity of the minimum cost, where the cost
of edge-capacity x is defined as

∑
e∈E(KV ) a(e)x(e). By max-flow min-cut theorem [2],

NSP is formulated as:

Min.
∑

e∈E(KV )

a(e)x(e)

s.t.
∑
e∈δX

x(e) ≥ rij (i, j ∈ V,X ⊆ V : i ∈ X ̸∋ j),

x : E(KV )→ R+.

Here δX denotes the set of edges joining X and V \X.
A classical result by Gomory and Hu [6] is that NSP admits a half-integral optimal

solution provided the edge cost is uniform.

Theorem 1.1 ([6]). Suppose a(e) = 1 for e ∈ E(KV ). Then we have the following:

(1) The optimal value of NSP is equal to
∑

i∈V max{rij | j ∈ V \ {i}}/2.
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(2) There exists a half-integral optimal solution in NSP.

See [2, Chapter 4], [4, Section 7.2.3] and [8, Section 62.3]. Gomory and Hu [6]
presented a simple algorithm to find a half-integral optimal solution, sketched as follows.
Define an edge-weight r on KV by r(ij) := rij . Compute a maximum weight spanning
tree T of KV with respect to r. Restrict r to E(T ). Then r : E(T ) → Z+ is uniquely
decomposed as r =

∑
F∈T σ(F )1E(F ) for a nested family T of subtrees in T and a

positive integral weight σ on T . For each subtree F ∈ T , take a cycle CF (in KV ) of
vertices V (F ). Then x = (

∑
F∈T σ(F )1E(CF ))/2 is an optimal solution of NSP with unit

edge-cost. Here 1Y denotes the incidence vector of a set Y , and a family T of subtrees
of a tree T is said to be nested if, for F, F ′ ∈ T , one of V (F ) ⊆ V (F ′), V (F ′) ⊆ V (F ),
and V (F ) ∩ V (F ′) = ∅ holds.

In this note, we show that Theorem 1.1 together with Gomory-Hu algorithm can be
extended to a class of fractional cut-covering problems. Let f : 2V → Z+ be a symmetric
nonnegative integer-valued set function on V satisfying f(∅) = f(V ) = 0. Here a set
function is called symmetric if it satisfies

(1.1) f(X) = f(V \X) (X ⊆ V ).

As above, we are given an edge-cost a : E(KV )→ R+. Consider the following fractional
cut-covering problem:

NSP[f ]: Min.
∑

e∈E(KV )

a(e)x(e)

s.t.
∑
e∈δX

x(e) ≥ f(X) (X ⊆ V ),

x : E(KV )→ R+.

NSP is a special case of NSP[f ]. Indeed, for flow-requirement rij , define R by

(1.2) R(X) := max{rij | i ∈ X ̸∋ j} (∅ ̸= X ⊂ V ),

and R(∅) = R(V ) = 0. Then NSP[R] coincides with NSP.
Our result is about a half-integrality property of NSP[f ] for a special set function

f and a special edge-cost a. Let us introduce a few notions to mention our result. A
symmetric set function f is skew-supermodular if it satisfies

(1.3) f(X) + f(Y ) ≤ max{f(X ∩ Y ) + f(X ∪ Y ), f(X \ Y ) + f(Y \X)} (X,Y ⊆ V ).

We say that a skew-supermodular function f is normal if it satisfies

(1.4) f(X) + f(Y )− f(X ∪ Y ) ≥ 0 (X,Y ⊆ V : X ∩ Y = ∅),

and is evenly-normal if it satisfies

(1.5) f(X) + f(Y )− f(X ∪ Y ) ∈ 2Z+ (X,Y ⊆ V : X ∩ Y = ∅).

We say that a pair of X,Y ⊆ V is crossing if all X ∩ Y , V \ (X ∪ Y ), X \ Y , and Y \X
are nonempty. A family F ⊆ 2V is said to be cross-free if F has no crossing pair. The
main result of this note is the following.

Theorem 1.2. Suppose that f is evenly-normal skew-supermodular and there exist a
cross-free family F and a nonnegative weight l : F → R+ with a =

∑
X∈F l(X)1δX .

Then we have the following:
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(1) The optimal value of NSP[f ] is equal to
∑

X∈F l(X)f(X).

(2) There exists an integral optimal solution in NSP[f ].

This theorem includes the half-integrality for NSP[f ] for a normal skew-supermodular
function f . One can see this fact from: (1) if f is normal skew-supermodular, then 2f
is evenly-normal skew-supermodular, and (2) if x is optimal to NSP[2f ], then x/2 is
optimal to NSP[f ]. Also Theorem 1.2 includes Theorem 1.1. Indeed, it is easy to see
that R is normal skew-supermodular (the skew-supermodularity of R is well-known [4,
Lemma 8.1.9]). Since the unit cost is represented as

∑
i∈V (1/2)1δ{i}, we can take {{i} |

i ∈ V } as F , with l({i}) := 1/2 (i ∈ V ). Applying Theorem 1.2 to NSP[2R], we obtain
Theorem 1.1.

The proof of Theorem 1.2 is given in the next section. Our proof is algorithmic, and
gives a simple greedy-type algorithm extending Gomory-Hu algorithm.

2 Proof

We need two lemmas. The first lemma is a general property of a symmetric skew-
supermodular function. We denote

∑
e∈F x(e) by x(F ) for F ⊆ E(KV ).

Lemma 2.1. Let f : 2V → Z+ be a symmetric skew-supermodular function and F a
cross-free family on V . If x : E(KV )→ R+ satisfies x(δX) = f(X) for all X ∈ F , then
one of the following holds:

(1) x satisfies x(δX) ≥ f(X) for all X ⊆ V .

(2) There exists W ⊆ V such that x(δW ) < f(W ) and F ∪ {W} is cross-free.

In particular, if F is a maximal cross-free family, then (1) holds.

Proof. By symmetry, we may assume Y ∈ F ⇔ V \Y ∈ F . We use the induction on |V |.
Suppose that (1) does not hold. Then there is Z ⊆ V with x(δZ) < f(Z). If F ∪ {Z}
is cross-free, then (2) holds, as required. Suppose that F ∪ {Z} is not cross-free. Then
there is Y ∈ F such that (Y, Z) is crossing. By the skew-supermodularity of f , we have

f(Y ) + f(Z) ≤ f(Y ∩ Z) + f(Y ∪ Z) or f(Y ) + f(Z) ≤ f(Y \ Z) + f(Z \ Y ).

By symmetry, we may assume the first case; otherwise replace Y by V \Y . By x(δY ) =
f(Y ) and x(δZ) < f(Z), we have

(2.1) x(δY ) + x(δZ) < f(Y ) + f(Z) ≤ f(Y ∩ Z) + f(Y ∪ Z).

By x ≥ 0 we also have

(2.2) x(δ(Y ∩ Z)) + x(δ(Y ∪ Z)) ≤ x(δY ) + x(δZ).

By (2.1) and (2.2) we have x(δ(Y ∩Z)) < f(Y ∩Z) or x(δ(Y ∪Z)) < f(Y ∪Z). Again,
by symmetry, we may assume

(2.3) x(δ(Y ∩ Z)) < f(Y ∩ Z).

Otherwise replace Y by V \ Y and replace Z by V \ Z.
In KV , contract all edges with both ends belonging to V \Y . Then V \Y is contracted

into one node r. The resulting graph is a complete graph KV ′ on node set V ′ := Y ∪{r}.
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Since (Y,Z) is crossing, both Z \Y and V \ (Y ∪Z) are nonempty, and hence |V \Y | ≥ 2
and |V ′| < |V |. Define a family F ′ on V ′ by

F ′ :=
∪

X∈F :X⊆Y

{X} ∪
∪

X∈F :X∪Y=V

{(X ∩ Y ) ∪ {r}}.

Then F ′ is a cross-free family on V ′. Let f ′ be a set function on V ′ defined by

(2.4) f ′(X) :=

{
f(X) if r ̸∈ X,
f((X \ {r}) ∪ (V \ Y )) if r ∈ X,

(X ⊆ V ′ = Y ∪ {r}).

Then f ′ is symmetric skew-supermodular on V ′. By construction, we can regard E(KV ′)
as E(KV ′) ⊆ E(KV ). Let x′ denote the restriction of x to E(KV ′), and let δ′X denote
the set of edges joining X and V ′ \X in KV ′ . Then we have

(2.5) x′(δ′X) = x(δX) (X ⊆ Y ).

Thus we have x′(δ′X) = f ′(X) (X ∈ F ′), and x′(δ′(Y ∩ Z)) < f ′(Y ∩ Z). Recall
|V ′| < |V |. By induction, there exists W ⊆ V ′ such that x′(δ′W ) < f ′(W ) and F ′∪{W}
is cross-free. By symmetry, we may assume W ⊆ Y , i.e., W is a subset of V . Then, by
(2.4) and (2.5), we have x(δW ) < f(W ). Also F ∪ {W} is cross-free in V .

The second lemma is about the path decomposition of a capacitated trivalent tree.
A tree is said to be trivalent if each node that is not a leaf has degree three, where a leaf
of a tree is a node of degree one.

Lemma 2.2. Let T be a trivalent tree, and c : E(T ) → Z+ an integer-valued edge-
capacity. If c(e) + c(e′) − c(e′′) ∈ 2Z+ holds for every pairwise-incident triple (e, e′, e′′)
of edges, then there exist a set P of simple paths connecting leaves and an integral weight
λ : P → Z+ such that

∑
P∈P λ(P )1E(P ) = c.

Proof. For every incident pair e, e′ of edges, define l(e, e′) by

l(e, e′) := (c(e) + c(e′)− c(e′′))/2,

where e′′ is the third edge incident to e and to e′. Then l(e, e′) is a nonnegative integer,
and c(e) = l(e, e′) + l(e, e′′). (P, λ) is constructed as follows, where let P := ∅ initially.

Take edge e = uv with c(e) > 0. Suppose that u is not a leaf. Then there is an edge e′

incident to u with l(e, e′) > 0. Necessarily c(e′) > 0 (otherwise c(e′) = 0 and l(e, e′) = 0).
Hence we can extend e to a simple path P = (e0, e1, . . . , ek) connecting leaves. Add P to
P. Define λ(P ) := mini=1,...,k l(ei−1, ei) (> 0). Let c̃ := c− λ(P )1E(P ). Then c̃ satisfies
the condition of this lemma. To see this, take an arbitrary pairwise-incident triple
(e, e′, e′′) of edges. We show c̃(e)+c̃(e′)−c̃(e′′) ∈ 2Z+. Here E(P )∩{e, e′, e′′} is ∅, {e′, e′′},
{e, e′′}, or {e, e′}. For the first three cases, we have c̃(e) + c̃(e′)− c̃(e′′) = c(e) + c(e′)−
c(e′′) ∈ 2Z+. For the last case, we have c̃(e)+ c̃(e′)− c̃(e′′) = c(e)+ c(e′)− c(e′′)−2λ(P ),
which must be an nonnegative even integer by definition of λ(P ).

Let c← c̃, and repeat this process. In each step, at least one of l(e, e′) is zero. After
O(|V (T )|) step, we have c = 0 and obtain a desired (P, λ).

Proof of Theorem 1.2. Consider the LP-dual of NSP[f ], which is given by

DualNSP[f ]: Max.
∑
X⊆V

π(X)f(X)

s.t.
∑
X⊆V

π(X)1δX ≤ a

π : 2V → R+.
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Suppose that a is represented by a =
∑

X∈F l(X)1δX for some cross-free family F and
some positive weight l on F . Define π : 2V → R+ by

π(X) =

{
l(X) if X ∈ F ,
0 otherwise,

(X ⊆ V ).

Then π is feasible to DualNSP[f ] with the objective value
∑

X∈F l(X)f(X). We are
going to construct a feasible integral solution x in NSP[f ] satisfying

(2.6) x(δX) = f(X) (X ∈ F).

If this is possible, then, by the complementary slackness, x is optimal to NSP[f ] and π
is optimal to DualNSP[f ]; hence Theorem 1.2 is proved.

Take a maximal cross-free family F∗ including F . Here recall the tree-representation
of a cross-free family; see [4, Section 1.4] and [8, Section 13.4]. By the maximality of
F∗, there exists a trivalent tree T on vertex set V ∪ I with the following properties:

(2.7) (1) V is the set of leaves of T , and I is the set of non-leaf nodes.

(2) F∗ \ {∅, V } =
∪

e∈E(T ){Ae, Be}, where {Ae, Be} denotes the bipartition of
V such that Ae (or Be) is the set of leaves of one of components of T − e.

Define edge-weight c : E(T )→ Z+ by

(2.8) c(e) := f(Ae)(= f(Be)) (e ∈ E(T )).

By symmetry (1.1) and the evenly-normal property (1.5) of f , for each pairwise-incident
triple (e, e′, e′′) of edges in T , we have

c(e) + c(e′)− c(e′′) = f(Ae) + f(Ae′)− f(Ae′′) ∈ 2Z+,

where we can assume Ae ∩ Ae′ = ∅ and Ae′′ = Ae ∪ Ae′ . By Lemma 2.2, there ex-
ist a set P of simple paths connecting V and a positive integral weight λ on F with∑

P∈P λ(P )1E(P ) = c. Define x : E(KV )→ Z+ by

(2.9) x(ij) :=

{
λ(P ) if ∃P ∈ P : P connects i and j,
0 otherwise,

(ij ∈ E(KV )).

Since each P is simple, we have

x(δAe) = c(e) = f(Ae) (e ∈ E(T )).

By (2.7) (2), this implies
x(δX) = f(X) (X ∈ F∗).

By Lemma 2.1, x is feasible to NSP[f ]. By F ⊆ F∗, x satisfies (2.6). Therefore, x is
an integral optimal solution in NSP[f ], π is an optimal solution in DualNSP[f ], and the
optimal value is equal to

∑
X∈F l(X)1δX . □

Algorithm to find an integral optimal solution in Theorem 1.2. Our proof
gives the following simpler O(nγ + n2) algorithm to find an integral optimal solution,
where n := |V |, and γ denotes the time complexity of evaluating f .

step 1: Take a maximal cross-free family F∗ including F .
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step 2: Construct a trivalent tree T with (2.7).

step 3: Define edge-weight c by (2.8).

step 4: Decompose c as c =
∑

P∈P λ(P )1E(P ) according to the proof of Lemma 2.2.

step 5: Define x by (2.9), and then x is an integral optimal solution in NSP[f ].

Steps 1,2 can be done in O(n) time, step 3 can be done by O(n) calls of f , and steps 4,5
can be done in O(n2) time.

Gomory-Hu algorithm reconsidered. Gomory-Hu algorithm can be viewed as a
special case of our algorithm. First note that, in the case of unit cost, we can take an
arbitrary maximal cross-free family in step 1. Consider a maximum spanning tree T on
KV with respect to r. For e ∈ E(T ), let {Ae, Be} denote the bipartition of V determined
by T − e. Then F :=

∪
e∈E(T ){Ae, Be} is cross-free. Extend F to a maximal cross-free

family F∗. Take a trivalent tree T̄ corresponding to F∗. Define c : E(T̄ )→ Z+ by (2.8)
with f := R. Here we note that R has the following property, which is stronger than
(1.4):

max{R(A), R(B)} ≥ R(A ∪B) (A,B ⊆ V : A ∩B = ∅).

By symmetry, the maximum of R(A), R(B), and R(A ∪ B) is attained at least twice.
This in turn implies the following property of c:

(2.10) For each pairwise-incident triple (e, e′, e′′) of edges, the maximum of c(e),
c(e′), and c(e′′) is attained at least twice.

Represent c as c =
∑

F∈T̄ σ(F )1E(F ) for a nested family of subtrees T̄ and a positive
integral weight σ on T̄ . By (2.10), the set of leaves of each subtree F ∈ T̄ belongs to V .
Therefore we may apply the path decomposition in Lemma 2.2 to each σ(F )1E(F ) inde-
pendently. From the path decomposition of σ(F )1E(F ), we obtain xF := (σ(F )/2)1E(CF ),
where a cycle CF of vertices V (F ) in KV . Then x :=

∑
F∈T̄ xF is optimal.

By construction, T can be regarded as a tree obtained by contracting some of edges
of T̄ . So we can regard E(T ) as E(T ) ⊆ E(T̄ ). Since T is a maximum spanning tree,
we have

r(e) = R(Ae)(= R(Be)) (e ∈ E(T )).

This means that r coincides with the restriction of c to E(T ). Also one can see from
definition of R that the nested family obtained from T̄ by contracting the edges coincides
with the nested family T in Gomory-Hu algorithm (see Introduction). Therefore, the
above-mentioned process coincides with Gomory-Hu algorithm.

Remark 2.3. Frank [3] proved, from a general framework of edge-splitting, that in
the case of uniform cost there also exists a half-integral optimal solution in NSP[R]
with lower-bound constraint x ≥ g for g : E(KV ) → Z+; see [3, Section 11.1.4]. Our
framework cannot explain this half-integrality (since a symmetric function f − g ◦ δ
defined by (f − g ◦ δ)(X) := f(X)− g(δX) is not normal in general even if f is normal
skew-supermodular).

Remark 2.4. A tree metric is a metric represented by the distances between a subset
of vertices in a weighted tree. The cost function treated in Theorem 1.2 is nothing but a
tree metric; this fact can easily be seen from the tree-representation of a cross-free family.
A tree metric is a fundamental object in phylogenetic combinatorics, combinatorics for
phylogenetic trees in biology [1]. In the literature, there are many O(n2) algorithms
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to construct a weighted tree (phylogenetic tree) realizing a given distance d on an n-
element set V if d is a tree metric; neighbor-joining [7] is a popular method. By using
these algorithms, the expression a =

∑
X∈F π(X)1δX in Theorem 1.2 is obtained in

O(n2) time if it exists.

Remark 2.5. Lemma 2.1 is viewed as a symmetric analogue of the following well-
property of submodular functions: If f is a submodular function on V and x : V → R
satisfies x(Y ) = f(Y ) (Y ∈ F) for some maximal chain F in 2V , then x(X) ≤ f(X)
for all X ⊆ V . See [4, 5, 8]. This property guarantees the correctness of the greedy
algorithm for the base polytope. Also in our algorithm, Lemma 2.1 is used for a similar
purpose. So our algorithm may be a symmetric analogue of the greedy algorithm.
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