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Abstract

Records of time-stamped social interactions between pairs of indi-
viduals (e.g., face-to-face conversations, e-mail exchanges, and phone
calls) constitute a so-called temporal network. A remarkable difference
between temporal networks and conventional static networks is that
time-stamped events rather than links are the unit elements generating
the collective behavior of nodes. We propose an importance measure
for single interaction events. By generalizing the concept of the ad-
vance of event proposed by [Kossinets G, Kleinberg J and Watts D J
2008 Proceeding of the 14th ACM SIGKDD International conference
on knowledge discovery and data mining p 435], we propose that an
event is central when it carries new information about others to the
two nodes involved in the event. We find that the proposed measure
properly quantifies the importance of events in connecting nodes along
time-ordered paths. Because of strong heterogeneity in the importance
of events present in real data, a small fraction of highly important
events is necessary and sufficient to sustain the connectivity of tem-
poral networks. Nevertheless, in contrast to the behavior of scale-free
networks against link removal, this property mainly results from bursty
activity patterns and not heterogeneous degree distributions.

1 Introduction

Development of sensor technologies and the prevalence of electronic commu-
nication services provide us with massive amount on data of human com-
munication behavior, including face-to-face conversations [1–3], e-mail ex-
changes [4–6], phone calls [7–9], and message exchanges and other types
of interactions in various online forums [10–12]. Such data are collectively
referred to as temporal networks, where time-stamped events, rather than
static links, are assumed between pairs of nodes (i.e., individuals) [13]. Re-
cently proposed methods of analysis for temporal networks include exten-
sions of the methods used for static networks (e.g., distance [14–19], node
centrality [18, 20, 21], community structure [22–24], motifs [25], and compo-
nents [26]) and specialized methods for temporal networks [1, 27, 28].
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In this study, we propose an importance measure for interaction events in
temporal networks. In general, a pair of nodes may interact multiple times
if the recording period is sufficiently long, and some events may be more
important than others occurring between the same node pair. We focus
on the importance of events in the sense of the amount of new information
about other nodes that can be exchanged between the pair of nodes through
an event.

We develop this new method of analyzing temporal networks for two
reasons. First, the importance of nodes and links may vary over time [15–
18, 20, 21]. For example, the importance of many nodes in a social network
may suddenly change when a social incident occurs [29, 30]. Professional ath-
letes can be regarded as nodes in a directed temporal network, and changes
in the performance over the career is interpreted as the fluctuation of the
node importance [31]. In this context, we will quantify the time-dependent
importance of a link by defining an importance measure for events.

Second, from a practical standpoint, it can be easier to manipulate events
rather than nodes or links for enhancing a network’s performance. A primary
purpose in studying node and link centrality measures for static networks is
to improve or optimize networks. For example, it is efficient to remove ap-
positely defined high centrality nodes to disintegrate a network and protect
it from the potential spread of disease [32–34]. Similarly, removal of high
centrality links has been used to inspect the tolerance of a network against
link failure [7, 33, 35, 36]. If we can realize a desirable function of temporal
networks by manipulating (e.g., deleting or enhancing) a small number of
single events, it may be less costly than achieving the same outcome by ma-
nipulating the nodes or links throughout the entire period. Anecdotally, for
example, it is easier to ask a pair of individuals to stay apart for one day
than to do so for the entire period.

We apply the proposed measure to real data sets and find that event im-
portance adequately represents the centrality of each event in the sense that
the connectivity of the remaining temporal networks drastically decreases if
we remove a small fraction of events of large importance. We also find that
event importance is broadly distributed, which implies that there is a small
number of very important events and that most events are unimportant.

2 Data and Methods

2.1 Temporal networks and vector clock

A temporal network [13] is defined as a series of events. An event is composed
of a particular time and pair of nodes, which represents an interaction (e.g.,
conversation, email, or phone call) between the two nodes. Although we
assume that the events are undirected, extending our results to the case of
directed interactions is straightforward. The events are assumed to occur in
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discrete time, which reflects the time resolution of observation (e.g., 1 min).
The set of events at time t, where 1 ≤ t ≤ tmax and tmax is the time of the
last event in the data set, constitutes a snapshot, that is, an unweighted
network G(t), where the links connect the node pairs interacting at time
t. We neglect the information about the number of events between each
node pair in a time unit such that there are no multiple links in G(t). If we
disregard the temporal information in the data, we can aggregate G(t) into
a static weighted network, where the weight of a link is the total number of
events on the link.

In temporal networks, a temporal path from node i to j is defined as a
time-ordered event sequence satisfying the following two conditions [14, 19,
37]: (i) it begins with an event involving i and ends with an event involving
j and (ii) one can trace a path from i to j by using the links in the order of
the event sequence. For example, i and j are connected by a temporal path
if an event between i and another node k occurs at time t1 and an event
between k and j occurs at time t2, where t2 > t1. There may be no temporal
path from i to j even if the two nodes are connected on the aggregated static
network.

The vector clock of node i is defined by φi(t) =
(
φ1

i (t), φ
2
i (t), . . . , φ

N
i (t)

)
,

where φ`
i(t) (1 ≤ i, ` ≤ N) represents the latest time among the start times

of the temporal paths from ` to i that terminates by time t [38, 39]. In
other words, there is no temporal path that starts from node ` after time
φ`

i(t) and reaches node i by time t. The latency b`
i(t) ≡ t − φ`

i(t) represents
the age of node i’s latest information about node ` at time t. In general,
b`
i(t) 6= bi

`(t). For a given event sequence, we can calculate φi(t) with an
efficient algorithm [38, 39]. The algorithm reads the events one by one in
chronological order and updates φi(t) of the two nodes involved in each
event.

Our b`
i(t) is defined backward in that it is based on the events that

occurred before time t. In contrast, the authors of [19] used the forward
version of the temporal path length; their definition was based on the events
that occurred after time t. Although the two definitions are different, the
time average of the temporal path length for any given nodes i and ` is equal
in the two definitions.

2.2 Importance of event

On the basis of the vector clock (Sec. 2.1), Kossinets and colleagues defined
the advance of event [40]. The advance for node i caused by an event with
node j at time t, denoted by aj

i (t), is given by

aj
i (t) =

∑
` 6=i

(
φ`

i(t) − φ`
i(t − 1)

)
, (1)
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which represents the updated amount of the latest information about other
nodes (i.e., `) summed over `. It should be noted that the right-hand side
of Eq. (1) implicitly depends on j; φ`

i(t)− φ`
i(t− 1) is positive if and only if

the event involving i and j at time t conveys updated information about `
to i.

We generalize bj
i (t) and aj

i (t) to the case in which a node can be involved
in multiple events in a single time unit as follows. We set φj

i (0) = −∞ for
all i 6= j and φi

i(0) = 0 for all i. For every node i, we recursively define

φ`
i(t) = max

j∈Nh
i

[
φ`

j(t−)
]

(1 ≤ ` ≤ N), (2)

where N h
i is the set of nodes whose distance to node i in G(t) is at most h

and

φ`
j(t−) =

{
t (` = j),
φ`

j(t − 1) (1 ≤ ` ≤ N, ` 6= j). (3)

When node i is not involved in any event at time t, we set N h
i = {i} such that

Eqs. (2) and (3) imply φ`
i(t) = φ`

i(t−1) (` 6= i). Then, we set b`
i(t) = t−φ`

i(t)
(1 ≤ ` ≤ N) as before. The positive integer h, called the horizon in [16, 17],
specifies the range of information spreading in a time unit.

When node i is involved in multiple events in a single time unit, we de-
termine the contribution of each neighbor to the advance of the information
about others as follows. First, for given nodes i and `, we identify the nodes
in N h

i that give the maximum value of the right-hand side of Eq. (2). Such
nodes have the latest information about node ` among the nodes in N h

i .
Second, we determine the so-called contributing neighbors of node i. It is
defined as node i’s neighbors on G(t) such that they are on a shortest path
between i and a node in N h

i having the latest information about node `.
We assume that all contributing neighbors equally contribute to infor-

mation passing from node ` to node i. We define the advance of node i by
contributing neighbor j by

aj
i (t) =

∑
`:Mi(`;t)3j

∆φ`
i(t)

|Mi(`; t)|
, (4)

where Mi(`; t) is the set of i’s contributing neighbors with regard to the
information about node `, and

∆φ`
i(t) =


0 (φ`

i(t − 1) = −∞ and φ`
i(t) = −∞),

φ`
i(t) (φ`

i(t − 1) = −∞ and φ`
i(t) 6= −∞),

φ`
i(t) − φ`

i(t − 1) (otherwise).
(5)

In the first case on the right-hand side of Eq. (5), there is no temporal path
from node ` to node i by time t. In the second case, the temporal path from
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Figure 1: Schematic of a snapshot of a temporal network.

node ` reaches node i for the first time at t. In the third case, the temporal
path from node ` to node i established before t is renewed at t.

For expository purposes, we set h = 2 and focus on node i in the snapshot
G(t) shown in Fig. 1. First, if k1 is the only node in N 2

i that has the
latest information about ` at t, j1 and j2 are i’s contributing neighbors.
Therefore, Mi(`; t) = {j1, j2} such that j1 and j2 contribute ∆φ`

i(t)/2 to
aj1

i (t) and aj2
i (t), respectively. Second, if multiple nodes in N h

i have the
latest information about ` at t, we assume that only the nodes closest to i
convey the information. If j2 and k1, for example, have the latest information
about ` at t, j2 but not k1 conveys the information such that j2 is node i’s
sole contributing neighbor. Therefore, Mi(`; t) = {j2} and j2 contributes
∆φ`

i(t) to aj2
i (t), and aj1

i (t) does not change. Third, suppose that only k1

and k2 have the latest information about ` at t. Then, we assume that
j1 and j2 are i’s contributing neighbors and that the two nodes contribute
equally to the advance, although j1 is on the shortest path from k1 to i,
whereas j2 is on the shortest paths from both k1 and k2 to i. Therefore,
Mi(`; t) = {j1, j2} such that j1 and j2 contribute ∆φ`

i(t)/2 to aj1
i (t) and

aj2
i (t), respectively.

Even though the events are defined as undirected, aj
i (t) 6= ai

j(t) in gen-
eral. We define the importance of the event between nodes i and j at time
t by

Iij(t) =
aj

i (t) + ai
j(t)

2
. (6)

2.3 Empirical data sets

We measure Iij(t) for three real data sets. All the data sets were obtained
from the observation of face-to-face interactions. Basic statistics of the data
sets are summarized in Tab. 1. Two data sets are the interaction logs be-
tween office workers in two different Japanese companies; they were collected
by World Signal Center, Hitachi, Ltd., Japan [1, 41, 42]. We call them Of-
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Table 1: Statistics for the three data sets.
Office1 Office2 Conference

Number of individuals (N) 163 211 113
Total number of events 118,456 274,308 20,818
Observation period (day) 73 120 3
Time resolution 1 min 1 min 20 sec

fice1 and Office2, respectively, although they were called D1 and D2 in our
previous paper [1]. The numbers of events in Office1 and Office2 are larger
than those in D1 and D2, because we merged repeated events between the
same node pair in consecutive time bins into one event for D1 and D2 [1] but
did not do so for Office1 and Office2 data sets. The third data set (called
Conference) is the interaction record between the attendees at a scientific
conference, collected by the SocioPatterns collaboration [3].

3 Results

In this section, we set h = N − 1, which corresponds to the situation in
which information instantaneously spreads to all nodes in each connected
component in a snapshot.

3.1 Heterogeneity in the importance of events

The complementary cumulative distributions of Iij(t) (i.e., Prob (Iij(t) ≥ I))
for the three data sets are shown in Fig. 2. The Iij(t) values are broadly
distributed for all the data sets, which implies that a small fraction of events
has large importance values and most events have small importance values.

The advance of event is strongly asymmetric. For Office1, Office2 and
Conference data sets, the frequency of events having specified max

[
aj

i (t), a
i
j(t)

]
and min

[
aj

i (t), a
i
j(t)

]
values are shown in Fig. 3. If the advance were sym-

metric, that is aj
i (t) = ai

j(t), the frequency would be concentrated on the
diagonal. However, Fig. 3 suggests that most events have very different
values of aj

i (t) and ai
j(t).

3.2 Event removal tests

To examine if Iij(t) represents the importance of events in bridging temporal
paths, we investigate the connectivity of the temporal networks after we
remove a fraction of events. The procedure of an event removal test is
similar to that of link removal in static networks [7, 33, 35, 36]. We remove
events according to the (i) ascending order of the importance, (ii) descending
order of the importance, (iii) ascending order of the link weight (i.e., the
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Figure 2: Complementary cumulative distribution of the importance of
event. (a) Office1 and Office2 data sets. (b) Conference data set.
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and (c) Conference data sets. The solid lines represent the diagonal on which
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total number of events between the node pair), (iv) descending order of
the link weight, and (v) random order. In schemes (i) and (ii), we do not
recalculate Iij(t) after removing each event. In schemes (iii) and (iv), we
remove a randomly selected event on the link with the smallest and largest
link weight, respectively, in each time step. Then, we recalculate the weight
of the link from which an event is removed and repeat the removal procedure.
If Iij(t) is an adequate measure of the importance of events, the connectivity
of temporal networks would decrease more upon the removal of a specified
number of events with large Iij(t) (i.e., scheme (ii)) than with small Iij(t)
(i.e., scheme (i)).

We use two quantities to measure the connectivity of the remaining tem-
poral networks. First, we define the reachability ratio f by the fraction of
ordered pairs (i, j) (i 6= j) such that there is at least one temporal path from
i to j [37]. Second, we define the network efficiency E [16] by

E =
1

N(N − 1)

∑
(i,j), i 6=j

1

b
j
i

, (7)

where b
j
i denotes the time average of bj

i (t). A problem with time averaging
is that bj

i (t) is indefinite until the first temporal path from j reaches i.
We address this problem by virtually replicating the last temporal path
between each node pair immediately before t = 0. This boundary condition
is a variant of that proposed in a recent study [19]. When no node pair is
connected by a temporal path, we obtain b

j
i = ∞ for any 1 ≤ i, j ≤ N . In

this case, E takes the minimum value of zero. E is positive but small when
many pairs of nodes are connected via long temporal paths (i.e., a large b

j
i ).

In contrast, E is large when many pairs of nodes are connected via short
temporal paths. We use the two measures because f is more intuitive than
E and E is finer than f .

The dependence of f and E on the fraction of removed events is shown
in Fig. 4 for Office1, Office2, and Conference data sets. The values of f and
E are normalized by the values in the case of no event removal in this and
all of the following figures. The results for the three data sets are similar.
Figure 4 indicates that removing 80% of the events in the ascending order
of Iij(t) has little effect on f and E and that removing 20% of the events
in the descending order of Iij(t) drastically decreases f and E. Therefore,
Iij(t) adequately represents the importance of event in the sense that a small
fraction of events with large Iij(t) values plays a crucial role in sustaining
temporal paths.

Of the five removal schemes, event removal in the ascending order of
the link weight yields the largest decrease of f and E at a small fraction
of removed events for all the data sets. This result is derived from the
so-called “strength of weak ties” property [43] of the aggregated networks
corresponding to these three temporal networks. The strength of weak ties
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Figure 4: Results of the event removal tests. (a), (c), (e) Reachability ratio
(i.e., f). (b), (d), (f) Network efficiency (i.e., E). (a), (b) Office1, (c), (d)
Office2, and (e), (f) Conference data sets.
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Figure 5: Averaged neighborhood overlap 〈O〉w plotted against the fraction
of links with weights smaller than or equal to w for Conference data set.

property claims that weak links (i.e., links with small weights) bridge the
communities (i.e., dense subgraphs) that mainly contain strong links (i.e.,
links with large weights). Removing events on weak links tends to fragment
the aggregated network into disconnected components such that temporal
paths between any two nodes in different components are lost.

We confirmed this property for Office1 and Office2 data sets in our pre-
vious study [1]. We found that the same property holds true for Conference
data set, by showing a positive correlation between the neighborhood over-
lap [7] and the link weight, which is the number of events between the node
pair in the entire recording period. The neighborhood overlap of link (i, j),
denoted by Oij , is defined by

Oij =
|Ni ∩Nj |

|Ni ∪Nj | − 2
, (8)

where Ni is the set of node i’s neighbors in the aggregated network, and
|·| is the number of elements in the set. Oij takes the minimum value
zero when nodes i and j do not share any neighbor and the maximum
value unity when nodes i and j share all the neighbors. If a network has
the strength of weak ties property, links with large (small) weights tend to
connect intracommunity (intercommunity) node pairs and hence have large
(small) Oij . In Fig. 5, for Conference data set, Oij averaged over the links
with wij < w, denoted by 〈O〉w, is plotted against the fraction of links with
wij < w, denoted by Pcum(w). Because 〈O〉w monotonically increases with
Pcum(w), the aggregated network of Conference data set has the strength of
weak ties property.

A possible criticism is that it is not necessary to use Iij(t) when evaluat-
ing the importance of events, because removing events on weak links most
efficiently makes the temporal network disconnected. However, Iij(t) seems
to be a better measure because events with large Iij(t) are necessary and
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Figure 6: Comparison of the event removal tests on the basis of the impor-
tance of event and the length of the latest IEI before the event. We used
Office1 data set. (a) Reachability ratio. (b) Network efficiency.

sufficient for sustaining temporal paths. The removal of a small fraction
(e.g., 20%) of events with the largest Iij(t) drastically reduces E, and the
same set of events sustains the temporal paths such that the values of f
and E are almost the same as those for the original temporal network. In
contrast, removing a small fraction of events on weak links admittedly frag-
ments the networks as shown in Fig. 4. However, the same set of events
does not sustain efficient temporal paths; 40% of events on weak links are
needed to recover efficient temporal paths (Figs. 4(b), 4(d), and 4(f)). We
also confirmed that the Spearman’s rank correlation between Iij(t) averaged
over all the events on a link and the link weight is only weakly negative; the
coefficient values are equal to −0.4078, −0.2370, and −0.3891 for Office1,
Office2, and Conference data sets, respectively.

Proxy quantities to Iij(t) other than that based on weak links may exist.
An event that occurs after a long interevent interval (IEI) since the last
event between the same node pair is expected to have large Iij(t), because i
(j) has not obtained up-to-date information that j (i) may have about itself
and others for a long time. We calculate the Spearman’s rank correlation
coefficient between Iij(t) and (i) the length of the IEI since the last event
between the node pair, (ii) the number of events in the entire temporal
network within the last IEI, (iii) the number of events involving either i
or j within the last IEI, and (iv) the number of nodes that interact with
i or j within the last IEI. The correlation coefficients for Office1 data set
are equal to 0.819, 0.701, 0.701, and 0.631, for cases (i), (ii), (iii), and (iv),
respectively. The length of the last IEI approximates Iij(t) most accurately
among the four. The results for the event removal test based on the order
of the last IEI are similar to those for the event removal based on Iij(t).

We should note that the results shown in the previous and this sections
are qualitatively the same for the different value of h. In Fig. 7, we sum-
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Figure 7: Results with h = 1 for Office1 data set. (a) Complementary
cumulative distribution of the importance of event. (b) Asymmetry in the
advance of events. (c) Reachability ratio. (d) Network efficiency.

marize the results for Office1 data set with h = 1, that is the other extreme
case in which the information is propagated by only one hop in a single
time unit. We observed the long-tailed distribution of the importance value
(Fig. 7(a)), the asymmetry in the advance of events (Fig. 7(b)), and the
robustness property against the event removal (Figs. 7(c) and 7(d)).

3.3 Event removal tests for randomized temporal networks

We showed that a small fraction of events with the largest Iij(t) can sustain
efficient temporal paths (Fig. 4), which we call the robustness property. In
this section, we seek the origins of the robustness property by carrying out
event removal tests for randomized temporal networks.

We randomize the original temporal networks in two ways. First, we
randomly shuffle the IEIs for each link while keeping the times of the first
and last events. This shuffling conserves the distribution of the IEI and
the structure of the aggregated network and eliminates all other temporal
structure of the IEIs. Second, we generate so-called Poissonized IEIs by
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Table 2: Properties of temporal networks that are conserved and dismissed
by the different randomizations.

√
and − indicate conserved and dismissed,

respectively.
Shuffled IEIs Poissonized IEIs Rewiring

Burstiness
√

−
√

Network structure
√ √

−
Temporal correlation − −

√

Link weight distribution
√ √ √

reassigning to each event a random event time that is distributed uniformly
and independently on [0, tmax], where tmax is the time of the last event
in the original temporal network. The event sequence on each link then
independently obeys the Poisson process such that the temporal structure of
the IEIs including the IEI distribution is destroyed, although the aggregated
network is unaffected. Properties of temporal network that are conserved
and dismissed as a result of different randomization methods are summarized
in Tab. 2.

For Office1 data set, the f and E values for the temporal networks gen-
erated by the shuffled IEIs and the Poissonized IEIs are shown in Figs. 8(a),
8(b), 8(c) and 8(d). We obtain qualitatively the same results for Office2
and Conference data sets (Figs. 9 and 10, respectively). The results for the
shuffled IEIs (Figs. 8(a) and 8(b)) are qualitatively the same as those for the
original temporal network (Figs. 4(a) and 4(b)). In particular, E changes
little when approximately 80% of events with the smallest Iij(t) values are
removed. For Office1 data set, the results of the E values for the Poissonized
IEIs (Fig. 8(d)) are considerably different from those for both the original
temporal network (Fig. 4(b)) and the shuffled IEIs (Fig. 8(b)). This differ-
ence caused by the different randomizations are also observed for Office2 and
Conference data sets. With the Poissonized IEIs, E decreases considerably
upon the removal of a relatively small fraction of events with the smallest
Iij(t). Therefore, a long-tailed IEI distribution is a necessary condition for
the robustness property. As a remark, the values of f for the original tem-
poral network (Fig. 4(a)), the shuffled IEIs (Fig. 8(a)), and the Poissonized
IEIs (Fig. 8(c)) are similar, probably because f is not very sensitive to the
IEI distribution.
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Figure 8: (a), (c), (e) Reachability ratio and (b), (d), (f) network efficiency
for the randomized temporal networks generated from Office1 data set. We
generated the randomized temporal networks by (a), (b) shuffling the IEIs,
(c), (d) Poissonizing the IEIs, and (e), (f) randomly rewiring the links.
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Figure 9: Results of the event removal tests for the randomized temporal
networks generated from Office2 data set. (a), (c), (e) Reachability ratio
and (b), (d), (f) network efficiency. We generated the randomized temporal
networks by (a), (b) shuffling the IEIs, (c), (d) Poissonizing the IEIs, and
(e), (f) randomly rewiring the links.
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These results lead us to hypothesize that long-tailed IEI distributions
rather than the structure of aggregated networks, such as a heterogeneous
degree distribution, primarily contributes to the robustness property. There-
fore, we implement a third randomization scheme in which we randomly
rewire links in the aggregated network while keeping the event sequence on
each link. If the generated network is disconnected as a static network, we
discard the realization and redo the rewiring. This randomization eliminates
the properties of aggregated networks, such as the heterogeneous degree dis-
tribution, community structure, and the strength of weak ties property. The
rewiring randomization conserves the IEI distribution on each link and the
distribution of the link weight (Tab. 2). For Office1 data set, the results
of the event removal tests for this randomization (Figs. 8(e) and 8(f)) are
similar to those for the original temporal network (Figs. 4(a) and 4(b)) and
those for the shuffled IEIs (Figs. 8(a) and 8(b)). The results are qualitatively
the same for Office2 and Conference data sets. Therefore, the structure of
the aggregated network has little effect on the robustness property.

The results for the two types of randomized temporal networks, i.e.,
shuffling the IEIs (Figs. 8(a) and 8(b)) and randomly rewiring (Figs. 8(e) and
8(f)), are similar to those for the original temporal network (Figs. 4(a) and
4(b)), but both types of randomization simultaneously conserve the long-
tailed IEI distribution and the distribution of the link weight. To investigate
the sole contribution of the long-tailed IEI distribution, we carry out the
following event removal tests for temporal networks generated as follows.
First, we generate a regular random graph with N = 163 nodes (the same
as Office1) and degree 26 (close to the average degree of Office1), by using
the configuration model [45, 46]. Second, we place an event sequence on
each link such that the IEIs on each link are independently drawn from the
distribution p(τ). We set the number of events on each link to 60, which is
also similar to the average for Office1. We generate the so-called template
IEI sequence composed of 60−1 = 59 IEIs whose length independently obeys
a long-tailed distribution given by p(τ) ∝ τ−1 exp(−τ/1000) [47]. Then,
we assign to each link an initial event time t0 and a sequence of the IEIs
generated by randomly shuffling the template IEI sequence. For each link,
t0 is independently drawn from the uniform distribution on [0, 100]. Each
link has the same number of events in the generated network. It should be
noted that a similar algorithm for generating temporal networks based on
IEIs on nodes, not links, was recently proposed [48].

To generate the temporal network with the exponential IEI distribution
on the regular random graph, we randomized the event times in the temporal
network with the long-tailed IEI distribution. In other words, we generate
a temporal network according to the procedure described above and reas-
sign to each event a random event time that is distributed uniformly and
independently on [0, tmax], where tmax is the time of the last event in the
entire temporal network. The aggregated network of the generated temporal
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Figure 10: Results of the event removal tests for the randomized temporal
networks generated from Conference data set. (a), (c), (e) Reachability ratio
and (b), (d), (f) network efficiency. We generated the randomized temporal
networks by (a), (b) shuffling the IEIs, (c), (d) Poissonizing the IEIs, and
(e), (f) randomly rewiring the links. See the legend of Fig. 9(a) for the
description of the symbols.
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Figure 11: Network efficiency for the temporal networks built on the regular
random graph. (a) Long-tailed and (b) exponential IEI distributions.

network is devoid of a heterogenous distribution of link weight.
In Fig. 11(a), we plot E for the long-tailed IEI distribution, that is,

p(τ) ∝ τ−1 exp(−τ/1000), mimicking statistics observed in human commu-
nication behavior [9, 44]. With the long-tailed p(τ), the value of E changes
little upon the removal of the 30% of events with the smallest Iij(t) val-
ues. In contrast, for the exponential IEI distribution, E decreases upon
even a small fraction of removed events irrespectively of the scheme of event
removal, that is, ascending or descending order of the importance and ran-
dom order (Fig. 11(b)). Therefore, bursty activity patterns explain the
robustness property to a large extent. The remaining contribution may be
explained by other factors, including the heterogeneity in the link weight.

4 Discussion

We proposed a centrality measure for interaction events in temporal net-
works. An important event is defined as one that conveys a large amount
of new information to the two individuals involved in the event. Our main
finding is the robustness property of temporal networks such that the con-
nectivity of temporal networks remains almost the same after a large fraction
of events with small importance values is removed. Conversely, connectivity
is destroyed after a small fraction of events with large importance values
is removed. We also found that the importance of an event is broadly dis-
tributed and that the advance of an event is strongly asymmetric for the
two nodes involved in the event. Bursty nature of interaction events, not
the structural properties of the aggregated networks including the heteroge-
neous degree distribution, is a main contributor to the robustness property.

Although our results suggest that events with small importance values
are unnecessary for efficient communication, such redundant events may
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be practically necessary. For example, two individuals may need repeated
interactions within a short interval for the purpose of persuasion or negoti-
ation. This is an obvious and important limit of the present study. To cope
with this issue, we need additional information about interactions such as
the contents of conversations and status of individuals in an organization.
Nevertheless, we hope that the present framework serves to improve our
understanding of the meaning of each event in temporal networks.

We symmetrized aj
i (t) to define the importance of an event in Eq. (6).

However, the asymmetry in aj
i (t) is expected to contain rich information

about directed relationships between individuals. For example, assume that
individual X tends to have new information about many others, perhaps
through frequent events with others. X may give more up-to-date informa-
tion about others to neighbor Y in each event than X receives up-to-date
information from Y. In this case, X may be more important than Y in
this dyadic relationship. It should be noted that the original temporal and
aggregated networks are symmetric, and it may be useful to analyze the
static directed network constructed by aggregating but not symmetrizing
the aj

i (t) values on each link to reveal key individuals and information prop-
agation on temporal networks. Analytical tools to this end include those
specialized for directed networks, such as the PageRank, network motifs,
and reciprocity [45].

In general, temporal information may be useful for preventing epidemics
in temporal networks [13, 28]. The concept of the importance of an event
may be useful for this purpose. A node i involved in an event with large
aj

i (t) gains short temporal paths from other nodes. A short temporal path
may serve as an efficient pathway of epidemic spreading. If an important
event occurs, potential events on the same link occurring immediately after
this trigger event may also efficiently propagate epidemics, although such
successive events carry short IEIs and therefore are likely to have small im-
portance values. Then, an effective prevention method may be to prohibit
the occurrence of successive events once an event with a large importance
value is detected. Fortunately, we defined the importance of an event based
on the events in the past only and did not require the information about
the events in the future. Therefore, we can implement such a prevention
method as an online algorithm. Although the proposed prevention method
is an intervention on links, the importance of the link in this sense gener-
ally fluctuates over time. This type of nonstationarity may be induced by
external shocks to the temporal network.
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