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Abstract

From the viewpoint of networks, a ranking system for players or
teams in sports is equivalent a centrality measure for sports networks,
whereby a directed link represents the result of a single game. Previ-
ously proposed network-based ranking systems are derived from static
networks, i.e., aggregation of the results of games over time. How-
ever, the score of a player (or team) fluctuates over time. Defeating a
renowned player in the peak performance is intuitively more rewarding
than defeating the same player in other periods. To account for this
factor, we propose a dynamic variant of such a network-based ranking
system and apply it to professional men’s tennis data. We derive a set
of linear online update equations for the score of each player. The pro-
posed ranking system predicts the outcome of the future games with
a higher accuracy than the static counterparts.

1 Introduction

Ranking of individual players or teams in sports, both professional and am-
ateur, is a tool for entertaining fans and developing sports business. De-
pending on the type of sports, different ranking systems are in use [1]. A
challenge in sports ranking is that it is often impossible for all the pairs of
players or teams (we refer only to players in the following. However, the
discussion also applies to team sports) to fight against each other. This is
the case for most individual sports and some team sports in which a league
contains many teams, such as American college football and soccer at an
international level. Then, the set of opponents depends on players such
that ranking players by simply counting the number of wins and losses is
inappropriate.

In this situation, several ranking systems on the basis of networks have
been proposed. A player is regarded to be a node in a network, and a directed
link from the winning player to the losing player (or the converse) represents
the result of a single game. Once the directed network of players is generated,
ranking the players is equivalent to defining a centrality measure for the
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network. A crux in constructing a network-based ranking system is to let a
player that beats a strong player gain a high score. Examples of network-
based ranking systems include those derived from the Laplacian matrix of
the network [2–5], the PageRank [6], a random walk that is different from
those implied by the Laplacian or PageRank [7], a combination of node
degree and global structure of networks [8], and the so-called win-lose score
[9].

Previous network-based ranking systems do not account for fluctuations
of rankings. In fact, any player, even a history making strong player, referred
to as X, is usually weak in the beginning of the career. Player X may also
be weak past the most brilliant period in the X’s career, suggestive of the
retirement in a near future. For other players, it is more rewarding to beat
X when X is in the peak performance than when X is novice, near the
retirement, or in the slump. It may be preferable to take into account
the dynamics of players’ strengths for defining a ranking system. In the
present study, we extend the win-lose score, a network-based ranking system
proposed by Park and Newman [9] to the dynamical case. Then, we apply
the proposed ranking system to the professional men’s tennis data.

In broader contexts, the current study is related to at least two other lin-
eages of researches. First, a dynamic network-based ranking implies that we
exploit the temporal information about the data, i.e., the times when games
are played. Therefore, such a ranking system is equivalent to a dynamic
centrality measure for temporal networks, in which sequences of pairwise
interaction events with time stamps are building units of the network [10].
Although some centrality measures specialized in temporal networks have
been proposed [11–13], they are not for ranking purposes. In addition, they
are constant valued centrality measures for dynamic (i.e., temporal) data
of pairwise interaction. In the context of temporal networks, we propose a
dynamically changing centrality measure for temporal networks.

Second, statistical approaches to sports ranking have a much longer his-
tory than network approaches. Representative statistical ranking systems
include the Elo system [14] and the Bradley-Terry model (see [15] for a re-
view). Variants of these models have been used to construct dynamic rank-
ing systems. Empirical Bayes framework naturally fits this problem [16–21].
Because the Bayesian estimators cannot be obtained analytically, or even
numerically owing to the computational cost, in these models, techniques
for obtaining Bayes estimators such as the Gaussian assumption of the pos-
terior distribution [18, 21], approximate message passing [21], and Kalman
filter [17–19], have been employed. In a non-Bayesian statistical ranking
system, the pseudo likelihood, which is defined such that the contribution of
the past game results to the current pseudo likelihood decays exponentially
in time, is numerically maximized [22].

In general, the parameter set of a statistical ranking system that accounts
for dynamics of players’ strengths is composed of dynamically changing
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strength parameters for all the players and perhaps other auxiliary parame-
ters. Therefore, the number of parameters to be statistically estimated may
be large relative to the amount of data. In other words, the instantaneous
ranks of players have to be estimated before the players play sufficiently
many games with others under fixed strengths. Even under a Bayesian
framework with which updating of the parameter values is naturally imple-
mented, it may be difficult to reliably estimate dynamic ranks of players due
to relative paucity of data. In addition, in sports played by individuals, such
as tennis, it frequently occurs that new players begin and old and underper-
forming players leave. This factor also increases the number of parameters
of a ranking system. In contrast, ours and other network-based ranking sys-
tems, both static and dynamic ones, are not founded on statistical methods.
Network-based ranking systems can be also simpler and more transparent
than statistical counterparts.

Results

Dynamic win-lose score

We extend the win-lose score [9] (see Methods) to account for the fact that
the strengths of players fluctuate over time. In the following, we refer to
the win-lose score as the original win-lose score and the extended one as the
dynamic win-lose score.

The original win-lose score overestimates the real strength of a player i
when i defeated an opponent j that is now strong and was weak at the time
of the match between i and j. Because j defeats many strong opponents
afterward, i unjustly receives many indirect wins through j. The same logic
also applies to other network-based static ranking systems [2–8].

To remedy this feature, we pose two assumptions. First, we assume
that the increment of the win score of player i through the i’s winning
against player j depends on the j’s win score at that moment. It does not
explicitly depend on the j’s score in the past or future. The same holds
true for the lose score. Second, we assume that each player’s win and lose
scores decay exponentially in time. This assumption is also employed in a
Bayesian dynamic ranking system [22].

Let Atn be the win-lose matrix for the games that occur at time tn
(1 ≤ n ≤ nmax). In the analysis of the tennis data carried out in the
following, the resolution of tn is equal to one day. Therefore, players’ scores
change even within a single tournament. If player j wins against player i at
time tn, we set the (i, j) element of the matrix Atn to be 1. All the other
elements of Atn are set to 0. We define the dynamic win score at time tn in
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vector form, denoted by wtn , as follows:

Wtn =Atn + e−β(tn−tn−1)
∑

mn∈{0,1}

αmnAtn−1A
mn
tn

+ e−β(tn−tn−2)
∑

mn−1,mn∈{0,1}

αmn−1+mnAtn−2A
mn−1

tn−1
Amn

tn

+ · · ·+ e−β(tn−t1)
∑

m2,...,mn∈{0,1}

α
∑n

i=2 miAt1A
m2
t2

· · ·Amn
tn (1)

and
wtn = W⊤

tn1, (2)

where α is the weight of the indirect win, which is the same as the case of
the original win-lose score (Methods), and β ≥ 0 represents the decay rate
of the score.

The first term on the right-hand side of Eq. (1) (i.e., Atn) represents
the effect of the direct win at time tn. The second term consists of two
contributions. Formn = 0, the quantity inside the summation represents the
direct win at time tn−1, which results in weight e−β(tn−tn−1). For mn = 1,
the quantity represents the indirect win. The (i, j) element of Atn−1Atn

is positive if and only if player j wins against a player k at time tn and
k wins against i at time tn−1. Player i gains score e−β(tn−tn−1)α out of
this situation. For both cases mn = 0 and mn = 1, the jth column of
the second term accounts for the effect of the j’s win at time tn−1. The
third term covers four cases. For mn−1 = mn = 0, the quantity inside the
summation represents the direct win at tn−2, resulting in weight e−β(tn−tn−2).
For mn−1 = 0 and mn = 1, the quantity represents the indirect win based on
the games at tn−2 and tn, resulting in weight e−β(tn−tn−2)α. For mn−1 = 1
and mn = 0, the quantity represents the indirect win based on the games at
tn−2 and tn−1, resulting in weight e−β(tn−tn−2)α. For mn−1 = mn = 1, the
quantity represents the indirect win based on the games at tn−2, tn−1, and
tn, resulting in weight e−β(tn−tn−2)α2. In either of the four cases, the jth
column of the third term accounts for the effect of the j’s win at time tn−2.

To see the difference between the original and dynamic win scores, con-
sider the exemplary data with N = 3 players shown in Fig. 1. The original
win-lose scores calculated from the aggregation of the data up to time ti
(i = 1, 2, and 3) are given by

w1(t1) = 1,

w2(t1) = 0,

w3(t1) = 0,


w1(t2) = 1 + α,

w2(t2) = 1,

w3(t2) = 0,


w1(t3) = 1 + α+ α2 + · · · ,
w2(t3) = 1 + α+ α2 + · · · ,
w3(t3) = 1 + α+ α2 + · · · .

(3)

The scores of the three players are the same at t = t3 because the aggregated
network is symmetric (i.e., directed cycle) if we discard the information
about the time.
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The dynamic win-lose scores for the same data are given by
w1(t1) = 1,

w2(t1) = 0,

w3(t1) = 0,


w1(t2) = e−β(t2−t1),

w2(t2) = 1,

w3(t2) = 0,


w1(t3) = e−β(t3−t1),

w2(t3) = e−β(t3−t2),

w3(t3) = 1 + αe−β(t3−t1).

(4)

The score of player 1 at t2 (i.e., w1(t2)) differs from the original win-lose
score in two aspects. First, it is discounted by factor e−β(t2−t1). Second, the
value of w1(t2) indicates that player 1 does not gain an indirect win. This is
because it is after player 1 defeated player 2 that player 2 defeats player 3.
In contrast, player 3 gains an indirect win at t = t3 because player 3 defeats
player 1, which defeated player 2 before (i.e., at t = t1). It should be noted
that the win scores of the three players are different at t = t3 although the
aggregated network is symmetric.

Equation (1) leads to

Wtn =Atn + e−β(tn−tn−1)

Atn−1 + e−β(tn−1−tn−2)
∑

mn−1∈{0,1}

αmn−1Atn−2A
mn−1
tn−1

+ · · ·

+e−β(tn−1−t1)
∑

m2,...,mn−1∈{0,1}

α
∑n−1

i=2 miAt1A
m2
t2

· · ·Amn−1

tn−1

 ∑
mn∈{0,1}

αmnAmn
tn

=Atn + e−β(tn−tn−1)Wtn−1(I + αAtn). (5)

Therefore, by combining Eqs. (2) and (5), we obtain the update equation
for the dynamic win score as follows:

wtn =

{
A⊤

t11 (n = 1),

A⊤
tn1+ e−β(tn−tn−1)(I + αA⊤

tn)wtn−1 (n > 1).
(6)

The dynamic lose score at time tn is denoted in vector form by ℓtn . We
obtain the update equation for ℓtn by replacing Atn in Eq. (6) by A⊤

tn as
follows:

ℓtn =

{
At11 (n = 1),

Atn1+ e−β(tn−tn−1)(I + αAtn)ℓtn−1 (n > 1).
(7)

Finally, the dynamic win-lose score at time tn, denoted by stn , is given by

stn = wtn − ℓtn . (8)
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Predictability

We apply the dynamic win-lose score to results of professional men’s tennis.
The nature of the data is described in Methods.

Predictability of the outcomes of future games is a desirable property
of a ranking system. The frequency of violations, whereby a lower ranked
player wins against a higher ranked player in a game, quantifies the degree
of predictability [24, 25]. In other literature, the retrodictive version of the
frequency of violations is also used for assessing the performance of ranking
systems [24,26–28].

In this section, we compare the predictability of the dynamic win-lose
score, the original win-lose score [9], and the prestige score (Methods). The
prestige score, proposed by Radicchi and applied to professional men’s tennis
data [6], is a static ranking system and is a version of the PageRank originally
proposed for ranking webpages [29].

We define the frequency of violations as follows. We calculate the score of
each player at tn (1 ≤ n ≤ nmax−1) on the basis of the results up to tn. For
the original win-lose score and prestige score, we aggregate the directed links
from t = t1 to t = tn to construct a static network and calculate the players’
scores. If the result of each game at tn+1 is inconsistent with the calculated
ranking, we regard that a violation occurs. If the two players involved in
the game at tn+1 have exactly the same score, we regard that a tie occurs
irrespective of the result of the game. We define the prediction accuracy at
the Ngpth game as the fraction of correct prediction when the results of the
games from t = t2 through the Ngpth game are predicted. The prediction
accuracy is given by

(
N ′

gp − e− v
)
/
(
N ′

gp − e
)
, where N ′

gp(< Ngp) is the
number of predicted games, v is the number of violations, and e is the
number of ties.

For the prestige score, we exclude the games in which either player plays
for the first time because the score is not defined for the players that have
never played. In this case, we increment e by one.

The original and dynamic win-lose scores can be negative valued. Equa-
tions (2) and (12) guarantee that the initial score is equal to zero for all the
players for the dynamic and original win-lose scores, respectively. Further-
more, any player has a zero win-lose score when the player fights a game for
the first time. Even though we do not treat such a game as tie unless both
players involved in the game have zero scores, treating it as tie little affects
the following results.

The prediction accuracy for the dynamic win-lose score, original win-lose
score, and prestige score are shown in Figs. 2(a), 2(b), and 2(c), respectively,
for various parameter values.

Figure 2(a) indicates that the prediction accuracy for the dynamic win-
lose score is the largest for α = 0.15 except when the number of games (i.e.,
Ngp) is small. The accuracy is insensitive to α when 0.1 ≤ α ≤ 0.2. In
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this range of α, we confirmed by additional numerical simulations that the
results for β = 1/365 and those for β = 0 are indistinguishable. Therefore,
we conclude that the performance of prediction has some robustness with
respect to α and β. We also confirmed that the accuracy monotonically
increases between α ≈ 0.05 and α ≈ 0.15. However, for an unknown reason,
the accuracy with α ≈ 0.05 is smaller than that with α = 0 (results not
shown).

Figure 2(b) indicates that the prediction accuracy for the original win-
lose score is larger for α = 0 than α = 0.04. α = 0.04 is close to the upper
limit calculated from the largest eigenvalue of A (see subsection “Parameter
values” in Methods). We also found that the prediction accuracy monoton-
ically decreases with α. Nevertheless, except for small Ngp, the accuracy
with α = 0 is lower than that for the dynamic win-lose score with α = 0
and 0.08 ≤ α ≤ 0.2 (Fig. 2(a)).

Figure 2(c) indicates that the prediction for the prestige score is better
for a smaller value of q (see Methods for the meaning of q). We confirmed
that this is the case for other values of q and that the results with q ≤ 0.05
little differ from those with q = 0.05. Except for small Ngp, the prediction
accuracy with q = 0.05 is lower than that for the dynamic win-lose score
with 0.08 ≤ α ≤ 0.2 (Fig. 2(a)).

To summarize, when α is between ≈ 0.1 and ≈ 0.2 and β is between
0 and 1/365, the dynamic win-lose score outperforms the original win-lose
score and the prestige score in the prediction accuracy. For example, at
the end of the data, the accuracy is equal to 0.631, 0.650, 0.655, and 0.653
for the dynamic win-lose score with (α, β) = (0.08, 1/365), (0.1, 1/365),
(0.15, 1/365), and (0.2, 1/365), respectively, while it is equal to 0.602 for
the original win-lose score with α = 0 and 0.630 for the prestige score with
q = 0.05.

Robustness against parameter variation

Figure 2(a) indicates that the prediction accuracy for the dynamic win-lose
score is robust against some variations in the α and β values. In this section,
we examine the robustness of the dynamic win-lose score more extensively
by examining the rank correlation between the scores derived from different
α and β values.

The Kendall’s tau is a standard method to quantify the rank correlation
[30]. In our data, the full ranking containing all the players, to which the
Kendall’s tau applies, contains players that only appear in a few games.
In fact, most players are such players [6], and their ranks are inherently
unstable. In addition, it is usually the list of top ranked players that are of
practical interests.

Therefore, we use a generalized Kendall’s tau for comparing top k lists of
the full ranking [31]. We denote the sets of the top k players, i.e., k players
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with the largest scores, in the two full rankings by R1 and R2. In general,
R1 and R2 can be different. For an arbitrarily chosen pair of players r1, r2
∈ R1 ∪ R2, r1 ̸= r2, we set Kr1,r2(R1,R2) = 1 if (1) r1 and r2 appear in
both top k lists R1 and R2, and r1 and r2 are in the opposite order in the
two top k lists, (2) r1 has a higher rank than r2 in one of the top k lists, and
r2, but not r1, is contained in the other top k list, (3) r1 exists only in one
of the two top k lists, and r2 exists only in the other top k list. Otherwise,
we set Kr1,r2(R1,R2) = 0. Kr1,r2(R1,R2) is a penalty imposed on the
inconsistency between the two top k lists. We use the so-called optimistic

variant of the Kendall distance K
(0)
τ (R1,R2) defined as follows [31]:

K(0)
τ (R1,R2) =

∑
r1,r2∈R1∪R2

Kr1,r2(R1,R2). (9)

We normalize the distance between the two rankings as follows [32]:

K = 1− K
(0)
τ (R1,R2)

k2
. (10)

A large value of K indicates a higher correlation between the two top k lists.
It should be noted that 0 ≤ K ≤ 1. In particular, when there is no overlap
between the two top k lists, we obtain K = 0.

For the dynamic win-lose scores at tnmax , i.e., at the end of the entire
period, we calculate K with k = 300 for different pairs of α and β values.
The results for β = 1/365 and different values of α are shown in Fig. 3. The
top k lists are similar (i.e., K ≥ 0.85) for any α larger than ≈ 0.06. This
finding is consistent with the fact that the prediction accuracy is high and
robust when α falls between ≈ 0.08 and ≈ 0.2 (Fig. 2(a)).

For fixed values of α, the K values between the ranking with β = 1/365
and that with various values of β are shown in Fig. 4. K is almost unity
at least in the range 0 ≤ β ≤ 2/365. Therefore, removing the assumption
of the exponential decay of score in time (i.e., β = 0) little changes the
top 300 list. This finding is consistent with the result that the prediction
accuracy is almost the same between β = 0 and β = 1/365 if 0.1 ≤ α ≤ 0.2
(see the previous subsection). Nevertheless, this observation does not imply
that we can ignore the temporal aspect of the data. Keeping the order of
the games contributes to the performance of prediction, as suggested by the
comparison between the prediction results for the dynamic (Fig. 2(a)) and
original (Fig. 2(b)) win-lose scores.

Dynamics of scores for individual players

In contrast to the original win-lose score and prestige score, the dynamic
win-lose score can track dynamics of the strength of each player. It should
be noted that the summation of the scores over the individuals, i.e.,

∑N
i=1 si,
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depends on time. In particular, it grows almost exponentially for the pa-
rameter values with which the prediction accuracy is high (i.e., α larger than
≈ 0.08), as shown in Fig. 5.

∑N
i=1 si increases with the number of games, or

equivalently, with time because more recent players take more advantage of
indirect wins than older players. The increase in

∑N
i=1 si is not owing to the

number of players or games observed per year; in fact, the latter numbers
do not increase in time [6].

Therefore, for clarity, we normalize the win-lose score of each player by
dividing it by the instantaneous

∑N
i=1 si value. The time courses of the nor-

malized win-lose scores for four renowned players are shown in Fig. 6(a). We
set α = 0.15 and β = 1/365, for which the prediction is approximately the
most accurate. The ATP rankings of the four players during the same pe-
riod are shown in Fig. 6(b) for comparison. The time courses of the dynamic
win-lose score and those of the ATP rankings are similar. In particular, the
times at which the strength of one player (e.g., Federer) begins to exceed
another player (e.g., Agassi) are quite similar between Figs. 6(a) and 6(b).
Figure 6 suggests that the dynamic win-lose score appositely captures rises
and falls of these players.

Discussion

We extended the win-lose score for static sports networks [9] to the case of
dynamic networks. By assuming that the score decays exponentially in time,
we could derive closed online update equations for the win and lose scores.
The proposed dynamic win-lose score realizes a higher prediction accuracy
than the original win-lose score and the prestige score. It is straightforward
to extend the dynamic win-lose score to incorporate factors such as the
importance of each tournament or game via modifications of the game matrix
Atn . We also confirmed the robustness of the ranking against variation in
the two parameter values in the model. Finally, the dynamic win-lose score
is capable of tracking dynamics of players’ strengths.

It seems that network-based ranking systems are easier to understand
and implement, and more scalable than those based on statistical meth-
ods. The dynamic win-lose score share these desirable features with static
network-based ranking systems. The applicability of the idea behind the
dynamic win-lose score is not limited to the case of the win-lose score. For
other network-based ranking systems such as the prestige score, i.e., PageR-
ank, and the Laplacian centrality (see Introduction), we expect that similar
extensions are possible. The methods developed in the present study may be
also useful in deriving dynamic centrality measures for temporal networks
in general.
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Methods

Park & Newman’s win-lose score

The win-lose score by Park and Newman [9] is a network-based static ranking
system defined as follows. We assume N players and denote by Aij (1 ≤
i, j ≤ N) the number of times player j wins against player i during the
entire period. We let α (0 ≤ α < 1) be a constant representing the weight of
indirect wins. For example, if player i wins against j and j wins against k, i
gains score 1 from the direct win against j and score α from the indirect win
against k. Therefore, the i’s win score is equal to 1 + α. If k wins against
yet another player ℓ, the i’s win score is altered to 1 + α+ α2.

The win scores of the players are given by

W =A+ αA2 + α2A3 + · · ·
=A(I + αA+ α2A2 + α3A3 + · · · )
=A(I − αA)−1, (11)

w =W⊤1 = (I − αA⊤)−1A⊤1, (12)

where W is the N ×N matrix whose (i, j) element represents the score that
player j obtains via direct and indirect wins against player i, w is the N
dimensional column vector whose ith element represents the win score of
player i, and 1 is the N dimensional column vector defined by

1 = (1 1 · · · 1)⊤. (13)

We similarly obtain the lose scores of the N players in vector form by re-
placing A with A⊤ as follows:

ℓ = (I − αA)−1A1. (14)

The total win-lose score is given in vector form by

s = w − ℓ. (15)

Prestige score

The prestige score of player i, denoted by Pi, is defined by

Pi = (1− q)
N∑
j=1

Pj
wji

soutj

+
q

N
+

1− q

N

N∑
j=1

Pjδ(s
out
j ) (1 ≤ i ≤ N), (16)

where q is a constant, wji is the number of times player i defeats player j

during the entire period, soutj ≡
∑N

i′=1wji′ is equal to the number of losses
for player j, δ(soutj ) = 1 if soutj = 0, and δ(soutj ) = 0 if soutj ≥ 1. The

normalization is given by
∑N

i=1 Pi = 1. We set q = 0.15, as in [6], and also
q = 0.05 and q = 0.30.
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Data

We collected the data from the website of Association of Tennis Professionals
(ATP) [23]. We used all the types of single games recorded on this website.
They include ATPWorld Tour tournaments, including the Grand Slams, and
other games. The data set contains 381570 singles games from December
1972 to May 2010 and involves 14554 players that participated in at least one
game. Although the source of our data set is the same as that of Radicchi’s
data set [6] and the period of the data is similar, ours contains about three
times more games than Radicchi’s. This is because ours but not Radicchi’s
includes games that do not belong to ATP World Tour tournament games,
such as ATP Challenger Tours and ITF Futures tournaments.

Parameter values

A guiding principle for setting the parameter values of a ranking system is
to select the values that maximize the performance of prediction [19, 22].
Instead, we set α and β as follows.

In the original win-lose score, it is recommended that α is set to the value
smaller than and close to the inverse of the largest eigenvalue of A [9]. If α
exceeds this upper limit, the original win-lose score diverges. For our data,
the upper limit according to this criterion is equal to 1/228.4 = 0.004379.
However, the dynamic win-lose score converges irrespective of the values of
α and β for the following reason. For expository purposes, let us assign
different nodes to the same player at different times tn (1 ≤ n ≤ nmax).
Then, Eq. (1) implies that any link in the network, which represents a game
at time tn, is directed from the winner at tn to the loser at tn or earlier
times. Because there is no time-reversed link (i.e., from tn to tn′ , where
tn < tn′) and any pair of players play at most once at any tn, the network
is acyclic. The upper limit of α is infinite when the network is acyclic [9].
On the basis of this observation, we examine the behavior of the dynamic
win-lose score for various values of α.

In the official ATP ranking, the score of a player is calculated from the
player’s performance in the last 52 weeks ≈ one year [23]. The results of the
games in this time window contribute to the current ranking of the player
with the same weight if the other conditions are equal. The dynamic win-
lose score uses the results of all the games in the past, and the contribution
of the game decays exponentially in time. By equating the contribution of
a single game in the two ranking systems, we assume 1× 365 =

∫∞
0 e−βtdt,

which leads to β = 1/365. In Results, we also investigated the robustness
of the ranking results against variations in the α and β values.
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Figure 1: Example time series of games with N = 3.
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Figure 2: Performance of prediction for the three ranking systems. (a)
Dynamic win-lose score with β = 1/365 and different α values. (b) Original
win-lose score with α = 0 and 0.004. (c) Prestige score with q = 0.05, 0.15,
and 0.3.
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Figure 3: Rank correlation between the two top 300 lists for the dynamic
win-lose score with β = 1/365. Pairs of rankings with different values of α
are compared.
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Figure 4: Rank correlation between the two top 300 lists for the dynamic
win-lose score with fixed α values. Pairs of ranking, one with β = 1/365
and the other with a general β value, are compared.
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Figure 5: Dynamics of the summation of the scores (i.e.,
∑N

i=1 si). The
lines correspond to α = 0.15 (top), 0.1, 0.08, 0.05, and 10−5 (bottom). The
results for α = 0 are not shown because

∑N
i=1 si often takes negative values.
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Figure 6: (a) Time courses of normalized win-lose scores for Andre Agassi,
Roger Federer, Rafael Nadal, and Novak Djokovic. (b) Time courses of the
ATP rankings for the four players.
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