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Abstract

The minimum 0-extension problem 0-Ext[Γ ] on a graph Γ is: given a set V
including the vertex set VΓ of Γ and a nonnegative cost function c defined on
the set of all pairs of V , find a 0-extension d of the path metric dΓ of Γ with∑

xy c(xy)d(x, y) minimum, where a 0-extension is a metric d on V such that the
restriction of d to VΓ coincides with dΓ and for all x ∈ V there exists a vertex s in Γ
with d(x, s) = 0. 0-Ext[Γ ] includes a number of basic combinatorial optimization
problems, such as minimum (s, t)-cut problem and multiway cut problem.

Karzanov proved the polynomial solvability for a certain large class of modular
graphs, and raised the question: What are the graphs Γ for which 0-Ext[Γ ] can
be solved in polynomial time? He also proved that 0-Ext[Γ ] is NP-hard if Γ is not
modular or not orientable (in a certain sense).

In this paper, we prove the converse: if Γ is orientable and modular, then 0-
Ext[Γ ] can be solved in polynomial time. This completes the classification of the
tractable graphs for the 0-extension problem. To prove our main result, we develop
a theory of discrete convex functions on orientable modular graphs, analogous to
discrete convex analysis by Murota, and utilize a recent result of Thapper and Z̆ivný
on Valued-CSP.

1 Introduction

By a (semi)metric d on a finite set V we mean a nonnegative symmetric function on V ×V
satisfying d(x, x) = 0 for all x ∈ V and the triangle inequalities d(x, y)+d(y, z) ≥ d(x, z)
for all x, y, z ∈ V . An extension of a metric space (S, µ) is a metric space (V, d) with
V ⊇ S and d(s, t) = µ(s, t) for s, t ∈ S. An extension (V, d) of (S, µ) is called a 0-
extension if for all x ∈ V there exists s ∈ S with d(s, x) = 0.

Let Γ be a simple connected undirected graph with vertex set VΓ . Let dΓ denote
the shortest path metric on VΓ with respect to the uniform unit edge-length of Γ . The
minimum 0-extension problem 0-Ext[Γ ] on Γ is formulated as:

0-Ext[Γ ]: Given V ⊇ VΓ and c :

(
V

2

)
→ Q+,

minimize
∑

xy∈(V2)

c(xy)d(x, y) over all 0-extensions (V, d) of (VΓ , dΓ ).
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Figure 1: (a) a median graph, (b) a, b, c have two medians x, y, and (c) u, v, w have no
median

Here
(
V
2

)
denotes the set of all pairs of V . The minimum 0-extension problem is for-

mulated by Karzanov [26], and is equivalent to the following classical facility location
problem, known as multifacility location problem; see [45].

Minimize
∑

xy∈(V2)

c(xy)dΓ (ρ(x), ρ(y)) over all maps ρ : V → VΓ being the identity on

VΓ .

This type of problems arises in many practical situations such as computer vision, clus-
tering, and learning theory; see [30]. Also 0-Ext[Γ ] includes a number of basic combi-
natorial optimization problems. For example, take as Γ the graph K2 consisting of a
single edge st. Then 0-Ext[K2] is the minimum (s, t)-cut problem. More generally, 0-
Ext[Km] is the multiway cut problem on m terminals. Therefore 0-ext[Km] is solvable
in polynomial time if m = 2 and is NP-hard if m > 2 [14].

This paper addresses the following problem considered by Karzanov [26, 28, 29].

What are the graphs Γ for which 0-Ext[Γ ] is solvable in polynomial time?

A classical result in location theory in the 1970’s is

Theorem 1.1 ([41]; also see [31]). If Γ is a tree, then 0-Ext[Γ ] is solvable in polynomial
time.

The tractability of graphs Γ is preserved under the Cartesian product. Therefore,
cubes, grid graphs, and the Cartesian product of trees are graphs for which 0-Ext is
tractable. Chepoi [12] extended this classical result to median graphs as follows. A
median of a triple p1, p2, p3 of vertices is a vertex m satisfying dΓ (pi, pj) = dΓ (pi,m) +
dΓ (m, pj) for 1 ≤ i < j ≤ 3. A median graph is a graph in which every triple of vertices
has a unique median. Trees and their products are median graphs. See Figure 1 for
illustration of the median concept.

Theorem 1.2 ([12]). If Γ is a median graph, then 0-Ext[Γ ] is solvable in polynomial
time.

Karzanov [26] introduced the following LP-relaxation of 0-Ext[Γ ].

Ext[Γ ]: Given V ⊇ VΓ and c :

(
V

2

)
→ Q+,

minimize
∑

xy∈(V2)

c(xy)d(x, y) over all extensions (V, d) of (VΓ , dΓ ).
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This relaxation Ext[Γ ] is a linear program with size polynomial in the input size. There-
fore, if, for every input (V, c), Ext[Γ ] has an optimal solution that is a 0-extension, then
0-Ext[Γ ] is solvable in polynomial time. In this case we say that Ext[Γ ] is exact. In
the same paper, Karzanov gave a combinatorial characterization of graphs Γ for which
Ext[Γ ] is exact. A graph Γ is called a frame if

(1.1) (1) Γ is bipartite,

(2) Γ has no isometric cycle of length greater than 4,

(3) Γ has an orientation o with the property that for every 4-cycle
uv, vv′, v′u′, u′u, one has u ↙o v if and only if u′ ↙o v

′.

Here an isometric cycle in Γ means a cycle C such that every pair of vertices in C has
a shortest path for Γ in this cycle C, and p ↙o q means that edge pq is oriented from q
to p by o.

Theorem 1.3 ([26]). Ext[Γ ] is exact if and only if Γ is a frame.

Theorem 1.4 ([26]). If Γ is a frame, then 0-Ext[Γ ] is solvable in polynomial time.

It is noted that the class of frames is not closed under the Cartesian product, whereas
the tractability of graphs is preserved under the Cartesian product. Also it should be
noted that Ext[Γ ] is the LP-dual to the dΓ -weighted maximum multiflow problem, and
0-Ext[Γ ] describes a combinatorial dual problem [26, 27]; see also [18, 19, 20, 21] for
further ramifications of this duality.

Karzanov [26] also proved the following hardness result. For an undirected graph
Γ , an orientation with the property (1.1) (3) is said to be admissible. Γ is said to be
orientable if it has an admissible orientation. Γ is said to be modular if every triple of
vertices has a (not necessarily unique) median.

Theorem 1.5 ([26]). If Γ is not orientable or not modular, then 0-Ext[Γ ] is NP-hard.

In fact, a frame is precisely an orientable modular graph with the hereditary property
that every isometric subgraph is modular; see [2]. A median graph is an orientable
modular graph but the converse is not true. Moreover, a median graph is not necessarily
a frame, and a frame is not necessarily a median graph. In [28], Karzanov proved a
tractability theorem extending Theorem 1.2. He conjectured that 0-Ext[Γ ] is tractable
for a certain proper subclass of orientable modular graphs including frames and median
graphs. He also conjectured that 0-Ext[Γ ] is NP-hard for any graph Γ not in this class.

The main result of this paper is the tractability theorem for all orientable modular
graphs, and thus disproves his second conjecture.

Theorem 1.6. If Γ is orientable modular, then 0-Ext[Γ ] is solvable in polynomial time.

Combining this result with Theorem 1.5, we obtain a complete classification of the
graphs Γ for which 0-Ext[Γ ] is solvable in polynomial time.

Overview. In proving Theorem 1.6, we employ an axiomatic approach to optimiza-
tions on orientable modular graphs. This approach is inspired by the theory of discrete
convex analysis developed by Murota and his coworkers; see [37, 39] and also [16, Chapter
VII]. Discrete convex analysis is a theory of convex functions on integer lattice points
Zn, aiming at providing a unified framework for polynomially solvable combinatorial
optimization problems including network flows, matroids, and submodular functions.
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The theory that we are going to develop here is, in a sense, a theory of discrete convex
functions on orientable modular graphs, aiming at providing a unified framework for
polynomially solvable 0-extension problems and related multiflow problems. We believe
that our theory establishes a new link between previously unrelated fields, broadens
the scope of discrete convex analysis, and opens a new perspective and new research
directions.

Let us start with a simple observation to illustrate our basic idea. Consider a path
Pm of length m, and consider 0-Ext[Pm], where Pm is trivially an orientable modular
graph. Then 0-Ext[Pm] for input V, c can be regarded as an optimization problem on
the integer lattice Zn as follows. Let VPm := {1, 2, 3, . . . ,m} and V := {1, 2, 3, . . . , n} for
n ≥ m. Then any map ρ : V → VPm is identified with point (x1, x2, . . . , xn) in an integer
box [0,m]n∩Zn (by the correspondence ρ(i) ↔ xi). In particular, dPm(xi, xj) = |xi−xj |.
Therefore 0-Ext[Pm] is equivalent to the minimization of the function

(1.2)
∑
ij

cij |xi − xj |

over all (x1, x2, . . . , xn) ∈ [0,m]n ∩ Zn with xi = i for i = 1, 2, . . . ,m. This function is a
simple instance of L-convex functions, one of the fundamental classes of discrete convex
functions. We do not give a formal definition of L-convex functions here. The only
important facts for us are the following properties of L-convex functions in optimization:

(a) A local optimality implies the global optimality.

(b) The local optimality can be checked by submodular function minimization.

(c) An efficient descent algorithm can be designed based on successive submodular
function minimizations.

As is well-known, submodular functions can be minimized in polynomial time [17, 24, 44].
Actually the function (1.2) can be minimized by successive minimum-cut computa-
tions [31, 41], a special case of successive submodular function minimizations.

Motivated by this observation, we regard 0-Ext[Γ ] as a minimization of a function
defined on the vertex set of a product of Γ , which is also orientable modular. We will
introduce a class of functions, called L-convex functions, on an orientable modular graph.
We show that our L-convex function satisfies analogues of (a), (b) and (c) above, and
also that a multifacility location function, the objective function of 0-Ext[Γ ], is an L-
convex function, in our sense, on the product of Γ . Theorem 1.6 is a consequence of
these properties.

Let us briefly mention how to define L-convex functions, which constitutes the main
body of this paper. Our definition is based on the Lovász extension [36], a well-known
concept in submodular function theory [16], and the polyhedral complex constructions,
due to Karzanov [26] and Chepoi [13], from a class of modular graphs.

Let Γ be an orientable modular graph with admissible orientation o. We call a pair
(Γ, o) a modular complex since it turns out that (Γ, o) can be regarded as a system of
modular (semi)lattices that gives rise to a simplicial complex as follows. Consider a cube
subgraph B of Γ . The digraph B⃗ oriented by o coincides with the Hasse diagram of
a Boolean lattice. Consider the simplicial complex ∆(Γ, o) whose simplices are sets of
vertices forming a chain of the Boolean lattice corresponding to some cube subgraph of
Γ ; see Figure 2. Each (abstract) simplex is naturally regarded as a geometric simplex
in the Euclidean space. ∆(Γ, o) is naturally regarded as a metrized simplicial complex,
which we call the geometric modular complex associated with (Γ, o). Then any function
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Figure 2: A construction of a geometric modular complex
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Figure 3: Neighborhood semilattices

g : VΓ → R is extended to ḡ : ∆(Γ, o) → R by interpolating g on each simplex linearly;
this is an analogue of the Lovász extension. The geometric simplicial complex ∆(Γ, o)
enables us to consider the neighborhood L∗

p around each vertex p ∈ VΓ , as well as the
local behavior of ḡ in L∗

p. As in Figure 3, neighborhood L∗
p can be described as a

partially ordered set with p the unique minimal element. Then, by restricting ḡ to L∗
p,

we obtain a function on L∗
p associated with each vertex p, called the derivative of g at

p. In fact, the poset L∗
p is a modular semilattice, a semilattice analogue of a modular

lattice introduced by Bandelt, van de Vel, and Verheul [5]. We first give a definition of
submodular functions on modular semilattices, and next define an L-convex function as
a function on VΓ such that the derivative on each vertex is submodular.

Then our problem reduces to the minimization of a submodular function f on
the product of modular semilattices L1,L2, . . . ,Ln, where the input of the problem
is L1,L2, . . . ,Ln, and an evaluating oracle of f . We do not know whether this problem
in general is tractable in the oracle model, but the submodular functions arising from
0-Ext[Γ ] take a special form; they are the sum of submodular functions with arity 2,
where the arity of a function f is the number of variables of f . See (1.2). This type
of optimization problem with bounded arity is well-studied in the literature of Valued-
CSP [7, 34, 43]. Recently, Thapper and Z̆ivńy [46] gave a surprising condition for the
basic LP-relaxation of Valued-CSP to exactly solve the original Valued-CSP instance.
They showed that if the class of Valued-CSP (the class of input objective functions)
admits a certain nice fractional polymorphism, then the basic LP-relaxation is exact.
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We prove that the class of submodular functions on modular semilattice has such a nice
fractional polymorphism. As a consequence of these two facts, the sum of submodular
functions with bounded arity can be minimized in polynomial time. Therefore we can
solve 0-Ext[Γ ] in polynomial time.

We believe that our classes of functions deserve to be called submodular and L-
convex. Indeed, they include not only (ordinary) submodular/L-convex functions but
also other submodular/L-convex-type functions. Examples are bisubmodular functions [10,
40, 42] (see [16, Section 3.5]), multimatroid rank functions by Bouchet [8], submodular
functions on trees by Kolmogorov [32], and k-submodular functions by Huber and Kol-
mogorov [23]. Moreover, combinatorial dual problems arising from a large class of (well-
behaved) multicommodity flow problems, discussed in [18, 19, 20, 21, 25, 26, 27], fall
into submodular/L-convex function minimization in our sense. This can be understood
as a multiflow analogue of a fundamental fact in network flow theory: the minimum
cut problem, the dual of maxflow problem, is a submodular function minimization. The
detailed discussion on these topics will be given in a separate paper [22].

Organization. In Section 2, we describe basic facts on modular graphs and modular
lattices. In Section 3, we prove some structural properties of orientable modular graphs.
We show that an orientable modular graph is obtained by gluing the covering graphs
of complemented modular lattices (Theorem 3.1). In place of the geometric modular
complex, which is defined as the union of the order complexes of those lattices, we
use a graph-theoretic operation on orientable modular graphs, called the 2-subdivision
operation. This operation is adequate for our purpose, in that it keeps the orientability
and the modularity, and enables us to define neighborhood semilattices L∗

p. In Section 4,
we define submodular functions on modular semilattices and L-convex functions on a
modular complex, according to the idea mentioned above. We prove that our L-convex
functions indeed have properties analogous to (a), (b) and (c) above, and that the sum
of submodular functions with bounded arity can be minimized in polynomial time. In
Section 5, we reformulate 0-Ext[Γ ] as an optimization problem on a modular complex.
We show that a multifacility location function, the objective function of 0-Ext[Γ ], is
indeed an L-convex function, and we prove Theorem 1.6. Our framework is applicable
to a certain weighted version of 0-Ext[Γ ]. As a corollary, we give a generalization of
Theorem 1.6 to general metrics, which completes classification of metrics µ for which
the 0-extension problem on µ is polynomial time solvable (Theorem 5.12).

Notation. Let Z,Q, and R denote the sets of integers, rationals, and reals, respec-
tively. Let Z+,Q+, and R+ denote the sets of nonnegative integers, nonnegative ratio-
nals, and nonnegative reals, respectively. For a graph Γ , the vertex set and the edge
set are denoted by VΓ and EΓ , respectively. For a vertex subset X, Γ [X] denotes the
subgraph of Γ induced by X. For a nonnegative edge-length h : EΓ → R+, dΓ,h denotes
the shortest path metric on VΓ with respect to the edge-length h. When h(e) = 1 for
every edge e, dΓ,h is denoted by dΓ . A path is represented by a chain (p1, p2, . . . , pn) of
vertices with pipi+1 ∈ EΓ .

The Cartesian product Γ×Γ ′ of graphs Γ and Γ ′ is the graph with vertex set VΓ×VΓ ′

and edge set given as: (p, p′) and (q, q′) are connected by an edge if and only if p = q
and p′q′ ∈ EΓ ′ or p′ = q′ and pq ∈ EΓ .
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2 Preliminaries on modular graphs and modular lattices

In this section, we summarize basic facts on modular graphs and modular lattices with
emphasis on their metric aspects. Our references are [3, 5, 13, 47] for modular graphs,
and the first edition of [6] for modular lattices.

2.1 Modular metric spaces and modular graphs

For a metric space (X, d), the interval I(x, y) of x, y ∈ X is defined as

I(x, y) := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}.

For two subsets A,B, d(A,B) denotes the minimum distance between A and B, i.e.,

d(A,B) = inf
x∈A,y∈B

d(x, y).

For x1, x2, x3 ∈ X, an element m in I(x1, x2)∩ I(x2, x3)∩ I(x3, x1) is called a median of
x1, x2, and x3. We note that the distance between xi and m is given by

(2.1) d(m,xi) =
d(xi, xj) + d(xi, xk)− d(xj , xk)

2
(i, j, k distinct).

A metric space (X, d) is said to be modular if every triple of elements in X has a median.
In particular, a graph Γ is modular if the shortest path metric space (VΓ , dΓ ) is modular.
We will often use the following characterization of modular graphs.

Lemma 2.1 ([5, Proposition 1.7]; see [47, Proposition 6.2.6, Chapter I]). A connected
graph Γ is modular if and only if

(1) Γ is bipartite, and

(2) for vertices p, q and neighbors p1, p2 of p with dΓ (p, q) = 1 + dΓ (p1, q) = 1 +
dΓ (p2, q), there exists a common neighbor p∗ of p1, p2 with dΓ (p, q) = 2+dΓ (p

∗, q).

The condition (2) is called the quadrangle condition [3, 13] (or the semimodularity
condition in [5, 47]).

Lemma 2.2. For a modular graph, every admissible orientation is acyclic

Proof. Suppose indirectly that the statement is false. Take a vertex p belonging to a
directed cycle, and take a directed cycle C containing p with

∑
u∈VC

dΓ (p, u) minimum.
The length k of C is at least four (by simpleness and bipartiteness). By the definition
of admissible orientation, k = 4 is impossible. Hence k > 4. Take a vertex q in C with
dΓ (p, q) maximum. Take two neighbors q′, q′′ of q in C. Then dΓ (q, p) = dΓ (q

′, p) + 1 =
dΓ (q

′′, p) + 1 (by the maximality of q and the bipartiteness of Γ ). By the quadrangle
condition, there is a common neighbor q∗ of q′, q′′ with dΓ (p, q

∗) = dΓ (p, q)−2. Here the
cycle C ′ obtained from C by replacing q by q∗ is a directed cycle, since the orientation is
admissible. Then we have

∑
u′∈VC′ dΓ (p, u

′) <
∑

u∈VC
dΓ (p, u). This is a contradiction

to the minimality of C.

7



2.2 Convex sets and gated sets

Let (X, d) be a metric space. A subset Y ⊆ X is called convex if I(p, q) ⊆ Y for every
p, q ∈ Y . A subset Y ⊆ X is called gated if for every p ∈ X there is p∗ ∈ Y , called a gate
of p at Y , such that d(p, q) = d(p, p∗) + d(p∗, q) holds for every q ∈ Y . One can easily
see that gate p∗ is uniquely determined for each p [15, p. 112]. Therefore we obtain a
map PrY : X → Y by defining PrY (p) to be the gate of p at Y .

Theorem 2.3 ([15]). Let A and A′ be gated subsets of (X, d) and let B := PrA(A
′) and

B′ := PrA′(A).

(1) PrA and PrA′ induce isometries, inverse to each other, between B′ and B.

(2) The following are equivalent for p ∈ A and p′ ∈ A′:

(i) d(p, p′) = d(A,A′).

(ii) p = PrA(p
′) and p′ = PrA(p).

(3) B and B′ are gated, and PrB = PrA ◦PrA′ and PrB′ = PrA′ ◦PrA.

As remarked in [15], every gated set is convex (see the proof of Lemma 2.4 below).
The converse is not true in general, but is true for modular graphs. The following useful
characterization of convex (gated) sets in a modular graph is due to Chepoi [11]. Here,
for a graph Γ , a subset Y of vertices is said to be convex (resp. gated) if Y is convex
(resp. gated) in (VΓ , dΓ ).

Lemma 2.4 ([11]). Let Γ be a modular graph. For Y ⊆ VΓ , the following conditions
are equivalent:

(1) Y is convex.

(2) Y is gated.

(3) Γ [Y ] is connected and I(p, q) ⊆ Y holds for every p, q ∈ Y with dΓ (p, q) = 2.

We give a proof for the convenience of readers as the original paper is in Russian.

Proof. dΓ is denoted by d. (1) ⇒ (3) is obvious.
We show (3) ⇒ (1). Take p, q ∈ Y , and take a ∈ I(p, q). We are going to show a ∈ Y .

Since Γ [Y ] is connected, we can take a path P = (p = p0, p1, . . . , pk = q) with pi ∈ Y .
Take such a path P with κP :=

∑k
i=0 d(a, pi) minimum. If d(a, pi−1) + 1 = d(a, pi) =

d(a, pi+1) + 1 for some i, then, by the quadrangle condition in Lemma 2.1, there is a
common neighbor p∗ of pi−1, pi+1 with d(a, p∗) = d(a, pi)−2. Since I(pi−1, pi+1) ⊆ Y by
(3), p∗ belongs to Y . Then we can replace pi by p∗ in P to get another path P ′ connecting
p, q with κP ′ = κP − 2; a contradiction to the minimality. Therefore there is no index
j with d(a, pj−1) < d(a, pj) > d(a, pj+1). Thus there is a unique index i with d(a, pi)
minimum. Then we have d(p, pi) + d(pi, a) = d(p, a) and d(q, pi) + d(pi, a) = d(q, a).
Adding them, we get

d(p, pi) + d(pi, q) + 2d(pi, a) = d(p, a) + d(a, q).

Since a ∈ I(p, q), we have d(p, a)+d(a, q) = d(p, q). Obviously d(p, pi)+d(pi, q) ≥ d(p, q)
holds. Hence d(pi, a) = 0, i.e., a = pi ∈ Y .

We show (2) ⇒ (1). As already mentioned, any gated set is convex. Indeed, suppose
that Y is gated. Take p, q ∈ Y , and take a ∈ I(p, q). Consider the gate a∗ of a in Y .

8



Then d(p, a) = d(p, a∗) + d(a∗, a) and d(q, a) = d(q, a∗) + d(a∗, a). Since a ∈ I(p, q),
we have d(p, q) = d(p, a) + d(a, q) = d(p, a∗) + d(a∗, q) + 2d(a∗, a) ≥ d(p, q) + 2d(a∗, a),
implying d(a∗, a) = 0 and a = a∗ ∈ Y . Thus we get (2) ⇒ (1).

Finally we show (1) ⇒ (2). Suppose that Y is convex. Let p be an arbitrary vertex.
Let p∗ be a point in Y satisfying d(p, Y ) = d(p, p∗). We show that p∗ is a gate of
p at Y . Take arbitrary q ∈ Y . Consider a median m of p, q, p∗. Then d(p,m) =
{d(p, p∗) + d(p, q) − d(p∗, q)}/2 = d(p, p∗) − {d(p, p∗) + d(p∗, q) − d(p, q)}/2 ≤ d(p, p∗).
By convexity, m belongs to Y . By definition of p∗, d(p, p∗) = d(p,m) must hold. Thus
d(p, q)− d(p, p∗)− d(p∗, q) = 0 holds for every q ∈ Y . This means that p∗ is the gate of
p, and therefore Y is gated.

2.3 Modular lattices and modular semilattices

Let L be a partially ordered set with partial order ⪯. For a, b ∈ L, the least common
upper bound, if it exists, is denoted by a ∨ b, and the greatest common lower bound,
if it exists, is denoted by a ∧ b. L is said to be a lattice if both a ∨ b and a ∧ b exist
for every a, b ∈ L, and said to be a (meet-)semilattice if a ∧ b exists for every a, b ∈ L.
In a semilattice, if a and b have a common upper bound, then a ∨ b exists. Such (a, b)
is said to be bounded. By the expression a ∨ b ∈ L we mean that a ∨ b exists. A pair
(a, b) is said to be comparable if a ⪯ b or b ⪯ a, and incomparable otherwise. We say
“b covers a” if a ≺ b and there is no c ∈ L with a ≺ c ≺ b, where a ≺ b means a ⪯ b
and a ̸= b. The universal upper bound and the universal lower bound, if they exist, are
denoted by 1 and 0, respectively. For a ⪯ b, the interval {c ∈ L | a ⪯ c ⪯ b} is denoted
by [a, b]. A chain from a to b is a sequence (a = u0, u1, u2, . . . , uk = b) with ui−1 ≺ ui
for i = 1, 2, . . . , k; the number k is the length of the chain. The length r[a, b] of the
interval [a, b] is defined as the maximum length of a chain from a to b. The rank r(a) of
an element a is defined by r(a) = r[0, a].

A lattice L is called modular if a∨ (b∧ c) = (a∨ b)∧ c for every a, b, c ∈ L with a ⪯ c.
Modular lattices are also characterized by the modular equality of the rank function.

Lemma 2.5 (see [6, Chapter III, Corollary 1]). A lattice L is modular if and only if

r(a) + r(b) = r(a ∨ b) + r(a ∧ b) (a, b ∈ L).

The underlying undirected graph of the Hasse diagram of L is called the covering
graph of L. Modular lattice L is regarded as a metric space by the shortest path metric
dΓ of its covering graph Γ . It is a folklore that a lattice is modular if and only if its
covering graph is modular. The modularity concept has been extended for semilattices
by Bandelt, van de Vel, and Verheul [4]. A semilattice L is said to be modular if [0, p] is
a modular lattice for every p ∈ L, and a ∨ b ∨ c ∈ L provided a ∨ b, b ∨ c, c ∨ a ∈ L.

Theorem 2.6 ([5, Theorem 5.4]). A semilattice is modular if and only if its covering
graph is modular.

Obviously the Hasse diagram of L is admissibly oriented.

Corollary 2.7. The covering graph of a modular semilattice is orientable modular.

The following metric properties of a modular semilattice play important roles in
Section 4.

Lemma 2.8 ([5]). Let L be a modular semilattice with covering graph Γ . For p, q ∈ L,
we have the following.
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(1) dΓ (p, q) = r[p ∧ q, p] + r[p ∧ q, q].

(2) I(p, q) = {c ∈ L | c = a ∨ b, a ∈ [p ∧ q, p], b ∈ [p ∧ q, q]}.

(3) If c = a ∨ b for a ∈ [p ∧ q, p], b ∈ [p ∧ q, q], then a = p ∧ c and b = q ∧ c.

Proof. The proof is given for completeness. (3). Necessarily a ⪯ p ∧ c and b ⪯ q ∧ c,
implying a ∨ b ⪯ (p ∧ c) ∨ (q ∧ c) ⪯ c = a ∨ b. Hence (p ∧ c) ∨ (q ∧ c) = c. Also
(p∧c)∧(q∧c) = p∧q (since p∧q ⪯ c). By the modularity equality, we have r(a)+r(b) =
r(c) + r(p ∧ q) = r(p ∧ c) + r(q ∧ c), which implies r[a, p ∧ c] = r[b, q ∧ c] = 0. Thus
p ∧ c = a and q ∧ c = a must hold.

(1). We use the induction on dΓ (p, q). Take a neighbor q′ of q in I(p, q). Then
dΓ (p, q

′) = r[p∧ q′, p]+ r[p∧ q′, q′] by induction, and either (i) q covers q′ or (ii) q′ covers
q. In the first case (i), we must have p∧q ⪯ q′ as follows. Suppose that p∧q ⪯ q′ is not in
the case. Then p∧q covers p∧q′, and the modularity equality yields r[p∧q, q] = r[p∧q′, q′],
which means that there is a (p, q)-path passing through p ∧ q with the length dΓ (p, q

′).
A contradiction to dΓ (p, q) = dΓ (p, q

′) + 1. It follows from p∧ q ⪯ q′ that p∧ q = p∧ q′,
and the claim follows. In the second case (ii) where q′ covers q, p∧ q′ covers p∧ q; since
otherwise p ∧ q′ = p ∧ q which leads to a contradiction dΓ (p, q

′) > dΓ (p, q). By the
modularity equality r[p ∧ q′, q′] = r[p ∧ q, q] and the claim follows.

(2). By (1), p ∧ q ∈ I(p, q). By the modularity equality we have LHS ⊇ RHS. We
show the reverse inclusion by induction on dΓ (p, q). Take c ∈ I(p, q) with p ̸= c ̸= q,
and take a neighbor q′ of q in I(c, q)(⊆ I(p, q)). Then c ∈ I(p, q′). If q covers q′, then
p ∧ q = p ∧ q′, and apply induction. Suppose that q′ covers q, Then necessarily p ∧ q′

covers p∧q (as above). By induction, there are a ∈ [p∧q′, p] ⊆ [p∧q, p] and b′ ∈ [p∧q′, q′]
with c = a ∨ b′. By b′ ∈ I(p ∧ q′, q), the induction with (3), and p ∧ b′ = p ∧ q′, there is
b ∈ [p ∧ q, q] with b′ = b ∨ (p ∧ q′); b′ covers b. Clearly (a, b) is bounded; a ∨ b ⪯ c. By
modularity, we must have a ∨ b = c.

A lattice L is called complemented if for every p ∈ L there is q ∈ L such that p∨q = 1
and p ∧ q = 0, and relatively complemented if [a, b] is complemented for every a, b ∈ L
with a ⪯ b.

Theorem 2.9 (See [6, Chapter IV, Theorem 4.1]). Let L be a modular lattice. The
following conditions are equivalent:

(1) L is complemented.

(2) L is relatively complemented.

(3) Every element is the join of atoms.

(4) 1 is the join of atoms.

Here an atom is an element of rank 1. A modular semilattice is said to be comple-
mented if [0, a] is a complemented modular lattice for every a ∈ L.

2.4 Orbits in modular graphs and modular lattices

Let Γ be a modular graph. Edges e and e′ are said to be projective if there is a sequence
(e = e0, e1, e2, . . . , em = e′) of edges such that ei and ei+1 belong to a common 4-cycle
and share no common vertex.

Lemma 2.10. Let Γ be a modular graph. For edges pq and p′q′, suppose that dΓ (p, p
′) =

dΓ (q, q
′) and dΓ (p, q

′) = dΓ (p, p
′) + 1 = dΓ (p

′, q).
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(1) pq and p′q′ are projective.

(2) In addition, if Γ has an admissible orientation o, then p ↘o q implies p′ ↘o q
′.

Proof. We use the induction on k := dΓ (p, p
′) = dΓ (q, q

′). The case of k = 1 is obvious.
Take a neighbor p∗ of p with dΓ (p

∗, p′) = dΓ (p, p
′) − 1 = k − 1. Then dΓ (p

∗, q′) = k.
By the quadrangle condition for p, q, p∗, q′, there is a common neighbor q∗ of q, p∗ with
dΓ (q

∗, q′) = k−1. Also dΓ (q
∗, p′) = k. Obviously pq and p∗q∗ are projective. and p ↘o q

implies p∗ ↘o q
∗. Apply the induction for p∗q∗ and p′q′.

In the case where Γ is the covering graph of a modular lattice L, the projectivity
relation is equivalent to the projectivity relation on prime quotients of L in the sense
of [6, Chapter III, Definition 3.2]. An orbit is an equivalence class of the projectivity
relation. The union of several orbits is called an orbit-union. For an orbit-union U ,
Γ/U is the graph obtained by contracting all edges not in U and by identifying multiple
edges. The vertex in Γ/U that corresponds to p ∈ VΓ is denoted as p/U .

Lemma 2.11 ([1], also see [28]). Let Γ be a modular graph, and U an orbit-union.

(1) Γ/U is a modular graph.

(2) For every p, q ∈ VΓ , every shortest (p, q)-path P , and every (p, q)-path P ′, we have
|P ∩ U | ≤ |P ′ ∩ U |.

(3) For every p, q ∈ VΓ and every shortest (p, q)-path P , the image P/U of P is a
shortest (p/U, q/U)-path in Γ/U .

In particular, for any partition U of EΓ into orbit-unions, we have

dΓ (p, q) =
∑
U∈U

dΓ/U (p/U, q/U) =
∑

Q:orbit

dΓ/Q(p/Q, q/Q) (p, q ∈ VΓ ).

For an orbit-union U in a complemented modular semilattice L with covering graph
Γ , we can define L|U ⊆ L, which will turn out to be a complementary modular sub-
semilattice (Lemma 2.13 (3)), as follows. The underlying set of L|U consists of elements
q such that all edges of the covering graph of [0, q] are contained in U . For any ele-
ment p ∈ L, there exists a maximal chain P = (0 = p0, p1, . . . , pk, . . . , pm = p) such
that pi−1pi ∈ U if i < k and pi−1pi ̸∈ U if i ≥ k. (Proof sketch: If pi−1pi ̸∈ U and
pipi+1 ∈ U , then we can take p′ ̸= pi such that pi−1p

′ ∈ U and p′pi+1 ̸∈ U since [0, p]
is relatively-complemented. Replace pi by p′ to get a new maximal chain, and repeat
this process.) Furthermore, pk is independent of the choice of P , and is denoted by p|U .
(Proof sketch: Take another chain P ′ and p′k′ in P ′. Then pk∨p′k′ must be in L|U and in
[0, p]. Consider a maximal chain P ∗ of [0, p] including pk ∨p′k′ . Then P and P ∗ are both
shortest paths between 0 and p, and this violates Lemma 2.11 (2) if pk ̸= p′k′ .) Note
that p|U ∈ L|U for every p ∈ L and moreover L|U = {p|U | p ∈ L}.

For a partition U of EΓ into orbit-unions, every element p is (uniquely) represented
as

p =
∨
U∈U

p|U.

In the case where L is a modular lattice, each L|U is also a modular lattice, and this
decomposition yields a lattice-isomorphism between L and the direct product of L|U
over U ∈ U .
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Remark 2.12. For an orbit Q, L|Q is a complemented modular lattice having exactly
one orbit. Such a lattice is a projective space lattice, which means a complemented
modular lattice each rank-2 elements of which is the join of at least three atoms [6]. So
the above-described decomposition leads to a well-known fact that every complemented
modular lattice is the product of projective space lattices; take the set of all orbits as U .

We note some convexity properties of modular semilattice. Here a subset X of
semilattice L is said to be convex if X is convex in the covering graph Γ of L.

Lemma 2.13. Let L be a modular semilattice.

(1) Any convex set in L is a modular subsemilattice of L.

(2) Suppose that L is a lattice. Then a subset C is convex if and only if C = [a, b] for
some a, b ∈ L with a ⪯ b.

(3) Suppose that L is complemented. For any orbit-union U , L|U is convex, and is a
complemented modular subsemilattice of L.

Proof. (1) follows from Lemma 2.8. The if part follows of (2) from Lemma 2.8. To see
the only if part of (2), consider a :=

∧
u∈C u and b :=

∨
u∈C u. Then C ⊆ [a, b]. From

a, b ∈ C, we can see [a, b] ⊆ C. (3) follows from Lemma 2.8 and Lemma 2.11 (2).

Orbit-invariant functions and valuations. Let Γ be a modular graph. A function
h on edge set EΓ is called orbit-invariant if h(e) = h(e′) provided e and e′ belong to
the same orbit. For an orbit Q, let hQ denote the value of h on Q. An orbit-invariant
function h is said to be nonnegative if h(e) ≥ 0 for e ∈ EΓ , and is said to be positive if
h(e) > 0 for e ∈ EΓ . If h(e) = 1 for all edges e, then h is denoted by 1; in particular
dΓ = dΓ,1. By taking the value of h of the preimage, we can define a function on the edge
set of Γ/U for any orbit-union U , which is also orbit-invariant in Γ/U and is denoted by
h. By Lemma 2.11 (2), the shortest path structures of (VΓ , dΓ ) and (VΓ , dΓ,h) are the
same in the following sense.

Lemma 2.14. If an orbit-invariant function h is nonnegative, then (1) implies (2),
where

(1) P is a shortest (p, q)-path with respect to 1,

(2) P is a shortest (p, q)-path with respect to h.

If h is positive, then the converse also holds.

As a consequence of Lemmas 2.11 and 2.14, for any partition U of EΓ into orbit-
unions, we have

(2.2) dΓ,h(p, q) =
∑
U∈U

dΓ/U,h(p/U, q/U) =
∑

Q:orbit

hQdΓ/Q,1(p/Q, q/Q).

An orbit-invariant function is a graph-theoretic analogue of a valuation in a modular
lattice; see [6, Chapter III, 50] (but we follow the terminology in the 3rd edition of this
book). Here, a valuation v of a modular lattice L is a function on L satisfying

(2.3) v(p) + v(q) = v(p ∧ q) + v(p ∨ q)
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for each p, q ∈ L; it is said to be positive if v(p) < v(q) for each p, q with p ≺ q. It is
known that every positive valuation v is uniquely represented as

(2.4) v(p) = C + dΓ,h(0, p) (p ∈ L)

for a constant C and a positive orbit-invariant function h on the covering graph Γ of L.
Indeed, take C := v(0) and define h by h(pq) := v(q) − v(p) if q covers p. Conversely,
for every positive orbit-invariant function h on the covering graph and every constant
C, the function v on L defined by (2.4) is a positive valuation.

We can naturally extend the valuation concept to modular semilattices. A valuation
v of a modular semilattice L is a function on L satisfying (2.3) for every bounded pair
p, q ∈ L; it is said to be positive if v(p) < v(q) for each p, q with p ≺ q. For p, q with p ⪯ q,
let v[p, q] denote v(q) − v(p). Again one can easily see that v has a unique expression
(2.4) for a positive orbit-invariant function h on the covering graph Γ of L. Note that
the rank function r is nothing but the positive valuation corresponding to C = 0 and
h = 1.

3 Modular complex

In this section, we reveal some structural properties of orientable modular graphs. In
particular, we show that an orientable modular graph is naturally regarded as a union
of covering graphs of complemented modular lattices (Section 3.1). This enables us to
define a simplicial complex as the union of the order complexes of these lattices, and
also to define the 2-subdivision operation of orientable modular graphs (Section 3.2). So
a triple (Γ, o, h) of an orientable modular graph Γ , an admissible orientation o, and a
positive orbit-invariant function h is called a modular complex.

3.1 Boolean pairs

Let Γ be an orientable modular graph. Fix an admissible orientation o. Consider a cube
subgraph B of Γ , and consider the digraph B⃗ of B induced by o. One can easily see from
the definition of an admissible orientation that B⃗ is isomorphic to the Hasse diagram of
a Boolean lattice. Hence B⃗ determines the greatest element and the least element of the
corresponding Boolean lattice.

A pair (p, q) of vertices is called a Boolean pair (with respect to o) if p and q are the
least element and the greatest element, respectively, of the Boolean lattice associated
with some cube subgraph of Γ . By convention, (p, p) is defined to be a Boolean pair.
The set of Boolean pairs is denoted by B(Γ, o). In Figure 2 in the introduction, (p, p),
(q, v), (v, p′) are examples of Boolean pairs.

Recall that any admissible orientation is acyclic (Lemma 2.2). Let ⪯o be the transi-
tive closure of relation ↙o on VΓ . Then VΓ is regarded as a partially ordered set by this
relation. For any Boolean pair (p, q), necessarily p ⪯o q holds. We define the relation ⊑o

as: p ⊑o q if (p, q) is a Boolean pair. This relation ⊑o coarsens ⪯o, and is not transitive
in general. For a vertex p, define subset Lp(Γ, o) by

(3.1) Lp(Γ, o) := {q ∈ VΓ | p ⊑o q} =
∪
p⊑oq

[p, q].

Lp(Γ, o) is also denoted simply by Lp. The main result in this section is the following.

Theorem 3.1. Let Γ be an orientable modular graph with an admissible orientation o.
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(1) For every Boolean pair (p, q), interval [p, q] is a complemented modular lattice, and
is convex in Γ .

(2) For every vertex p, Lp is a complemented modular semilattice, and is convex in Γ .

(1) says that an orientable modular graph Γ can be regarded as the union of several
complemented modular lattices, and (2) says that each vertex is associated with a local
semilattice structure.

The rest of this subsection is devoted to proving Theorem 3.1. We denote dΓ by d,
and denote ↙o, ⪯o, and ⊑o by ↙, ⪯, and ⊑, respectively. First we show a Jordan-
Dedekind-type chain condition for Γ (Lemma 3.2). Second we show that if p ⪯ q then
[p, q] is a modular lattice (Lemma 3.3 and Proposition 3.4), which immediately proves
Theorem 3.1 (1). Third we prove a criterion when the transitivity p ⊑ q ↙ q′ ⇒ p ⊑ q′

holds (Lemma 3.6). Then we prove Theorem 3.1 (2).
The first lemma says that Γ satisfies a Jordan-Dedekind-type condition. A path

(p0, p1, p2, . . . , pk) is said to be ascending if pi ↙ pi+1 for i = 0, . . . , k − 1.

Lemma 3.2. For p, q ∈ VΓ with p ⪯ q, a (p, q)-path P is shortest if and only if P is
an ascending path from p to q. In particular, I(p, q) = [p, q], and any maximal chain in
[p, q] has the same length.

Proof. Suppose p ⪯ q. Then an ascending path P = (p = p0, p1, p2, . . . , pk = q) exists.
We use the induction on length k; the statement for k = 1 is obvious.

(If part). Suppose for contradiction that d(p, q) < k. By induction and bipartiteness,
we have d(p, pk) = d(p, pk−1) − 1 and d(p, pk−1) = k − 1. By the quadrangle condition
(Lemma 2.1 (2)) for pk−1, pk, pk−2, p, there is a common neighbor q∗ of pk, pk−2 with
d(p, q∗) = d(p, pk−1)−2 = k−3. Consider the 4-cycle of pk−1, pk, q

∗, pk−2. By orientabil-
ity pk−2 ↙ q∗ must hold. Hence we obtain an ascending path (p = p0, p1, . . . , pk−2, q

∗)
of length k − 1 with d(p, q∗) = k − 3. A contradiction.

(Only if part). Take any shortest path Q = (p = q0, q1, q2, . . . , qk′ = q) between
p and q. By the if part, necessarily k′ = k. We may assume that pk−1 ̸= qk−1 (by
induction). By the quadrangle condition for q, pk−1, qk−1, p, there is a common neighbor
q∗ of pk−1, qk−1 with d(q∗, p) = d(q, p)−2. This means that (pk−1, q

∗) can be extended to
a shortest path P ∗ = (p = q∗0, q

∗
1, . . . , q

∗
k−3, q

∗, pk−1) between p and pk−1. By induction,
P ∗ is ascending. In particular, q∗ ↙ pk−1 ↙ q. Consider 4-cycle of pk−1, q, qk−1, q

∗. By
orientability, we have q∗ ↙ qk−1 ↙ q. Replacing q∗ by qk−1 in P ∗, we get an ascending
path from p to qk−1. By induction Q \ q∗ is ascending. Hence Q is also ascending.

Lemma 3.3. If p ⪯ a and p ⪯ b, then there uniquely exists a median m of p, a, b, which
coincides with a ∧ b. Similarly, if a ⪯ q and b ⪯ q, then there uniquely exists a median
m of q, a, b, which coincides with a ∨ b.

Proof. It suffices to prove the former statement. Suppose that a, b, p have two distinct
medians c, c′. Take a median m of c, c′, p. Let k := d(c,m) = d(c′,m) > 0. We
can take an ascending path (m = m0,m1, . . . ,mk = c) from m to c, and also can
take a neighbor m′ of m with d(m, c′) = 1 + d(m′, c′); necessarily m ↙ m′. By the
quadrangle condition for m,m1,m

′, a, there is a common neighbor m′
1 of m1,m

′ such
that d(a,m′

1) = d(a,m)− 2. Also by the quadrangle condition for m,m1,m
′, b there is a

common neighbor m′′
1 of m1,m

′ such that d(b,m′′
1) = d(b,m)−2. By m1 ↘ m ↙ m′ and

the orientability, we have m1 ↙ m′
1 ↘ m′ and m1 ↙ m′′

1 ↘ m′. Hence m′
1 = m′′

1 must
hold. Similarly, by the quadrangle condition for m1,m2,m

′
1, a and for m1,m2,m

′
1, b,

we can find a common neighbor m′
2 of m2,m

′
1 such that d(m2, a) = d(m′

2, a) + 1 and
d(m2, b) = d(m′

2, b) + 1. Necessarily m2 ⪯ m′
2 ⪯ a, b. Repeat this process to get a
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neighbor m′
k of mk(= c) such that d(c, a) = d(m′

k, a) + 1 and d(c, b) = d(m′
k, b) + 1.

This implies that d(a, b) ≤ d(a,m′
k) + d(m′

k, b) = d(a, c) + d(c, b) − 2 = d(a, b) − 2; a
contradiction.

We next show m = a ∧ b. Indeed, take an arbitrary p′ ∈ [p, q] with a ⪰ p′ ⪯ b.
Consider a median m′ of a, b, p′. Since there is an ascending path from p to m′ using p′,
m′ is also a median of a, b, p, and m′ = m by the uniqueness. Hence p′ ⪯ m.

Proposition 3.4. If p ⪯ q, then [p, q] is a modular lattice, and is convex in Γ .

Proof. We first show the convexity by verifying (3) in Lemma 2.4. Clearly the subgraph
of Γ induced by [p, q] is connected. Take a, b ∈ [p, q] with d(a, b) = 2. We show that
I(a, b) ⊆ [p, q]. From Lemma 3.2, this is obvious when a ⪯ b or b ⪯ a. Thus we may
assume a ̸⪯ b and b ̸⪯ a. Consider a ∧ b and a ∨ b (the existence of a ∧ b and a ∨ b is
guaranteed by Lemma 3.3). By d(a, b) = 2 and the orientability we have a ↙ a ∨ b ↘
b ↘ a ∧ b ↙ a. In particular, a and b cannot have a common neighbor different from
a ∨ b and a ∧ b (by orientability). This means I(a, b) = {a, b, a ∨ b, a ∧ b} ⊆ [p, q], as
required.

By Lemma 3.2, the rank function r of poset [p, q] is given as

r(a) = d(p, a) (a ∈ [p, q]).

By Lemma 3.3, a∧ b and a∨ b are medians of p, a, b and of q, a, b respectively, and hence
we have

r(a ∧ b) + r(a ∨ b) = d(a ∧ b, p) + d(a ∨ b, p)

= {d(a, p) + d(b, p)− d(a, b)}/2 + d(p, q)− {d(a, q) + d(b, q)− d(a, b)}/2
= {d(a, p) + d(b, p)}/2 + {d(p, q)− d(a, q) + d(p, q)− d(b, q)}/2
= r(a) + r(b),

where we use (2.1) and d(p, c) + d(c, q) = d(p, q) (c ∈ [p, q]). By Lemma 2.5, [p, q] is a
modular lattice.

Proof of Theorem 3.1 (1). [p, q] contains a Boolean lattice of rank d(p, q). This
means that the greatest element q is the join of atoms. Hence, by Theorem 2.9, [p, q] is
a complemented modular lattice. □

Since every interval of a complemented modular lattice is also a complemented modular
lattice, we have the following.

Lemma 3.5. If p ⊑ q and u ∈ I(p, q)(= [p, q]), then p ⊑ u ⊑ q.

We next proceed to the proof of Theorem 3.1 (2). The following important lemma
is used also in the next section.

Lemma 3.6. If p ⊑ q ↙ q′, and there exists a neighbor p′ of p with p′ ̸∈ [p, q] and
d(p, q) = d(p′, q′), then p ⊑ q′.

Proof. By Lemma 3.2 and the assumption, we have d(p, q′) = d(p, q)+d(q, q′) = d(p, q)+
1 = d(p′, q′)+1 = d(p, p′)+d(p′, q′). Therefore, by Lemma 3.2 again, there is an ascending
path from p to q′ passing through p′. Necessarily p′ ∈ [p, q′] holds. Since p′ ̸∈ [p, q], we
have q ∨ p′ = q′. Here [p, q] is complemented modular by Theorem 3.1 (1), and hence
q is the join of atoms in [p, q]. Consequently q′ is the join of atoms in [p, q′]. Therefore
[p, q′] is complemented modular, and includes a Boolean lattice, implying p ⊑ q′.
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Figure 4: Orientations o and o∗

Proof of Theorem 3.1 (2). The statement that Lp is a semilattice immediately
follows from Lemma 3.3.

Next we show the convexity. In view of Lemma 2.4, take a, b ∈ Lp with d(a, b) = 2,
and take any common neighbor c of a, b. We show c ∈ Lp. This is obvious if a ↙ c ↙ b
or b ↙ c ↙ a. Also, if a ↘ c ↙ b, then c = a ∧ b ∈ Lp.

So suppose that a ↙ c ↘ b. Since there are two ascending paths from p to c, one
including a and the other including b, we have d(p, a) = d(p, b). Let c∗ := a ∧ b, which
is a common neighbor of a, b with a ↘ c∗ ↙ b and d(p, c∗) = d(p, a) − 1 = d(p, b) − 1.
Since [p, b] is complemented, we can take an atom p′ (neighbor of p) in [p, b] such that
p′ ∨ c∗ = b. Then d(p, a) = d(p′, c), and also p′ ̸∈ [p, a] (otherwise b = c∗ ∨ p′ ⪯ a; a
contradiction). Thus Lemma 3.6 implies p ⊑ c, i.e., c ∈ Lp.

The subgraph of Γ induced by any convex set is again a modular graph. Therefore
the covering graph of Lp is modular. By Theorem 2.6, Lp is a modular semilattice. In
particular, each [p, q] for each q ∈ Lp is a complemented modular lattice, and Lp is a
complemented modular semilattice. □

3.2 Modular complex

Let Γ be an orientable modular graph with an admissible orientation o and a positive
orbit-invariant function h. We call triple (Γ, o, h) a modular complex. As already seen
in Theorem 3.1, (Γ, o, h) is a system of modular semilattices, and, moreover, gives rise
to a geometric simplicial complex ∆(Γ, o, h) in the following way. For each Boolean pair
(p, q) and each ascending path (p = p0, p1, p2, . . . , pk = q) from p to q, fill a k-dimensional
simplex {x ∈ Rk | 0 ≤ xj − xj−1 ≤ h(pj−1pj) (j = 1, 2, . . . , k)}, as in Figure 2 in the
introduction. Then we obtain a geometric simplicial complex, denoted by ∆(Γ, o, h)
(geometric modular complex). This generalizes the construction of the folder complex
associated with a frame [13, 26].

Actually, we do not use this complex ∆(Γ, o, h) in the sequel, although our argument
is based on this geometric view. Instead of dealing with ∆(Γ, o, h), we use a graph-
theoretic operation, the 2-subdivision Γ 2 of Γ , which comes from the subdivision of
∆(Γ, o, h). The 2-subdivision Γ 2 is constructed as follows, where a Boolean pair (p, q) ∈
B(Γ, o) is denoted by q/p.

The 2-subdivision Γ 2 of Γ is a simple undirected graph on the set B(Γ, o) of all
Boolean pairs with edges given as: q/p and q′/p′ are adjacent if and only if p = p′ and
qq′ ∈ EΓ or q = q′ and pp′ ∈ EΓ . The orientation o∗ for Γ 2 is given as: q/p ↙o∗ q′/p′ if
p = p′ and q ↙o q

′ or if q = q′ and p′ ↙o p. See Figure 4. An edge joining q/p and q′/p
(resp. q/p and q/p′) is denoted by qq′/p (resp. q/pp′). A function h/2 on EΓ 2 is defined
as (h/2)(qq′/p) := h(qq′)/2 and (h/2)(q/pp′) := h(pp′)/2.

The main statement of this section is that this operation keeps the modularity and
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Figure 5: Construction of (Γ 2, o∗) and neighborhood semilattices

the orientability. The proof of this theorem is given in Section 3.3.

Theorem 3.7. For an orientable modular graph Γ with an admissible orientation o and
an orbit-invariant function h, the 2-subdivision Γ 2 is orientable modular, the orientation
o∗ is admissible, and h/2 is orbit-invariant.

Hence (Γ 2, o∗, h/2) is also a modular complex, which is called the 2-subdivision of
(Γ, o, h). Figure 5 illustrates the 2-subdivision of (Γ, o) in Figure 2. The 2-subdivision
enables us to define a neighborhood concept around vertices in Γ as follows. By embed-
ding p 7→ p/p, we can regard VΓ ⊆ VΓ 2 . The admissible orientation o∗ is oriented so that
the vertices in VΓ are all sinks. Recall the definition (3.1) of Lp = Lp(Γ, o). For each
vertex p ∈ VΓ , define the neighborhood semilattice L∗

p := Lp(Γ
2, o∗), which is a comple-

mentary modular semilattice with the universal lowest element p (Theorem 3.1 (2)). See
Figure 5. Neighborhood semilattice L∗

p has much information of the local property of p
than that of Lp.

Valuation of local semilattices. A positive orbit-invariant function gives positive
valuations to local semilattices. For each vertex p, modular semilattices Lp and L∗

p have
positive valuations vp and v∗p defined by

vp(q) := dΓ,h(q, p) (q ∈ Lp),(3.2)

v∗p(v/u) := dΓ 2,h/2(v/u, p/p) (v/u ∈ L∗
p),
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respectively. In the sequel, Lp and L∗
p are supposed to be endowed with valuations vp

and v∗p, respectively.

Isometric embedding of (VΓ , dΓ,h) into (VΓ 2 , dΓ 2,h/2). To show that (VΓ , dΓ,h) is
an isometric subspace of (VΓ 2 , dΓ 2,h/2), we give a fundamental metric relation between
Γ and Γ 2.

Proposition 3.8. We have

(3.3) dΓ 2,h/2(q/p, q
′/p′) =

dΓ,h(p, p
′) + dΓ,h(q, q

′)

2
(q/p, q′/p′ ∈ B(Γ, o) = VΓ 2).

In particular, with the embedding p 7→ p/p, (VΓ , dΓ,h) is an isometric subspace of
(VΓ 2 , dΓ 2,h/2).

Proof. Take a path P = (q/p = q0/p0, q1/p1, . . . , qk/pk = q′/p′) between q/p and q′/p′.
The length of P (with respect to h) is equal to

∑k−1
i=0 (dΓ,h(qi, qi+1) + dΓ,h(pi, pi+1))/2 ≥

(dΓ,h(q, q
′) + dΓ,h(p, p

′))/2; hence LHS ≥ RHS holds.
In Lemma 3.18 in Section 3.3, we prove (3.3) for the case h = 1. Suppose that (3.3)

is true for h = 1, and that P is shortest with respect to h/2. By Lemma 2.14, this is also
shortest with respect to uniform edge-length 1/2. Necessarily the paths obtained from
(q = q0, q1, q2, . . . , qk = q′) and (p = p0, p1, p2, . . . , pk = p′) (by identifying repetitions)
are both shortest in Γ with respect to uniform edge-length 1. Again, by Lemma 2.14,
they are shortest relative to h, and have the lengths dΓ,h(p, p

′) and dΓ,h(q, q
′), respec-

tively. Thus (3.3) holds.

The 2-subdivision operation keeps the convexity in the following sense. For a vertex
set X in Γ , X2 denotes the set of vertices q/p ∈ Γ 2 with p, q ∈ X.

Lemma 3.9. For a convex set X in Γ , X2 is convex in Γ 2.

Proof. For q/p, q′/p′ ∈ X2, take v/u ∈ I(q/p, q′/p′). By Proposition 3.8, we have u ∈
I(p, p′) and v ∈ I(q, q′). By convexity of X, we have u, v ∈ X, i.e., v/u ∈ X2.

Relation between the orientations o and o∗. The relation between the orientations
o and o∗ is given as follows.

Lemma 3.10. (1) For q/p, v/u ∈ VΓ 2, q/p ⊑o∗ v/u if and only if q ⊑o v and u ⊑o p.

(2) For p ∈ VΓ and v/u ∈ VΓ 2, v/u belongs to L∗
p if and only if u ⊑o p ⊑o v.

Proof. (2) is a special case of (1). We show (1). From definition of o∗, q/p ⪯o∗ v/u if
and only if q ⪯o∗ v and u ⪯o∗ p. Therefore, in proving the if part and the only if part, we
can consider intervals [q/p, v/u], [q, v], and [u, p]. Take b/a ∈ [q/p, v/u] = I(q/p, v/u).
By Proposition 3.8, we have b ∈ I(q, v) = [q, v] and a ∈ I(u, p) = [u, p]. This gives an
injective map b/a 7→ (b, a) from [q/p, v/u] to [q, v]× [u, p]. This map preserves the partial
order in the sense that b/a ⪯o∗ b′/a′ ⇔ a ⪯o a

′ and b′ ⪯o b.
(Only if part). Suppose that [q/p, v/u] contains a Boolean lattice of rank dΓ 2(q/p, v/u).

Necessarily it is isomorphic to the product of a Boolean lattice of rank dΓ (q, v) in [q, v]
and a Boolean lattice of rank dΓ (u, p) in [u, p]. Thus q ⊑o v and u ⊑o p.

(If part). It suffices to show that the map above is surjective, and hence bijective.
Take (b, a) ∈ [q, v]× [u, p]. Then u ⪯o a ⪯o p ⊑o q ⪯o b ⪯o v. By u ⊑o v and Lemma 3.5,
(a, b) is a Boolean pair, and b/a ∈ I(q/p, v/u) = [q/p, v/u].
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Remark 3.11. The proof of Lemma 3.10 shows the fact that [p/p, v/u] in L∗
p is isomor-

phic to the product of [p, v] in Lp(Γ, o) and [p, u] in Lp(Γ, o
−1), where o−1 denotes the

reverse orientation of o. Moreover, consider the set L∗+
p of element of the form q/p in L∗

p,
and the set L∗−

p of element of the form p/q in L∗
p. By Proposition 3.8 and Lemma 2.13,

both L∗+
p and L∗−

p are convex, and modular subsemilattices of L∗
p. By q/p 7→ q, L∗+

p is
isomorphic to Lp(Γ, o), and, by p/q 7→ q, L∗−

p is isomorphic to Lp(Γ, o
−1). Also one can

see that for every v/u ∈ L∗
p we have v/p ∈ L∗+

p , p/u ∈ L∗−
p , and v/u = (p/u) ∨ (v/p)

(but L∗
p is not the product of L∗+

p and L∗−
p in general).

Product of modular complexes. Suppose that we are given two modular complexes
(Γ, o, h) and (Γ ′, o′, h′). Then the Cartesian product Γ×Γ ′ is also modular. Furthermore,
define the orientation o×o′ of Γ ×Γ ′ as: (p, p′) ↙o×o′ (p, q

′) if p′ ↙o′ q
′ and (p, p′) ↙o×o′

(q, p′) if p ↙o q. Then o × o′ is an admissible orientation. Similarly define h × h′ by
h× h′((p, p′)(q, p′)) := h(pq) and h× h′((p, p′)(p, q′)) := h′(p′q′), which is orbit-invariant
in Γ ×Γ ′. Thus we obtain a new modular complex (Γ ×Γ ′, o×o′, h×h′), which is called
the product of (Γ, o, h) and (Γ ′, o′, h′).

Lemma 3.12. (p, p′) ⊑o×o′ (q, q
′) if and only if p ⊑o p

′ and q ⊑o′ q
′.

Proof. By Lemma 3.5, (p, p′) ⊑o×o′ (q, q
′) implies (p, p′) ⊑o×o′ (q, p

′) ⊑o×o′ (q, q
′). This

in turn implies p ⊑o q and p′ ⊑o′ q′. The converse follows from the observation that
[(p, p′), (q, q′)] is isomorphic to the product [p, q]× [p′, q′].

In particular the correspondence B(Γ × Γ ′, o × o′) ∋ (q, q′)/(p, p′) 7→ (q/p, q′/p′) ∈
B(Γ, o)× B(Γ ′, o′) is bijective, and we can regard

B(Γ × Γ ′, o× o′) = B(Γ, o)× B(Γ ′, o′).

Under this correspondence, the product operation and the 2-subdivision operation com-
mute in the following sense.

Lemma 3.13. (1) L(p,p′)(Γ × Γ ′, o× o′) = Lp(Γ, o)× Lp′(Γ
′, o′).

(2) (Γ × Γ ′)2 = Γ 2 × Γ ′2.

(3) L∗
(p,p′)(Γ × Γ ′) = L∗

p(Γ )× L∗
p′(Γ

′).

Proof. (1) follows from the previous lemma. (2) follows from the fact that (q, q′)/(p, p′)
and (v, v′)/(u, u′) have an edge in (Γ×Γ ′)2 if and only if dΓ (q, v)+dΓ ′(q′, v′)+dΓ (p, u)+
dΓ ′(p′, u′) = 1, which is equivalent to the condition that (q/p, q′/p′) and (v/u, v′/u′) have
an edge in Γ 2 × Γ ′2. (3) follows from (2).

We end this subsection with some remarks.

Remark 3.14. The 2-subdivision Γ 2 is independent of the choice of an admissible
orientation of Γ . Indeed, for two admissible orientations o, o′ of Γ , if p ⊑o q then
there uniquely exist p′, q′ with p′ ⊑o′ q′ and I[p, q] = I[p′, q′]. This gives a bijection
between B(Γ, o) and B(Γ, o′), which is in fact a graph-theoretic isomorphism between
the 2-subdivisions by o and o′. Furthermore o∗ is also independent of an admissible
orientation of Γ . So (Γ 2, o∗) is determined by Γ only. This is a fundamental fact, but
we do not use this fact here, and omit the proof. It should be emphasized that the
Lovász extension of g : VΓ → R+ depends on an admissible orientation.
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Remark 3.15. We can define the l1-length metric dl1 on ∆(Γ, o, h), since each simplex
in ∆(Γ, o, h) has an isometry to a simplex in the l1-space,; see [9, Chapter I.7] for a
more precise construction of such metric simplicial complexes. Then one can see from
Theorem 3.7 that metric space (∆(Γ, o, h), dl1) is modular. This fact also justifies the

term “modular complex.” Indeed, consider the successive 2-subdivision Γ 2k . Then we
can regard (V

Γ 2k , dΓ 2k ,h/2k
) as an isometric subspace of (∆(Γ, o, h), dl1). For every triple

a, b, c ∈ ∆(Γ, o, h), there are convergent sequences {ak}, {bk}, {ck} such that ak, bk, ck ∈
V
Γ 2k and limk→+∞ ak = a, limk→+∞ bk = b, and limk→+∞ ck = c. Then we can take a

median mk ∈ V
Γ 2k of ak, bk, ck for each k (with the help of the axiom of choice). Hence

we obtain a sequence {mk}k in ∆(Γ, o, h). Since Γ is a finite graph and ∆(Γ, o, h) is
compact, we can take a convergent subsequence of {mk}, which converges to a median
of a, b, c. Hence (∆(Γ, o, h), dl1) is modular.

Remark 3.16. Geometric modular complex itself seems to be an interesting geometric
object, although we introduced this object in the study of 0-extension problems. For
example, in the case where Γ is a median graph, ∆(Γ, o, h) is a simplicial subdivision
of the median complex of Γ [47]; also see [13]. Such connections as well as other metric
aspects, e.g., CAT(0) property under the l2-metrization, will be studied in a future paper.

3.3 Proof of Theorem 3.7

An arbitrary 4-cycle in Γ 2 is represented as (q/p, q′/p, q′/p′, q/p′) for some pp′, qq′ ∈ EΓ .
This immediately implies that o∗ is an admissible orientation and h/2 is orbit-invariant.

To show that Γ 2 is modular, we are going to verify that Γ 2 actually satisfies the
two conditions of Lemma 2.1. If q/p and q′/p′ are joined by an edge, then dΓ (p, q) and
dΓ (p

′, q′) have different parity. This implies:

Lemma 3.17. Γ 2 is bipartite.

To show the second property in Lemma 2.1, take two Boolean pairs q/p and q′/p′.

Lemma 3.18. dΓ,1/2(q/p, q
′/p′) = (dΓ (p, p

′) + dΓ (q, q
′)) /2.

Proof. We have seen LHS≥ RHS in the first half of the proof of Proposition 3.8. We show
LHS = RHS by the induction on dΓ (p, p

′) + dΓ (q, q
′). Here p ⊑ q. So we can consider

[p, q], which is a convex set, and hence a gated set (Lemma 2.4). Take the gate p∗ :=
Pr[p,q](p

′) of p′ at [p, q]. Then dΓ (p, p
′) = dΓ (p, p

∗) + dΓ (p
∗, p′). Suppose p∗ ̸= p. Then

p ≺ p∗ ⪯ q. Take a neighbor u of p with p ↙ u ⪯ p∗. By Lemma 3.5, we have u ⊑ p∗, and
dΓ (u, p

′) = dΓ (p, p
′)−1. By induction, dΓ,1/2(q/u, q

′/p′) = (dΓ (u, p
′)+dΓ (q, q

′))/2. Since
q/p is adjacent to q/u in Γ 2, we have dΓ,1/2(q/p, q

′/p′) ≤ (1 + dΓ (u, p
′) + dΓ (q, q

′))/2 =
(dΓ (p, p

′) + dΓ (q, q
′))/2. Then the equality holds (by LHS ≥ RHS).

It suffices to consider the case where p = Pr[p,q](p
′), q = Pr[p,q](q

′), p′ = Pr[p′,q′](p),
and q′ = Pr[p′,q′](q). Then dΓ (p, q

′) = dΓ (p, p
′) + dΓ (p

′, q′) = dΓ (p, q) + dΓ (q, q
′), and

dΓ (q, p
′) = dΓ (q, q

′) + dΓ (q
′, p′) = dΓ (q, p) + dΓ (p, p

′). This implies dΓ (p
′, q′) = dΓ (p, q),

and dΓ (p, p
′) = dΓ (q, q

′). Take a neighbor q∗ of q in I(q, q′), and take a median p∗ of
p, p′, q∗. Then dΓ (p, q) = dΓ (p

∗, q∗), and p∗ does not belong to [p, q]. Suppose q ↙
q∗. By Lemma 3.6, we have p ⊑ q∗. Therefore q/p is adjacent to q∗/p in Γ 2 with
dΓ (q, q

′) = 1 + dΓ (q, q
∗). Apply the induction to (q∗/p, q′/p′), as above. Similarly,

suppose q ↘ q∗. Then p ↘ p∗, and hence p∗ ⊑ q. Therefore q/p is adjacent to q/p∗ in
Γ 2 with dΓ (p, p

′) = 1 + dΓ (p, p
∗), and apply the induction to (q/p∗, q′/p′).

By using Lemma 3.18, we complete the proof of Theorem 3.7 by verifying the quad-
rangle condition (Lemma 2.1 (2)). We use the same notation d for dΓ and dΓ 2,1/2 (since
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they can be distinguished by the context). In the notation above, suppose further that we
are given two neighbors q1/p1 and q2/p2 of q/p with d(q/p, q′/p′) = 1/2+d(q1/p1, q

′/p′) =
1/2 + d(q2/p2, q

′/p′). We are going to show the existence of a common neighbor q∗/p∗

of q1/p1, q2/p2 with d(q/p, q′/p′) = 1 + d(q∗/p∗, q′/p′).
It suffices to consider the following three cases:

(i) p1 = p = p2.

(ii) p1 = p, q1 ↙ q, and q2 = q.

(iii) p1 ↙ p = p2 and q1 = q ↙ q2.

Case (i). By Lemma 3.18, we have d(q, q′) = 1+d(qi, q
′) for i = 1, 2. By Lemma 2.1 (2),

there is a common neighbor q∗ of q1, q2 with d(q, q′) = 2+d(q∗, q′). Here p ⊑ qi (i = 1, 2),
and hence qi ∈ Lp. By the convexity of Lp, we have q∗ ∈ Lp, implying p ⊑ q∗. Again,
by Lemma 3.18, we have d(q/p, q′/p′) = 1 + d(q∗/p, q′/p′), as required.

Case (ii). We show p2 ⊑ q1, which implies that q1/p2 is a required common neighbor
(by Lemma 3.18). If p2 ↙ p, then p2 ⊑ q and p2 ↙ p ⪯ q imply p2 ⊑ q1 (Lemma 3.5).
Suppose p ↙ p2. Consider Pr[p,q]([p

′, q′]), which is a convex set (by Theorem 2.3).
By Lemma 2.13, we have Pr[p,q]([p

′, q′]) = [a, b] for a, b ∈ [p, q] with a ⪯ b. Similarly
Pr[p′,q′]([p, q]) = [a′, b′] for a′, b′ ∈ [p′, q′] with a′ ⪯ b′. By Theorem 2.3 and Lemma 2.10,
[a, b] is isomorphic to [a′, b′] with a = Pr[p,q](a

′) and b = Pr[p,q](b
′). Necessarily d(p, p′) =

d(p, a)+d(a, a′)+d(a′, p′). In particular, a = Pr[p,q](p
′). Hence d(p, p′) = d(p, a)+d(a, p′)

and d(p2, p
′) = d(p2, a)+d(a, p′). By d(p, p′) = d(p2, p

′)+1, we have d(p, a) = d(p2, a)+1.
Thus p2 ∈ I(a, p) = [a, p] (Lemma 3.2), implying p2 ⪯ a. Similarly b ⪯ q1. Thus
p ⪯ p2 ⪯ a ⪯ b ⪯ q1 ⪯ q and p ⊑ q imply p2 ⊑ q1 (Lemma 3.5), as required.

Case (iii). We show p1 ⊑ q2. Then q2/p1 is a required common neighbor, as above.
First we claim:

(3.4) [p1, q] ∪ [p, q2] ̸= [p1, q2], and hence [p1, q] ∪ [p, q2] is not convex.

Proof. Suppose indirectly [p1, q] ∪ [p, q2] = [p1, q2]. As above, consider Pr[p1,q2]([p
′, q′]),

which is represented by [a, b]. Then a = Pr[p1,q2](p
′) and b′ = Pr[p1,q2](q

′). Moreover
a ∧ p = p1. Otherwise p ∈ [p1, a], implying d(p1, p

′) = d(p1, a) + d(a, p′) = 1 + d(p, a) +
d(a, p′) = 1 + d(p, p′); a contradiction to d(p1, p

′) = d(p, p′)− 1. Similarly b ∨ q = q2. In
particular, a ̸∈ [p, q2] and b ̸∈ [p1, q]. By Theorem 2.3, [a, b] is a bijective image of some
interval of [p′, q′], which is complemented modular. Therefore [a, b] is also complemented
modular. However this is impossible. Indeed, consider an arbitrary atom g of [a, b]. Then
g ⪯ q holds since g ̸⪯ q implies a = g ∧ q, g ∈ [p, q2], and hence p ⪯ a; a contradiction
to a ̸∈ [p, q2]. So the join of all atoms belongs to [p1, q], and is not equal to b ̸∈ [p1, q]; a
contradiction.

By Lemma 2.4, there are u, v ∈ [p1, q] ∪ [p, q2] and a common neighbor w of u, v
with w ̸∈ [p1, q] ∪ [p, q2]. By convexity of [p1, q] and of [p, q2] we may assume that u ∈
[p1, q]\ [p, q2] and v ∈ [p, q2]\ [p1, q]. Then u ↙ w ↙ v, v ↙ w ↙ u, or w ∈ {u∧v, u∨v}.
The second case is impossible since v ⪯ u ⪯ q implies v ∈ [p1, q]. The third case is
also impossible since u ∧ v ∈ [p1, q] and u ∨ v ∈ [p, q2]. Thus we have u ↙ w ↙ v.
Then d(w, p) = 1 + d(v, p); otherwise d(v, p) = 1 + d(w, p) implying w ∈ I(p, v) =
[p, v] ⊆ [p, q1] and contradicting w ̸∈ [p1, q] ∪ [p, q2]. Similarly d(w, p) = 1 + d(u, p). By
the quadrangle condition for w, u, v, p, there exists a common neighbor x of u, v with
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d(w, p) = 2 + d(x, p). Necessarily u ↙ x ↙ v and x ∈ [p, q]. Take an atom g in [p, q2]
with x ∨ g = v. Then d(p, w) = 1 + d(p, v) = 1 + d(p, g) + 1 = d(w, g) + 1. Similarly we
have d(p, w) = 1 + d(u, p) = 1 + d(u, p1) + 1 = d(w, p1) + 1, where the second equality
follows from u∧ p = p1 (by u ̸∈ [p, q2]), By the quadrangle condition for p, p1, g, w, there
is a common neighbor h of p1, g with d(w, p) = 2+d(w, h). Necessarily p1 ↙ h ↙ g, and
h ̸∈ [p1, q] (otherwise w ∈ I(h, u) ⊆ [p1, q]; a contradiction). Also there is an ascending
path from h to q2 (passing through h,w, v, q2 in order) of length equal to d(p1, q), i.e.,
d(h, q2) = d(p1, q). Hence, by Lemma 3.6, we have p1 ⊑ q2, as required. Now the proof
of Theorem 3.7 is completed. □.

4 Discrete convex functions on modular complexes

In this section, following the idea outlined in the introduction, we introduce submodular
functions on a modular semilattice and L-convex functions on a modular complex. The
main results in this section are :

(i) a sum of submodular functions on the product of modular semilattices can be effi-
ciently minimized provided the arity of each summand is bounded (Theorem 4.13).

(ii) L-convex functions admit a local optimality criterion for global optimality, and
checking the local optimality reduces to submodular function minimization on a
modular semilattice (Theorem 4.18).

In Section 4.1, we give definitions of submodular and L-convex functions. In Sec-
tions 4.2 and 4.3 we study some technical properties of these functions. In Section 4.4,
we prove (i) above by utilizing a recent result of Thapper and Z̆ivńy [46] on Valued-CSP.
In Section 4.5, we discuss (ii) above.

4.1 Submodular functions and L-convex functions

We first give a definition of submodular functions on a modular semilattice. Next we
introduce L-convex functions on a modular complex (Γ, o, h) as functions which are
locally submodular.

Submodular functions. Let L be a modular semilattice with a positive valuation v.
Recall that a pair (p, q) is said to be bounded if p ∨ q ∈ L. A pair (p, q) is said to be
antipodal if, for every bounded pair (p′, q′) in [p ∧ q, p]× [p ∧ q, q], we have

(4.1) v[p′, p]v[q′, q] ≥ v[p ∧ q, p′]v[p ∧ q, q′].

A geometric meaning of this concept is the following. With elements p∧q, p, p′, q, q′, p′∨q′,
associate, respectively, points (0, 0), (v[p∧ q, p], 0), (v[p∧ q, p′], 0), (0, v[p∧ q, q]), (0, v[p∧
q, q′]), (v[p∧q, p′], v[p∧q, q′]) in R2. See Figure 6. Then a pair (p′, q′) ∈ [p∧q, p]×[p∧q, q]
satisfies the inequality (4.1) if and only if p′∨q′ is lower than the line segment connecting
the points associated with p and q in R2.

Let f : L → R be a function on L. For a bounded pair p, q ∈ L, the submodularity
inequality is:

f(p) + f(q) ≥ f(p ∧ q) + f(p ∨ q).

For a pair of elements p, q ∈ L, the ∧-convexity inequality (meet-convexity inequality)
with respect to v is:

v[p ∧ q, q]f(p) + v[p ∧ q, p]f(q) ≥ (v[p ∧ q, p] + v[p ∧ q, q])f(p ∧ q).
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Figure 6: Antipodality

One may get an intuition of this condition by associating p, p∧q, q with points −v[p∧q, p],
0, v[p ∧ q, q], respectively, in R.

A function f : L → R is called submodular (relative to v) if f satisfies the sub-
modularity inequality for every bounded pair and the ∧-convexity inequality for every
antipodal pair. Every incomparable bounded pair (p, q) is not antipodal since by taking
(p, q) as (p′, q′) in (4.1) we have v[p, p]v[q, q] = 0 < v[p∧ q, p]v[p∧ q, q]. Therefore, in the
case of a (modular) lattice, there is no nontrivial antipodal pair, and our submodular
functions coincide with submodular functions on lattices in the ordinary sense. Note
also that valuation v is not referred to in the submodularity inequality.

L-convex functions. Next we define the concept of an L-convex function g : VΓ → R
for a modular complex (Γ, o, h). Consider the 2-subdivision (Γ 2, o∗, h/2) of (Γ, o, h).
Define ḡ : VΓ 2 → R by

(4.2) ḡ(q/p) :=
g(p) + g(q)

2
(q/p ∈ B(Γ, o) = VΓ 2).

This is the restriction of the Lovász extension of g; see the introduction for the Lovász
extension. Recall from Section 3.2 the notion of the neighborhood semilattice L∗

p =
Lp(Γ

2, o∗), which is also a (complemented) modular semilattice. The derivative d∗pg of
g at p is a function on L∗

p defined as

d∗pg(q/q
′) := ḡ(q/q′)− g(p) (q/q′ ∈ L∗

p).

A function g on VΓ is said to be L-convex on (Γ, o, h) if, for every p ∈ VΓ , the derivative
d∗pg is submodular on L∗

p relative to the valuation v∗p defined in (3.2).

Remark 4.1. To see “discrete convexity” in this definition, consider the case where Γ
is a path with the unit orbit-invariant function. Suppose that VΓ = {1, 2, . . . ,m} and
EΓ = {ij | j = i + 1 (i = 1, 2, . . . ,m − 1)}. Every orientation o is admissible. Then
the 2-subdivision Γ 2 is the subdivision of Γ (in the ordinary sense). The new vertex
between i and i + 1 is denoted by i + 1/2. Let g be a function on VΓ = {1, 2, . . . ,m}.
Then ḡ : VΓ 2 → R is given as

ḡ(j) =

{
g(j) if j ∈ {1, 2, . . . ,m},
(g(i) + g(i+ 1))/2 if j = i+ 1/2 for i ∈ {1, 2, . . . ,m− 1}.
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The neighborhood semilattice L∗
i at i = 1, 2, . . . ,m−1 is given by L∗

i = {i, i+1/2, i−1/2}
with ordering i− 1/2 ≻o∗ i ≺o∗ i+ 1/2; if i = 0,m, then L∗

i is a 2-element lattice of the
lowest element i. The derivative d∗i g is given by

d∗i g(i) = 0,

d∗i g(i− 1/2) = (g(i− 1)− g(i))/2,

d∗i g(i+ 1/2) = (g(i+ 1)− g(i))/2.

Here L∗
i has no incomparable bounded pair and has only one incomparable antipodal

pair (i−1/2, i+1/2). Hence d∗i g is submodular if and only if d∗i g(i+1/2)+d∗i g(i−1/2) ≥
2d∗i g(i), that is

(4.3) g(i− 1) + g(i+ 1) ≥ 2g(i).

Consequently, g is L-convex if and only if (4.3) holds for i = 2, 3, . . . ,m − 1. This is
nothing but a 1-dimensional convexity condition.

Consider, more generally, the product Γ of several paths. As mentioned in the in-
troduction, the product of paths is naturally identified with a box subset B of integer
lattice Zn. In contrast with the 1-dimensional case, there are many admissible orienta-
tions that yields different classes of discrete convex functions. Among them, consider the
admissible orientation o defined as: x ↙o y ⇔ x ≤ y for x, y ∈ B(⊆ Zn) with xy ∈ EΓ .
Then, in fact, L-convex functions on (Γ, o, 1) coincide with L♮-convex functions on B
in discrete convex analysis [39, Chapter 7]. This relation may not be obvious at first
glance. We will give, in a future paper [22], detailed discussions on this relation as well
as links to other L-convex/submodular-type functions mentioned in the introduction.

4.2 (p, q)-envelope

Here we introduce the concept of (p, q)-envelope of a modular semilattice, which plays
a important role in the proof of Theorems 4.13 and 4.18.

Let L be a modular semilattice with a positive valuation v. Take a pair (p, q) of
elements in L. Recall from Lemma 2.8 that u ∈ I(p, q) if and only if u = a ∨ b for
a ∈ [p ∧ q, p] and b ∈ [p ∧ q, q], and such (a, b) is uniquely determined by a = u ∧ p and
b = u ∧ q. Then we can define map φ = φp,q : I(p, q) → R2

+ by

(4.4) φ(u) := (v[p ∧ q, p ∧ u], v[p ∧ q, q ∧ u]) (u ∈ I(p, q)).

Note that φp,q and φq,p are different. Then φ(I(p, q)) is a finite set of points in a box
[0, v[p∧ q, p]]× [0, v[p∧ q, q]] (by modularity of v), and always includes φ(p∧ q) = (0, 0),
φ(p) = (v[p ∧ q, p], 0), and φ(q) = (0, v[p ∧ q, q]).

Our interest lies in the convex hull Conv(φ(I(p, q))) of φ(I(p, q)). From the definition,
we can easily see that

(4.5) (1) (p, q) is bounded ⇔ Conv(φ(I(p, q))) = Conv(0, φ(p), φ(q), φ(p ∨ q)).

(2) (p, q) is antipodal ⇔ Conv(φ(I(p, q))) = Conv(0, φ(p), φ(q)).

The (p, q)-envelope Ep,q is the set of elements u ∈ I(p, q) \ {p ∧ q} such that φ(u)
is an extreme point of Conv(φ(I(p, q))). We will see in Lemma 4.3 that map φ is
injective on Ep,q, and hence is a bijection between Ep,q and the set of extreme points
of Conv(φ(I(p, q))) other than (0, 0). By convention, let Ep,q := {p ∧ q} if p = q. In
particular, by (4.5), (p, q) is bounded if and only if Ep,q = {p, p ∨ q, q}, and (p, q) is
antipodal if and only if Ep,q = {p, q}.
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Figure 7: (p, q)-envelope Ep,q and normal cone decomposition

For u ∈ Ep,q, let [u](= [u]p,q) denote the set of nonnegative vectors w ∈ R2
+ with

⟨w,φ(u)⟩ = maxu′∈E⟨w,φ(u′)⟩, where ⟨, ⟩ is the standard inner product. Then [u] forms
a closed convex cone in R2

+; [u] is nothing but the intersection of R2
+ and the normal

cone at φ(u) of Conv(φ(I(p, q))). See Figure 7. Every closed convex cone C in R2
+ is

uniquely represented as

C = {(x, y) ∈ R2
+ | −x sinα+ y cosα ≤ 0, −x sinβ + y cosβ ≥ 0}

for some 0 ≤ β ≤ α ≤ π/2. Define ν(C) by

(4.6) ν(C) :=
sinα

cosα+ sinα
− sinβ

cosβ + sinβ
=

sin(α− β)

(cosα+ sinα)(cosβ + sinβ)
(≥ 0).

The main result of this subsection is the following.

Theorem 4.2. Let L be a modular semilattice with a positive valuation v and let f be
a submodular function on L. Then we have

(4.7) f(p) + f(q) ≥ f(p ∧ q) +
∑

u∈Ep,q

ν([u])f(u) ((p, q) ∈ L × L).

The inequality (4.7) generalizes and unifies the submodular inequality and the ∧-
convexity inequality. Indeed, if (p, q) is bounded, then Ep,q = {p, p ∨ q, q}, ν([p]) =
ν([q]) = 0 and ν([p∨q]) = 1; (4.7) coincides with the submodularity inequality for (p, q).
If (p, q) is antipodal, then Ep,q = {p, q}, ν([p]) = v[p ∧ q, p]/(v[p ∧ q, p] + v[p ∧ q, q]), and
ν([q]) = v[p∧q, q]/(v[p∧q, p]+v[p∧q, q]); (4.7) coincides with the ∧-convexity inequality
for (p, q). Therefore we can employ (4.7) as the definition of submodular functions.

Proof of Theorem 4.2. Take a pair (p, q) of elements in L and consider (p, q)-envelope
Ep,q. We may assume v(p ∧ q) = 0 (for notational simplicity). If u ∈ I(p, q), then
u ∧ p, u ∧ q ∈ I(p, q), and [0, v(u ∧ p)] × [0, v(u ∧ q)] ⊆ Conv(φ(I(p, q))). Therefore, for
a, b ∈ Ep,q, v(a∧ p) ≤ v(b∧ p) implies v(a∧ q) ≥ v(b∧ q), and v(a∧ p) ≥ v(b∧ p) implies
v(a ∧ q) ≤ v(b ∧ q).

Lemma 4.3. For a, b ∈ Ep,q, if v(a∧p) ≤ v(b∧p) and v(a∧q) ≥ v(b∧q), then a∧p ⪯ b∧p
and a ∧ q ⪰ b ∧ q. In particular, φ(a) = φ(b) implies a = b.
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Proof. For u ∈ I(p, q), we denote u ∧ p and u ∧ q by up and uq, respectively. Then all
pairs (ap, bp), (ap, aq ∧ bq), and (bp, aq ∧ bq) from among the triple (ap, bp, aq ∧ bq) are
bounded. Hence, by definition of modular semilattices, their join η = (ap∨ bp)∨ (aq ∧ bq)
exists and belongs to I(p, q). Similarly the join ξ = (aq ∨ bq) ∨ (ap ∧ bp) of the triple
(aq, bq, ap ∧ bp) exists and belongs to I(p, q). Then (ηp, ηq) = (ap ∨ bp, aq ∧ bq) and
(ξp, ξq) = (ap∧ bp, aq ∨ bq) (by Lemma 2.8 (3)). Since ap, bp ∈ [ξp, ηp] and aq, bq ∈ [ηq, ξq],
both φ(a) and φ(b) belong to the box [φ(ξp), φ(ηp)]× [φ(ηq), φ(ξq)]. By modularity (2.3)
of v, we have

φ(η) + φ(ξ) = (v(ap ∨ bp) + v(ap ∧ bp), v(aq ∧ bq) + v(aq ∨ bq))

= (v(ap) + v(bp), v(aq) + v(bq)) = φ(a) + φ(b).

This implies φ(a) = φ(η) and φ(b) = φ(ξ), since φ(a) and φ(b) are extreme points
of Conv(φ(I(p, q))). Since ηp ⪰ ap, ηq ⪯ aq, ξp ⪯ bp, and ξq ⪰ bq, we must have
(ηp, ηq) = (ap, aq) and (ξp, ξq) = (bp, bq), implying η = a and ξ = b (by Lemma 2.8 (3)).
Hence ap = ap ∨ bp and aq = aq ∧ bq, implying ap ⪰ bp and aq ⪯ bq.

Therefore we can arrange Ep,q into a sequence (p = u0, u1, . . . , uk = q) such that

(4.8) ui ∧ p ⪰ uj ∧ p, ui ∧ q ⪯ uj ∧ q (i ≤ j).

Lemma 4.4. For i ≤ j, we have the following.

(1) ui ∧ uj = (uj ∧ p) ∨ (ui ∧ q).

(2) ui = (ui ∧ uj) ∨ (ui ∧ p) and uj = (ui ∧ uj) ∨ (uj ∧ q).

(3) dΓ (p, q) = dΓ (p, ui) + dΓ (ui, uj) + dΓ (uj , q), and hence I(ui, uj) ⊆ I(p, q), where
Γ is the covering graph of L.

Proof. (1). By Lemma 2.8 and (4.8), we have uj = (uj ∧ p)∨ (uj ∧ q) = ((uj ∧ p)∨ (ui ∧
q))∨ (uj ∧ q). Here (uj ∧ p)∨ (ui ∧ q) ∈ [ui ∧ q, ui] (by uj ∧ p ⪯ ui ∧ p ⪯ ui). By applying
Lemma 2.8 to (q, ui), we get (uj ∧ p) ∨ (ui ∧ q) = uj ∧ ui.

(2). By (1), (ui∧uj)∨ (ui∧p) = (uj ∧p)∨ (ui∧ q)∨ (ui∧p) = (ui∧p)∨ (ui∧ q) = ui.
Similar for the second equality.

(3). By Lemma 2.8, ui ∧ uj ∈ I(ui, uj), By (1), ui ∧ uj ∈ I(p, q). By (2), ui ∈
I(p, ui ∧ uj) and uj ∈ I(ui ∧ uj , q). Thus we have dΓ (p, ui) + dΓ (ui, uj) + dΓ (uj , q) =
dΓ (p, ui)+ dΓ (ui, ui ∧uj)+ dΓ (ui ∧uj , uj)+ dΓ (uj , q) = dΓ (p, ui ∧uj)+ dΓ (ui ∧uj , q) =
dΓ (p, q).

Lemma 4.5. For c ∈ I(ui, uj) (i < j), we have φp,q(c) = φui,uj (c) + φp,q(ui ∧ uj).

Proof. Since ui ∧ uj ⪯ c we have ui ∧ uj ∧ p ⪯ c ∧ p and ui ∧ uj ∧ q ⪯ c ∧ q. Hence

v(c ∧ p) = v(ui ∧ uj ∧ p) + v[ui ∧ uj ∧ p, c ∧ p],

v(c ∧ q) = v(ui ∧ uj ∧ q) + v[ui ∧ uj ∧ q, c ∧ q].

So we show v[ui∧uj∧p, c∧p] = v[ui∧uj , c∧ui] (and v[ui∧uj∧q, c∧q] = v[ui∧uj , c∧uj ]). By
modularity (2.3), it suffices to show (i) (c∧p)∨(ui∧uj) = ui∧c and (ii) (c∧p)∧(ui∧uj) =
ui ∧uj ∧ p. The second equation (ii) is easy; (c∧ p)∧ (uj ∧ui) = (c∧ui)∧ (ui ∧uj)∧ p =
ui∧uj∧p (by ui∧uj ⪯ c∧ui). We show the first equation (i). From c ∈ I(ui, uj) ⊆ I(uj , p)
(Lemma 4.4 (3)), we have ui ∈ I(c, p), which implies c ∧ ui ∈ [c ∧ p, c] by Lemma 2.8.
Then we have c∧ui∧p = c∧p. Also from ui∧q = ui∧uj ∧q ⪯ c∧ui∧q ⪯ ui∧q we have
ui∧c∧q = ui∧q. Therefore we obtain (c∧p)∨(uj∧ui) = (c∧ui∧p)∨(uj∧p)∨(ui∧q) =
(c ∧ ui ∧ p) ∨ (c ∧ ui ∧ q) = c ∧ ui.
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Lemma 4.6. For i = 0, 1, . . . , k − 1, (ui, ui+1) is antipodal.

Proof. The line segment [φ(ui), φ(ui+1)] is an edge of Conv(φ(I(p, q))). By (4.5) and
Lemma 4.5, if (ui, ui+1) is not antipodal, then there is c ∈ I(ui, ui+1) ⊆ I(p, q) such that
φ(c) goes beyond [φ(ui), φ(ui+1)]; a contradiction to φ(c) ∈ Conv(φ(I(p, q))).

Let bi := ui−1 ∧ ui for i = 1, 2, . . . , k (see Figure 7). Then we have

bi ∧ (ui ∧ q) = ui−1 ∧ q, bi ∨ (ui ∧ q) = ui.

The first equality follows from (4.8), and the second equality follows from Lemma 4.4 (2).
Let f be a submodular function on L. Therefore by submodularity inequalities we have

(4.9) f(bi) + f(ui ∧ q) ≥ f(ui−1 ∧ q) + f(ui) (i = 1, 2, . . . , k).

By adding (4.9) for i = 1, 2, . . . , k and f(p) = f(u0) (recall (p, q) = (u0, uk)), we get

(4.10) f(p)+ f(b1)+ f(b2)+ · · ·+ f(bk)+ f(q) ≥ f(p∧ q)+ f(u0)+ f(u1)+ · · ·+ f(uk).

For i = 1, 2, . . . , k, let θi be the angle of the line normal to the line segment connecting
φ(ui−1) and φ(ui). Namely θi = arctan v[bi, ui−1]/v[bi, ui]. See Figure 7. Here (ui−1, ui)
is antipodal by Lemma 4.6. Then the ∧-convexity inequality for antipodal pair (ui−1, ui)
with bi = ui−1 ∧ ui is rewritten as

(4.11) f(ui−1) ≥ f(bi) +
sin θi

sin θi + cos θi
f(ui−1)−

sin θi
sin θi + cos θi

f(ui) (i = 1, 2, . . . , k).

Substituting (4.11) to (4.10), we get

f(p) + f(q) ≥ f(p ∧ q) +

k∑
i=0

(
sin θi+1

sin θi+1 + cos θi+1
− sin θi

sin θi + cos θi

)
f(ui)

= f(p ∧ q) +
∑

u∈Ep,q

ν([u])f(u),

where θ0 := 0 and θk := π/2. □

4.3 Restrictions and products

In this subsection, we study the behavior of L-convexity/submodularity under restric-
tions and products.

Convex restriction. Let M be a convex set of a modular semilattice L, which is
necessarily a modular semilattice (Lemma 2.13). The restriction of a positive valuation
v of L to M gives a positive valuation of M. Let (Γ, o, h) be a modular complex. For
a convex set X in Γ , the induced subgraph Γ [X] is also modular. The restrictions of o
and h to Γ [X] are admissible and orbit-invariant in Γ [X], respectively. Hence we get a
modular complex (Γ [X], o, h).

Lemma 4.7. (1) If f : L → R is submodular on L, then f is submodular on M for
any convex set M ⊆ L (regarded as a modular semilattice).

(2) If g : VΓ → R is L-convex on (Γ, o, h), then g is L-convex on (Γ [X], o, h) for any
convex set X ⊆ VΓ .
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Proof. (1). By convexity of M, we have I(p, q) ⊆ M. Hence a pair (p, q) is antipodal
in M if and only if it is antipodal in L. (2) follows from (1) and Lemma 3.9.

Recall that each Lp is endowed with a positive valuation vp defined in (3.2). Then
the restriction of an L-convex function to Lp is submodular.

Lemma 4.8. For every vertex p ∈ VΓ , L-convex function g is submodular on Lp.

Proof. Consider the set L∗+
p of elements in L∗

p of the form q/p. L∗+
p is convex in L∗

p and
is a modular subsemilattice of L∗

p; see Remark 3.11. Therefore d∗pg is submodular on
L∗+
p by Lemma 4.7 (1). Here L∗+

p is isomorphic to Lp by q/p 7→ q. By using relation
g(q) = g(p) + 2d∗pg(q/p) (q ∈ Lp), we see the submodularity of g on Lp.

Product and sections. Let L be the product of modular semilattices Li indexed by
i ∈ I, where I = {1, 2, . . . , n}. For p ∈ L, the i-th component of p is denoted by pi, and
p is represented as p = (p1, p2, . . . , pn) ∈ L1 × L2 × · · · × Ln. Suppose that each Li has
a positive valuation vi. Valuation v of L is given by

∑
i∈I vi.

For p, q ∈ L, I(p, q) is the product of I(pi, qi) over i = 1, 2, . . . , n. Consequently, we
have

φp,q(u) =
∑
i∈I

φpi,qi(ui) (u ∈ I(p, q)).

Hence we obtain the following decomposition property of Conv(φp,q(I(p, q))).

Lemma 4.9. Conv(φp,q(I(p, q))) =
∑n

i=1Conv(φ
pi,qi(I(pi, qi))), where the sum means

the Minkowski sum.

For J ⊆ I and ql ∈ Ll for l ∈ I \ J , the set of elements (pi)i∈I in L with pl = ql for
l ∈ I \ J is called the section of L with respect to J and (ql)l∈I\J , and is particularly
called a k-section when |J | = k. Let (Γ, o, h) be the product of modular complexes
(Γi, oi, hi) indexed by i ∈ I. We can define sections of VΓ analogously. Since any section
is convex, this operation yields a modular complex induced by a section, which is called
a section of (Γ, o, h). By Lemma 4.7 and the fact that every section is convex, we have
the following.

Lemma 4.10. (1) If f is submodular on L, then f is submodular on every section
of L.

(2) If g is L-convex on (Γ, o, h), then g is L-convex on every section of (Γ, o, h).

A bounded pair (p, q) in L is said to be 2-bounded if p ∨ q covers p and q (in which
case both p and q cover p ∧ q). Note that every 2-bounded pair necessarily belongs to a
2-section. The following criterion is useful to check the submodularity.

Proposition 4.11. f is submodular on L if and only if

(1) f satisfies the submodularity inequality for every 2-bounded pair, and

(2) f satisfies the ∧-convexity inequality for every antipodal pair belonging to a 1-
section.

Proof. The only if part is obvious. We prove the if part. We first show that every
submodularity inequality is implied by submodularity inequalities for 2-bounded pairs.
For a bounded pair (p, q), take maximal chains (p ∧ q = p0, p1, . . . , pk = p) and (p ∧ q =
q0, q1, . . . , ql = q). Let ai,j := pi ∨ qj . Then f(p) + f(q) − f(p ∧ q) − f(p ∨ q) =

28



∑
i,j(f(ai+1,j) + f(ai,j+1) − f(ai+1,j+1) − f(ai,j)) ≥ 0. Here we use the fact seen from

modularity that (ai+1,j , ai,j+1) is a 2-bounded pair with ai+1,j+1 = ai+1,j ∨ ai,j+1 and
ai,j = ai+1,j ∧ ai,j+1.

Next we show the ∧-convexity inequality. We may consider the case L = L1 ×
L2. Take an (incomparable) antipodal pair (p, q) = ((p1, p2), (q1, q2)) in L. Then
Ep,q = {p, q}. By (4.5), Conv(φp,q(I(p, q))) is a triangle ∆. By Lemma 4.9, ∆ =
Conv(φp1,q1(I(p1, q1))) + Conv(φp2,q2(I(p2, q2))). Thus Conv(φpi,qi(I(pi, qi))) is a tri-
angle congruent to ∆ for i = 1, 2. Hence (pi, qi) is antipodal in Li with ν([p]) =
ν([p1]) = ν([p2]) and ν([q]) = ν([q1]) = ν([q2]). Therefore both ((q1, q2), (q1, p2)) and
((q1, p2), (p1, p2)) are antipodal pairs belonging 1-sections of L. Hence we have

(1− ν([q2]))f(q1, q2) + (1− ν([p2]))f(q1, p2) ≥ f(q1, p2 ∧ q2),

(1− ν([q1]))f(q1, p2) + (1− ν([p1]))f(p1, p2) ≥ f(p1 ∧ q1, p2).

Also, by submodularity inequality (shown above), we have

f(q1, p2 ∧ q2) + f(p1 ∧ q1, p2) ≥ f(p1 ∧ q1, p2 ∧ q2) + f(q1, p2).

From the three inequalities, we obtain

(1− ν([q]))f(q1, q2) + (2− ν([p])− ν([q]))f(q1, p2) + (1− ν([p]))f(p1, p2)

≥ f(p1 ∧ q1, p2 ∧ q2) + f(q1, p2).

By using ν([p]) + ν([q]) = 1, we get the ∧-convexity inequality for (p, q).

In particular, f is submodular if and only if f is submodular on every 2-section, and
g is L-convex if and only if g is L-convex on every 2-section.

We next discuss extension properties of L-convex/submodular functions. For J =
{i1, i2, . . . , iK} ⊆ I, consider the product LJ of Lj over j ∈ J . A function fJ on LJ can
be naturally extended to a function f on L by

(4.12) f(p) := fJ(pi1 , pi2 , . . . , piK ) (p = (p1, p2, . . . , pn) ∈ L = L1 × L2 × . . .× Ln).

Similarly, for J ⊆ I, consider the product (ΓJ , oJ , hJ) of (Γj , oj , hj) over j ∈ J . As
above, a function gJ : VΓJ

→ R is extended to g : VΓ → R.

Lemma 4.12. (1) If fJ is submodular on LJ then f is submodular on L.

(2) If gJ is L-convex on (ΓJ , oJ , hJ) then g is L-convex on (Γ, o, h).

Proof. (1). It is easy to see that if fJ satisfies the submodularity inequality on LJ then
so does f on L. The ∧-convexity inequalities follows from Proposition 4.11. (2) follows
from (1).

4.4 Minimizing a sum of submodular functions with bounded arity:
an approach from Valued-CSP

We consider the problem of minimizing submodular function f on the product L =
L1×L2×· · ·×Ln of modular semilattices, where the input of the problem is L1,L2, . . . ,Ln

and an evaluating oracle of f . In the case where each Li is a lattice of rank 1, this problem
is the submodular set function minimization in the ordinary sense, and can be solved
by polynomial time [17, 24, 44]. However, we do not know whether this problem in
general is polynomial time solvable or not. One notable result in this direction, due
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to Kuivinen [35], is that if each Li is a complemented modular lattice with rank 2 (a
diamond lattice), then this problem has a good characterization.

Here we restrict ourselves to the case where f has a special representation of our
interest. We say that f : L → R has arity K if f is represented as

f(ρ) := f ′(ρi1 , ρi2 , . . . , ρiK ) (ρ = (ρ1, ρ2, . . . , ρn) ∈ L = L1 × L2 × · · · × Ln),

for some function f ′ on Li1 × Li2 × . . . × LiK . The problem we consider is minimizing
a sum of submodular functions with arity K, where the input function f is given as a
form

(4.13) f =
∑

{f i1,i2,...,iK | 1 ≤ i1 < i2 < · · · < iK ≤ n}

with some submodular functions f i1,i2,...,iK on Li1 ×Li2 × . . .×LiK , which are regarded
as functions on L1×L2×· · ·×Ln as (4.12). By Lemma 4.12, f i1,i2,...,iK is submodular on
L, and hence f is submodular. Such f can be minimized in polynomial time, provided
K is fixed.

Theorem 4.13. Let L be the product of modular semilattices L1,L2, . . . ,Ln. A sum of
submodular functions with arity K can be minimized in time polynomial in nK and LK ,
where L = maxi{|Li|}.

We prove Theorem 4.13 as a (nontrivial) consequence of a surprising result of Thapper
and Z̆ivný [46] obtained in the context of Valued-CSP. To describe their result, let us
consider a more general setting. Let V = {1, 2, . . . , n} and D1, D2, . . . , Dn be finite sets,
and putD = D1×D2×· · ·×Dn. As above, we regard a function onDi1×Di2×· · ·×DiK as
a function on D. For a class of functions F on D, consider the following general problem:

(4.14) Given a function f ∈ F , minimize f(ρ) over ρ ∈ D.

Suppose that f is given as an expression

f =
∑

{f i1,i2,...,iK | 1 ≤ i1 < i2 < · · · < iK ≤ n}

with f i1,i2,...,iK : Di1 × Di2 × · · · × DiK → R belonging to F , where f i1,i2,...,iK are
regarded as functions on D as in (4.12). The set of all K-element subsets of V is
denoted by

(
V
K

)
. For U = {i1, i2, . . . , iK} ∈

(
V
K

)
, we denote Di1 ×Di2 ×· · ·×DiK by DU ;

so f(ρ) =
∑

U∈(VK)
fU (ρ|U ), where ρ|U is the restriction of ρ to U .

Consider the following linear program:

Min.
∑

U∈(VK)

∑
p∈DU

λU
p f

U (p),(4.15)

s.t.
∑

p∈DU :pi=a

λU
p = λi

a (i ∈ V, a ∈ Li,U ∈
(
V
K

)
: U ∋ i),

∑
a∈Li

λi
a = 1, (i ∈ V ),

λi
a ≥ 0 (i ∈ V, a ∈ Di),

λU
p ≥ 0 (U ∈

(
V
K

)
, p ∈ DU ).

Here the input data is fU (p) (U ∈
(
V
K

)
, p ∈ DU ), and the (decision) variables are λU

p

(U ∈
(
V
K

)
, p ∈ DU ) and λi

a (i ∈ V, a ∈ Di). Hence the size of this LP is bounded
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by polynomial on nK and LK , where L = maxi |Di|. This is a relaxation of (4.14).
Indeed, for ρ ∈ D, define λi

a as 1 if a = ρi, and zero otherwise. Define λi1,i2,...,iK
p as 1 if

p = (ρi1 , ρi2 , . . . , ρiK ), and zero otherwise. Then λU
p and λi

a are feasible, and the objective
function of (4.15) is equal to f(ρ) =

∑
f i1,i2,...,iK (ρi1 , ρi2 , . . . , ρiK ). The optimal values

of (4.14) and of (4.15) will be denoted by τf and τ∗f , respectively. Obviously τ∗f ≤ τf .

Thapper and Z̆ivný [46] gave a powerful criterion for a class F of functions to have
the property that τ∗f = τf for all f ∈ F . A (binary) operation on Di is a function from
Di×Di toDi. A (separable) operation g onD is a function fromD×D toD such that for
some operations gi on Di (i = 1, 2, . . . , n), g(p, q) = (g1(p1, q1), g2(p2, q2), . . . , gn(pn, qn))
for p = (p1, p2, . . . , pn) ∈ D and q = (q1, q2, . . . , qn) ∈ D. The set of all operations on D
is denoted by O. Here O is a (very large) finite set. Consider a formal sum of operations
with real coefficients, which we call a fractional operation. A fractional operation is
identified with a function ω : O → R, which we represent as ω =

∑
g∈O ω(g)g. A

fractional polymorphism ω for F is a fractional operation on D such that∑
g∈O

ω(g) = 1, ω(g) ≥ 0 (g ∈ O),

1

2
f(p) +

1

2
f(q) ≥

∑
g∈O

ω(g)f(g(p, q)) (f ∈ F , (p, q) ∈ D ×D).

The support of ω is the set of operations g with ω(g) > 0.

Theorem 4.14 (Special case of [46, Theorem 5.1 ]). If there exists a fractional polymor-
phism ω for F such that the support of ω includes a semilattice operation, then τf = τ∗f
for every f ∈ F .

Here a semilattice operation is an operation g satisfying g(a, a) = a, g(a, b) = g(b, a),
and g(g(a, b), c) = g(a, g(b, c)) for a, b, c ∈ D.

Remark 4.15. In the setting in [46], Di is the same set D̂ for all i. Our problem reduces
to this case by taking the disjoint union of Di as D̂, and by setting f i1,i2,...,iK (ρ) := +∞
if (ρi1 , ρi2 , . . . , ρiK ) ̸∈ Di1 ×Di2 × · · · ×DiK . Without such a reduction, their proof also
works for our setting in a straightforward way.

Our goal is to prove that the class of submodular functions admits such a nice
fractional polymorphism.

Theorem 4.16. Suppose that each Di is a modular semilattice and F is the set of
submodular functions on D. Then there exists a fractional polymorphism ω for F such
that the support of ω includes semilattice operation ∧.

We first derive Theorem 4.13 from Theorems 4.14 and 4.16 and next give the proof
of Theorem 4.16.

Proof of Theorem 4.13. Put Di = Li and D = L. Thanks to Theorems 4.14 and
4.16, we can evaluate τf (= τ∗f ) in time polynomial in nK and DK , by solving (4.15).
For i ∈ V and a ∈ Di, consider (4.14) with an additional constraint ρi = a. This
problem is the minimization of f over a section, which is also the minimization of a sum
of submodular functions of arity (at most) K. Again we can evaluate the optimal value
τ i,af of this problem. If τf = τ i,af , then there exists an optimal solution ρ with ρi = a.

Obviously τf = τ i,af holds for some a. Therefore we can fix ρi by evaluating τ i,af for all
a ∈ Di. After n fixing steps, we can get an optimal solution. Thus we can obtain an
optimal solution of (4.14) in time polynomial in nK and LK .
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Constructing a fractional polymorphism: Proof of Theorem 4.16. We are go-
ing to construct a fractional polymorphism based on the inequality (4.7) in Theorem 4.2.
Since the space of operations is huge, we need a systematic approach. The basic idea is
to construct a cone-decomposition C of R2 and to associate each cone C in C with an
operation gC , and to let ω =

∑
C∈C ν(C)gC .

We start with the notion of a cone-decomposition. A closed convex cone in R2
+ is

called a 2-cone if it is 2-dimensional, i.e., if it has an interior point. For a 2-cone C, a
cone-decomposition of C is a finite set C of 2-cones such that every pair of cones in C has
no common interior point, and the union of the 2-cones in C is equal to C. Recall the
definition (4.6) of ν. We easily see the following valuation property.

(4.16) (1) ν(C) is positive for any 2-cone C.

(2) ν(R2
+) = 1.

(3) For a cone-decomposition C of C, we have ν(C) =
∑

F∈C ν(F ).

Let C and C′ be cone-decompositions of the same 2-cone C. We say that C is a refinement
of C′ if for each 2-cone F in C there is a (unique) 2-cone F ′ in C′ with F ⊆ F ′. The
common refinement C ∧ C′ is defined as

C ∧ C′ := {F ∩ F ′ | F ∈ C, F ′ ∈ C′, F ∩ F ′ has an interior point}.

Clearly C ∧ C′ is also a cone-decomposition of C.
Then we can associate a modular semilattice with cone-decompositions as follows.

Let L be a modular semilattice. For (p, q) ∈ L×L, define the set of 2-cones N p,q(L) by

N p,q(L) := {[u]p,q | u ∈ Ep,q, [u]p,q is a 2-cone}.

Recall the definition of cone [u]p,q in Section 4.2; the ordering of p, q is important here.
This is a cone decomposition of R2

+; this is nothing but the normal cone decomposition
of Conv(φp,q(I(p, q))) (see Figure 7). In the case where L = L1 × L2 × · · · × Ln, by
Lemma 4.9 Conv(φp,q(I(p, q))) is the Minkowski sum of Conv(φpi,qi(I(pi, qi))). By a
well-known property of the Minkowski sum, we obtain

(4.17) N p,q(L) =
n∧

i=1

N pi,qi(Li) ((p, q) ∈ L × L).

Next we explain a method to construct a fractional operation. Let L be a modular
semilattice. Let C(L) be the cone-decomposition in R2

+ defined by

(4.18) C(L) :=
∧

(p,q)∈L×L

N p,q(L).

Suppose L = L1 × L2 × · · · × Ln. By (4.17), we have

(4.19) C(L) =
∧

(p,q)∈L×L

n∧
i=1

N pi,qi(Li) =

n∧
i=1

∧
(pi,qi)∈Li×Li

N pi,qi(Li) =

n∧
i=1

C(Li).

For each 2-cone C in C(L), we can define an operation gC = ((gC)1, (gC)2, . . . , (gC)n) on
L by

(gC)i(u, v) := w where [w]u,v ∈ N u,v(Li) with C ⊆ [w]u,v (1 ≤ i ≤ n;u, v ∈ Li)

Here (gC)i is well-defined; for each 2-cone C in C(L) there uniquely exists a 2-cone in
N u,v(Li) including C (thanks to (4.19)). Now we arrive at the goal.
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Theorem 4.17. Let L be the product of modular semilattices L1,L2, . . . ,Ln. For every
submodular function f on L, we have

f(p) + f(q) ≥ f(p ∧ q) +
∑

C∈C(L)

ν(C)f(gC(p, q)) ((p, q) ∈ L × L).

In particular, (1/2)∧+
∑

C∈C(L)(1/2)ν(C)gC is a fractional polymorphism for the set of
submodular functions on L.

Proof. By Theorem 4.2, we have

f(p) + f(q) ≥ f(p ∧ q) +
∑

u∈Ep,q

ν([u])f(u).

By definition of C(L), C(L) is a refinement of N p,q(L). Then each [u] is the union
of 2-cones C in C(L) with C ⊆ [u]. By definition of gC and (4.19), C ⊆ [u] implies
u = gC(p, q). Hence by (4.16) we get∑

C∈C(L)

ν(C)f(gC(p, q)) =
∑

[u]∈N p,q(L)

∑
C∈C(L):C⊆[u]

ν(C)f(gC(p, q))

=
∑

u∈Ep,q

f(u)
∑

C∈C(L):C⊆[u]

ν(C)

=
∑

u∈Ep,q

ν([u])f(u).

4.5 L-optimality criterion and steepest descent algorithm

Here we consider minimization of L-convex functions on a modular complex (Γ, o, h).
There is an optimality criterion that extends the L-optimality criterion in discrete convex
analysis; see [39, Theorem 7.14]. Here L−

p denotes semilattice Lp(Γ, o
−1) for the reverse

orientation o−1 of o. Accordingly, L+
p denotes Lp(Γ, o). Recall that h gives positive

valuations on L+
p and on L−

p according to (2.4).

Theorem 4.18 (L-optimality criterion). Let g : VΓ → R be an L-convex function on a
modular complex (Γ, o, h). For a vertex p ∈ VΓ , the following conditions are equivalent:

(1) g(p) ≤ g(q) holds for every q ∈ VΓ .

(2) g(p) ≤ g(q) holds for every q ∈ VΓ with p ⊑o q or q ⊑o p. That is

g(p) = min{g(q) | q ∈ L+
p } = min{g(q) | q ∈ L−

p }.

The proof of this theorem is given at the end of this section. The condition (2)
implies that g can be minimized by tracing the 1-skeleton graph of the geometric modular
complex ∆(Γ, o). Recall Lemma 4.8. The checking of the condition (2) reduces to the
submodular function minimization on a modular semilattice, analogous to the case of
discrete convex analysis [39, Section 10.3].

Next consider the problem of minimizing an L-convex function g on the product
(Γ, o, h) of modular complexes (Γi, oi, hi) for i = 1, 2, . . . , n. Again we say nothing about
the complexity under the oracle model, and hence we impose an arity condition. We
say that g : VΓ → R has arity K if g is represented as g(ρ) = g′(ρi1 , ρi2 , . . . , ρiK ) for
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some {i1, i2, . . . , iK} and a function g′ : VΓi1
×Γi2

×···×ΓiK
→ R. So suppose that the input

function g is given as an expression

g =
∑

{gi1,i2,...,iK | 1 ≤ i1 < i2 < · · · < iK ≤ n}

for some 0 < K ≤ n and some L-convex functions gi1,i2,...,iK on the product of (Γi, oi, hi)
over i ∈ {i1, i2, . . . , iK}, where gi1,i2,...,iK is regarded as a function on VΓ as in (4.12).
Then gi1,i2,...,iK is L-convex on (Γ, o, h) (Lemma 4.12 (2)), and so is g. The restriction
of g to Lp(Γ, o) = Lp1(Γ1, o1) × Lp2(Γ2, o2) × · · · × Lpn(Γn, on) is a sum of submodular
functions with arity K. Hence, by Theorem 4.13, we get the following.

Theorem 4.19. Let (Γ, o, h) be the product of modular complexes (Γi, oi, hi) (i = 1, 2, . . . , n).
The optimality of a sum of L-convex functions with arity K can be checked in time poly-
nomial in nK and NK , where N = maxi=1,2,...,n{|VΓi |}.

Steepest descent algorithm. Theorem 4.18, Lemma 4.8, and Theorem 4.13 natu-
rally lead us to a descent algorithm for L-convex functions on modular complexes, anal-
ogous to the steepest descent algorithm for L-convex function minimization in discrete
convex analysis.

Starting from an arbitrary point p, each descent step is to find, for σ ∈ {−,+}, an
optimal solution qσ of the problem:

(4.20) Minimize g(q) over q ∈ Lσ
p .

As mentioned already, this is a submodular function minimization. If g(p) = g(q+) =
g(q−), then p is optimal. Otherwise, take σ ∈ {−,+} with g(qσ) = min{g(q−), g(q+)}(<
g(p)), let p := qσ (steepest direction), and repeat the descent step. After a finite number
of descent steps, we can obtain an optimal solution (a minimizer of g).

In the case where f is an L-convex function on a box subset B of Zn, as already men-
tioned, the problem (4.20) is a submodular function minimization (in the ordinary sense)
and can be solved in polynomial time under the oracle model. Moreover Murota [38]
proved that, by appropriate choices of steepest directions, the number of the descent
steps is bounded by l1-diameter of B; later Kolmogorov and Shioura [33] improved this
bound. We, however, do not know whether a similar upper bound exists for L-convex
function minimizations on the product of general modular complexes. This issue will be
studied in the next paper [22].

Proof of L-optimality criterion (Theorem 4.18). Let (Γ, o, h) be a modular com-
plex and let g be a function on VΓ . Let g∗ and g∗ denote maxp g(p) and minp g(p),
respectively. Let Γ̄ denote the graph obtained from Γ by joining each Boolean pair
(p, q) (with dΓ (p, q) ≥ 2). Namely Γ̄ is the 1-skeleton graph of geometric modular com-
plex ∆(Γ, o). For α ∈ [g∗, g

∗], the level-set subgraph Γ̄ (g, α) is the subgraph of Γ̄ induced
by the set of vertices p with g(p) ≤ α. The following connectivity property of Γ̄ (g, α)
rephrases the L-optimality criterion (Theorem 4.18).

Theorem 4.20. Suppose that g is an L-convex function on (Γ, o, h). For every α ∈
[g∗, g

∗],

(1) Γ̄ (g, α) is connected, and

(2) if α > g∗ and g−1(α) ̸= ∅, then each vertex in g−1(α) is adjacent to some vertex
of Γ̄ (g, α) \ g−1(α) in Γ̄ (g, α).
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In a crucial step of the proof, we use the following general property of submodular
functions on a modular semilattice.

Lemma 4.21. Let f be a submodular function on a modular semilattice L. For p, q ∈ L,
if f(p) ≤ 0 and f(q) < 0, there exists a sequence (p = p0, p1, p2, . . . , pm = q) such that
f(pi) < 0 for i = 1, 2, . . . ,m− 1, and pi ⪯ pi+1 or pi+1 ⪯ pi for i = 0, 1, 2, . . . ,m− 1.

Proof. We may assume that p and q are incomparable; (p, q)-envelope Ep,q is a polygon.
Consider inequality (4.7) in Theorem 4.2:

(1− ν([p]))f(p) + (1− ν([q]))f(q) ≥ f(p ∧ q) +
∑

u∈Ep,q\{p,q}

ν([u])f(u).

Since 0 ≤ ν([p]) < 1 and 0 ≤ ν([q]) < 1, LHS is negative, and hence RHS is negative.
If f(p ∧ q) < 0, then (p, p ∧ q, q) is a required sequence. Otherwise there exists u ∈
Ep,q \ {p, q} with f(u) < 0 (since ν is nonnegative-valued). By an inductive argument
(on distance between p and q), there are (p, p1, p2, . . . , pk = u) and (u, q1, q2, . . . , qk′ = q)
with f(pi) < 0 and f(qj) < 0. Concatenating them, we obtain a required sequence.

Proof of Theorem 4.20. (1). Suppose (indirectly) that Γ̄ (g, α′) is disconnected for some
α′. Clearly Γ̄ (g, g∗)(= Γ̄ ) is connected. Also, for a sufficiently small ϵ > 0, Γ̄ (g, α− ϵ) =
Γ̄ (g, α) \ g−1(α). This implies that there exists α∗ ∈ [g∗, g

∗] such that Γ̄ (g, α∗) is
connected, and Γ̄ (g, α∗) \ g−1(α∗) is disconnected. Then there exists a pair of vertices
p, p′ belonging to different components in Γ̄ (g, α∗)\g−1(α∗); in particular g(p) < α∗ and
g(q′) < α∗. Take such a pair (p, p′) with k := dΓ̄ (g,α∗)(p, p

′) minimum. There exists a

path (p = p0, p1, . . . , pk = p′) in Γ̄ (g, α∗) with g(pi) = α∗ for i = 1, 2, . . . , k − 1.
We first show k = 2. Consider L∗

p1 and the derivative d∗p1g. We may assume that
p1 ⊑o p2. Let u := p/p1 if p1 ⊑o p and u := p1/p if p ⊑o p1. Then d∗p1g(u) < 0
and d∗p1g(p2/p1) ≤ 0. Therefore, by Lemma 4.21, there exists a comparable sequence
(u = u0, u1, . . . , um−1, um = p2/p1) in L∗

p1 such that d∗p1g(ui) < 0 for i = 0, 1, 2, . . . ,m−1.
Consider um−1. Then (i) p2/p1 ⊑o∗ um−1 or (ii) um−1 ⊑o∗ p2/p1. Consider case (i):
p2/p1 ⊑o∗ um−1. By Lemma 3.10, we have um−1 = q/q′ for some q, q′ ∈ VΓ with q′ ⊑o q
and q′ ⊑o p1 ⊑o p2 ⊑o q. By Lemma 3.5, we have q′ ⊑o pi ⊑o q for i = 1, 2. Thus
both q and q′ are adjacent to each of p1 and p2 (in Γ̄ ). By d∗p1g(um−1) < 0, we have
g(q) < α∗ or g(q′) < α∗. Say g(q) < α∗; q is adjacent to p1 and p2 in Γ̄ [g, α∗]. If q and
p′ belongs different components in Γ̄ \ g−1(α∗), then path (q, p2, p3, . . . , pk = p′) violates
the minimality assumption. This means that q and p′ belong to the same component,
which is different from the component that p belongs to. Thus we could have chosen
path (p, p1, q) of length 2, This implies that k = 2 and g(p2) < α∗. Consider case (ii):
um−1 ⊑o∗ p2/p1. By Lemma 3.10, um−1 = q/p1 for some q ∈ VΓ with p1 ⊑o q ⊑o p2.
Also, we have g(q) < α∗, and q is adjacent to each of p1 and p2. As above, by the
minimality, we must have k = 2 and g(p2) < α∗.

Suppose that ui is represented by ui = qi/q
′
i for qi, q

′
i ∈ VΓ with q′i ⊑o qi (i =

0, 1, 2, . . . ,m). By Lemmas 3.10 (1) and 3.5, both qi and q′i are adjacent to each of qi+1

and q′i+1 in Γ̄ . Also, by d∗pg(qi/q
′
i) < 0, at least one of g(qi) and g(q′i) is less than α∗.

This means that there is a path in Γ̄ (g, α∗) \ g−1(α∗) connecting p and p′. This is a
contradiction to the initial assumption that p and p′ belong to distinct components in
Γ̄ (g, α∗) \ g−1(α∗).

(2). Take p ∈ g−1(α). By (1), there is a pair of q ∈ VΓ and a path (q =
p0, p1, p2, . . . , pk = p) in Γ̄ such that g(q) < α and g(pi) = α for i = 1, 2, . . . , k. Take
such a pair with the minimum length k. We show k = 1. Suppose that k ≥ 2. As above,
by considering d∗p1g on L∗

p1 , we can find a neighbor q′ of p2 with f(q′) < α. This is a
contradiction to the minimality of k. Hence k = 1, as required.
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5 Minimum 0-extension problems

In this section, we study, from the viewpoint developed in the previous sections, the min-
imum 0-extension problem 0-Ext[Γ ] on an orientable modular graph Γ . In Section 5.1,
we show that 0-Ext[Γ ] can be formulated as an L-convex function minimization on
a modular complex. In Section 5.2, we present a powerful optimality criterion (The-
orem 5.4) for 0-Ext[Γ ] by specializing the L-optimality criterion (Theorem 4.18). In
Section 5.3 we prove the main theorem (Theorem 1.6) of this paper. In Section 5.4 we
consider the minimum 0-extension problem for metrics, not necessarily graph metrics,
and extend Theorem 1.6 to metrics.

5.1 L-convexity of multifacility location functions

We introduce a weighted version of 0-Ext[Γ ]. Let Γ be an orientable modular graph
with an orbit-invariant function h. Fix an admissible orientation o of Γ . We are given
a finite set V with VΓ ⊆ V and a nonnegative cost function c :

(
V
2

)
→ Q+. A location is

a map ρ : V → VΓ satisfying ρ(s) = s for all s ∈ VΓ . The cost of location ρ is defined
as (c · dΓ,h)(ρ) :=

∑
xy∈(V2)

c(xy)dΓ,h(ρ(x), ρ(y)). The weighted version of 0-Ext[Γ ] is as

follows:

Multifac[Γ, h;V, c]: Minimize (c · dΓ,h)(ρ) over all locations ρ,

where the unweighted version corresponds to h = 1.
We next reformulate Multifac[Γ, h;V, c] as a discrete optimization problem on a

modular complex. Let X := V \ VΓ ; a location is identified with a map X → VΓ . For
x ∈ X, let (Γx, ox, hx) be a copy of the modular complex (Γ, o, h). Let (ΓX , oX , hX)
be the product of (Γx, ox, hx) over x ∈ X. Then any location ρ is identified with a
point ρ = (ρ(x))x∈X in VΓX

, and hence (c · dΓ,h) is a function on VΓX
. Accordingly

Multifac[Γ, h;V, c] is reformulated as follows:

Minimize (c · dΓ,h)(ρ) over all ρ ∈ VΓX
.

The following theorem says that this problem is an L-convex function minimization.

Theorem 5.1. (c · dΓ,h) is an L-convex function on modular complex (ΓX , oX , hX).

Since (c · dΓ,h) is a nonnegative combination of metric functions dΓ,h : VΓ × VΓ → R
(regarded as VΓX

→ R) and the set of L-convex functions is closed under nonnegative
combinations and restrictions/extensions (Lemmas 4.10 and 4.12). Theorem 5.1 follows
from the following.

Theorem 5.2. Metric function dΓ,h is L-convex on (Γ × Γ, o× o, h× h).

Proof. Consider the 2-subdivision (Γ × Γ )2, which is isomorphic to Γ 2 × Γ 2 by corre-
spondence (q, q′)/(p, p′) ↔ (q/p, q′/p′) (Lemma 3.13). Consider dΓ,h : V(Γ×Γ )2 → R.
Then we have

dΓ,h((q, q
′)/(p, p′)) =

dΓ,h(p, p
′) + dΓ,h(q, q

′)

2
= dΓ 2,h/2(q/p, q

′/p′),

where the first equality is the definition (4.2) and the second follows from Proposition 3.8.
Hence it suffices to show that dΓ 2,h/2 : VΓ 2 × VΓ 2 → R is submodular on L(a/a,b/b) for
every (a, b) ∈ VΓ × VΓ . Therefore, by taking (Γ 2, h/2) as (Γ, h), this follows from the
next lemma.
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Lemma 5.3. Metric function dΓ,h is submodular on La × Lb for every a, b ∈ VΓ .

Proof. By Proposition 4.11, it suffices to show the following, where we denote dΓ,h by d,
and denote the valuation on La (defined in (3.2)) by v.

(1) For every u ∈ Lb and every antipodal pair (p, q) in La, we have

v[p ∧ q, q]d(p, u) + v[p ∧ q, p]d(q, u) ≥ (v[p ∧ q, p] + v[p ∧ q, q])d(p ∧ q, u).

(2) For every u ∈ Lb and every 2-bounded pair (p, q) in La, we have

d(p, u) + d(q, u) ≥ d(p ∧ q, u) + d(p ∨ q, u).

(2′) For every p, q ∈ La with p ↙ q and every p′, q′ ∈ Lb with p′ ↙ q′, we have

d(q, p′) + d(p, q′) ≥ d(q, q′) + d(p, p′).

Note that (2) and (2′) correspond to the submodularity condition for 2-bounded pairs.
(1). We may assume that p∧q = a (by considering Lp∧q). Take a median m of p, q, u.

Then m ∈ I(p, q). By Lemma 2.8, there are p′ ∈ [a, p] and q′ ∈ [a, q] with m = p′∨q′. Let
D := d(m,u). Then we have d(p, u) = v[p′, p] + v(q′) +D, d(q, u) = v[q′, q] + v(p′) +D,
and d(a, u) = v(p′) + v(q′) +D. Hence we get

v(q)d(p, u) + v(p)d(q, u)− (v(p) + v(q))d(a, u)

= {v(q′) + v[q′, q]}{v[p′, p] + v(q′) +D}+ {v(p′) + v[p′, p]}{v[q′, q] + v(p′) +D}
−{v(p′) + v(q′) + v[p′, p] + v[q′, q]}{v(p′) + v(q′) +D}

= 2v[q′, q]v[p′, p]− 2v(p′)v(q′).

This must be nonnegative since (p, q) is antipodal.
(2). Recall the notion of gated sets (Section 2.2); [p ∧ q, p ∨ q] is convex, and is

gated (Lemmas 2.4 and 2.13). Let m := Pr[p∧q,p∨q](u), and D := d(m,u). Then we have
d(x, u) = d(x,m)+D for x ∈ {p, q, p∧q, p∨q}. There are three cases: (i) m ∈ {p, q}, (ii)
m ∈ {p∧q, p∨q}, and (iii)m ̸∈ {p, q, p∧q, p∨q}. Note that (p, p∧q, q, p∨q) forms a 4-cycle
since (p, q) is 2-bounded. Let α := v[p, p∨q] = v[p∧q, q] and β := v[p∧q, p] = v[q, p∨q].
Consider the case (i). Then {d(p ∧ q,m), d(p ∨ q,m)} = {α, β} and {d(p,m), d(q,m)} =
{0, α+ β}. Hence d(p, u) + d(q, u)− d(p ∧ q, u)− d(p ∨ q, u) = 0. Consider the case (ii).
Then {d(p,m), d(q,m)} = {α, β}, and {d(p ∧ q,m), d(p ∨ q,m)} = {0, α + β}. Hence
d(p, u) + d(q, u) − d(p ∧ q, u) − d(p ∨ q, u) = 0. Consider the case (iii). Then m is a
common neighbor of p∧ q, p∨ q different from p, q. Hence all edges in [p∧ q, p∨ q] belong
to the same orbit. Thus α = β, d(p,m) = d(q,m) = 2α, d(p ∧ q,m) = d(p ∨ q,m) = α,
and d(p, u) + d(q, u)− d(p ∧ q, u)− d(p ∨ q, u) = 2α > 0.

(2′). Consider Pr{p′,q′}({p, q}). Let D := d({p, q}, {p′, q′}). There are two cases:
(i) |Pr{p′,q′}({p, q})| = 1 and (ii) {p′, q′} = Pr{p′,q′}({p, q}). Consider the case (i). For
u, v, u′, v′ with {u, v} = {p, q} and {u′, v′} = {p′, q′}, we have d(v, u′) = D, d(u, u′) = D+
h(uv), d(v, v′) = D+h(u′v′), and d(u, v′) = D+h(uv)+h(u′v′). Thus d(u, u′)+d(v, v′) =
d(u, v′)+ d(v, u′), and the equality holds in (2′). Consider the case (ii). By Theorem 2.3
and Lemma 2.10, we have p′ = Pr{p′,q′}(p), q

′ = Pr{p′,q′}(q), d(p, p
′) = d(q, q′) = D, and

that pq and p′q′ must belong to the same orbit Q. Then d(p, q′) = d(q, p′) = D + hQ.
Therefore (2′) holds.
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5.2 Optimality criterion and orbit-additivity

Let ρ be a location. A location ρ′ is said to be a forward neighbor of ρ if ρ(x) ⊑o ρ′(x)
for all x ∈ X, and is said to be a backward neighbor of ρ if ρ′(x) ⊑o ρ(x) for all x ∈ X.
A forward or backward neighbor is simply called a neighbor. This terminology is due to
[19]. Regard ρ as a vertex in ΓX . By the definition, the set of forward (resp. backward)
neighbors of ρ is the product of L+

ρ(x)(Γx, ox) (resp. L−
ρ(x)(Γx, ox)) over x ∈ X, which

coincides with L+
ρ = L+

ρ (ΓX , oX) (resp. L−
ρ = L−

ρ (ΓX , oX)) by Lemma 3.13.
We need a sharper neighbor concept. Let Q be an orbit. A location ρ′ is called a

forward Q-neighbor of ρ if, for all x ∈ X, ρ(x) ⊑o ρ′(x) and every ascending path from
ρ(x) to ρ′(x) belongs to Q. Analogously, a location ρ′ is called a backward Q-neighbor
of ρ if, for all x ∈ X, ρ′(x) ⊑o ρ(x) and every ascending path from ρ′(x) to ρ(x) belongs
to Q. A forward or backward Q-neighbor is simply called a Q-neighbor. For an orbit
Q in Γ , the set of forward (resp. backward) Q-neighbors of ρ is denoted by L+

ρ,Q (resp.

L−
ρ,Q).
The main result in this section is the following optimality criterion, which has been

shown for some special cases of orientable modular graphs: trees by Kolen [31, Chapter
3], median graphs by Chepoi [12, p.11–12], and frames by Hirai [19, Section 4.1].

Theorem 5.4. Let Γ be an orientable modular graph with an admissible orientation o
and a positive orbit-invariant function h. For a location ρ the following conditions are
equivalent:

(1) ρ is optimal to Multifac[Γ, h;V, c].

(2) ρ is optimal to Multifac[Γ, 1;V, c].

(3) For every neighbor ρ′ of ρ, we have (c · dΓ,h)(ρ) ≤ (c · dΓ,h)(ρ′). That is

(c · dΓ,h)(ρ) = min{(c · dΓ,h)(ρ′) | ρ′ ∈ L+
ρ } = min{(c · dΓ,h)(ρ′) | ρ′ ∈ L−

ρ }.

(4) For every neighbor ρ′ of ρ, we have (c · dΓ,1)(ρ) ≤ (c · dΓ,1)(ρ′). That is

(c · dΓ,1)(ρ) = min{(c · dΓ,1)(ρ′) | ρ′ ∈ L+
ρ } = min{(c · dΓ,1)(ρ′) | ρ′ ∈ L−

ρ }.

(5) For every orbit Q and every Q-neighbor ρ′ of ρ, we have (c ·dΓ,1)(ρ) ≤ (c ·dΓ,1)(ρ′).
That is, for every orbit Q, we have

(c · dΓ,1)(ρ) = min{(c · dΓ,1)(ρ′) | ρ′ ∈ L+
ρ,Q} = min{(c · dΓ,1)(ρ′) | ρ′ ∈ L−

ρ,Q}.

Before the proof, we explain consequences of Theorem 5.4. The first consequence is
that in solving Multifac[Γ, h;V, c], we may replace h with the unit function, even when
h is nonnegative.

Theorem 5.5. For every nonnegative orbit-invariant function h, every optimal location
in Multifac[Γ, 1;V, c] is optimal to Multifac[Γ, h;V, c]

Proof. Let ρ be an optimal location for Multifac[Γ, 1;V, c]. Take an arbitrary positive
ϵ > 0. Consider the positive orbit invariant function h + ϵ1. By Theorem 5.4, ρ is
optimal to Multifac[Γ, h+ ϵ1;V, c] Hence, for an arbitrary location ρ′, we have

(c·dΓ,h)(ρ′)+ϵ(c·dΓ,1)(ρ′) = (c·dΓ,h+ϵ1)(ρ
′) ≥ (c·dΓ,h+ϵ1)(ρ) = (c·dΓ,h)(ρ)+ϵ(c·dΓ,1)(ρ).

Since ϵ > 0 was arbitrary, we have (c · dΓ,h)(ρ′) ≥ (c · dΓ,h)(ρ).
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The second consequence is the decomposition property of Multifac[Γ, h;V, c]. For
an orbit Q, consider the following problem on Γ/Q:

(5.1) Minimize (c · dΓ/Q,h)(ρ) over all ρ : V → VΓ/Q with ρ(s) = s/Q for s ∈ VΓ .

The optimal value of (5.1) is denoted by τQ(Γ, h;V, c), whereas the optimal value of the
original problem Multifac[Γ, h;V, c] is denoted by τ(Γ, h;V, c). Then we have

(5.2) τ(Γ, h;V, c) ≥
∑

Q:orbit

hQτQ(Γ, 1;V, c).

Indeed, for any optimal location ρ in Multifac[Γ, h;V, c], ρ/Q is feasible to (5.1), and
by (2.2) we have

(5.3) τ(Γ, h;V, c) = (c · dΓ,h)(ρ) =
∑

Q:orbit

hQ(c · dΓ,1)(ρ/Q) ≥
∑

Q:orbit

hQτQ(Γ, 1;V, c).

Note that problemsMultifac[Γ, h;V, c] and (5.1) can be considered for a possibly nonori-
entable modular graph, and the inequality relation (5.2) still holds; see [28]. A modular
graph Γ is said to be orbit-additive if (5.2) holds in equality. Karzanov [28, Section 6]
conjectured that every orientable modular graph is orbit-additive. We can solve this
conjecture affirmatively.

Theorem 5.6. Every orientable modular graph is orbit-additive.

Proof. Take an optimal solution ρ in Multifac[Γ, 1;V, c]. By Theorem 5.5, ρ is also op-
timal to Multifac[Γ, 1Q;V, c] for every orbit Q, where 1Q is the orbit-invariant function
taking 1 on Q and 0 on EΓ \Q. Here Multifac[Γ, 1Q;V, c] is equivalent to (5.1). Hence
the inequality in (5.3) holds in equality.

Remark 5.7. According to Theorem 5.1 and Lemma 4.8, the condition (3) (or (4))
in Theorem 5.4 can be checked by submodular function minimizations on the modu-
lar semilattices formed by forward and backward neighbors. Furthermore, one can see
that the condition (5) can also be checked submodular function minimizations on the
modular semilattices formed by forward and backward Q-neighbors for each Q. Some-
times checking (5) is easier than checking (3) (or (4)). For example, consider the case
where Γ is a median graph. Then one can see that (5) can be checked by minimum-cut
computations.

Remark 5.8. If problem (5.1) is solvable in (strongly) polynomial time for each orbit,
then by Theorem 5.6 we can evaluate τ in (strongly) polynomial time, and hence 0-
Ext[Γ ] is solvable in (strongly) polynomial time by the fixing technique as in the proof
of Theorem 4.13. As was suggested by Karzanov [28], this approach is applicable to
the case where each orbit graph of Γ is a frame. Then (5.1) is a 0-extension problem
on a frame, is solvable in strongly polynomial time, and hence 0-Ext[Γ ] is solvable in
strongly polynomial time; the (strong polytime) tractability of this class of orientable
modular graphs was conjectured by [28]. It should be noted that our proof of the main
theorem gives only a weakly polynomial time algorithm.

Proof of Theorem 5.4. (1) ⇔ (3) and (2) ⇔ (4) follow from Theorems 4.18 and 5.1.
(4) ⇒ (5) is obvious.
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(3) ⇒ (5). Suppose that ρ′ is a Q-neighbor of ρ. Then ρ′(x)/R = ρ(x)/R for orbit
R different from Q, and dΓ/Q,h = hQdΓ/Q,1. By (2.2) we have

0 ≤ (c · dΓ,h)(ρ′)− (c · dΓ,h)(ρ) =
∑

R:orbit

(c · dΓ/R,h)(ρ
′/R)− (c · dΓ/R,h)(ρ/R)

= (c · dΓ/Q,h)(ρ
′/Q)− (c · dΓ/Q,h)(ρ/Q)

= hQ
(
(c · dΓ/Q,1)(ρ

′/Q)− (c · dΓ/Q,1)(ρ/Q)
)

= hQ
∑

R:orbit

(c · dΓ/R,1)(ρ
′/R)− (c · dΓ/R,1)(ρ/R)

= hQ
(
(c · dΓ,1)(ρ′)− (c · dΓ,1)(ρ)

)
.

(5) ⇒ (3) and (5) ⇒ (4). Let ρ′ be a forward neighbor of ρ. For each orbit Q, let
Q+

ρ(x) be the set of edges e ∈ Q with both ends belonging to L+
ρ(x). Then Q+

ρ(x) is an

orbit-union in L+
ρ(x). Recall notions in Section 2.4. We can define a forward Q-neighbor

ρ′|Q of ρ by
(ρ′|Q)(x) := ρ′(x)|Q+

ρ(x) (x ∈ X).

In the case where ρ′ is a backward neighbor of ρ, we define a backward Q-neighbor
ρ′|Q analogously, by considering L−

ρ(x). Then (5) ⇒ (3) and (5) ⇒ (4) follow from the
following decomposition property.

Lemma 5.9. For a location ρ and a neighbor ρ′ of ρ, we have

dΓ,h ◦ ρ′ − dΓ,h ◦ ρ =
∑

Q:orbit

hQ
(
dΓ/Q,1 ◦ (ρ′/Q)− dΓ/Q,1 ◦ (ρ/Q)

)
(5.4)

=
∑

Q:orbit

hQ
(
dΓ,1 ◦ (ρ′|Q)− dΓ,1 ◦ ρ

)
.

Proof. The first equality follows from (2.2). For two orbits Q,R, we observe from the
definitions that

(ρ′|Q)/R =

{
ρ′/Q if Q = R,
ρ/R otherwise.

Indeed, if Q ̸= R, then ρ′(x)|Q and ρ(x) are joined by EΓ \R, and hence (ρ′(x)|Q)/R =
ρ(x)/R. If Q = R, then ρ′(x) and ρ′(x)|Q are joined by EΓ \ Q, and hence ρ′(x)/Q =
(ρ(x)′|Q)/Q. Therefore we have

dΓ,1 ◦ (ρ′|Q)− dΓ,1 ◦ ρ =
∑

R:orbit

dΓ/R,1 ◦ (ρ′|Q/R)− dΓ/R,1 ◦ (ρ/R)

= dΓ/Q,1 ◦ (ρ′/Q)− dΓ/Q,1 ◦ (ρ/Q).

This formula implies the second equality of (5.4).

5.3 Proof of the main theorem (Theorem 1.6)

In this section, we complete the proof of the main theorem (Theorem 1.6) stating that
0-Ext[Γ ] for every orientable modular graph Γ can be solved in polynomial time. Now
we know that 0-Ext[Γ ] is a problem of minimizing the sum of L-convex functions of
arity 2. Hence, for every cost c :

(
V
2

)
→ Q+, every location ρ, and sign σ ∈ {−,+},

(c · dΓ,1) is the sum of arity-2 submodular functions on Lσ
ρ . By Theorem 4.13, we can

minimize (c · dΓ,1) over Lσ
ρ in polynomial time. Therefore we can assume that we have

a descent oracle, an oracle that returns an optimal solution of this (local) problem.
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By the steepest descent algorithm, we can obtain a global optimal solution. As men-
tioned already, we do not know whether the number of descent steps is polynomially
bounded. Fortunately, in the case of multifacility location functions, a cost-scaling ap-
proach gives a weakly polynomial bound on the number of descent steps. Now the main
theorem (Theorem 1.6) follows from the following.

Proposition 5.10. Suppose that c is integer-valued. Multifac[Γ, 1;V, c] can be solved
with O(|V |2 diamΓ logC) calls of the descent oracle, where C := max{c(xy) | xy ∈

(
V
2

)
}

and diamΓ denotes the diameter of Γ .

Proof. Let ⌊c/2⌋ :
(
V
2

)
→ Z+ be defined by ⌊c/2⌋(xy) := ⌊c(xy)/2⌋. We show:

(5.5) For an optimal location ρ in Multifac[Γ, 1;V, ⌊c/2⌋], we have

(c · dΓ,1)(ρ)− τ(Γ, 1;V, c) ≤ |V |2 diamΓ.

If this is true, then the number of the descent steps from an initial starting point ρ
is bounded by |V |2 diamΓ . Consequently, by recursive scaling, we obtain an optimal
solution for Multifac[Γ, 1;V, c] in O(|V |2 diamΓ logC) descent steps.

To show (5.5), take an optimal location ρ in Multifac[Γ, 1;V, ⌊c/2⌋], and let ϵ :=
2⌊c/2⌋ − c. Then ϵ(xy) ∈ {0,−1}. Take an optimal location ρ∗ in Multifac[Γ, 1;V, c].
Then τ(Γ, 1;V, c) = (c · dΓ,1)(ρ∗). Thus we have

(c · dΓ,1)(ρ)− (c · dΓ,1)(ρ∗) = ((2⌊c/2⌋ · dΓ,1)(ρ)− (2⌊c/2⌋ · dΓ,1)(ρ∗))

+
∑
xy

ϵ(xy) (dΓ,1(ρ
∗(x), ρ∗(y))− dΓ,1(ρ(x), ρ(y))) .

Here the first term on the right hand side is at most zero since ρ is an optimal location
in Multifac[Γ, 1;V, 2⌊c/2⌋] and the second term is at most |V |2 diamΓ .

5.4 Minimum 0-extension problems for metrics

Let µ be a metric on a finite set S (not necessarily a graph metric). We can natu-
rally consider the minimum 0-extension problem 0-Ext[µ] for a general µ formulated
as: Given a set V ⊇ S and c :

(
V
2

)
→ Q+, find a 0-extension (V, d) of (S, µ) with∑

xy c(xy)d(x, y) minimum. Metric µ is said to be modular if (S, µ) is a modular metric
space (see Section 2). Let Hµ be the graph on the vertex set S with edge set EHµ given
as: xy ∈ EHµ ⇔ there is no z ∈ S \ {x, y} with µ(x, z) + µ(z, y) = µ(x, y). Hµ is called
the support graph of µ. Karzanov [29] extended the hardness result (Theorem 1.5) to
the following.

Theorem 5.11 ([29]). If µ is not modular or Hµ is not orientable, then 0-Ext[µ] is
NP-hard.

We can also consider LP-relaxation Ext[µ] obtained by relaxing 0-extensions into
extensions in 0-Ext[µ]. Extending Theorem 1.3, Bandelt, Chepoi, and Karzanov [4]
proved that Ext[µ] is exact if and only if µ is modular and Hµ is frame.

Our framework covers 0-Ext[µ] for a metric µ such that µ is modular and Hµ is
orientable. Indeed µ induces the edge-length µ̄ on Hµ by µ̄(pq) = µ(p, q) (pq ∈ EHµ).
From the definition of the support graph Hµ, we have µ = dHµ,µ̄. Moreover, it was
shown in [2] (see [28, Section 2]) that

(5.6) if µ is modular, then Hµ is a modular graph, and µ̄ is orbit-invariant.
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Hence we can apply the argument in Section 5 to Multifac[Hµ, µ̄;V, c] to obtain results
for 0-Ext[µ]. By Theorems 1.6 and 5.4, we obtain the converse of Theorem 5.11, which
completes the classification of those metrics for which 0-Ext[µ] is tractable.

Theorem 5.12. If µ is modular and Hµ is orientable, then 0-Ext[µ] is solvable in
polynomial time.
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