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Abstract

Materials and microstructures with specific configurations are able to have negative Pois-

son’s ratio. This paper proposes a topology optimization methodology of frame structures to

design a planar periodic structure that exhibits negative Poisson’s ratio. Provided that beam

section of each existing member is chosen from a set of some given candidates, the topology

optimization problem can be reduced to a mixed integer linear programming (MILP) problem.

Since the proposed approach treats frame structures and stress constraints are rigorously ad-

dressed, no link-mechanism is generated. A heuristic method with local search is used to solve

large-scale problems. Numerical examples and fabrication test demonstrate that planar periodic

frame structures exhibiting negative Poisson’s ratio can be successfully obtained by the proposed

method.
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1 Introduction

Poisson’s ratio of isotropic bodies is constrained theoretically to the range −1 ≤ ν ≤ 1/2 by

thermodynamics. The majority of materials, however, are characterized by Poisson’s ratio in the

range 0 < ν < 1/2. Materials with negative Poisson’s ratio will expand transversely when stretched

longitudinally. Some naturally occurred materials, e.g., cadmium [20], single crystals of arsenic [15],

and natural layered ceramics [36], exhibit negative Poisson’s ratio. Extensive study of negative

Poisson’s ratio materials was initiated by the seminal work of Lakes [17], which developed polymer

foams having this counter-intuitive property.

Materials with negative Poisson’s ratio are also called auxetic materials [9]. We call structures

exhibiting auxetic behavior auxetic structures. Auxetic property of materials usually stems from

a particular geometrical structure, e.g., re-entrant structures [7, 11, 18, 40], chiral structures [14],

multiscale laminates [27], rotating sub-structures [13], microporous foams [5], many-body systems

with isotropic pair interactions [30], and porous elastomer with specific patterns [4]. Fabrics with

†Present address: Tokyo Keiki, Inc. 2-16-46, Minami-Kamata, Ohta, Tokyo 144-8551, Japan.
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auxetic property were also produced by using weft-knitting technology [22] and helical yarns [26, 35].

Scale of such geometrical structures of materials ranges from microscopic to naked-eye level. Every

material has a structure in general, and, in this sense, distinction between materials and structures

is obscure. This paper primarily concerns periodic structures, rather than materials, representative

unit cells of which are visible with the naked eye; see numerical examples in section 5. However,

when relatively small unit cell is repeated sufficiently many times, obtained periodic structures

may approach to materials. Potential applications of auxetic materials and structures include

tunable filters [2], artificial intervertebra discs [24], fasteners [6], and fibers for reinforcing composite

materials [34]. See [1, 8, 12, 21, 28, 41] for more detailed surveys on auxetic materials.

A methodology of material design based on topology optimization of structures was proposed by

Sigmund [33], where repetitive base unit of a material is modeled as a truss structure. The method

was applied to find a material with prescribed negative Poisson’s ratio. Topology optimization

of continua based on the homogenization method was also applied to design microstructures with

negative Poisson’s ratio [3, 19, 32]. In [19], the obtained design of a planar periodic microstruc-

ture with negative Poisson’s ratio was fabricated using silicon surface micromachining. However,

optimal solutions obtained by this method have so-called gray areas and manual post-processing

by an operator is required before manufacturing process. As clearly mentioned in [19], thickness of

hinge regions of the obtained optimal solutions has a great influence of Poisson’s ratio and stress

distribution, but thickness and shapes of hinges were decided by perception of an engineer. In

contrast, as detailed below, the method proposed in this paper does not generate hinges and gray

areas, which makes the method free from perception of engineers. In [32], the obtained design of

a three-dimensional microstructure was fabricated using a manufactured selective electron beam

melting system. However, to guarantee ease of manufacture of optimal solutions, optimization was

started from a given auxetic structure, which may limit solutions explored in the process of opti-

mization. Indeed, the shape of the optimal solution obtained in [32] was not drastically different

from the initial solution. Matsuoka et al. [25] proposed a genetic algorithm to design a periodic

structure with negative Poisson’s ratio. This method also requires post-processing of interpreting

the obtained solution.

This paper proposes an optimization method to design a planar periodic frame structure that

exhibits a negative Poisson’s ratio property. Based on the conventional ground structure method,

we consider a topology optimization problem of a frame structure. The optimized frame structure

serves as the smallest unit of a periodic structure. Section of each beam element is supposed to be

chosen from a set of some given candidates. The optimization problem is reformulated as a mixed

integer linear programming (MILP) problem. This reformulation is achieved as a natural extension

of MILP formulations of topology optimization of trusses with discrete member cross-sectional

areas [29] and that of continua with binary design variables [38].

We solve a topology optimization problem of frame structures with discrete design variables.

Local stress constraints are addressed precisely, i.e., bounds for axial force and two end moments

are imposed only on present beam elements. Therefore, the optimal solution has neither hinges

nor thin members. It is often that an optimized structure with negative Poisson’s ratio has hinge

regions, where negative Poisson’s ratio stems from link-mechanisms and/or compliant mechanisms.

Thickness of hinges of such a solution should be adjusted carefully before manufacturing process,
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because a structure with thin hinges can sustain only small forces while with thick hinges a structure

may lose mechanisms from which negative Poisson’s ratio accrues. In contrast, a solution without

hinges and thin members but with optimized negative Poisson’s ratio may have an advantage in

manufacturability in the sense that no post-processing is required. From another perspective, opti-

mized frame structures obtained by the proposed method may robust against fabrication errors. In

this paper we fabricate the obtained optimal solution by applying photo-etching to a stainless plate

and confirm its negative Poisson’s ratio property; see section 5.1.

By virtue of MILP formulation, small-scale optimization problems can be solved globally with,

e.g., the branch-and-bound method. Several software packages, e.g., CPLEX [16], are available

for this purpose. However, it is difficult to solve large-scale problems globally from a viewpoint of

computational cost. Large-scale problems are attacked by hierarchical optimization with a local

search heuristics, in which MILP problems are solved sequentially. We begin with a coarse ground

structure, for which the optimization problem is solved globally. The obtained optimal solution

is then transferred to a refined ground structure, for which the optimization problem is solved

locally with a local search. Specifically, the MILP problem is solved within a neighborhood of the

current solution. The local search with MILP was suggested by Stolpe and Stidsen [37] to solve

topology optimization of continua. The idea of using a coarser design domain to produce a good

initial solution for a finer design domain was also proposed for topology optimization of continua

in [37, 39].

The paper is organized as follows. In section 2 we present a concept of design problem of periodic

frame structures with negative Poisson’s ratio. In section 3 this design problem is formulated as

an MILP problem. In section 4 we propose a hierarchical optimization method with local search

heuristics to solve large-scale problems. In section 5 we demonstrate numerical experiments. An

example of fabricated physical model is also presented. We conclude in section 6.

2 Design problem of auxetic structures

In this section we present a concept of design problem of an auxetic periodic structure which

is realized by arranging a basic frame unit repeatedly. The frame unit is found by solving an

optimization problem that will be formulated in section 3.

We consider a planar frame structure with the following properties:

(i) The structure has periodicity, as shown in Figure 1, where a unique base cell, i.e., the

smallest unit, is connected repeatedly.

(ii) If the upper boundary is subjected to uniform displacement in the positive direction of the

Y -axis in Figure 1, then displacement in the positive direction of the X-axis is induced on

the right boundary, i.e., the structure exhibits negative Poisson’s ratio behavior.

(iii) Negative Poisson’s ratio property of the structure is invariant when roles of input and output

boundaries in (ii) are swapped, i.e., the base cell has symmetric configuration.

Due to periodicity of the structure, our design domain is the base cell shown in Figure 2(a).

Symmetry of the structure implies that configuration of the base cell is symmetric with respect to
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Figure 1: A planar periodic structure.
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Figure 2: Schematic overview of a repeated planar frame structure. (a) Design domain of a base

cell; and (b) a repeated frame structure obtained by connecting base cells.

reflection across the dashed lines. Therefore, an eighth of the base cell, shaded in Figure 2(a), is an

independent design domain. The base cell has four outer short beams that serve as interfaces to an

adjacent cell as shown in Figure 2(b).

Figure 3(a) shows an example of ground structure, which corresponds to a quarter of a base

cell. The dashed line is an axis of symmetry of design. To obtain negative Poisson’s ratio property,

we consider the following design problem. The top-left node, called the input node, of the ground

structure is subjected to a prescribed displacement, ūin > 0. Let uout denote the displacement of

the bottom-right node, called the output node. Then we solve a topology optimization problem that

attempts to maximize uout, where beam sections are considered design variables. In this paper we

call −uout/uin Poisson’s ratio of the structure.

Thus, we solve a topology optimization problem that maximizes the output displacement at the

equilibrium state corresponding to the prescribed input displacement. This problem, however, has

meaningless optimal solutions, because stiffness of the structure against external loads is not taken

into account. As an extreme example, if all the members of the ground structure vanish, then the

output node can move freely. Therefore, the null structure is (one of) optimal solutions, where the

optimal value is positive infinity. Also, even if there are some existing members, the output node
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Figure 3: Problem setting with 2 × 2 grid ground structure. (a) The actual boundary condition

corresponding to auxetic behavior; and (b) the fictitious boundary condition for the connectedness

constraint.

can move freely if the members are not connected. To make the optimization problem meaningful,

the feasible set is limited to connected structures. More precisely, topology of a structure should

contain a connected path from the input node to the output node. To guarantee this condition, we

consider a fictitious boundary condition shown in Figure 3(b) and require that the structure has

an equilibrium state under this fictitious boundary condition. If such an equilibrium state exists,

then there exists flow of internal forces from the output node (where the fictitious external load is

applied) to the input node (where the fictitious reaction force acts). This means that there is a

connected path, consisting of existing members, from the output node to the input node, and hence

the output displacement is bounded when the input displacement is prescribed.

Descriptive summary of the design problem is given as follows.

• Topology optimization of planar frame structures is solved within the framework of the com-

mon ground structure method. Sections of beams are design variables to be optimized.

• We attempt to maximize the displacement of the output node, uout, at the equilibrium state

where the displacement of the input node, uin, is prescribed; see Figure 3(a).

• Stress constraints of members are fully addressed.

• Existence of mutually intersecting members is not accepted.

• Design variables are considered discrete, i.e., section of each beam is chosen from a set of some

given candidates.

• To avoid meaningless disconnected structures being optimal, we require that the structure has

an equilibrium state with fictitious boundary conditions; see Figure 3(b).

In section 3 we formulate this optimization problem explicitly and reformulate it as an MILP

problem.
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3 Mixed integer linear programming approach

Section 2 has presented a concept of design problem of a periodic planar structure with negative

Poisson’s ratio. In section 3.1 we formulate this design problem as a topology optimization prob-

lem of frame structures. This topology optimization problem is reduced to an MILP problem in

section 3.2.

3.1 Optimization problem

Consider a planar frame structure that serves as a ground structure in conventional topology op-

timization. The structure consists of sufficiently many members and locations of the nodes are

specified. We use E to denote the set of members. Figure 3(a) shows an example consisting of 9

nodes and |E| = 28 members, where any two nodes are connected by a candidate member unless it

does not create an overlapping member. We adopt the Timoshenko beam theory for modeling the

members.

For member i (i ∈ E), let ai and Ii denote the cross-sectional area and the moment of inertia,

respectively, which are considered design variables. The vector of these design variables are written

as a = (ai | i ∈ E) and I = (Ii | i ∈ E).

We choose the section of each member from a given set of finitely many available sections.

Let a pair of āp and Īp represent an available section, where āp is the cross-sectional area and Īp

is the moment of inertia. We denote by {(āp, Īp) | p ∈ P} the set of available sections, where

|P | corresponds to the number of available sections. Member i either takes one of these available

sections or vanishes. This condition is written as

(ai, Ii) ∈ {(0, 0)} ∪ {(āp, Īp) | p ∈ P}, ∀i ∈ E.

Let u ∈ Rd and f ∈ Rd denote the displacement vector and the external force vector, re-

spectively, where d is the number of degrees of freedom. At the input node, the displacement is

prescribed and hence the induced reaction force is unknown; see Figure 3(a). Therefore, u and f

can be partitioned as

u =

 ūin

uout

ufree

 , f =

fin0
0

 , (1)

where uout ∈ R, ufree ∈ Rd−2, and fin ∈ R are unknown variables and ūin > 0 is a specified value.

Let K ∈ Rd×d denote the stiffness matrix, which is determined by a and I. The displacement

vector induced by the given input displacement is obtained as the solution of the static equilibrium

equations

K(a, I)u = f

in conjunction with the boundary condition in (1). Throughout the paper we assume that defor-

mation of a structure is small and that members consist of a linear elastic material; geometrical

nonlinearity and material nonlinearity are not considered.
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We next introduce stress constraints. Let m
(1)
i and m

(2)
i denote the two end moments of member

i. We use qi to denote the axial force. Stress constraints for frame structures may possibly be

formulated in some different forms. In this paper we deal with interaction between the axial force

and the end moment by making use of a familiar piecewise linear yield condition. Specifically, for

each i ∈ E, we consider the following constraints involving quite simple effect of interaction:

|qi(u)|
qyi

+
|m(e)

i (u)|
my

i

≤ 1, e = 1, 2. (2)

Here, qyi and my
i are upper bounds for absolute values of the axial force and the end moment,

respectively. For instance, these values are given according to the yield force and the yield moment

as

qyi = σ̄ai, my
i = σ̄zi (3)

with

σ̄ = γσy,

where σy is the flow stress, zi is the plastic section modulus, and γ ∈]0, 1[ is a specified safety factor.

It should be clear that the stress constraint, (2), is imposed only on existing members. If member

i vanishes in the course of optimization, then constraint (2) should be removed.

We next consider a constraint excluding disconnected structures. With reference to Figure 3(b),

recall that this constraint is translated into the existence of an equilibrium state under a given

fictitious boundary condition. Let f̌ ∈ Rď denote the fictitious external load vector, where ď is the

number of degrees of freedom under the fictitious boundary condition. Without loss of generality,

f̌ is partitioned as

f̌ =

[
f̄out

0

]
,

where f̄out > 0 is a specified fictitious force applied at the output node. Location and rotation of the

input node are supposed to be fixed. Let ši ∈ R3 denote the natural generalized stress of member

i. The components of ši are the two end moments and the axial force. The force-balance equation

can be written as ∑
i∈E

Ȟiši = f̌ , (4)

where Ȟi ∈ Rď×3 (∀i ∈ E) are constant matrices. Note that matrix (Ȟi | i ∈ E) ∈ Rď×3|E|

corresponds to the equilibrium matrix under the fictitious boundary condition. If member i vanishes

in the course of optimization, then it cannot transmit forces, i.e., the condition

ai = 0 ⇒ ši = 0 (5)

should be satisfied. We treat (4) and (5) as constraints of the optimization problem. Then, feasibility

requires existence of a path of internal forces from the output node (at which the fictitious load is

applied) to the input node (which is considered the fictitious support). Hence, meaningless solutions

that are disconnected are excluded by these constraints.
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Figure 4: A solution satisfying (4) and (5).

Remark 3.1. Strictly speaking, constraints (4) and (5) do not exclude existence of floating members

that are not irrelevant to a solution. An example is shown in Figure 4. In this case, a disconnected

member can be ignored. A set of members that includes a path from the output node to the input

node corresponds to an actual structure that we explore. ■

Presence of mutually intersecting members is avoided as follows. Let C denote the set of pairs

of members that mutually intersect in the ground structure. Precisely, we write (i, i′) ∈ C if

member i and member i′ intersect. Then the two members cannot have positive cross-sectional

areas simultaneously. Therefore, the constraint excluding intersecting members is formally written

as

aiai′ = 0, ∀(i, i′) ∈ C. (6)

By summing up the discussion above, the optimization problem for finding frame structures

with negative Poisson’s ratio is formulated as

max
a,I,z,u,š

uout (7a)

s. t. K(a, I)u = f , (7b)

(fout,f free) = (0,0), (7c)

uin = ūin, (7d)

|qi(u)|
qy(ai)

+
|m(e)

i (u)|
my(zi)

≤ 1 ⇐ ai > 0, e = 1, 2, ∀i ∈ E, (7e)∑
i∈E

Ȟiši = f̌ , (7f)

ši = 0 ⇐ ai = 0, ∀i ∈ E, (7g)

aiai′ = 0, ∀(i, i′) ∈ C, (7h)

(ai, Ii, zi) ∈ {(0, 0, 0)} ∪ {(āp, Īp, z̄p) | p ∈ P}, ∀i ∈ E, (7i)

In this problem, we choose the beam section of each member, represented by (ai, Ii, zi), according

to (7i). Constraints (7b), (7c), and (7d) describe the equilibrium state, and hence auxetic property

is achieved by maximizing uout. In (7e), stress constraints are imposed only on existing members.

Existence of š (∀i ∈ E) satisfying (7f) and (7g) guarantees connectedness of members. Presence of

mutually intersecting members is avoided by (7h).

In section 3.2 we reduce problem (7) to an MILP problem. A key idea for this reformulation is

based on the MILP formulations for topology optimization of continua with 0–1 design variables [38]
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Figure 5: Local coordinate system for a beam element.

and of trusses with discrete member cross-sectional areas [29]. We extend this idea to topology

optimization of frame structures.

3.2 Mixed integer linear programming reformulation

The design problem of a periodic frame structure with negative Poisson’s ratio was formulated as

an optimization problem, (7), in section 3.1. In this section, problem (7) is reduced to an MILP

problem, which will be presented in (33).

For each i ∈ E, we introduce 0–1 variables, xip (∀p ∈ P ), to represent the section used for

member i. We define xip = 1 if member i has section p, otherwise xip = 0. More precisely, xip

(∀p ∈ P ) are subjected to the constraints∑
p∈P

xip ≤ 1, (8)

xip ∈ {0, 1}, ∀p ∈ P. (9)

Then the cross-sectional area, ai, and the moment of inertia, Ii, of member i are expressed as

ai =
∑
p∈P

āpxip, (10)

Ii =
∑
p∈P

Īpxip. (11)

These conditions correspond to constraint (7i).

Constraints (7b) and (7e) are reformulated as follows. We begin by decomposing the stiffness

matrix, K(a, I), in (7b). Consider the local coordinate system for member i as shown in Figure 5.

The element displacement vector is written as ue
i = (u

(1)
x , u

(1)
y , θ(1), u

(2)
x , u

(2)
y , θ(2))⊤. The displace-

ment vector of the ground structure, u ∈ Rd, is defined with respect to the global coordinate system.

For each i ∈ E, transformation of u to ue
i is written as

ue
i = Tiu,

where Ti ∈ R6×d is a constant transformation matrix. We employ the Timoshenko beam theory to

model the ground structure. Let Ke
i (ai, Ii) ∈ R6×6 denote the member stiffness matrix defined with

respect to the local coordinate system. Since Ke
i is a symmetric matrix and its rank is three, it can

be written as

Ke
i (ai, Ii) =

3∑
j=1

kij b̂ij b̂
⊤
ij . (12)
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In (12), constant vectors b̂i1, b̂i2, b̂i3 ∈ R3 are defined by

b̂i1 =



−1

0

0

1

0

0


, b̂i2 =



0

−1

−li/2

0

1

−li/2


, b̂i3 =



0

0

−1

0

0

1


and constants ki1, ki2, ki3 are defined by

ki1 =
Eai
li

, (13a)

ki2 =
1

li

( 1

κGai
+

l2i
12EIi

)−1
, (13b)

ki3 =
EIi
li

. (13c)

Here, E and G are Young’s modulus and the shear modulus of the beam material, li is length

of the beam element, and κ is the shear correction factor in the Timoshenko beam theory. Note

that definition (13b) of ki2 is according to the MacNeal element of Timoshenko beam [23]. In our

problem, beams are subjected to nodal loads only; intermediate loads and distributed loads are

not applied. In this case, the MacNeal element coincides with the interdependent interpolation

element [31], and hence the nodal displacement of a beam can be predicted exactly with single

element [10, 31].

Let qi and τi denote the axial and transverse shear forces, respectively. We denote by m
(1)
i and

m
(2)
i the two end moments. The force-balance equation regarding member i is given by

3∑
j=1

sij b̂ij = f̂ i, (14)

where f̂ i = (−qi,−τi,m
(1)
i , qi, τi,m

(2)
i )⊤ is the nodal force vector and si = (si1, si2, si3)

⊤ is the

generalized stress vector. Physical interpretation of the components of si is obtained from (14) as

si1 = qi, (15a)

si2 = τi = −
m

(1)
i +m

(2)
i

li
, (15b)

si3 =
−m

(1)
i +m

(2)
i

2
. (15c)

By assembling member stiffness matrices in (12) in the usual way, the global stiffness matrix of

the structure, denoted K(a, I) ∈ Rd×d, is obtained as

K(a, I) =
∑
i∈E

3∑
j=1

kij(ai, Ii)bijb
⊤
ij , (16)

10



where constant vectors bi1, bi2, bi3 ∈ Rd are defined by

bij = T⊤
i b̂ij , j = 1, 2, 3.

By using expression (16), we decompose the global equilibrium equation, (7b). The global force-

balance equation is written as ∑
i∈E

3∑
j=1

sijbij = f . (17)

where si is the generalized stress vector defined by (15). By introducing variables ṽij ∈ R (j = 1, 2, 3)

for each i ∈ E, si is related to u as

sij = kij(ai, Ii)ṽij , j = 1, 2, 3, (18)

ṽij = b⊤iju, j = 1, 2, 3, (19)

Here, ṽi = (ṽi1, ṽi2, ṽi3)
⊤ is a generalized strain vector conjugate to si. Note that (18) and (19)

correspond to the constitutive law and the compatibility relation, respectively. Certainly, by elimi-

nating ṽij and sij , (17), (18), and (19) revert to (7b). Expression (18), (19), and (17) is basis of our

MILP formulation. We eliminate sij ’s for convenience. Substitution of (18) into (15) and (17) read

ki1(ai, Ii)ṽi1 = qi, (20a)

ki2(ai, Ii)ṽi2 = −
m

(1)
i +m

(2)
i

li
, (20b)

ki3(ai, Ii)ṽi3 =
−m

(1)
i +m

(2)
i

2
, (20c)

and ∑
i∈E

3∑
j=1

kij(ai, Ii)ṽijbij = f . (21)

For each i ∈ E, we introduce new variables vijp ∈ R (j = 1, 2, 3; p ∈ P ) as

vijp =

{
0 if xip = 0,

ṽij if xip = 1,
∀i, j, p. (22)

Since xip = 1 implies that member i has section (āp, Īp), (21) can be rewritten as

∑
i∈E

∑
p∈P

3∑
j=1

k̄ijpvijpbij = f , (23)

where k̄ijp’s are constants defined by

k̄ijp = kij(āp, Īp) (24)

and the definition of kij was given by (13). On the other hand, condition (22) is equivalent to∣∣∣∑
p∈P

vijp − b⊤iju
∣∣∣ ≤ M

(
1−

∑
p∈P

xip

)
, ∀i, j, (25)

3∑
j=1

|vijp| ≤ Mxip, ∀i, p, (26)

11



where M ≫ 0 is a sufficiently large constant.

Furthermore, condition (26) can be replaced with the stress constraints, (7e). Specifically, we

next show that (7e) can be reformulated as

k̄i1p
q̄yp

|vi1p|+
li
2

k̄i2p
m̄y

p
|vi2p|+

k̄i3p
m̄y

p
|vi3p| ≤ xip, ∀p ∈ P, ∀i ∈ E, (27)

where q̄yp and m̄y
p are positive constants defined below. Since all the constants in (27) are positive,

(27) implies (26). In other words, (27) is a tighter constraint than (26). Recall that the stress

constraints are formulated as (2). Observe that (2) is equivalent to

|qi|
qyi

+
1

2

|m(1)
i +m

(2)
i |

my
i

+
1

2

|m(1)
i −m

(2)
i |

my
i

≤ 1. (28)

Substitution of (15) into (28) yields

ki1
qyi

|vi1|+
li
2

ki2
my

i

|vi2|+
ki3
my

i

|vi3| ≤ 1. (29)

In accordance with (3), define constants q̄yp and m̄y
p by

q̄yp = σ̄āp, m̄y
p = σ̄z̄p (30)

for each p ∈ P . From (22), (24), and (30), we can see that constraint (29) is expressed by (27).

The upshot of the discussion above is that constraints (7b) and (7e), together with constraint

(7i), are equivalently rewritten as (23), (25), and (27) in conjunction with the constraints on xip’s,

i.e., (8) and (9).

Constraint (7g) can also be treated with 0–1 variables xip’s. Since ai = 0 is equivalent to∑
p∈P xip = 0, (7g) can be rewritten as

3∑
j=1

|šij | ≤ M
∑
j∈P

xip, ∀i ∈ E, (31)

where M ≫ 0 is a sufficiently large constant. For simplicity of presentation, we rewrite constraint

(7f) in the same format as (17). Let b̌ij ∈ Rď (j = 1, 2, 3) denote column vectors of Ȟi. Then (7f)

is rewritten as

∑
i∈E

3∑
j=1

šij b̌ij = f̌ .

Note that b̌ij ̸= bij in general because of the difference of boundary conditions.

Constraint (6), which excludes presence of mutually intersecting members, can be formulated in

terms of xip’s as follows. Recall that ai > 0 is equivalent to
∑

p∈P xip = 1 and ai = 0 is equivalent

to
∑

p∈P xip = 0. Therefore, constraint (6) means that
∑

p∈P xip and
∑

p∈P xi′p should not be equal

to one simultaneously. This condition is written as∑
p∈P

(xip + xi′p) ≤ 1, ∀(i, i′) ∈ C. (32)
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We are now in position to present the full expression of an MILP problem that we solve. Con-

straint (7i) is expressed by (10) and (11) with the 0–1 variables, xip (i ∈ E; p ∈ P ), satisfying (8).

Constraints (7b) and (7e) can be rewritten as (23), (25), and (27). Constraints (7c), (7d), and (7f)

are linear constraints. Constraint (7g) can be reduced to (31). Constraint (7h) is expressed as (32).

As a consequence, problem (7) is reduced to the following MILP problem:

max
x,u,v,š,f

uout (33a)

s. t.
∑
i∈E

∑
p∈P

3∑
j=1

k̄ijpvijpbij = f , (33b)∣∣∣∑
p∈P

vijp − b⊤iju
∣∣∣ ≤ M

(
1−

∑
p∈P

xip

)
, ∀j = 1, 2, 3, ∀i ∈ E, (33c)

(fout,f free) = (0,0), (33d)

uin = ūin, (33e)

k̄i1p
q̄yp

|vi1p|+
li
2

k̄i2p
m̄y

p
|vi2p|+

k̄i3p
m̄y

p
|vi3p| ≤ xip, ∀p ∈ P, ∀i ∈ E, (33f)

∑
i∈E

3∑
j=1

šij b̌ij = f̌ , (33g)

3∑
j=1

|šij | ≤ M
∑
p∈P

xip, ∀i ∈ E, (33h)

∑
p∈P

(xip + xi′p) ≤ 1, ∀(i, i′) ∈ C, (33i)

∑
p∈P

xip ≤ 1, ∀i ∈ E, (33j)

xip ∈ {0, 1}, ∀p ∈ P, ∀i ∈ E. (33k)

In problem (33), continuous variables are u, vijp (∀i, j, p), šij (∀i, j), and f , while 0–1 variables

are xip (∀i, p). All the constraints other than the integrality constraints, (33k), are linear constraints.

Thus, problem (33k) is an MILP problem, and hence it can be solved globally with, e.g., a branch-

and-cut algorithm. Several software packages, e.g., CPLEX [16], are available for this purpose.

Remark 3.2. As shown in Figure 2(a), we consider a base cell that has symmetry with respect

to reflection across dashed lines, so that Poisson’s ratio of the structure remains invariant when

roles of the input and output nodes are exchanged. Because a ground structure corresponds to a

quarter of the base cell, configuration of the optimized structure should have symmetry with respect

to reflection across a dashed line in Figure 3(a). This symmetry condition is expressed as linear

equality constraints in terms of xip’s as follows. Let S denote the set of pairs of members that are

located at symmetric positions. In other words, we write (i1, i2) ∈ S if member i1 is swapped with

member i2 by reflection shown in Figure 3(a). If (i1, i2) ∈ S, then member i1 and member i2 should

have same section. Hence, the symmetry constraint can be written as

xi1p = xi2p, ∀p ∈ P, ∀(i1, i2) ∈ S.

This constraint is added to problem (33). ■
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Remark 3.3. In the numerical examples presented in section 5, all members are supposed to have

rectangular sections. In this particular case, constants in problem (33) are obtained concretely as

follows. A rectangular section is characterized by its width w̄p and thickness t̄p. The cross-sectional

area, the plastic section modulus, and the moment of inertia are given by

āp = t̄pw̄p, z̄p =
1

4
t̄pw̄

2
p, Īp =

1

12
t̄pw̄

3
p. (34)

Then, k̄i1p, k̄i2p, and k̄i3p in (33b) and (33f) are obtained from (13) and (24). Also, q̄yp and m̄y
p in

(33f) are obtained by substituting (34) into (30). ■

Remark 3.4. In the numerical examples in section 5 each member is determined either to have a

specified section or to be removed, i.e., |P | = 1, although problem (33) allows more general cases

that more than one candidate sections are given, i.e., |P | ≥ 2. ■

Remark 3.5. Problem (33) includes a large constant, M , in (33c) and (33h). It is known that such

a large constant, called “big-M,” often slows down the solution process if it is chosen larger than

necessary, because it weakens relaxation problems of an MILP problem. Unfortunately, it is not

easy to guess the smallest value of M in problem (33) in advance. ■

Remark 3.6. The connectedness condition of the structure, (33g) and (33h), implies that there exists

at least one member connected to the output node. Therefore, any feasible solution of problem (33)

satisfies ∑
i∈Eout

∑
p∈P

xip ≥ 1,

where Eout ⊆ E is the set of members connected to the output node. We add this condition to

problem (33) as a valid inequality constraint. ■

4 Hierarchical local search

In section 3 we have proposed to solve an MILP problem (33) by a deterministic algorithm with

guaranteed global optimality. However, this method is practically executed only when the number

of members of the ground structure, |E|, is small. For instance, as shown in section 5.1.2, CPLEX

ver. 12.2 [16] requires more than half an hour to solve the problem with |E| = 66 members. It is

thus very difficult to solve larger problems with guaranteed global optimality from a viewpoint of

computational cost. This motivates us to propose a local search heuristics applicable to problems

with large |E|.
Figure 6 schematically depicts the solution procedure. As shown in Figure 6(a), we begin with

a ground structure with the small number of members. MILP problem (33) for this coarse ground

structure is solved globally. Suppose that the optimal solution is the structure shown in Figure 6(b).

We next prepare a finer ground structure by increasing members. Figure 6(c) shows an example,

where each member of the ground structure in Figure 6(a) is divided into two members by adding

new nodes. Moreover, the ground structure in Figure 6(c) has some newly added members, because

any two nodes are connected by a member. As shown in Figure 6(d), we translate the optimal

solution for the coarse ground structure to the current ground structure. This solution used as an

initial point for the local search performed on the current ground structure. The idea of using a

14
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Figure 6: Overview of a hierarchical optimization approach. (a) A coarse ground structure; (b) the

optimal solution for the coarse ground structure; (c) a refined ground structure; and (d) the initial

solution for the refined ground structure.

coarser design domain to produce a good initial point for a finer design domain was originated with

hierarchical optimization methods [37, 39] for topology optimization of continua.

We next describe the local search performed on a finer ground structure. The local search used

here is essentially same as that in [37] and solves a sequence of MILP problems. Let x∗ denote the

current solution. For instance, x∗ for the first iteration is the initial solution transfered from the

optimal solution for a coarser ground structure; see Figure 6(d). We define a neighborhood of x∗

with radius r > 0 by

N(x∗, r) =
{
x |

∑
i∈E

∑
p∈P

|xip − x∗ip| ≤ r
}
.

The next solution is found from this neighborhood. Specifically, we solve MILP problem (33) with

the constraint x ∈ N(x∗, r), where r is fixed. Then the optimal value is no worse than the objective

value at x∗, because x∗ is feasible. If the optimal value is improved, then we update the solution

and repeat the local search. Otherwise, we terminate. As r decreases, the number of feasible

solutions becomes smaller, and hence computational cost at each iteration might become smaller.

On the other hand, with too small r the local search might possibly converge to a poor local optimal

solution. This trade-off relation is common among most local search methods.

The hierarchical optimization with the local search is summarized as follows.

Algorithm 4.1.

Step 0: Choose a positive integer r and prepare the coarsest ground structure.
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Step 1: Solve MILP problem (33). Let x◦ denote the optimal solution.

Step 2: If the current ground structure is sufficiently fine, then declare x◦ as the solution and

terminate. Otherwise, refine the design domain with a finer ground structure and let x∗

be representation of x◦ on this new ground structure.

Step 3: Solve MILP problem (33) in conjunction with the constraint∑
i∈E

∑
p∈P

|xip − x∗ip| ≤ r. (35)

Let x◦ denote the optimal solution.

Step 4: If x◦ = x∗, then go to step 2. Otherwise, let x∗ := x◦ and go to step 3.

Note that constraint (35) can be expressed as some linear inequalities. Therefore, the problem

solved at step 3 of this algorithm is also an MILP problem.

5 Numerical examples and fabrication

Auxetic structures are generated by solving MILP problem (33). Computation was carried out on

two 2.66GHz 6-Core Intel Xeon Westmere processors with 64GB RAM. MILP problems were solved

by using CPLEX ver. 12.2 [16]. The number of threads used by CPLEX was set as one. The other

parameters are set as the default values.

In the following examples, all members have rectangular sections. Therefore, the shear correction

factor of Timoshenko elements is κ = 5/6. In the ground structures of the examples, overlapping of

members is avoided by removing the longer member when two members overlap. We suppose that

only one beam section is available, i.e., |P | = 1, in each example. Section 5.1 collects relatively small

problems which can be solved globally. In section 5.2 we solve larger problems with the hierarchical

method presented in section 4.

5.1 Numerical experiments with single MILP problem

In this section we solve problems with relatively small numbers of design variables globally. In the

examples of this section, Young’s modulus and Poisson’s ratio of the material are E = 1GPa and

ν = 0.45, respectively; the shear modulus of the material is given by G = E/2(1 + ν). The upper

bound for stress in (3) is σ̄ = 2MPa.

5.1.1 Example (I)

Consider a ground structure shown in Figure 7(a). This structure consists of 9 nodes and |E| = 28

members. The side length of ground structures is L = 12mm. The specified displacement at the

input node is ūin = 0.1mm. As for sections of beams, we consider two cases:

• Case (A): (width)× (thickness) = 0.5mm× 0.5mm.

• Case (B): (width)× (thickness) = 1.0mm× 0.25mm.
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Figure 7: Example (I). (a) The ground structure; (b) the optimal solution in case (A); and (c) the

optimal solution in case (B).

(a) (b)

Figure 8: Optimal base cells of example (I): (a) Case (A); and (b) case (B).

Table 1: Computational results of example (I).

Beam section −uout/uin CPU (s)

(A) −0.556608 1.38

(B) −0.517468 0.72

The optimal solutions in case (A) and case (B) are shown in Figure 7(b) and Figure 7(c),

respectively. In each figure, solid lines depict the deformed configuration with the prescribed input

displacement, where the displacements are amplified five times. Computational results are listed

in Table 1. Here, “CPU” means the computational time spent by CPLEX [16], and −uout/uin

corresponds to Poisson’s ratio of the optimized structure.

Note that only a quarter of the base cell is analyzed in Figure 7. The entire shapes of the optimal

base cells are shown in Figure 8.

5.1.2 Example (II)

We next consider a ground structure shown in Figure 9(a). This structure consists of 16 nodes and

|E| = 66 members. The specified input displacement is ūin = 0.12mm.

As for sections of beams, we consider two cases:

• Case (A): (width)× (thickness) = 0.5mm× 0.5mm.
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Figure 9: Example (II). (a) The ground structure; (b) the optimal solution in case (A); and (c) the

optimal solution in case (B).

(a) (b)

Figure 10: Optimal base cells of example (II). (a) Case (A); and (b) case (B).

Table 2: Computational results of example (II).

Beam section −uout/uin CPU (s)

(A) −0.832887 3,416.7

(B) −0.752017 1,986.2

• Case (B): (width)× (thickness) = 1mm× 0.25mm.

The optimal solutions in case (A) and case (B) are shown in Figure 9(b) and Figure 9(c),

respectively. The computational results are listed in Table 2. CPLEX [16] requires more than half

an hour to solve an MILP problem. Figure 10 shows the optimized base cells, which are to be

connected repeatedly to form auxetic periodic structures.

Roughly speaking, optimized base cells in section 5.1.1 and section 5.1.2 are approximately

star-shaped, or octagons with re-entrant corners. Similar star-shaped auxetic structures have been

known in literature; see, e.g., [17, 40].

5.1.3 Fabrication of structures

The optimal solution of section 5.1.2 was fabricated using photo-etching. A steel plate was coated

by polyvinyl alcohol resist and then shape of the optimized base cell was exposed for masking.

The base cell in Figure 10 is repeated ten times twenty times as shown in Figure 11(a). Etching
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(a)

(b) (c)

Figure 11: Fabricated optimal structure. (a) Testing structure composed of 20 by 10 base cells. The

movable handle is seen on the right side and the handle on the left side is fixed; (b) undeformed

configuration; and (c) deformed configuration.

was applied to stainless steel plate with thickness of 0.5mm. The width of each beam is 0.75mm.

The left side of the structure in Figure 11(a) is fixed. The handle on the right side can be pulled a

few millimeters in the right direction. Figure 11(b) shows a closeup view at the middle point of the

upper side of the structure. The deformed configuration in Figure 11(c) shows that the structure

expands vertically when it is stretched horizontally. Thus the structure has negative Poisson’s ratio

property.
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Figure 12: Example (III). (a) The ground structure; and (b) the initial solution.

Table 3: Computational results of example (III).

Iter. −uout/uin CPU (s)

0 −0.832887 —

1 −0.938312 22,609.4

2 −0.966160 7,248.3

3 −0.969188 6,569.2

5.2 Numerical experiments with hierarchical MILP method

In this section we attempt to solve problems involving many design variables by using the heuristics

proposed in section 4.

5.2.1 Example (III)

Figure 12(a) shows a ground structure consisting of 49 nodes and |E| = 748 candidate members.

For this problem, the ground structure of example (II), shown in Figure 9(a), serves as a coarser

ground structure in hierarchical optimization. Accordingly, the optimal solution of example (II),

shown in Figure 12(b), is adopted as the initial point from which the local search is started.

In this example, we use the following values: Young’s modulus E = 1GPa, material Poisson’s

ratio ν = 0.45, beam width 0.5mm, beam thickness 0.5mm, input displacement ūin = 0.1mm, and

upper bound for stress σ̄ = 3MPa. The size of neighborhood in (35) is r = 4. The objective value

of the initial solution in Figure 12(b) is −uout/uin = −0.832887.

Algorithm 4.1 terminates after three iterations. Figure 13 shows convergence history of Algo-

rithm 4.1 and Figure 14 shows the optimized base cell. Computational results are listed in Table 3.

5.2.2 Example (IV)

Figure 15(a) shows a ground structure consisting of 25 nodes and |E| = 200 candidate members.

We regard the ground structure of example (I), shown in Figure 7(a), as a coarser ground structure

for this problem. Accordingly, the optimal topology of example (I), shown in Figure 15(b), serves

as the initial point from which the local search is started. In this example, we use the following

values: Young’s modulus E = 70GPa, material Poisson’s ratio ν = 0.45, beam width 0.5mm, beam

20



(a) (b) (c)

Figure 13: Convergence history of example (III). The solutions obtained at (a) the 1st iteration;

(b) the 2nd iteration; and (c) the 3rd iteration.

Figure 14: Obtained base cell of example (III).

30 mm

3
0
 m

m

(a) (b)

Figure 15: Example (IV). (a) The ground structure; and (b) the initial solution.

thickness 0.5mm, input displacement ūin = 0.1mm, upper bound for stress σ̄ = 50MPa. Since

the ground structure has very thin members, the Euler–Bernoulli beam elements are usedin this

example. The objective value of the initial solution in Figure 15(b) is −uout/uin = −0.569530.

As for size of neighborhood in (35), we consider four cases: r = 4, 6, 8, and 10. Computational

results are listed in Table 4. Convergence histories of Algorithm 4.1 with r = 4, 6, 8, and 10 are

illustrated in Figure 16, Figure 17, Figure 18, and Figure 19, respectively. Figure 20 shows the

optimized base cells. Note that the same solution is obtained in the cases of r = 4 and r = 8. It

is observed in Table 4 that computational cost of each iteration increases drastically as the size of

neighborhood, r, increases. In contrast, the number of iterations for r = 4 is six and is larger than

the other cases. When comparing the optimal values, the solution with r = 6 is slightly inferior to

the solutions with r = 4 and r = 8. The solution with r = 10 is the best one, Poisson’s ratio of

which is very close to −1.
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(a) (b) (c)

(d) (e) (f)

Figure 16: Convergence history of example (IV) with r = 4. The solutions obtained at (a) the 1st

iteration; (b) the 2nd iteration; (c) the 3rd iteration; (d) the 4th iteration; (e) the 5th iteration;

and (f) the 6th iteration.

(a) (b) (c)

Figure 17: Convergence history of example (IV) with r = 6. The solutions obtained at (a) the 1st

iteration; (b) the 2nd iteration; and (c) the 3rd iteration.

(a) (b) (c)

Figure 18: Convergence history of example (IV) with r = 8. The solutions obtained at (a) the 1st

iteration; (b) the 2nd iteration; and (c) the 3rd iteration.
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(a) (b) (c)

Figure 19: Convergence history of example (IV) with r = 10. The solutions obtained at (a) the 1st

iteration; (b) the 2nd iteration; and (c) the 3rd iteration.

(a) (b)

(c) (d)

Figure 20: Obtained base cells of example (IV). (a) r = 4; (b) r = 6; (c) r = 8; and (d) r = 10.
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Table 4: Computational results of example (IV).

Iter. r = 4 r = 6 r = 8 r = 10

−uout/uin CPU (s) −uout/uin CPU (s) −uout/uin CPU (s) −uout/uin CPU (s)

0 −0.569530 — −0.569530 — −0.569530 — −0.569530 —

1 −0.856110 730 −0.953165 5,173 −0.954319 46,705 −0.982359 569,860

2 −0.954318 89 −0.955595 2,510 −0.955686 11,580 −0.983665 972,481

3 −0.955518 250 −0.955678 1,850 −0.955689 11,141 −0.983847 171,013

4 −0.955686 170

5 −0.955689 289

6 −0.955689 257

6 Conclusions

Materials and structures with negative Poisson’s ratio have been received significant interest for

long years because of potential in various applications. This paper has explored possibility to design

periodic frame structures that exhibit negative Poisson’s ratio. Since local stress constraints are fully

addressed and beam sections are chosen from given finitely many candidates, the obtained structure

involves no link-mechanism. This is in contrast to continuum topology optimization approaches to

gain negative Poisson’s ratio, because optimal solutions obtained by those approaches usually involve

link-mechanisms and/or compliant mechanisms [19, 32] and post-processing might be required if

stress concentration is required to be avoided from the optimal solutions. Large-scale problems

were solved with a local search heuristics, which is based on the mixed integer linear programming

(MILP) formulation of the topology optimization problem. Numerical examples and a fabricated

physical model have demonstrated that periodic frame structures exhibiting negative Poisson’s ratio

can be obtained by using the proposed method. Also, Poisson’s ratios of the obtained solutions are

almost equal to −1.

This paper has developed a generic framework for optimizing frame structures with discrete

design variables of beam sections. Optimization concerning other structural performances can be

formulated similarly, although computational efficiency should be examined. Regarding negative

Poisson’s ratio property, this paper has addressed only the ratio of the horizontal output displace-

ment to the vertical input displacement. Effective Poisson’s ratio of frames has not been consid-

ered. Also, issues of geometrical nonlinearity, as well as out-of-plane deformations, have not been

addressed in this paper. Extension to three-dimensional structures remains to be studied. In this

paper only simple square lattice-like connection of base cell has been studied. Other connectivity

of base cell may possibly improve negative Poisson’s ratio.
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