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Abstract

A tensegrity structure is a prestressed pin-jointed structure consisting of continuously

connected tensile members (cables) and disjoint compressive members (struts). Many clas-

sical tensegrity structures are prestress stable, i.e., they are kinematically indeterminate but

stabilized by introducing prestresses. This paper presents a procedure for generating various

prestress stable tensegrity structures. This method is based on truss topology optimization

and does not require connectivity relation of cables and struts of a tensegrity structure to

be known in advance. The optimization problem with the constraints expressing the defi-

nition of tensegrity structure, kinematical indeterminacy, and symmetry of configurations is

formulated as a mixed integer linear programming (MILP) problem. Numerical experiments

demonstrate that various tensegrity structures can be generated from a given initial structure

by solving the presented MILP problems with varying some parameters.

Keywords

Tensegrity; Prestressed structure; Topology optimization; Integer programming; Sym-

metry.

1 Introduction

A tensegrity structure is a free-standing prestressed pin-jointed structure consisting of a set

of discontinuous compressive components (struts) interacting with a set of continuous tensile

components (cables) [26]. Most of classical tensegrity structures in literature are kinemati-

cally indeterminate [4, 13, 14, 27]. Those tensegrity structures are, therefore, unstable without

prestress but are stabilized by introducing prestress. Such a structure is said to be prestress

stable [8].

The discontinuity condition of struts is an intrinsically difficult constraint in designing tenseg-

rity structures. Therefore, in most of existing design methods, connectivity of cables and struts,

i.e., topology, of a tensegrity structure is required to be specified as input data; see surveys due

to Juan and Mirats Tur [17] and Tibert and Pellegrino [37] for various form-finding methods of

tensegrity structures.
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For exploring new tensegrity structures, however, specification of topology might possibly

be too restrictive. As methods requiring no information of topology in advance, the author pro-

posed mixed integer programming approaches to compliance optimization of tensegrity struc-

tures under a given external load [19] and a self-weight load [18]. Almost all tensegrity structures

obtained by these methods are kinematically determinate, although constraints on stability were

not considered in [18, 19]. In contrast, as mentioned before, many well-known tensegrity struc-

tures in literature are kinematically indeterminate and prestress stable [4, 13, 14, 27, 42, 43].

Prestress stability is not only interesting as a research subject of structural engineering but also

considered a resource of artistic excellent impression of these tensegrity structures; indeed, many

tensegrity structures in the real world are realized as fascinating sculptures by artists [15] and

as distinctive architectural structures [3]. The motivation of this paper, therefore, is to develop

a method that can find prestress stable tensegrity structures. In continuation of the previous

works [18, 19], we employ discrete topology optimization of trusses based upon the ground

structure method to find tensegrity structures. A mixed integer linear programming (MILP)

approach is used to solve the structural optimization problem.

To find tensegrity structures with kinematical indeterminacy, we introduce a constraint on

the numbers of struts and cables based upon the Maxwell counting rule for rigidity [6]. The op-

timization problem that we solve does not attempt to improve mechanical performance, because

it was demonstrated in [18, 19] that improvement of compliance usually yields kinematically

determinate solutions. Note that in this paper we do not discuss whether prestress stability has

some advantage in mechanical performances over usual stability; exploring kinematically inde-

terminate structures is probably unreasonable from a view point of designing structures with

high mechanical performance. Moreover, in this paper we assume small deformations and do

not consider any constraints involving geometrical nonlinearity. Therefore, the proposed method

is not guaranteed to generate tensegrity structures that are stabilized by introducing prestress

forces. Nonetheless, solutions obtained by the method are often prestress stable as demonstrated

by numerical examples in section 6.

Many studies have been made on finding tensegrity structures with high symmetry in con-

figurations, because most of tensegrity structures that have long been known have symmetric

configurations. Particularly, advanced techniques for generating topologies of tensegrity struc-

tures that enjoy the same group symmetry have been developed in [5, 7, 24]. In contrast, there

exist a few numerical methods that are not limited to symmetric tensegrity structures. Some

of those methods are basically find asymmetric configurations by modifying a given symmetric

tensegrity structure [2, 25, 38, 44]. Recent interest has been drawn for developing versatile

numerical methods that require no information of existing tensegrity structures as input data

and can generate diverse non-symmetric tensegrity structures. To this end, optimization prob-

lems involving discrete variables were solved with evolutionary algorithms [30, 41] and MILP

approaches [18, 19]. Li et al. [22] proposed to employ the Monte Carlo simulation. Li et al. [23]

developed a systematic method to construct a tensegrity structure by connecting some elemen-

tary cells, each of which consists of one strut and a few cables. Tran and Lee [38] proposed a

method based on the singular value decomposition of the equilibrium matrix, where an initial

force-density vector is randomly generated.
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In this paper we introduce the constraint on the number of different member lengths to

achieve diversity of symmetry properties of tensegrity structures generated by the proposed

method. As this number increases, symmetry of a structure becomes lower. Conversely, a

structure with high symmetry has small number of different member lengths. Therefore, by

varying the number of different member lengths we can generate tensegrity structures with var-

ious symmetry properties from a given ground structure. In other words, symmetry of solutions

is implicitly controlled by this number. Symmetry of optimal structure of convex and nonconvex

optimization problems has received increasing attention recently; see, e.g., [1, 11, 21, 32, 35, 40].

Since the optimization problem solved in the proposed method is nonconvex, the optimal solu-

tion is not symmetric in general even if input data is given to be symmetric. By specifying a

small number of different member lengths, symmetry of the optimal solution becomes as high as

possible. In contrast, if the number of different member lengths is specified to be large, e.g., if

it is equal to the number of existing members, then the optimal solution is guaranteed to have

no symmetry.

All of the constraints above are treated within the framework of MILP. Therefore, the global

optimal solution can be found by using, e.g., a branch-and-cut algorithm. MILP approaches

were applied to topology optimization of continua [36] and trusses [20, 29].

The paper is organized as follows. Section 2 presents a definition of tensegrity structures

that we adopt in this paper. The basic idea for formulating MILP problems for tensegrity

optimization in [18, 19] is also recalled briefly. Section 3 introduces the constraint on the number

of different member lengths, which implicitly controls symmetry of structures. In section 4, we

formulate the constraint ensuring kinematical indeterminacy based upon the Maxwell counting

rule and propose a procedure for generating various tensegrity structures from a given ground

structure. In section 5, we formulate an MILP problem that is solved for finding tensegrity

structures. Three numerical examples are demonstrated in section 6. We conclude in section 7.

The detail of MILP formulation is presented in appendix A.

2 Preliminary results

We formulate the constraints representing a definition of tensegrity structure as linear equality

and linear inequality constraints in terms of continuous variables and integer variables. Then an

MILP problem involving those constraints is solved to find a new tensegrity structure. An essen-

tial idea for this methodology, presented in [18, 19], is to make use of integer variables serving as

labels of members. In this section we summarize fundamental constraints on a tensegrity struc-

ture. The notion of a member label is also briefly recalled to make this paper self-contained. The

constraints regarding symmetry and kinematical indeterminacy will be addressed in section 3

and section 4, respectively.

2.1 Constraints on tensegrity condition

Like the conventional ground structure method for truss topology optimization, we prepare an

initial pin-jointed structure consisting of sufficiently many candidate members. Locations of the

nodes of the initial structure are specified in the three-dimensional space. We use V and E to
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denote the set of nodes and the set of members, respectively. Note that a tensegrity structure is

a free-standing prestressed structure. Therefore, the initial structure has no fixed support and

the number of degrees of freedom of displacements is 3|V |, where |V | denotes the cardinality of

V .

As mentioned in section 1, attention of this paper is focused on finding tensegrity structures

that are kinematically indeterminate. More specifically, in this paper, a free-standing kinemat-

ically indeterminate cable–strut structure is said to be a tensegrity structure if it has a unique

state of self-stress satisfying the following conditions:

(i) Each member transmits either a nonzero compression force or a nonzero tension force.

(ii) Each node is connected to exactly one compressive member.

(iii) The structure is stabilized by introducing the self-equilibrium forces.

The self-equilibrium forces satisfying these conditions can be introduced as prestress forces.

Regarding condition (i), we call a member transmitting a compression force a strut and a

member transmitting a tension force a cable. Condition (ii) is called the discontinuity condition

of struts, i.e., struts should not touch each other. Condition (iii) means that the tangent stiffness

matrix in the presence of prestress forces is positive definite. A tensegrity structure satisfying

this condition is said to be prestress stable; see [8, 10] for more details of prestress stability.

Besides these three conditions, we shall consider some additional constraints that are naturally

required from a practical point of view.

There exist various definitions of tensegrity [26]. For instance, Skelton and de Oliveira [34]

introduced the notion of class-k tensegrity structure, where k is the maximum number of struts

that touch each other. Within this terminology, a tensegrity structure satisfying condition

(ii) is a class-1 tensegrity. Thus the discontinuous condition of struts is sometimes relaxed in

literature. In the author’s previous work [18, 19], kinematical indeterminacy, prestress stability,

and uniqueness of self-equilibrium mode of axial forces were not considered.

Let q = (qi) ∈ R|E| denote the vector of axial forces introduced to the members as prestress

forces. We next formulate some constraints that q should satisfy. Since q is the vector of

self-equilibrium forces, it satisfies the static equilibrium equation without external forces. This

condition is written as

Hq = 0, (1)

where H ∈ R3|V |×|E| is the equilibrium matrix.

Note that we remove some members from the initial structure to obtain a tensegrity structure.

Let {S,C,N} be a partition of E, where S, C, and N are the sets of struts, cables, and removed

members, respectively. Condition (i) means that qi < 0 (∀i ∈ S), qi > 0 (∀i ∈ C), and

qi = 0 (∀i ∈ N). In conjunction with practical lower and upper bounds for prestress forces, the

constraints on qi are given by

qi ∈


[−qs,−qs] if i ∈ S,

[qc, qc] if i ∈ C,

{0} if i ∈ N ,

(2)
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where qs, qs, qc, and qc are positive constants satisfying qs < qs and qc < qc.

Let E(vp) ⊆ E denote the set of indices of the members that are connected to node vp ∈ V .

Condition (ii) requires that S should satisfy

|S ∩ E(vp)| ≤ 1, ∀vp ∈ V. (3)

Note that all members connected to a node of the initial structure can possibly be removed;

such a node satisfies |S ∩ E(vp)| = 0. Constraint (3) allows the existence of a node connected

only to cables. Such a node is forbidden by condition (ii), i.e., if no strut is connected to node

vp, then no cable is connected to vp. This constraint is formally written as

S ∩ E(vp) = ∅ ⇒ C ∩ E(vp) = ∅ (∀vp ∈ V ). (4)

It is easy to verify that condition (ii) is equivalent to (3) and (4).

We also consider the lower bound constraint on the number of struts as a parameter, which

can be written as

|S| ≥ s̄, (5)

where s̄ is the specified value. In designing a tensegrity structure, we will use s̄ as a parameter

to generate various configurations. For instance, if s̄ = ⌊|V |/2⌋, then the generated tensegrity

structure uses as many nodes as possible. Roughly speaking, the volume of space covered by a

tensegrity structure increases as s̄ increases.

Presence of mutually intersecting members in a tensegrity structure is not accepted, although

an initial structure used in the ground structure method usually includes many intersecting

candidate members. From a practical point of view, two members that are too close should not

exist simultaneously. Let δ > 0 denote the lower bound for the distance of existing members.

We write (i, i′) ∈ Pcross if the distance of member i and member i′ is less than δ. The constraint

excluding too close members is formally written as

{i, i′} ̸⊆ S ∪ C, ∀(i, i′) ∈ Pcross. (6)

In this section, we have seen that conditions (i) and (ii) are formally stated as (2), (3),

and (4). These constraints, as well as constraints (5) and (6), will be explicitly dealt with by

introducing some integer variables; see section 2.2. In contrast, condition (iii) is not addressed

as a constraint of the optimization problem to be solved. However, it will be shown through

numerical experiments that we often obtain a solution satisfying condition (iii) by solving the

optimization problem proposed in section 5.

2.2 Integer variables for labeling members

As explained in section 2.1, topology of a tensegrity structure is determined by finding a partition

of E into disjoint subsets E = S ∪ C ∪ N satisfying constraints (1)–(6). In other words, each

member of the initial structure is to be classified into either S, C, or N . A key idea proposed

in [18, 19] to express this classification in an optimization problem is making use of integer

5



variables that serve as labels of members. Specifically, we use two 0–1 variables, xi and yi, to

express the label of member i as

(xi, yi) = (1, 0) ⇔ i ∈ S, (7a)

(xi, yi) = (0, 1) ⇔ i ∈ C, (7b)

(xi, yi) = (0, 0) ⇔ i ∈ N. (7c)

By using (7), constraints (2), (3), (4), (5), and (6) can be rewritten as linear inequalities as

follows. For each i ∈ E, constraint (2) is equivalent to

−qsxi ≤ qi ≤ −qsxi + qc(1− xi), (8a)

qcyi − qs(1− yi) ≤ qi ≤ qcyi. (8b)

The discontinuity constraint of struts, (3), is equivalent to∑
i∈E(vp)

xi ≤ 1, ∀vp ∈ V. (9)

The constraint excluding nodes connected only to cables, (4), is equivalently rewritten as

yi ≤
∑

i′∈E(vp)

xi′ (∀i ∈ E(vp)), ∀vp ∈ V, (10)

Furthermore, constraint (5) is equivalent to∑
i∈E

xi ≥ s̄, (11)

and constraint (6) is equivalent to

xi + xi′ + yi + yi′ ≤ 1, ∀(i, i′) ∈ Pcross. (12)

See [18, 19] for details. It is worth noting that (8), (9), (10), (11), and (12) are tractable

constraints, because they are linear constraints on q, x, and y. Only the integrality constraints

on x and y are intractable. Therefore, the constraints considered in this section can be treated

within the framework of MILP.

3 Different member lengths: implicit constraint on symmetry

In general, symmetry of structures provides both practical and theoretical advantages in appli-

cations. It is also related to beauty and simplicity. In particular, many well-known tensegrity

structures have symmetric configurations such that nodes are located at vertices of (semi-)regular

polyhedron [4, 5, 15, 26]. On the other hand, for diversity of tensegrity structures found by a

design approach, it is favorable that a design space is not limited to symmetric configurations.

Indeed, design methods for finding non-symmetric tensegrity structures have gotten much at-

tention recently [22, 30, 41, 44]. This section discusses constraints for generating solutions

with/without various symmetries in the framework of topology optimization. Symmetry of op-

timal solutions in structural optimization has recently been of particular interest [11, 32, 35, 40].
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Symmetry of a structure is an invariance property of its geometry with respect to a certain

transformation, e.g., reflection across a plane or rotation around an axis. Since locations of

the nodes are specified in a conventional ground structure method, symmetry of a solution is

expressed as invariance of the vector of cross-sectional areas with respect to a certain permutation

of its elements. Therefore, if we specify the symmetry property of a solution in advance, then the

constraints on symmetry can be written as linear equality constraints on member cross-sectional

areas. However, we do not adopt this explicit constraint of symmetry. For an arbitrary specified

symmetry property, the design problem of tensegrity structures does not necessarily feasible.

Hence, we cannot know, in advance, symmetry of tensegrity structures that can be obtained

from a given initial structure. Moreover, when we attempt to find non-symmetric structures,

symmetric structures are not excluded with this explicit constraint, because a solution with high

symmetry is feasible for the constraint on lower symmetry. This yields disadvantage in diversity

of configurations obtained by a design approach. For these reasons, we do not impose explicit

restriction of specified symmetry. Rather, we introduce a constraint which can control symmetry

of solutions in an implicit way.

An essential idea for controlling symmetry of a solution is to specify the number of different

member lengths of the solution. For instance, consider the problem in Figure 1. Figure 1(a)

depicts an initial truss endowed with the D8-symmetry in the Schoenflies notation. The nodes

are located at the vertices of two horizontal congruent regular octagons. The upper octagon

is rotated counter-clockwise around the vertical axis at an angle of π/6. Any two nodes are

connected by a member but only some of them are shown in Figure 1(a). Thus the geometry of

this initial structure is symmetric with respect to the dihedral group of degree 8, i.e.,

D8 = {r(2πi/8), σr(2πi/8) | i = 0, 1, . . . , 7},

where r(2πi/8) denotes a rotation about the X3-axis at an angle of 2πi/8 and σ is the half-

rotation about the X2-axis. Two tensegrity structures obtained from this initial structure are

illustrated in Figure 1(b) and Figure 1(c), where the thick lines represent struts and the thin

lines are cables. Both tensegrity structures consist of 8 struts and 32 cables. A key observation

is that high symmetry implies a small number of different member lengths. In Figure 1(b),

all struts have the same length and the configuration of the structure has D8-symmetry. In

contrast, in Figure 1(c), the tensegrity structure has four longer struts and four shorter struts,

i.e., the number of different strut lengths is two. Accordingly, the configuration of this structure

has lower symmetry than D8; it has D4-symmetry.

As demonstrated by the example, high symmetry in geometry implies that the number of

different member lengths is small. As the contrapositive, if the number of different member

lengths is large, then the geometry of the structure has low symmetry. For instance, if all

members have different lengths, then it is clear that geometry of the structure has no symmetry.

The inverse of this assertion is not necessarily true. Even if the number of different member

lengths is small, the geometry of the structure can possibly have only low symmetry.1 In other

words, specifying a small number of different member lengths in structural optimization does not

1A tensegrity structure with a few number of different member lengths was called a semiregular tensegrity

structure by Zhang et al. [44].
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(a)

perspective
plan

(b)

perspective
plan

(c)

Figure 1: Symmetry of structures and number of different member lengths. (a) Locations of

nodes of the initial structure; (b) a D8-symmetric solution with uniform strut lengths and three

different cable lengths; and (c) a D4-symmetric solution with two different strut lengths and

three different cable lengths.
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guarantee high symmetry of the optimal solution. Nonetheless, numerical examples in section 6

will demonstrate that symmetric solutions are often obtained by specifying a small number of

different member lengths.

In the following, we consider only the number of different strut lengths, denoted by b̄. The

constraint on the number of different cable lengths can certainly be dealt with in the same

manner.

Let li denote the length of member i of the initial structure. Since the coordinate of nodes

of the initial structure are specified, li is constant. Let Ej ⊆ E be a set of members that have

the same member lengths. In other words, i ∈ Ej and i′ ∈ Ej imply li = li′ ; conversely, if

li = li′ , then there exists j such that i ∈ Ej and i′ ∈ Ej . Suppose that the initial structure has

b different member lengths. Then we obtain a partition of E into b disjoint subsets:

E = E1 ∪ · · · ∪ Eb. (13)

We write B = {1, . . . , b} for simplicity. Formally, Ej (j ∈ B) are defined as follows. Let ∼ be an

equivalence relation on E defined as the symmetric and transitive closure of the binary relation:

i ∼ i′ ⇔ li = li′ ,

where i ∼ i for all i ∈ E by convention. Then the partition in (13) is obtained as the partition

of E into equivalence classes induced by ∼. Define 0–1 variables zj (j ∈ B) by

zj =

{
0 if S ∩ Ej = ∅,

1 if S ∩ Ej ̸= ∅.
(14)

Then the constraint of the number of different strut lengths can be written as∑
j∈B

zj = b̄, (15)

where b̄ is a specified value.

Constraint (14) can be treated within the framework of MILP by using the member labels,

xi (i ∈ E). Recall (7) to see that xi = 1 if i ∈ S, otherwise xi = 0. Therefore,
∑

i∈Ej
xi is

equal to the number of struts belonging to Ej . From this observation it follows that (14) is

equivalently rewritten as

zj =


0 if

∑
i∈Ej

xi = 0,

1 if
∑
i∈Ej

xi ≥ 1.
(16)

Finally, since xi ∈ {0, 1}, (16) is equivalent to

zj ≤
∑
i∈Ej

xi, (17a)

zj ≥
1

|Ej |
∑
i∈Ej

xi, (17b)

zj ∈ {0, 1}, (17c)
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where |Ej | is the number of members belonging to Ej .

The upshot of this section is that the constraint on the number of different strut lengths can

be written as (15) and (17). The solution has low, or no, symmetry if b̄ is large, while b̄ is small

if the solution has high symmetry.

4 Kinematical indeterminacy

Constraints for statical and kinematical indeterminacy of tensegrity structures are formulated

based upon the Maxwell counting rule.

4.1 Maxwell’s counting rule

Let dk and ds denote the degree of kinematical indeterminacy and the degree of statical in-

determinacy, respectively. Since a tensegrity structure is a prestressed structure, it satisfies

ds ≥ 1. Moreover, this paper concerns kinematically indeterminate tensegrity structures, and

hence dk ≥ 1 should be satisfied. These constraints are dealt with based upon the Maxwell

counting rule for rigidity [4, 6, 28], which is briefly recalled in this section.

The force-balance equation of the initial structure is written as (1), where the equilibrium

matrix H is a 3|V |×|E| matrix. Since the vector of self-equilibrium forces is a nontrivial solution

of (1), the number of states of self-stress, ds, is given by

ds = |E| − rankH. (18)

On the other hand, the compatibility relations can be written as

H⊤u = e, (19)

where u ∈ R3|V | is the displacements vector and e ∈ R|E| is the vector of member elongations.

An inextensional deformation is identified as a nontrivial solution of (19) with e = 0. Hence,

the number of infinitesimal mechanisms, dk, is given by

dk = 3|V | − rankH⊤ − 6, (20)

because the number of degrees of freedom of rigid body motion is six. Since rankH = rankH⊤,

subtracting (18) from (20) yields

dk − ds = 3|V | − |E| − 6. (21)

This equality is known as the Maxwell counting rule [4, 6]. It is worth of noting that the

mechanisms detected by Maxwell’s rule may be either infinitesimal or finite. Issues of distinction

between infinitesimal and finite mechanisms are not taken into account in this paper.

Condition (21) is formulated for a given initial structure. In a topology optimization problem

to be solved, however, the number of nodes and the number of members of a tensegrity structure

are unknown. In section 4.2 we rewrite (21) for a tensegrity structure by using the design

variables.
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4.2 Constraint for kinematical indeterminacy

We reformulate the Maxwell counting rule for the initial structure, (21), for a tensegrity struc-

ture. Since the number of members of a tensegrity structure is the sum of the number of struts

and the number of cables, |E| in (21) is to be replaced by |S| + |C|. Since condition (ii) in

section 2.1 is satisfied by definition, the number of nodes, |V |, can be written as 2|S|. By

substituting these conditions, (21) is reduced to

dk − ds = 5|S| − |C| − 6. (22)

As explained in section 2.1, we specify the lower bound for the number of struts, (5), in the

design problem. Since struts have nonzero axial forces as described in (2), q ̸= 0 holds for any

feasible solution. This means that the force-balance equation, (1), has a nontrivial solution, and

hence ds ≥ 1. Therefore, if we add the constraint

dk − ds ≥ 0,

then dk ≥ 1 is guaranteed, i.e., kinematical indeterminacy is guaranteed.

With the observation above, we consider the equality constraint

5|S| − |C| − 6 = d̄, (23)

where d̄ ≥ 0 is the specified value of dk − ds. By using the 0–1 variables, xi and yi, introduced

in section 2.2, (23) can be written as∑
i∈E

(5xi − yi)− 6 = d̄. (24)

4.3 Exploration procedure

To find tensegrity structures, we solve an optimization problem, a complete formulation of which

will be presented in section 5. The constraints of this optimization problem have been discussed

in section 2.2 through section 4.2. These constraints include the following three constants:

• s̄ in (11): The lower bound for the number of struts.

• b̄ in (15): The number of different strut lengths.

• d̄ in (24): Difference between the degrees of kinematical indeterminacy and statical inde-

terminacy.

With these parameters we propose a procedure for finding various tensegrity structures from a

given initial structure. The optimal solution has more members as s̄ increases. In conjunction

with the objective function introduced in section 5, s̄ roughly measures the volume of space

occupied by a tensegrity structure. Parameter b̄ manages symmetry, i.e., the optimal solution

has less symmetry as b̄ increases. As discussed below, parameter d̄ is used for seeking a structure

with unique state of self-stress and (some) inextensional mechanisms. By varying these three

parameters various tensegrity structures can be gerated from one initial structure, which will be

actually demonstrated in section 6.
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Tensegrity structures are explored as follows. We choose s̄ and b̄ according to demand of

size and symmetry of the solution. As discussed in section 4.2, d̄ should be nonnegative to

guarantee kinematical indeterminacy. Suppose that we start with d̄ = 0. From the observation

in section 4.2, the optimal solution, if any, has ds ≥ 1. If ds = 1, then d̄ = 0 implies dk = 1. This

means that a kinematically indeterminate tensegrity structures with unique state of self-stress

is successfully obtained, and we may move to the other values of s̄ and b̄. If ds ≥ 2, i.e., if the

state of self-stress is not unique, then we increase d̄ and solve the optimization problem again.

As observed in (23), increase of d̄ means decrease of the number of cables, provided that the

number of struts is constant. Therefore, we might expect that ds decreases as d̄ increases. If the

optimal solution with d̄ = 1 satisfies ds = 1, then we terminate with success. In this case this

solution has dk = 2 inextensional mechanisms. If the optimal solution with d̄ = 1 has ds ≥ 2,

then we next examine d̄ = 2. This procedure is repeated until we find a solution satisfying

ds = 1. Note that we begin with d̄ = 1 in the numerical experiments in section 6; if d̄ = 1 is

infeasible, then we examine d̄ = 0.

It is worth of noting that the procedure presented above is heuristic in the sense that it

does not necessarily find a kinematically indeterminate tensegrity structures with unique state

of self-stress. For instance, suppose that the optimal solution with d̄ = 1 has ds ≥ 2. Then we

proceed to d̄ = 2, but it is possible that the optimization problems with d̄ ≥ 2 are infeasible. In

such a case the proposed procedure fails. However, it will be demonstrated that the proposed

procedure terminates with success in all numerical examples of section 6.

The geometrical nonlinearity is not taken into account in this procedure. Therefore, it is

possible that the obtained tensegrity structure is not stabilized by introducing prestress forces.

Nonetheless, in most every case in section 6, the tangent stiffness matrix of the tensegrity

structure with the obtained prestress forces is positive definite, i.e., the tensegrity structure is

prestress stable.

5 Optimization problem and its MILP reformulation

We solve a topology optimization problem in the exploration procedure proposed in section 4.3.

This optimization problem is formulated as an MILP problem in this section.

As for the objective function, we may consider several different candidates. In this paper we

do not attempt to optimize, or improve, any structural performance, e.g., structural stiffness.

It was demonstrated in [18, 19] that optimizing the stiffness, i.e., minimizing the compliance,

usually results in a kinematically determinate tensegrity structure. Rather, we attempt to

find kinematically indeterminate tensegrity structures, as already mentioned. Among some

possibilities, we choose to minimize the total length of cables. Recall that we consider the lower

bound for the number of struts, i.e., s̄ in (5). Roughly speaking, the volume of space occupied

by a tensegrity structure is approximately proportional to the sum of member lengths. By

minimizing the total length of cables, the number of struts tend to decrease. Moreover, cables

connecting far-distant nodes tends to be removed, and thence the size of a tensegrity structure

also tends to decrease. Thus, with this objective function parameter s̄ serves as a rough measure

of the volume of space occupied by a tensegrity structure.
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According to the definition of tensegrity structure, we consider constraints (1), (2), (3), (4),

(5), and (6) introduced in section 2.1. Regarding symmetry, the constraint on the number

of different strut lengths has been introduced in section 3. The constraint for kinematical

indeterminacy has been formulated in section 4. In addition to these, we consider the constraints

that each strut should be connected to at least three cables. This is because existence of a strut

connecting to only one or two cables might cause difficulty in fabrication of a tensegrity structure

and instability even in the presence of prestress. This constraint is written as

|C ∩ E(vp)| ≥ 3 ⇐ |S ∩ E(vp)| ≥ 1 (25)

for each node vp ∈ V .

By summing up all these constraints and the objective function, the optimization problem

that we solve is formulated as

min
S,C,z,q

∑
i∈C

li (26a)

s. t. Hq = 0, (26b)

qi ∈


[−qs,−qs] if i ∈ S,

[qs, qc] if i ∈ C,

{0} if i ̸∈ S ∪ C,

(26c)

|S ∩ E(vp)| ≤ 1, ∀vp ∈ V, (26d)

|S ∩ E(vp)| ≥ 1 ⇐ |C ∩ E(vp)| ≥ 1, ∀vp ∈ V, (26e)

|S| ≥ s̄, (26f)

{i, i′} ̸⊆ S ∪ C, ∀(i, i′) ∈ Pcross, (26g)∑
j∈B

zj = b̄, (26h)

zj =

{
0 if S ∩ Ej = ∅,

1 otherwise,
∀j ∈ B, (26i)

5|S| − |C| − 6 = d̄, (26j)

|C ∩ E(vp)| ≥ 3 ⇐ |S ∩ E(vp)| ≥ 1, ∀vp ∈ V, (26k)

where S and C are disjoint subsets of E. Thus the design problem of tensegrity structures is

determining member labels, S, C, and N = E \ S ∪ C, and prestress forces, q. The labels are

expressed by using the 0–1 variables, xi and yi (i ∈ E). Then constraints (26c), (26d), (26e),

(26f), and (26g) are rewritten as linear inequality constraints (8), (9), (10), (11), and (12) in

section 2.2. Constraint (26i) is rewritten with xi and yi as (17) in section 3. Constraint (26j) is

reduced to (24) in section 4.2. Regarding constraint (26k), observe that |S∩E(vp)| =
∑

i∈E(vp)
xi

and |C ∩ E(vp)| =
∑

i∈E(vp)
yi. Moreover, (26d) implies |S ∩ E(vp)| =

∑
i∈E(vp)

xi ∈ {0, 1}.
Therefore, (26k) can be rewritten as∑

i∈E(vp)

yi ≥ 3
∑

i∈E(vp)

xi, ∀vp ∈ V.
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Figure 2: An 18-node initial structure of Example 1.

Table 1: Computational results of Example 1 with b̄ = 2 different strut lengths (Figure 3).

CPU (s)

(s̄, d̄, b̄) |S| |C| ds dk
∑

i∈C li (m) CPLEX Gurobi

(7, 1, 2) 7 28 1 2 82.263535 398.1 376.8

(6, 1, 2) 6 23 2 3 66.013237 223.4 281.6

(6, 2, 2) 6 22 1 3 65.981429 273.0 470.3

(5, 1, 2) 5 18 1 2 54.334314 209.3 566.0

Thus, all constraints of problem (26) can be rewritten as linear constraints in terms of 0–1

variables, x, y, and z, and continuous variables, q. The objective function in (26a) is rewritten

as
∑

i∈E liyi, which is also a linear function. Accordingly, problem (26) can be reduced to an

MILP problem.

The full description of this MILP problem appears in appendix A.

6 Numerical experiments

The various tensegrity structures are found by solving MILP problem (27). Computation was

carried out on two 2.66GHz 6-Core Intel Xeon Westmere processors with 64GB RAM. The data

of MILP problem (27) were prepared with MATLAB Ver. 7.13 in the CPLEX LP file format.

Then the MILP problem was solved by using CPLEX Ver. 12.2 [16] and Gurobi Optimizer

Ver. 4.6 [12] for comparison. The tolerance of integrality feasibility of each solver was set as

10−8. The other parameters are set as the default values. The bounds for prestress forces in (2)

are qs = 5kN, qs = 100 kN, qc = 5kN, and qc = 100 kN.

14



(a) (b)

(c)

Figure 3: Optimal solutions of Example 1 with b̄ = 2 different strut lengths. (a) (s̄, d̄, b̄) =

(7, 1, 2); (b) (s̄, d̄, b̄) = (6, 2, 2); and (c) (s̄, d̄, b̄) = (5, 1, 2).

Table 2: Computational results of Example 1 with b̄ = 3 different strut lengths (Figure 4).

CPU (s)

(s̄, d̄, b̄) |S| |C| ds dk
∑

i∈C li (m) CPLEX Gurobi

(9, 1, 3) 9 38 1 2 97.893117 49,350.2 3,369.3

(8, 1, 3) 8 33 1 2 87.665780 6,715.7 2,694.6

(7, 1, 3) 7 28 1 2 76.446590 1,084.0 1,527.6

(6, 1, 3) 6 23 1 2 63.215175 1,627.8 1,248.2

(5, 1, 3) 5 18 1 2 52.015102 1,693.5 570.6
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(a) (b)

(c) (d)

(e)

Figure 4: Optimal solutions of Example 1 with b̄ = 3 different strut lengths. (a) (s̄, d̄, b̄) =

(9, 1, 3); (b) (s̄, d̄, b̄) = (8, 1, 3); (c) (s̄, d̄, b̄) = (7, 1, 3); (d) (s̄, d̄, b̄) = (6, 1, 3); and (e) (s̄, d̄, b̄) =

(5, 1, 3).
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(a) (b)

(c) (d)

(e)

Figure 5: Optimal solutions of Example 1 with b̄ = 5 different strut lengths. (a) (s̄, d̄, b̄) =

(9, 2, 5); (b) (s̄, d̄, b̄) = (8, 1, 5); (c) (s̄, d̄, b̄) = (7, 1, 5); (d) (s̄, d̄, b̄) = (6, 1, 5); and (e) (s̄, d̄, b̄) =

(5, 1, 5).
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Table 3: Computational results of Example 1 with b̄ = 5 different strut lengths (Figure 5).

CPU (s)

(s̄, d̄, b̄) |S| |C| ds dk
∑

i∈C li (m) CPLEX Gurobi

(9, 1, 5) 9 38 2 3 93.960131 613.8 1,147.4

(9, 2, 5) 9 37 1 3 91.252627 1,063.0 4,065.7

(8, 1, 5) 8 33 1 2 83.998252 17,157.7 13,810.8

(7, 1, 5) 7 28 1 2 73.852943 12,885.1 17,092.9

(6, 1, 5) 6 23 1 2 61.061823 6,240.1 10,987.7

(5, 1, 5) 5 18 1 2 50.690176 3,167.6 7,861.7

6.1 Example 1: 18-node initial structure

Consider an initial structure shown in Figure 2, where X1 and X2 are taken to be two horizontal

axes and X3 is the vertical axis. The structure consists of |V | = 18 nodes and |E| = 153

members.

The locations of the nodes of this initial structure are defined as the vertices of regular

polyhedra centered at the origin. The 12 nodes are at vertices of a regular icosahedron with

edge length 3m, while the remaining 6 nodes are at vertices a regular octahedron with edge

length 2.7
√
2m. Any two nodes are connected by a member, though only edges of polyhedra

are illustrated in Figure 2. The number of different member lengths of this initial structure is

|B| = 22. We define Pcross in (6) with the lower bound δ = 0.1m for the distance of two existing

members. Then the initial structure includes |Pcross| = 292 pairs of intersecting members. As a

result, MILP problem (27) has 2|E|+|B| = 328 binary variables, |E| = 153 continuous variables,

1444 linear inequality constraints, and 56 linear equality constraints.

As for the number of different strut lengths, d̄, we consider three cases: d̄ = 2, 3, and 5.

The optimal solutions for d̄ = 2 are shown in Figure 3, where the thick lines and the thin lines

represent struts and cables, respectively. The computational results are listed in Figure 1, where

|S| is the number of struts, |C| is the number of cables, ds is the degree of statical indeterminacy,

dk is the degree of kinematical indeterminacy,
∑

i∈C li is the optimal value (i.e., the total length

of cables), and CPU is the computational time spent by an MILP solver. In each case, the

number of struts becomes equal to its lower bound, s̄. The same solutions are obtained by

CPLEX and Gurobi Optimizer.

For (s̄, d̄, b̄) = (5, 1, 2) and (7, 1, 2), the optimal solutions have only one state of self-stress, i.e.,

ds = 1. In contrast, the solution for (s̄, d̄, b̄) = (6, 1, 2) has ds = 2 states of self-stress. Hence, we

examine the case of (s̄, d̄, b̄) = (6, 2, 2). Then the optimal solution, shown in Figure 3(b), satisfies

ds = 1. The degree of kinematic indeterminacy is dk = 3. The configuration of this tensegrity

structure is symmetric. Particularly, it has three pairs of parallel struts. The configurations of

the tensegrity structures shown in Figure 3(a) and Figure 3(c) also have high symmetry. In this

way, by choosing small b̄, we can often obtain symmetric tensegrity structures. All tensegrity

structures in Figure 3 are kinematically indeterminate (i.e., unstable). However, these tensegrity

structures are stabilized by introducing the prestress forces (i.e., prestress stable). In other
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words, the tangent stiffness matrices in the presence of prestress are positive definite.

If we set (s̄, b̄) = (9, 2), then problem (27) has no feasible solution for any d̄. For the

(s̄, d̄, b̄) = (8, 1, 2), the optimal solution has ds = 2 states of self-stress. The optimal solution for

(s̄, d̄, b̄) = (8, 2, 2) in turn has ds = 1. However, this solution is unstable even after introducing

the prestress forces. Thus the optimal solution of problem (27) is not necessarily prestress stable.

This is, on one hand, natural because we do not consider the constraint that the tensegrity

structure is stabilized by prestress forces. However, on the other hand, it is very often that the

optimal solution is prestress stable, as we shall see through the other examples in sections 6.1–6.3.

We next investigate cases with d̄ = 3 different strut lengths. The optimal solutions are

collected in Figure 4 and the computational results are listed in Table 2. In most every case

the computational time required by Gurobi Optimizer is less than that required by CPLEX. In

particular, for the case (s̄, d̄, b̄) = (9, 1, 3) the computational time of CPLEX is more than 14

times larger. However, for (s̄, d̄, b̄) = (7, 1, 3), Gurobi Optimizer requires more computational

time than CPLEX. All the solutions in Figure 4 have ds = 1 state of self-stress and dk = 2

inextensional mechanisms. They are prestress stable, i.e., they are stabilized by introducing the

prestress forces. Configurations of the solutions for s̄ = 8, 6, and 5 have symmetry properties.

However, in the cases of s̄ = 9 and 7, the obtained solutions are not symmetric. This illustrates

that an asymmetric tensegrity structure can be kinematically indeterminate and prestress stable,

although many of tensegrity structures in literature have some symmetry properties.

Figure 5 collects the optimal solutions with b̄ = 5 different strut lengths. All these tensegrity

structures are prestress stable. The computational results are listed in Table 3. In most every

case the computational time of CPLEX is less than that of Gurobi Optimizer. The only exception

is the case of (s̄, d̄, b̄) = (8, 1, 5). For (s̄, d̄, b̄) = (8, 1, 5) and (7, 1, 5), both solvers require

about four hours. The solution for (s̄, d̄) = (9, 1, 5) has ds = 2 states of self-stress. In turn,

the solution for (s̄, d̄, b̄) = (9, 2, 5) successfully has only ds = 1 state of self-stress. In the

configuration of this solution shown in Figure 5(a), alignment of the struts has a rotational

symmetry property. However, the cables are not symmetric. All the other configurations in

Figure 5 have no symmetry property. Thus, we obtain asymmetric tensegrity structures by

increasing b̄.

Study of the examples in this section demonstrates that, by changing parameters s̄ and b̄,

we can obtain diverse configurations of tensegrity structures from one ground structure. We can

often obtain a tensegrity structure with only one degree of statical indeterminacy by adjusting

parameter d̄.

6.2 Example 2: 22-node initial structure

We next consider an initial structure illustrated in Figure 6. This structure consists of |V | = 22

nodes and |E| = 191 members. The number of different member lengths is |B| = 37. The

number of pairs of intersecting members is |Pcross| = 250 when the threshold is δ = 0.1m.

Locations of the nodes of this initial structure are defined as the vertices of four horizontal

polygons shown in Figure 6. The bottom and top polygons are equilateral triangles, while the

middle two ones are regular octagons. The centers of these polygons are on the X3-axis. The

distance between a triangle and an octagon is 1m, while the distance between two octagons is
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Figure 6: A 22-node initial structure of Example 2.

(a) (b)

(c) (d)

Figure 7: Optimal solutions of Example 2 with b̄ = 2 different strut lengths. (a) (s̄, d̄, b̄) =

(11, 1, 2); (b) (s̄, d̄, b̄) = (10, 1, 2); (c) (s̄, d̄, b̄) = (9, 1, 2); and (d) (s̄, d̄, b̄) = (8, 2, 2).
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(a) (b)

(c) (d)

Figure 8: Optimal solutions of Example 2 with b̄ = 3 different strut lengths. (a) (s̄, d̄, b̄) =

(11, 1, 3); (b) (s̄, d̄, b̄) = (10, 2, 3); (c) (s̄, d̄, b̄) = (9, 1, 3); and (d) (s̄, d̄, b̄) = (8, 1, 3).

Table 4: Computational results of Example 2 with b̄ = 2 different strut lengths (Figure 7).

CPU (s)

(s̄, d̄, b̄) |S| |C| ds dk
∑

i∈C li (m) CPLEX Gurobi

(11, 1, 2) 11 48 1 2 78.809440 43.9 53.9

(10, 1, 2) 10 43 1 2 73.740650 4,991.4 588.7

(9, 1, 2) 9 38 1 2 66.858350 726.4 1,001.0

(8, 1, 2) 8 33 2 3 54.278517 17.1 175.0

(8, 2, 2) 8 32 1 3 51.778517 56.4 169.6
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(a) (b)

(c)

Figure 9: Optimal solutions of Example 2 with uniform strut lengths (b̄ = 1). (a) (s̄, d̄, b̄) =

(4, 0, 1); (b) (s̄, d̄, b̄) = (5, 1, 1); and (c) (s̄, d̄, b̄) = (8, 1, 1).

Table 5: Computational results of Example 2 with b̄ = 3 different strut lengths (Figure 8).

CPU (s)

(s̄, d̄, b̄) |S| |C| ds dk
∑

i∈C li (m) CPLEX Gurobi

(11, 1, 3) 11 48 1 2 77.517351 48.8 234.5

(10, 1, 3) 10 43 2 3 70.981031 1,082.0 1,365.0

(10, 2, 3) 10 42 1 3 68.481031 1,139.7 2,147.6

(9, 1, 3) 9 38 1 2 64.357465 2,960.0 4,713.3

(8, 1, 3) 8 33 1 2 58.268308 6,451.8 37,294.2
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Table 6: Computational results of Example 2 with uniform strut lengths (b̄ = 1, Figure 9).

CPU (s)

(s̄, d̄, b̄) |S| |C| ds dk
∑

i∈C li (m) CPLEX Gurobi

(4, 0, 1) 4 14 1 1 35.325779 1.1 7.5

(5, 1, 1) 8 33 1 2 58.811663 7.0 7.8

(8, 1, 1) 8 33 1 2 58.811663 1.2 2.4

1.5m. The length of an edge of a triangle is
√
3m. An octagon is inscribed a circle with radius

2m and the length of its edge is 2
√

2−
√
2m. Each triangle has an edge that is parallel to the

X2-axis. The lower octagon has two vertices on the X1-axis, and the upper octagon is rotated

counter-clockwise around the X3-axis at an angle π/6. Any two nodes of the initial structure

are connected by a member but diagonals of octagons are removed.

As for the number of different strut lengths, d̄, we consider three cases: d̄ = 1, 2, and 3. The

optimal solutions are shown in Figure 7, Figure 8, and Figure 9. The computational results are

listed in Table 4, Table 5, and Table 6. It is observed that the computational time of CPLEX

is less than that of Gurobi Optimizer in most every case. The only exception is the case of

(s̄, d̄, b̄) = (10, 1, 2), where the computational time required by CPLEX is about eight times

larger than that required by Gurobi Optimizer. In contrast, in the case of (s̄, d̄, b̄) = (8, 1, 3),

the computational time of Gurobi Optimizer is about five times larger than that of CPLEX.

The optimal solutions for b̄ = 2 appear in Figure 7. It is observed that tensegrity structures

with various configurations can be generated by changing s̄. In the solution for (s̄, d̄, b̄) =

(11, 1, 2) shown in Figure 7(a), alignment of struts has a symmetric property. More specifically,

the set of longer three struts is symmetric with respect to the dihedral group D3, i.e., it is

symmetric with respect to the rotation around the X3-axis at an angle of 2nπ/3 (n = 0, 1, 2)

and the half-rotation about the X1-axis. The set of eight remaining struts is symmetric with

respect to D8. The alignment of cables, however, has no symmetry property. In the solution

for (s̄, d̄, b̄) = (10, 1, 2) shown in Figure 7(b), alignment of longer struts has D3-symmetry, while

alignment of the remaining seven shorter struts has no symmetry property. In contrast, the

solution for (s̄, d̄, b̄) = (9, 1, 2) in Figure 7(c) has one longer strut and D8-symmetric shorter

struts. The solution for (s̄, d̄, b̄) = (8, 1, 2) has ds = 2 states of self-stress. Hence, we examine

d̄ = 2. Then the obtained solution successfully has only one mode. This solution, shown in

Figure 7(d), has four longer struts and four shorter struts. Alignment of cables has the same

symmetry property as that of struts. Therefore, the configuration of this tensegrity structure is

symmetric with respect to D4.

Figure 8 collects the optimal solutions obtained for b̄ = 3. The solution for (s̄, d̄, b̄) =

(10, 2, 3) has dk = 3 inextensional mechanisms, while the other solutions in Figure 8 have dk = 2

inextensional mechanisms. The optimal solutions for b̄ = 1 are collected in Figure 9. Note that

problem (27) is infeasible for s̄ ≥ 9 and b̄ = 1. The optimal solution for (s̄, d̄, b̄) = (4, 0, 1) in

Figure 9(a) has no symmetry property. Since this solution has only ds = 1 state of self-stress,

the case of (s̄, d̄, b̄) = (4, 1, 1) is not explored. For (s̄, d̄, b̄) = (5, 1, 1), the optimal solution has
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Figure 10: A 14-node initial structure of Example 3.

Table 7: Computational results of Example 3.

CPU (s)

(s̄, d̄, b̄) |S| |C| ds dk
∑

i∈C li (m) CPLEX Gurobi

(7, 1, 3) 7 28 1 2 72.048914 125,786.5 9,002.7

(7, 1, 7) 7 28 1 2 75.701727 40,356.6 4,225.0

(6, 1, 2) 6 23 3 4 64.255004 0.6 0.7

(6, 2, 2) 6 22 2 4 59.924877 0.6 0.8

(6, 3, 2) 6 21 1 4 55.594750 0.6 0.8

(6, 1, 3) 6 23 1 2 63.730829 5,730.8 591.6

(6, 1, 6) 6 23 1 2 60.948546 19,723.5 539.8

eight struts as shown in Figure 9(b). Alignment of struts of this solution is same as that of

the solution for (s̄, d̄, b̄) = (8, 1, 1) and is D8-symmetric. Finally, it is worth noting that all the

solutions shown in Figure 7, Figure 8, and Figure 9 are prestress stable.

6.3 Example 3: 14-node initial structure

In this section we consider an initial structure shown in Figure 10. The structure consists of

|V | = 14 nodes and |E| = 91 members.

Locations of the nodes of this initial structure are defined so that eight nodes form two

regular tetrahedra with edge length 2
√
3m and the remaining six nodes form a regular hexagon

with edge length 2.5m. The centers of the tetrahedra and hexagon are on the X3-axis. The

hexagon is parallel to the X1X2-plane. Each tetrahedron has a face that is parallel to the X1X2-

plane. The distance between this bottom face of a tetrahedron and the octagon is 1m. The

bottom face of the inverted tetrahedron is rotated counter-clockwise around the X3-axis at an

angle of π/9 from the bottom face of the other tetrahedron. Any two nodes are connected by
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(a)

(b) (c)

Figure 11: Optimal solutions of Example 3 with few different strut lengths. (a) (s̄, d̄, b̄) =

(6, 3, 2); (b) (s̄, d̄, b̄) = (7, 1, 3); and (c) (s̄, d̄, b̄) = (6, 1, 3).

a member. The number of pairs of intersecting members is |Pcross| = 63. As a result, MILP

problem (27) has 2|E| + |B| = 202 binary variables, |E| = 91 continuous variables, 769 linear

inequality constraints, and 44 linear equality constraints.

The optimal solutions with d̄ = 2 and d̄ = 3 appear in Figure 11. The computational results

are listed in Table 7. The computational time in the cases of (s̄, b̄) = (6, 2) is small, while that

in the other cases is very large. The solution for (s̄, d̄, b̄) = (6, 1, 2) has ds = 3 states of self-

stress. The solution for (s̄, d̄, b̄) = (6, 2, 2) has ds = 2, i.e., the solution still has an extra mode

of self-stress. Therefore, we proceed to (s̄, d̄, b̄) = (6, 3, 2). The solution in this case, shown in

Figure 11(a), successfully has unique mode of self-equilibrium force. The configuration of this

solution is D3-symmetric. In contrast, the solutions for (s̄, d̄, b̄) = (7, 1, 3) and (s̄, d̄, b̄) = (6, 1, 3)

have no symmetry property as shown in Figure 11(b) and Figure 11(c). If the number of

different strut lengths is equal to the number of struts, i.e., if b̄ = |S|, then it is guaranteed
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(a) (b)

Figure 12: Optimal solutions of Example 3 without same strut lengths. (a) (s̄, d̄, b̄) = (7, 1, 7)

and (b) (s̄, d̄, b̄) = (6, 1, 6).

that the configuration of a tensegrity structure has no symmetry properties. Such examples are

collected in Figure 12. All the tensegrity structures obtained in this section are prestress stable.

7 Summary and discussion

For developing innovative tensegrity structures in real applications, systematic approaches that

can explore diverse topologies are desired. This paper have presented a numerical method

for generating various topologies of tensegrity structures that satisfy the classical definition

rigorously. The method is based upon truss topology optimization and does not require topology

of tensegrity structures to be specified in advance. The optimization problem has been reduced

to an MILP problem. Three parameters are used to generate many different topologies from one

given initial structure. Difference between the degrees of kinematical indeterminacy and statical

indeterminacy, d̄, is used to guarantee kinematical indeterminacy and uniqueness of state of

self-stress. The number of different strut lengths, b̄, implicitly controls symmetry of a solution.

In conjunction with the objective function that minimizes the total length of cables, the lower

bound for the number of struts, s̄, serves as a measure of the size of a solution. Numerical

experiments have demonstrated that various tensegrity structures can be generated by varying

these three parameters and that most of the obtained tensegrity structures are stabilized by

introducing self-stress.

Some of the techniques developed in this paper are not restricted to tensegrity structures but

applicable to generic truss topology optimization. For instance, the symmetry constraint by spec-

ifying the number of different member lengths may possibly be used in optimization of trusses

with discrete cross-sectional areas. The optimal solution of such a nonconvex optimization prob-

lem is not necessarily symmetric, even if input data of the problem is symmetric [11, 32, 35, 40].

Under this situation the constraint on the number of different member lengths may possibly
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impose symmetry of a solution to some extent. It is also relevant to standardization of compo-

nents of a structure, and hence could be related to fabrication cost in real world problems. Note

that, regarding symmetry only, we can consider the explicit constraint that members located

in symmetric positions should have the same cross-sectional area. This explicit constraint and

the implicit constraint considered in this paper might play complementary roles. The former

can guarantee high symmetry but is not necessarily effective when solutions with low symmetry

are desired. In contrast, the latter can guarantee low or no symmetry, but the small number of

different member lengths does not necessarily imply high symmetry of a solution. These aspects

remain to be further investigated.

Regarding design of tensegrity structures, much remains to be studied. For instance, it

is not clear why minimizing the total length of cables, performed in this paper, often gener-

ates solutions that can be stabilized by self-stresses. Also, a remaining question is when a

structure is simultaneously statically and kinematically indeterminate. Recently, conditions for

determinacy and indeterminacy have been extensively studied for structures with symmetric

configurations [6, 7, 9, 31, 33, 42]. However, the numerical examples presented in this paper

illustrate that structures with non-symmetric configurations can be simultaneously statically

and kinematically indeterminate. Sufficient conditions for simultaneous static and kinematical

indeterminacy, as well as for prestress stability, of structures with non-symmetric configurations

might be explored. Furthermore, the proposed method is based on MILP, which might be a

potential disadvantage in computational cost for finding tensegrity structures consisting of a

large number of members.
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A MILP formulation

In section 5, we have formulated the optimization problem for design of tensegrity structures,

problem (26), and shown that this optimization problem can be reformulated as an MILP

problem. This MILP problem has been solved in section 6 by using a commercial MILP solver.

27



The explicit description of this MILP problem is given as

min
x,y,z,q

∑
i∈E

liyi (27a)

s. t. Hq = 0, (27b)

−qsxi ≤ qi ≤ −qsxi + qc(1− xi), ∀i ∈ E, (27c)

qcyi − qs(1− yi) ≤ qi ≤ qcyi, ∀i ∈ E, (27d)∑
i∈E(vp)

xi ≤ 1, ∀vp ∈ V, (27e)

yi ≤
∑

i′∈E(vp)

xi′ , ∀i ∈ E(vp), ∀vp ∈ V, (27f)

∑
i∈E

xi ≥ s̄, (27g)

xi + xi′ + yi + yi′ ≤ 1, ∀(i, i′) ∈ Pcross, (27h)

zj ≤
∑
i∈Ej

xi, ∀j ∈ B, (27i)

1

|Ej |
∑
i∈Ej

xi ≤ zj , ∀j ∈ B, (27j)

∑
j∈B

zj = b̄, (27k)

∑
i∈E

(5xi − yi) = d̄+ 6, (27l)∑
i∈E(vp)

yi ≥ 3
∑

i∈E(vp)

xi, ∀vp ∈ V, (27m)

xi ∈ {0, 1}, yi ∈ {0, 1}, ∀i ∈ E, (27n)

zj ∈ {0, 1}, ∀j ∈ B, (27o)

xi + yi ≤ 1, ∀i ∈ E. (27p)

Note that constraint (27p) is a valid inequality constraint, because constraints (27c), (27d), and

(27n) imply (27p).
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