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Abstract

An adaptive conservative or dissipative numerical method for non-
linear partial differential equations is established. The method not
only inherits the welcome conservation or dissipation property of the
equation but also uses suitable non-uniform grids at each time step.
Our numerical experiments indicate that the method is useful espe-
cially for localized solutions such as solitary wave solutions.

keyword
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1 Introduction

In this note, we show that by a simple idea we can establish an adaptive con-
servative or dissipative numerical method for partial differential equations
(PDEs) of the form

∂u

∂t
= D δG

δu
, (1)

where D is a skew-symmetric or negative semi definite differential operator,
and δG/δu denotes the variational derivative. In a certain area of numeri-
cal analysis for differential equations, “structure-preserving” methods have
been attracting much attention. They are methods preserving geometric
properties of a differential equation (for example, see [6] for ODEs and [7]
for PDEs). In this note we restrict our attention to PDEs of the form (1)
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which have the following property. If D is skew-symmetric, (1) has a con-
servation property

d

dt

∫
G(u, ux)dx = 0,

under appropriate boundary conditions. A typical example of this class is
the KdV equation

∂u

∂t
=

∂

∂x

(
−3u2 − ∂2u

∂x2

)
, 0 < x < L, t > 0, (2)

where G(u, ux) = −u3 + u2x/2. If D is negative semi definite, (1) has a
dissipation property

d

dt

∫
G(u, ux)dx ≤ 0,

again under appropriate boundary conditions.1 A typical example of this
class is the Cahn–Hilliard equation

∂u

∂t
=

∂2

∂x2

(
pu+ ru3 + q

∂2u

∂x2

)
, 0 < x < L, t > 0, (3)

where G(u, ux) = pu2/2 + ru4/4− qu2x/2.
In the last two decades, much effort has been devoted in order to con-

struct several frameworks which derive conservative/dissipative schemes.
For example, Furihata proposed the discrete variational derivative method
(DVDM) [4] (see also Furihata–Matsuo [5], Celledoni et al. [3]) in finite dif-
ference context. It has then been applied to some fundamental PDEs to
prove that the method is in fact effective.

However, there remained several issues to be settled so that the method
could be truly useful for large, practical applications. The first issue was the
adaptation to non-uniform grids—the original DVDM was constructed only
on uniform grids since it required summation-by-parts formula regarding
difference operators. Obviously such formulas are not easily expected on
non-uniform grids. Fortunately, this issue has been successfully settled by
some recent studies. Yaguchi–Matsuo–Sugihara found their way by using
either the mapping method [12] or discrete differential forms [13]. Matsuo [8]
gave another solution by extending the DVDM to Galerkin (finite element)
context.

Another difficulty lain in the original DVDM was that it assumed static
grids, and it was not clear at all if it could be incorporated with a dynamic
grid technique. Such a technique is strongly hoped in some practical prob-
lems where a localized point (or area) moves as time passes (consider, for

1Hereafter G(u, ux) is often abbreviated as G(u) when no confusions occur.
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example, a moving solitary wave), in order to increase the overall efficiency.
Unfortunately, however, it seems that no study has ever succeeded in such
a challenge, not only in the context of the DVDM, but in more general con-
text of the structure-preserving methods for PDEs. The reason for this is
that such structure-preserving methods usually employ a very sophisticated
time stepping for the desired structure-preservation, which generally seems
to contradicts the concept of grid adaptation.

Motivated by this background, in this note we shall show that by a
simple idea we can establish an adaptive conservative/dissipative method.
This is done by combining the following two main techniques: the conserva-
tive/dissipative method on static non-uniform grids mentioned above, and
the grid adaptation technique frequently used in the context of the wavelet
based numerical methods [2, 9, 10, 11]. Here we would like to empha-
size that a simple combination of them would destroy the desired conserva-
tion/dissipation properties from the reason above. The key is to introduce
an additional optimization step, by which the destruction can be avoided.
As far as the authors know, this is the first study where a systematic grid
adaptation is realized in the context of structure-preserving methods.

This note is organized as follows. In Section 2, the standard conserva-
tive/dissipative method on non-uniform grids is reviewed. As an example,
we employ the Galerkin approach [8]. In Section 3, the standard dynamic
grid adaptation technique is reviewed to show how to obtain appropriate
grids at each time step. In Section 4, the adaptive conservative/dissipative
algorithm and numerical experiments are shown. Discussions and conclu-
sions are drawn in Section 5.

Throughout this note, numerical solutions are denoted by u(n) ≃ u(n∆t, ·)
where ∆t is the time mesh size, and the inner product is defined by (f, g) =∫ L
0 fgdx. Although the idea in the present paper should carry to two- or
three-dimensional cases, we restrict ourselves to one-dimensional problems
for the clarity of description.

2 Energy conservative/dissipative method on static
non-uniform grids

In this section, we review the energy conservative/dissipative Galerkin method [8],
with the examples for the KdV and Cahn–Hilliard equations.

Suppose that the interval [0, L] is partitioned appropriately (not neces-
sarily uniformly), and let Sh ∈ H1(0, L) (H1 denotes the first order Sobolev
space) be, for example, the piecewise linear function space over the grid. For
the KdV equation (2), let us use the space XK = {v | v ∈ Sh, v(0) = v(L)}
in order to consider the periodic boundary conditions. The KdV equation
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can be written as the variational (Hamiltonian) form

ut = ∂x
δG

δu
, G(u, ux) = u3 − u2x

2
,

or equivalently, the following system

ut = px, p1 =
δG

δu
.

The conservative scheme was defined as follows [8]. Find u(n), p
(n+ 1

2
)

1 ∈ XK

such that, for all v1, v2 ∈ XK ,(
u(n+1) − u(n)

∆t
, v1

)
=

(
(p

(n+ 1
2
)

1 )x, v1

)
, (4)

(
p
(n+ 1

2
)

1 , v2

)
=

(
∂Gd

∂(u(n+1), u(n))
, v2

)
+

(
∂Gd

∂(u
(n+1)
x , u

(n)
x )

, (v2)x

)
(5)

hold, where

∂Gd

∂(u(n+1), u(n))
= (u(n+1))2 + u(n+1)u(n) + (u(n))2,

∂Gd

∂(u
(n+1)
x , u

(n)
x )

= −u
(n+1)
x + u

(n)
x

2

correspond to the partial derivatives ∂G/∂u and ∂G/∂ux. The numerical
solution of this scheme has the following conservation property∫ L

0
G(u(n), u(n)x )dx = const.

For the Cahn–Hilliard equation, let us set XC = Sh. The Cahn–Hilliard
equation can be rewritten as the variational form

ut = ∂2x
δG

δu
, G(u, ux) =

p

2
u2 +

r

4
u4 − q

2
u2x,

or equivalently, the following system

ut = pxx, p1 =
δG

δu
.

The dissipative scheme was defined as follows [8]. Find u(n), p
(n+ 1

2
)

1 ∈ XC

such that, for all v1, v2 ∈ XC ,(
u(n+1) − u(n)

∆t
, v1

)
= −

(
(p

(n+ 1
2
)

1 )x, (v1)x

)
, (6)

(
p
(n+ 1

2
)

1 , v2

)
=

(
∂Gd

∂(u(n+1), u(n))
, v2

)
+

(
∂Gd

∂(u
(n+1)
x , u

(n)
x )

, (v2)x

)
(7)
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hold, where

∂Gd

∂(u(n+1), u(n))
= p

(
u(n+1) + u(n)

2

)
+ r

(
(u(n+1))2 + (u(n))2

2

)(
u(n+1) + u(n)

2

)
,

∂Gd

∂(u
(n+1)
x , u

(n)
x )

= −q

(
u
(n+1)
x + u

(n)
x

2

)
correspond to the partial derivatives ∂G/∂u and ∂G/∂ux. The numerical
solution of this scheme has the following dissipation property∫ L

0
G(u(n+1), u(n+1)

x )dx ≤
∫ L

0
G(u(n), u(n)x )dx.

In the subsequent sections, the energy conservative/dissipative integra-
tors on static non-uniform grids are denoted by ΦNU: u

(n+1) = ΦNU(u
(n)).

3 Dynamic grid adaptation technique

In this section a standard dynamic grid adaptation technique which is known
in the context of wavelet based numerical methods [9, 10, 11] is briefly
reviewed. Below we explain this without getting involved in the concept of
wavelets. Let V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · which satisfy ∪∞

j=0V
j = L2(0, L) be

a sequence of finite dimensional function spaces, and {ϕjk(x)}k be the basis
functions of V j . The basis functions of W j , the complement of V j in V j+1,
i.e., V j+1 = V j ⊕W j , are denoted by {ψj

k(x)}k.
The function uJ ∈ V J which approximates u ∈ L2 can be expressed as

uJ(x) =
∑

k∈K(J)

cJkϕ
J
k (x), (8)

where K(J) denotes the set of indices of the basis functions. If the ba-
sis function has the interpolation property: i.e., ϕjk(x

j
i ) = δi,k, u(x

J
k ) can

be chosen as the coefficient cJk . Since V J = V 0 ⊕W 1 ⊕ · · · ⊕W J−1, the
approximate function (8) can be also rewritten as

uJ(x) =
∑

k∈K(0)

c0kϕ
0
k(x) +

J−1∑
j=0

∑
k∈KC(j)

djkψ
j
k(x), (9)

where KC(j) denotes the set of indices of the basis functions {ψj
k}k. The

second term can be further decomposed into a sum of two groups whose
coefficients are above and below the threshold ϵj :

uJ(x) =
∑

k∈K(0)

c0kϕ
0
k(x) +

J−1∑
j=0

∑
k∈KC(j)

|djk|≥ϵj

djkψ
j
k(x)

︸ ︷︷ ︸
uJ
≥(x)

+

J−1∑
j=0

∑
k∈KC(j)

|djk|<ϵj

djkψ
j
k(x)

︸ ︷︷ ︸
uJ
<(x)

. (10)
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When the threshold ϵj(≥ 0) is sufficiently small, uJ≥(x) can be regarded

as a rough approximation in V J . We call this separation the static grid
adaptation.

Remark 1. In this note, We assume that V j is the piecewise linear function
space on uniform grids:

ϕjk(x) =



x− xjk−1

xjk − xjk−1

, x ∈ [xjk−1, x
j
k],

xjk+1 − x

xjk+1 − xjk
, x ∈ [xjk, x

j
k+1],

0, otherwise,

for k = 1, . . . , L2j − 1 where xjk = k/2j (special care for ϕj0 and ϕj
L2j

is
required to fit the boundary conditions). In this case, the basis functions of
W j are expressed as

ψj
k(x) =



x− xj+1
2k−2

xj+1
2k−1 − xj+1

2k−2

, x ∈ [xj+1
2k−2, x

j+1
2k−1],

xj+1
2k − x

xj+1
2k − xj+1

2k−1

, x ∈ [xj+1
2k−1, x

j+1
2k ],

0, otherwise.

Note that each basis function corresponds to a single grid, due to the in-
terpolation property. In more general wavelet context, the basis function is
usually constructed based on the so called scaling function, in particular, the
autocorrelation function of the Daubechies scaling function (see [1, 10, 14],
for example).

With these definitions, the standard dynamic grid adaptation algorithm
can be described as the following two steps:

1. Integrate u
(n)

V J
(n)

by a standard time discretization method to obtain

u
(n+1)

V J
(n)

, where V J
(n) denotes the subspace of V J , and u

(n)
X ≃ u(n∆t, ·).

2. Do static grid adaptation and add its adjacent zone to update the
space (grids) V J

(n) to V
J
(n+1).

Here we say that the basis function ψs
i belongs to the adjacent zone of ψj

k,
if the following relations are satisfied

|s− j| ≤M, |xsi − xjk| ≤ Caj , (11)

where C defines the width of the adjacent zone, and M determines the
extent of which coarser and finer scales are included into the adjacent zone.
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4 Adaptive energy conservative/dissipative method
and numerical experiments

4.1 Adaptive energy conservative/dissipative method

The dynamic grid adaptation reviewed in Section 3 loses the conserva-
tion/dissipation property, even if we utilize the conservative/dissipative method
for the time stepping. In this subsection, an adaptive energy conserva-
tive/dissipative discretization technique is constructed. The algorithm in-
volves the following three steps:

1. Compute u
(n+1)

V J
(n)

= ΦNU(u
(n)

V J
(n)

) based on the standard energy conser-

vative/dissipative method on the static non-uniform grids.

2. Determine the new space V J
(n+1) from V J

(n) based on the static grid
adaptation technique and the concept of adjacent zone.

3. Solve the following minimization problem to obtain u
(n+1)

V J
(n+1)

.

min ∥u(n+1)

V J
(n+1)

− u
(n+1)

V J
(n)

∥,

s.t.

∫ L

0
G(u

(n+1)

V J
(n+1)

)dx =

∫ L

0
G(u

(n+1)

V J
(n)

)dx.

In the above algorithm, the minimization problem can be solved by the
Lagrangian multiplier if the standard norm such as L2 or H1 norm is con-
sidered. The numerical solution obtained by the above algorithm has the
following property.

Theorem 4.1. For conservative PDEs, let ΦNU be the conservative method.
Then the numerical solution obtained by the above algorithm satisfies∫ L

0
G(u

(n+1)

V J
(n+1)

)dx =

∫ L

0
G(u

(n)

V J
(n)

)dx.

Similarly, for dissipative PDEs, let ΦNU be the dissipative method. Then the
numerical solution obtained by the above algorithm satisfies∫ L

0
G(u

(n+1)

V J
(n+1)

)dx ≤
∫ L

0
G(u

(n)

V J
(n)

)dx.

Proof. ∫ L

0
G(u

(n+1)

V J
(n+1)

)dx =

∫ L

0
G(u

(n+1)

V J
(n)

)dx = (≤)

∫ L

0
G(u

(n)

V J
(n)

)dx.

The first and second equalities follow from Steps 3 and 1 in the above algo-
rithm, respectively.
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4.2 Numerical experiments

Let us check the algorithm numerically. All the computations were done in
the computation environment: CPU Intel(R) Core(TM)2 Duo CPU (2.40
GHz), 4 GB memory, Linux OS. We used MATLAB (R2010a). Nonlinear
equations and minimization problems were solved by “fsolve” and “fmincon”
with tolerance 10−8, respectively, instead of the standard Newton method
and Lagrangian multiplier.

We apply the algorithm to the solitary wave solution of the KdV equa-
tion (2). The parameters were set to x ∈ [0, 10] (the periodic boundary con-
dition was considered), ∆t = 0.001, J = 7, ϵj = 0 (j = 0, 1), 0.01 (otherwise),
M = 1, C = 1 and aj = 1/2j . The initial value was set to u(0, x) =
sech2(

√
2(x− 4)). Fig. 1 shows the evolution of the numerical solutions and

the set of grids. The area where the grids are dense moved corresponding
to the numerical solution. Next, we check the energy conservation. We
compared the present algorithm with that without the minimization prob-
lem (the third step). We observed from Fig. 2 that the error of energy
obtained by the algorithm without the minimization grew linearly, which
indicates that this additional step is necessary for keeping the quality of the
numerical solutions.

5 Discussions and Conclusions

In this note, we combined the energy conservative/dissipative numerical
method on static non-uniform grids for PDEs with the grid adaptation tech-
nique. As far as the authors know, this is the first study where these two
elements are combined. This combination was made possible by a simple
idea that the destroyed conservation/dissipation property in the grid adap-
tation step can be recovered by the minimization problem newly introduced
in the algorithm. The numerical experiments indicate that we can in fact ob-
tain qualitatively good numerical solutions when the algorithm are applied
to localized solutions.

The present paper remains, however, to propose the idea itself, and the
actual efficiency of the method was set outside its scope. For example, we
did not compare the computational cost of the proposed algorithm with any
existing schemes. This is because we feel that this issue should be carefully
discussed in view of various computational aspects such as below.

• In the present algorithm, we have to solve two different types of non-
linear equations, whose costs should strongly depend on the employed
nonlinear solvers.

• Obviously the efficiency of the grid adaptation largely depends on to
which extent the solution is localised, and thus the efficiency should
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Figure 1: The evolution of numerical solutions and set of grids.

9



 33.5

 34

 34.5

 35

 35.5

 36

 36.5

 0  0.1  0.2  0.3  0.4  0.5

en
er

gy

time

Adaptive conservative method
without the minimization problem

Figure 2: Evolution of the energy.

be discussed in view of this factor. In this respect, we feel that the
algorithm is more useful in two or three dimensional problems where
solutions can be quite sparse, and the efficiency should be investigated
in such situations. In the present paper, we only focused on one-
dimensional problems in order to illustrate the idea itself.

• The grid adaptation is done based on the expectation that the lo-
calized areas do not drastically change. Therefore, in order to hold
the number of grids almost constant, we have to keep the time mesh
size small enough. This, however, contradicts the philosophy of the
standard conservative/dissipative method (in general, we expect qual-
itatively better numerical solutions using a relatively large time mesh
size thanks to the structure-preserving properties), and the balance
should be carefully adjusted.

The authors feel the third point is the most crucial. Some efficiency
results considering these points will be reported elsewhere in the future.
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