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Abstract

We propose an algebraic combinatorial framework for the problem of complet-
ing partially observed low-rank matrices. We show that the intrinsic properties
of the problem, including which entries can be reconstructed, and the degrees
of freedom in the reconstruction, do not depend on the values of the observed
entries, but only on their position. We associate combinatorial and algebraic
objects, differentials and matroids, which are descriptors of the particular re-
construction task, to the set of observed entries, and apply them to obtain re-
construction bounds. We show how similar techniques can be used to obtain
reconstruction bounds on general Compressed Sensing problems with algebraic
compression constraints. Using the new theory, we develop several algorithms for
low-rank matrix completion, which allow to determine which set of entries can
be potentially reconstructed and which not, and how, and we present algorithms
which apply algebraic combinatorial methods in order to reconstruct the missing
entries.
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1. Introduction

1.1 Matrix Completion

Matrix Completion is the task to reconstruct low-rank matrices from a subset of its entries
and occurs naturally in many practically relevant problems, such as missing feature imputa-
tion, multi-task learning [2], transductive learning [11], or collaborative filtering and link
prediction [1, 24, 38].

With the nuclear norm heuristic having been applied with increasing success in the re-
construction of low-rank matrices [4, 38], it has become increasingly important to analyze
the potential and limitations of matrix completion methods.

Existing approaches can be classified by the assumptions about the sampling procedure
and the low-rank matrices whose entries are measured. Candès and Recht [4] analyzed the
noiseless setting, and have shown under uniform sampling that incoherent low-rank matri-
ces can be recovered with high probability. Salakhutdinov and Srebro [33] considered the
more realistic setting where the rows and columns are non-uniformly sampled. Negahban
and Wainwright [27] showed under the same row/column weighted sampling that non-spiky
low-rank matrices can be recovered with large probability. Foygel and Srebro [10] have
shown under uniform sampling that the max-norm heuristic [37] can achieve superior recon-
struction guarantee under the non-spikiness assumption on the underlying low-rank matrix.

All the above theoretical guarantees are built on some assumption on the sampling pro-
cedure, e.g., uniform sampling. In a practical setting, we always know which entries we can
observe and which entries we cannot (the so-called mask). One may ask if we could obtain a
stronger theoretical guarantee (of success or failure) conditioned on the mask we have.

On the other hand, all the above theories are also based on some assumptions on the
underlying low-rank matrix, which are usually uncheckable. Although it is widely known
that we cannot recover arbitrary low-rank matrices (see, e.g., Equation (1.1) in [4]), one
may ask if there is a theory for matrix completion for almost all matrices, depending only on
the mask.

Following the expository paper of Király and Tomioka [20], we view matrix completion as
a problem lying in the intersection of two mathematical realms, combinatorics and algebra.
Here the combinatorial structure arises from the masking pattern, which can be viewed as a
bipartite graph, and the algebraic structure arises from the low-rank-ness of the underlying
matrix. It is probably fair to say that previous studies (with some exceptions we mention
below) have not paid enough attention to these underlying mathematical structures.

Looking into more details about the combinatorial/algebraic structures of the problem
allows us to derive novel necessary and sufficient conditions for any matrix completion al-
gorithm to succeed in recovering the underlying low-rank matrix from some of its entries.
Figure 1 shows how combinatorial properties of the mask, such as r-closable, 2r-regular,
and r-connected relate to unique/finite (up to finite number of solutions) completability. Al-
though these combinatorial properties are implied with high probability from the sampling
models (e.g., uniform) depending on the expected number of observable entries, they had
hardly been discussed in the literature. We first discuss these combinatorial properties for a
fixed mask in detail, and then show when these conditions are satisfied with high probability
under a certain sampling model of the mask.

Another point that differentiates our work from previous studies is that we avoid making
any explicit assumption on the underlying low-rank matrix. Although this may sound like a
magic, yet it is possible when we consider completability for generic low-rank matrices, i.e.,
for almost all low-rank matrices allowing exception of measure zero. This is illustrated in
Figure 2. Since it is clear that we cannot successfully recover any low-rank matrix, we also
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Figure 1: Combinatorial properties we discuss in this paper. “whp” means with high proba-
bility for sufficiently high sampling density (or expected number of observed entries.)

Generic'low+rank'matrices�
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matrices�

Spiky'/'coherent'matrices�

All'low+rank'matrices�

spiky'non+generic'
matrices�

Figure 2: Difference between the conditions used previously in literature (non-
spiky/incoherent) and the generic assumption we use in this paper.

need to make exceptions. However, the set of exceptional cases has zero measure. On the
other hand, previous studies used some bound on some quantities (coherence/spikiness) that
characterize the goodness of the matrix, which however results in a set of exceptional cases
with a positive measure.

Exploiting the algebraic/combinatorial structures of the problem, we propose the notion
of partial completability. Precisely, our algebraic-combinatorial tool allows us to tell which
entry can be imputed and which entry cannot. Since an entry is (finitely) completable if
and only if that entry has some algebraic dependence on the observed entries, this notion
has a connection to matroid theory, which capture the notion of independence, dependence,
and span for subsets of a finite set, which in this case is the set of entries of a low-rank
matrix, making them the “right” tool for formalizing degrees of freedom. We propose a
scalable randomized algorithm to identify which entries that may be recovered from the
given ones, which can be considered as a generalization of an algorithm proposed in Singer
and Cucuringu [36], but we rigorously prove its correctness. Note that even when an entry
is not completable, the nuclear norm heuristic would give some result. However the result
may not be reliable in that case.

Furthermore, we propose a polynomial time algorithm to check for the property we call
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r-closable and at the same time actually perform matrix completion for a mask with such
a property. We show that this approach can be superior to the well studied nuclear norm
heuristic in some cases. In addition, we discuss the limitation of this approach, and how it is
related to the more general notion of circuits of a matroid, which are not however as easy to
compute as the r-closure.

1.2 Results

As the general overview in the previous section indicates, Matrix Completion has, until now,
been analyzed predominantly in the context of convex optimization. Indeed, naively, one
could think that the findings of Candès and Tao [5], which optimally characterize the asymp-
totic bounds for reconstructability of a coherent true matrix, settle, once and for all, the
problem of Matrix Completion and all that can be known about it.

However, examining the literature more carefully, part of the theoretical and practical
findings have already shown that the structural and computational phenomena in Matrix
Completion are far from being understood. On the theoretical side, for example, Singer and
Cucuringu [36] have tried to analyze the identifiability of Matrix Completion from a combi-
natorial point of view. While their work, which relates Matrix Completion to the Framework
Realizability Problem for rigid bar-joint frameworks, remains mainly conjectural, they are
able to give conjectural statements and algorithms on the completability on partially known
matrices which do not rely on the convex optimization setting but only on combinatorial fea-
tures which were also observed in different contexts, see Oh [28]. On the other hand, the
practical findings in the existing literature are also far from being complete. While the exist-
ing results give rise to algorithms good asymptotic guarantees, they often fail for the case of
small matrices or small samples.

In this paper, we will explore both of these white spots on the map by taking into ac-
count the intrinsic structure of the Matrix Completion problem which has, until now, only
been addressed to a marginal extent. It will turn out that Matrix Completion does not have
deep relations to Functional Analysis, as it has already been observed, e.g., by Candès and
Recht [4], Candès and Tao [5], but also with Combinatorial Commutative Algebra, Algebraic
Geometry, Matroid Theory, Deterministic and Probabilistic Graph Theory, and Percolation
Theory. By combining these contributions to a closed whole, we obtain what we believe to
be the right tools to investigate theoretical and practical aspects of Matrix Completion and a
more general class of Compressed Sensing problems which Exhibit Combinatorial-Algebraic
structure.

Here is a summary of our main contributions in this paper, which can also serve as a guide
for reading:

• In sections 2.1 and 2.2, we express the problem of Matrix Completion in terms of noisy
parametric estimation and, for the first time, explicitly separate the generative model
for the true matrix and the measurement process. This central part allows to treat the
properties of the measurement separately from the properties of the matrix; in fact, the
genericity formalism introduced section 2.2 will allow to remove the influence of the
true matrix almost completely in identifiability considerations.

• In section 2.3, under the assumption of generic sampling introduced in section 2.2,
we apply, following some ideas from the paper Király and Tomioka [20] and some
new, elementary techniques from Algebraic Geometry and Combinatorial Commutative
Algebra which allow us to parameterize and characterize the measurement process by
a bipartite graph. We show that all properties of the measurement, as for example
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degrees of freedom, as well as identifiability, are completely encoded by this graph
and its algebraic properties, thus accessible to algebraic-combinatorial methods. As
a practical counterpart, this implies that whether the true matrix can be reconstructed
does, generically, not depend on the values at the known entries but only their position.

• In section 2.4, we introduce a problem which is analogous to Matrix Completion. In-
stead of asking for a reconstruction of all missing elements of a matrix, we ask for a
reconstruction of some. In particular, we ask the reconstruction of which missing en-
tries is in principle possible. This task, which we term Partial Matrix Completion, has
apparently not appeared in the literature yet, but is amenable to the techniques devel-
oped in the previous chapters, and, in our opinion, of high practical relevance since in
general, not all entries are to be reconstructed. Our results include the fact that the set
of entries which can be reconstructed from the measurements also depends only on the
positions of the known entries, not their values.

• In section 2.5, we introduce, for the first time, combinatorial algebraic tools which
allow us to practically characterize the degrees of freedom which are destroyed by
the measurement process in terms of the graph defined in section 2.3. Matroid theory
allows to further characterize the patterns which guide possible ways of reconstruction,
and the theory of differentials gives a grasp on their calculation.

• The theory developed in section 2.5 gives rise to several randomized algorithms, later
presented in section 3.1 which are efficiently able to determine which missing entries
can in principle be reconstructed, and which not. A special case is the conjectural
algorithm proposed by Singer and Cucuringu [36], but also includes more general
applications including the Partial Matrix Completion problem introduced in section 2.4.
In particular, we present an algorithm which answers the question which entries can be
in principle reconstructed, given the positions of the known entries.

• The analysis of a special reconstruction pattern discussed in section 2.5 motivates a
novel algorithm which can perform reconstruction on the bipartite graph counterpart,
which we describe in section 3.2. By adding algebraic calculations onto the purely
graph theoretical foundations, we obtain in section 3.3 an first-of-its-kind-algorithm
which performs Matrix Completion not via optimization, but via Combinatorial-Algebraic
calculations.

• Since a graph parameterizes the measurement process, random measurements corre-
spond to random graphs. In section 2.6, we formalize this correspondence and, as
an application obtain bounds for the number of measurements which is necessary for
reconstruction.

• Since a graph parameterizes the measurement process, random measurements corre-
spond to random graphs. In section 2.6, we formalize this correspondence and, as an
application obtain bounds for the number of measurements which is necessary for re-
construction. Also, we provide theoretical and conjectural evidence for phase transition
phenomena which can be and have been observed in practial Matrix Completion set-
tings, as well as explanations for why and how classical Matrix Completion algorithms
fail on certain classes of measurements.

• In section 2.1, it has been shown that the conditioning on the true mask can be re-
moved in the analysis of identifiability. In section 2.7, we show that this is a general
principle: we develop a theory for Compressed Sensing under algebraic compression
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constraints (i.e., the constraints can be expressed by polynomial equations) and prove
an upper probabilistic bound on the sufficient number of samples which are needed
for reconstruction, which only depends on properties of the constraints, and not on the
properties of the true signal. For the special case of Matrix Completion, we obtain suf-
ficient bounds which are similar to those of Candès and Recht [4] and Candès and Tao
[5], but now with the conditioning on the incoherence of the true matrix completely
removed.

• In the experiment section we underline our theoretical findings, conjectures, and prac-
tical claims with evidence from simulations. In section 4.1, we show how the number
of reconstructible entries behaves with increasing sample size, and in section 4.2, we
compare the various theoretically predicted and practically observed phase transitions
of in the Matrix Completion problem, amongst those the identifiability phase transition.
Moreover, we compare the performance of the various known and novel algorithms to
these phase transitions.

• Appendix A contains a technical treatise on sheaves of matroids on schemes (e.g., alge-
braic varieties). It summarizes the genericity properties of a matroid of sections, when
evaluated at different points of the scheme. While the results presented there are folk-
lore and maybe not surprising, we decided to have them included since they seem not
to be written up in the existing literature.

Summarizing, this paper contains many results of theoretical and practical type, which
do not necessarily need to be read in sequence to be understood. Sections 2.1 and 2.2 are
fundamental and suggested reading, while sections 2.3, 2.6 or 2.7 can serve as independent
starting points. Also, the algorithms should be accessible (though not completely understand-
able) without having read the theory part.

1.3 Acknowledgements
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2. Theory of Low-Rank Matrix Completion

In this section, it is derived how Low-Rank Matrix Completion is properly formulated as a
parametric estimation task. Then, different approaches of sampling are discussed, arguing
that the generic algebraic framework is the most proper way of approaching the problem.
Subsequently, novel Algebraic Combinatorial tools will be derived for exploiting the inherent
structure of Low-Rank Matrix Completion, which allow to construct methods to solve and
understand the features of Matrix Completion from the structural, algebraic point of view.

2.1 What is Low-Rank Matrix Completion?

Matrix Completion is the task of imputing missing entries in a matrix, given other, known,
but possibly noisy entries. Low-Rank Matrix Completion is doing that under assumption of a
low-rank model, that is, informally:
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Problem 2.1.1. Let A be a matrix, in which some entries are missing, and some entries are
known. Given some target rank r, find a matrix A′ of rank r, close to A.

From both a mathematical and procedural point of view, Problem 2.1.1 is ill-defined. The
standard way of parameterizing and well-posing the Matrix Completion model is assuming
a generative truth, i.e., that there exists a true matrix A, of which one observes some entries,
plus observation noise. Thus, under the generative assumption, Problem 2.1.1 reformulates
to

Problem 2.1.2. Let A∈ Cm×n be an unknown matrix, of known rank r. Let ε ∈ (C∪ {∞})m×n

be a noise matrix. Given the observed matrix A+ ε, reconstruct A.

In this description of Low-Rank Matrix Completion, the model of the truth is well-defined,
but without assumptions on A and the noise ε, it is practically useless. Thus, as it is common
practice in statistics and learning theory, in order to obtain a proper, well-defined and practi-
cally applicable model, one needs to

• (i) separate the generative model from the noise model. That is, separate the fact which
entries are observed from the accuracy with which they are observed, if they are ob-
served.

• (ii) specify the generative sampling model. That is, introduce and specify random vari-
ables for sampling A, and the set of observed entries.

• (iii) specify the observational noise model. That is, introduce and specify random vari-
ables for the noise ε.

Also, measures of closeness from the observations to the putative truth need to be defined
when attempting to reconstruct and give reconstruction guarantees; however these are ex-
plicitly not part of the model, but also need the above three points to be fulfilled to allow for
proper evaluation.

2.1.1 Separating Generative and Noise Models

In order to perform (i) the separation of generative and noise models in a sound way, we
need to introduce mathematical notation to parameterize the generative sampling process.
First, we introduce notation for the set of all low rank matrices, from which the truth will be
sampled:

Notations 2.1.3. The set of all complex (m× n)-matrices of rank r or less will be denoted by

M(m× n, r) = {A∈ Cm×n ; rk A≤ r}.

We will always assume that m≤ n; by transposing the matrices, this is no loss of generality.

It will become important later that the set M(m×n, r) is the solution of a set of polynomial
equation in the matrix entries - the minor equations - making M(m×n, r) an algebraic variety.
M(m × n, r) is often called the determinantal variety1, while subsets of it may be called a
determinantal variety.

Next, we need to introduce notation for the process of specifying the observed entries of
the matrix:

1To be more precise, the usual determinantal variety is the projective closure of the affine variety M(m× n, r)
we define. However, the generic behavior under algebraic maps, including fiber and image dimensions, does
not change fundamentally when restricting the projective morphisms to the images and pre-images of the affine
variety M(m× n, r) which is dense in its projective closure.
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Definition 2.1.4. A map Ω : Cm×n→ Cα which sends a matrix to a fixed tuple of its entries, i.e.

Ω : (ai j)1≤i≤m
1≤ j≤n

7→
�

ai1 j1 , ai2 j2 , . . . , aiα jα

�

,

is called masking in rank r. Such a map is uniquely defined by the set of entries ik jk in the image
set. When clear from the context, we omit the qualifier “in rank r”.

We call the unique matrix which has ones at those entries, and zeroes elsewhere, the mask
of Ω and denote it by M(Ω). Similarly, we will call a matrix M having only ones and zeroes a
mask, and the map Ω such that M(Ω) = M the masking associated to M. When no confusion is
possible, we will denote it by ΩM and implicitly assume that the rank r is fixed.

Note that Definition 2.1.4 allows for an entry to be observed several times; that may be
useful if the observation is noisy. However, in the rest of the paper, we will not explicitly make
use of this fact, so we will assume that no entry is observed twice, i.e., the bituples (i`, j`) are
all different.

Naturally, we will be interested in the behavior of a masking Ω when its range is re-
stricted to the low-rank matrices M(m× n, r). Before proceeding to reformulating the Matrix
Completion model, we give examples for the definitions above:

Example 2.1.5. For any m, n ∈ N, one has M(m× n, m) = Cm×n.
The simplest non-trivial examples of determinantal varieties are the square co-rank one ma-

trix varieties:
M(n× n, n− 1) = {A∈ Cn×n ; det A= 0}.

For example, the co-rank one (2× 2)-matrices are

M(2× 2,1) =

¨�

a11 a21
a12 a22

�

; a11a22 = a12a21

«

.

Example 2.1.6. Consider a true (3× 3)-matrix

A=







a11 a21 a31
a12 a22 a32
a13 a23 a33






=







1 2 3
2 4 6
4 8 12







which has rank one. By observing five entries (exactly, i.e., without noise), one may arrive at
one of the following two partial matrices:

A1 =







1 2 3
4

4






or A2 =







1 3
4

4 12






.

The masks corresponding to the two matrices are

M1 =







1 1 1
0 1 0
1 0 0






and M2 =







1 0 1
0 1 0
1 0 1






,

so the corresponding maskings are the maps

Ω1 :







a11 a21 a31
a12 a22 a32
a13 a23 a33






7→







a11 a21 a31
a22

a13






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and

Ω2 :







a11 a21 a31
a12 a22 a32
a13 a23 a33






7→







a11 a31
a22

a13 a33






.

In particular, one has Mi =M(Ωi), and Ai = Ωi(A) for i = 1,2. Also note that Ωi could have
been expressed by the map which sends A to the Hadamard product, i.e., the componentwise
product, A◦Mi .

Thus, the generative sampling process is modelled by applying some masking Ω to the
true matrix which is in the range, while the noise acts on the image of Ω, formally separating
both by the map given by Ω.

2.1.2 The Parametric Model of Low-Rank Matrix Completion

Using the notations and definitions introduced in section 2.1.1, we can now provide a com-
plete model description for Low-Rank Matrix Completion:

Problem 2.1.7. Let r be the true rank, let A be a M(m×n, r)-valued random variable, modelling
the sampling of the true matrix. Let M be a (m× n)-mask-valued random variable modelling
the position of the observed entries, and α = ‖M‖1 the integer-valued random variable which is
the number of observed entries. Let ε be a Cα-valued random variable, modelling the noise.

Then, construct a good estimator for A which takes ΩM (A) + ε as input.

What is chosen for particular sampling distributions on A and M is different throughout
the literature, similarly the noise model ε. While choices for sampling A and M will be
thoroughly discussed in the next section, we will not put much emphasis on the noise model
ε yet, while acknowledging that it is extremely important for practical purposes. However,
identifiability of the generative model is independent of the noise ε while it is well-behaved;
in fact one direction of this claim is straightforward to see, and we summarize it in the
following important remark:

Remark 2.1.8. If it is impossible to identify A from Ω(A), then there can exist no consistent
estimator for A which makes no use of hidden knowledge.

Even more can be seen to be true, as the following result shows:

Theorem 2.1.9. Keep the notations in Problem 2.1.7. There exists a consistent2, deterministic
estimator for the true matrix A if and only if A is identifiable from Ω(A).

Proof. No consistent estimator for A can exist if A is not identifiable from Ω(A), since the
estimator cannot know which element of Ω−1(Ω(A)) to estimate, as all elements in Ω−1(Ω(A))
are indistinguishable by the assumptions, as it was already discussed in Remark 2.1.8.

It remains to prove that there exists an algorithmic estimator bA(B) which estimates A from
B = A+ εp

N
consistently, assuming A is identifiable from Ω(A), and ε ∈ Cα is centered noise.

Consistency means, as discussed in the footnote, that bA(B) → A in probability, as N → ∞.
Note that both bA and B depend on N , but for ease of notation, we do not make this explicit.

Instead of constructing the estimator bA directly, we will first construct a consistent estima-
tor ba for a fixed missing entry a of A, which will then be modified into a consistent estimator

2here, consistent is defined by the variance convention: for the observed matrix B = Ω(A) + εp
N

, some scaling

factor N , and centered noise ε with finite variance, the estimator bA(B) converges in probability to A for N →∞.
This is equivalent to observing each noisy entry of Ω(A) with multiplicity N and taking the number of samples
convention for consistency in the number of observations.

10



of bA. Note that taking ba component-wise does not suffice here, as this matrix needs not to
be of rank r. The proof will be split in three steps: (i) the construction of the consistent
estimator ba for a, and (ii) the proof that ba estimates a consistently if A is identifiable, and
(iii) the construction of the estimator bA from ba, and the proof of its consistency.

(i) For constructing the estimator ba, we will make use of the fact that Ω is an algebraic
map. This implies that the fiber Ω−1(Ω(A)) is an algebraic variety, which is moreover finite
(=zero-dimensional) since {A} = Ω−1(Ω(A)). The latter also implies that there is a finite set
of polynomials f1, . . . , fk such that a is the unique solution of the equations

f1(Ω(A), X ) = 0, . . . , fk(Ω(A), X ) = 0

in X , where the fi have to be read as polynomials in the coordinate entries of Ω(A) and a a
(and not matrix polynomials inΩ(A) and a). The polynomials f1, . . . , fk can be algorithmically
obtained by symbolic (though highly complex) calculations, e.g., symbolic elimination of all
variables from A not in Ω(A) except a. Thus, for each i, the equation

fi(B, a) = 0

is a polynomial equation, let di be its degree in a. Given B, it can be solved for a by numerical
algorithms, yielding solutions

ai1, . . . , aidi
,

possibly with multiplicity. We now determine h : N→ N minimizing the value

L(h) =
k
∑

i, j=1





ai,h(i)− a j,h( j)





 ,

which is algorithmically possible as there are only finitely many choices for h. Then, we set

ba =
1

k

k
∑

i=1

ai,h(i).

(ii) We prove consistency of the estimator ba constructed in (i). As N → ∞, it holds
that B → Ω(A) and thus that fi(B, X ) → fi(Ω(A), X ), in terms of the coefficients. Thus,
the ai1, . . . , aidi

, converge (with multiplicities) to the solutions αi1, . . . ,αidi
, of the equation

fi(Ω(A), X ) = 0 in the variable X , up to renumbering. Thus, it holds that

L(h) =
k
∑

i, j=1





ai,h(i)− a j,h( j)





→
k
∑

i, j=1





αi,h(i)−α j,h( j)





=: `(h).

As discussed in (i), a is the unique solution of the equations

f1(Ω(A), X ) = 0, . . . , fk(Ω(A), X ) = 0,

so it holds that `(h) = 0 if and only if

αi,h(i) = a for all 1≤ i ≤ k,

and `(h)> 0 else. Since there are only finitely many choices for h, it holds that

ba =
1

k

k
∑

i=1

ai,h(i)→
1

k

k
∑

i=1

αi,h(i) =
1

k

k
∑

i=1

a = a

11



for N →∞, which proves consistency of ba.
(iii) We now construct the estimator bA, first we give its explicit form. First, consider the

estimator cA0 which is B for the known entries and ba for each unknown entry. By (ii), it
holds that cA0 → A as N → ∞, but the estimator cA0 is in general not consistent as it is not
contained in M(m× n, r). This can be remedied by replacing cA0 with its rank-r-Young-Eckart
approximation, which is algorithmically done as follows:

First, calculate the SVD of cA0, i.e., a decomposition

cA0 = U · D · V>

into an orthogonal (m×m)-matrix U , an orthogonal (n×m)-matrix V , and a diagonal (m×m)-
matrix D, where we assume without loss of generality that m ≤ n, and that the diagonal
entries of D are ordered descendingly by absolute value. Then, let D′ be the matrix where
we replace all except the r entries of D with biggest absolute value by 0. The rank-r-Young-
Eckart-approximation of cA0 is then the matrix U · D′ · V>. We set

bA := U · D · V>.

The Young-Eckart theorem states that bA minimizes the Frobenius distance

‖bA− bA0‖F

under the constraint that rk bA= r. Since M(m× n, r) is a closed set, this implies that bA→ A
for N →∞, which proves consistency of bA.

In particular, Theorem 2.1.9 shows: if A cannot be identified from Ω(A), then no algorithm
without hidden knowledge can reconstruct all the missing entries in Ω(A).

This stringently motivates the analysis of properties of Ω alone, since the statement is
independent of the noise ε under the condition of well-behavedness of the latter.

The estimator given in the proof of Theorem 2.1.9 is in general very inefficient and is
proposed only for the purpose of completing the statement which relates the exact algebraic
morphism to identifiability of a statistical problem. In fact, we do not expect that there is a
much better algorithm that applies to any true matrix. In his PhD thesis, Michael Dobbins
[8]3proved, via a reduction to the Polytope Realization Problem [30, Parts I–II] that:

Proposition 2.1.10. Deciding if a partial matrix has a low-rank completion is as hard as decid-
ing if any set of polynomial equations has a solution.

This problem is known to be in PSPACE, is at least NP-hard. (This particular formulation
of hardness, as well as a discussion from the complexity-theoretic perspective is in Shor [35].)
Thus, to obtain efficient algorithms, we will need to make some kind of assumption on the
input. Our will be that it is generic, a concept that we describe next.

2.2 Genericity

In this section, we discuss sampling assumptions for the generative model of the mask M
defining the masking Ω, and the true matrix A. We introduce a new, algebraic genericity
assumption for the true matrix, which will allow later to remove the influence of the sampling
of the true matrix A onto the behavior of Ω. As in applications, the mask is known, while
the sampling assumptions on the true matrix A and the true matrix A itself are in general
unknown, we will argue that this is at the same time the most natural an weakest possible
assumption on the sampling of the true matrix A.

3We thank Günter Ziegler for reminding us about Dobbins’s results.
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2.2.1 Sampling of the Mask

Several ways of sampling the mask have been considered in the literature. Table 1 gives a
short list of sampling distributions for the mask M . There are also different sampling as-

fixed mask M the mask M is fixed
uniform U(m× n, k) the number of observed entries α= ‖M‖1 is fixed,

otherwise the sampling is uniform
Erdős-Rényi G(m× n, p) each entry of M is independently

Bernoulli distributed with parameter p

Table 1: Possible sampling assumptions for the mask

sumptions like the CLP or the Power Law model, which will however not be discussed in this
paper. In the Erdős-Rényi model, the number of edges α = ‖M‖1 is binomially distributed as
α∼B(p, mn), with expected value mn · p and variance mn · p(1− p). Thus, the relative vari-
ance, i.e., the variance of α

mn
, is p(1−p)

mn
which approaches zero as mn→∞, so the qualitative

behavior of G(m× n, p) will approach that of U(m× n, mn · p) in the limit.
Note that in practical applications, it is always possible to identify the result of the mask

sampling, since it is - tautologically - always known which entries of the true matrix are
known, and which entries are unknown.

2.2.2 Sampling of the True Matrix

Table 2 gives a short list of sampling assumptions for the true matrix A. Note that usually,
the specific distribution from which the sampling occurs is not specified, only properties are
specified which hold for the sampling distribution or the sampled matrix. The reason for this
is that the relevant statements hold for any sampling distribution fulfilling these assumptions.

incoherent for the singular value decomposition A= USV>, and a global constant C ,
it holds that maxi, j ‖Ui j‖2 ≤

Cp
m

and maxi, j ‖Ui j‖2 ≤
Cp
n

non-spiky there exists a global constant C bounding the spikiness ratio from above,
i.e., it holds that mn · ‖A‖2∞ · ‖A‖

−2
F ≤ C

(Zariski-)generic (algebraic) subsets with Lebesgue/Hausdorff measure zero
have (conditional) probability zero

Table 2: Possible sampling assumptions for the mask

The most common strategy is to restrict the sampling of matrices to a subset of all ma-
trices, as in incoherence [4] or non-spikiness [27]. We propose a weaker condition, inspired
by the Zariski topology4 on algebraic sets: we only postulate that the sampling distribution
of the true matrix assigns no positive probability to any Hausdorff measure zero subset of
M(m × n, r). For what concerns the following, one could also postulate that only for irre-
ducible algebraic subsets. This Zariski-like condition is indeed weaker, as the coherent, or

4In the Zariski topology, the closed subsets of Cn are exactly those which can be written as set of solutions for
a finite set of polynomials; i.e., U ⊆ Cn is open if and only if there are polynomials p1, . . . , pm in n variables such
that U = {x ∈ Cn ; pi(x) 6= 0 for some 1≤ i ≤ n}. The closed sets are called algebraic sets, and carry the inherited
Zariski topology. Zariski closed sets and relatively Zariski closed sets have probability measure zero under any
continuous random variable, see the appendix of [22] for more details.
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spiky matrices form a set of positive probability measure in general. In fact, any continuous
probability distribution fulfills the postulate, in particular also any distribution supported on
non-spiky or coherent matrices.

As the underlying sampling process is unknown in practical applications, as opposed to
the chosen mask, we argue that the proposed sampling for true matrices is the weakest possi-
ble condition which excludes sampling degeneracies. Thus, we will term it generic sampling,
and any random variable fulfilling this condition will be termed generic, or generic matrix.
In the next section we will see in fact that under generic sampling assumptions, the behavior
of the masking operation and its identifiability depends only on the properties of the mask,
and is completely independent of properties of the true matrix.

Furthermore, different scenarios restrict to symmetric/Hermitian or antisymmetric/anti-
Hermitian matrices, and/or real matrices, as opposed to non-symmetric complex matrices.
While these assumptions usually change the results, they do not fundamentally. We will
discuss these sampling assumptions additionally when appropriate. Other sampling assump-
tions include definiteness or sign assumptions on the true matrix. As these conditions are
semi-algebraic and completely change the flavor of the problem, they will not be discussed in
this paper.

For formal purposes, we want to state our definition of (algebraic) genericity:

Definition 2.2.1. Let P be some property on the matrices Cm×n, such that the set X of P matri-
ces is admits a Hausdorff measure (e.g., when X is an algebraic variety), let Q be any property
on the matrices Cm×n, let Y be the set of matrices that are not Q. We say that

“A generic P matrix is Q”

if the set X ∩ Y is a negligible set (i.e. a subset of a null set) under the Hausdorff measure on
X .

The given definition is a bit broader than the usual concept of genericity applied for
moduli spaces of algebraic objects, but is, for the current setting, maybe the most intuitive
one, without making any difference in the consequences, since it implies that any matrix
valued random variable with continuous support on the P matrices will fulfill Q almost surely.
Indeed, in the case that P and Q define algebraic sets, the definitions (the given one, and
very generic/general for the moduli space) are equivalent. A more detailed comparison and
relation of different concepts of genericity, and how they imply each other, can be found in
the appendix of [22].

To give further intuition for this concept of genericity, and its meaning in the world of
low-rank matrices, we give some examples for valid statements:

Example 2.2.2. Recall that we have assumed r ≤ m≤ n.

• A generic (m× n)-matrix has only non-zero entries.

• Let A be any fixed (m× n)-matrix of rank r. A generic (m× n)-matrix of rank r is not
equal to A.

• A generic (m× n)-matrix of rank r or less has rank exactly r.

• A generic (m× n)-matrix of rank r has no vanishing (r × r)-minor.

• A generic (m× n)-matrix of rank r has no real eigenvalues.

• A generic positive semi-definite real (m× n)-matrix of rank r is positive definite.
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These statements can be proved using algebraic, or probabilistic methods with a proper
conditioning. Note that the use of “generic” is not equivalent to the use of “in general”, since,
for example, a matrix of rank r or less in general needs not to have rank r. Also, note,
that a generic (m× n)-matrix is not a single, fixed matrix, as generic is not a qualifier for a
single, fixed matrix; it is, to the contrary, in fact a qualifier for statements about almost all
(m× n)-matrices. Similarly, it can be thought of as a (m× n)-matrix-valued random variable
having the generic sampling assumption, about which the sentences make probability one
statements.

2.3 The Algebraic Combinatorics of Matrix Completion

This section is devoted to developing the basic algebraic structure of Low-Rank Matrix Com-
pletion, and to state some elementary results which come from the mere fact that Low-Rank
Matrix Completion is an algebraic problem in the strict sense. Namely, the generative map-
ping ΩM , as it occurs in the final problem description 2.1.7, is an algebraic map. This makes
the analysis of the generative model of Matrix Completion, and its identifiability in view
of Theorem 2.1.9 amenable to the vast range of tools from commutative algebra and alge-
braic geometry. A comprehensive introduction into basic algebraic geometric concepts can
be found in the introductory chapters of the book by Cox et al. [7]. Note that knowledge of
advanced concepts of commutative algebra, or algebraic geometry should not be necessary
for understanding the current paper apart from some proof details. Part of the following
exposition follows the results obtained in the paper by Király and Tomioka [21].

We motivate the theory which follows with a central question about the identifiability of
Matrix Completion:

Question 2.3.1. Given sampling conditions on the true matrices (including the true rank) and
a fixed mask M: when is the generative model of Matrix Completion identifiable?

Theorem 2.1.9 states that identifiable of the generative model is equivalent to injectivity
of the masking ΩM , under the given sampling conditions. Thus, the first question which has
been asked about identifiability of the model is the following:

Question 2.3.2. Given a fixed mask M, when is ΩM injective?

Injectivity, or one-to-one-ness, is by construction the necessary and sufficient condition
for properly inverting a map, and thus for identifiability of the generative model.

For the community, it has been long known that the answer to Question 2.3.2 is very
unsatisfactory - it is, basically: in all interesting cases, never. The following proposition,
which, together with its proof, is taken from [21], gives the corresponding formal statement
which has already been asserted by Candès and Recht [4].

Proposition 2.3.3. Let r ≥ 2, let M be a mask with α= ‖M‖1 known entries. Then the masking
Ω : M(m× n, r)−→ Cα is injective if and only if α= mn.

Proof. Clearly, if α = mn; then Ω is injective, as it is the identity map. So it suffices to prove:
if r ≥ 2 and α < mn, there exists a matrix A such that {A} 6= Ω−1(Ω(A)). Now since α < mn,
there exists an index i j such that M(Ω)i j = 0. Let A be any matrix whose columns, except
the j-th, span an (r − 1)-dimensional vector space. Since X is of (at most) rank r, the set
Ω−1(Ω(A)) contains any matrix Ã which is identical to A but has an arbitrary entry at the
index i j.
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This answer to Question 2.3.2, which seems to be strongly negative, is maybe the main
reason which has led the community to believe that in order to obtain firm results on the gen-
erative model of Matrix Completion, the sampling of the true matrices has to be restricted. As
discussed in section 2.2.2, most sampling models from literature put rather strict assumptions
on the sampling of the true matrix. As such, the obtained results usually mix the generative
sampling model for the true matrix and the mask, which makes in the end unclear which of
the two is at the source of the observed phenomena.

2.3.1 The Algebra of Matrix Completion

The following argumentation, which is naturally and intuitively obtained from the algebraic
structure of the problem, shows that the strong and unnatural conditioning on the true matrix
- which can furthermore, by construction, never be verified in the real world - is not necessary
to obtain identifiability results for the matrix completion problem. Assuming merely generic
sampling, which means, for any sampling process of true matrices having no support at null
sets, one can show that identifiability of Matrix Completion depends only on the mask and
the true rank, and not on the true matrix, or any further sampling assumptions on the true
matrix.

In order to state the result compactly, we need notation for characterizing the degrees of
freedom one has in the reconstruction:

Definition 2.3.4. Let A be an (m× n)-matrix of rank r, let Ω be an (m× n)-masking in rank r.
Then, the set Ω−1(Ω(A)) is called the fiber of Ω at A, and, alternatively, the fiber of Ω over Ω(A).
We will call the integer

dimAΩ = dimΩ−1(Ω(A))

the fiber dimension (of Ω) at A. Similarly, we will call

#AΩ = #Ω−1(Ω(A))

the fiber cardinality (of Ω) at A.

For given A, the fiber dimension dimAΩ is exactly the number of degrees of freedom one
has in continuously changing A without changing the masked version Ω(A). That is, the fiber
dimension is the degrees of freedom in the range of Ω which do not appear in its image, at
the element A; more informally speaking, the fiber dimension is the degrees of freedom killed
by Ω in a neighborhood of A. Note that in particular, dimAΩ = 0 is equivalent to saying that
Ω(A) has a finite set of possible reconstructions. In this case, #AΩ is an integer, else it is∞.

The following series of observations implies that the invariants introduced in Defini-
tion 2.3.4 are indeed generic and characteristic invariants of the masking. They follow from
the fact that Ω is an algebraic map. The most important fact is that for a generic true matrix,
its behavior, in terms of fiber dimension and number of possible reconstructions, does not
depend on the particular entries or the structure of the true matrix. These results were first
stated and proved in [21], for completeness, we reproduce the proofs. Candès and Recht [4]
have implicitly used and assumed some of those, but without proper proofs or references.

Theorem 2.3.5. Let A be a generic (m× n)-matrix of rank r, let Ω be a masking in rank r.
Then, the following depend only on the true rank r and the mask M(Ω):

(i) The fiber dimension dimAΩ.

(ii) The fiber cardinality #AΩ.

16



(iii) Whether #AΩ = 1, i.e., whether A is uniquely completable.

Proof. (i) By definition of genericity, if suffices showing that there is a Zariski open dense set
U in Cm×n, such that for all matrices A∈ U , the set of possible completions Ω−1(Ω(A)) has the
same dimension and cardinality. But this is a direct consequence of the upper semicontinuity
theorem (see e.g. I.8, Corollary 3 in Mumford [25]), when applied to the algebraic map
Ω : M(r; m× n)−→ Cα, considering that M(m× n, r) is irreducible.

(ii) In the case of dimAΩ> 0, one has #AΩ =∞ and the statement is true. If dimAΩ = 0,
the statement is an application of the purity of the branch locus, see Zariski [44].

(iii) is a special case of (ii).

Theorem 2.3.5 shows that identifiability properties of Ω are independent of the true ma-
trix A as long as it is generically sampled; namely dimAΩ and #AΩ are independent from A,
so we can remove the qualifier A which Theorem 2.3.5 has proved to be unneccessary:

Definition 2.3.6. Let Ω be a (m× n)-masking in rank r, let A be a generic (m× n)-matrix. We
will write #Ω for the (generic) value of #AΩ, and dimΩ for the (generic) value of dimAΩ.

Also, Theorem 2.3.5 provides motivation for the following definitions which characterize
the generative identifiability of Ω generically:

Definition 2.3.7. Let Ω be a (m× n)-masking in rank r. We call

(i) Ω generically injective and M(Ω) identifiable or completable (in rank r), if #Ω = 1.

(ii) Ω (generically) finite and M(Ω) finitely identifiable or finitely completable (in rank r), if
#Ω<∞.

(iii) Ω generically k-to-one (in rank r), if #Ω = k.

(iv) Ω infinite and M(Ω) unidentifiable (in rank r), if dimΩ> 0.

Thus, generic injectivity of Ω means that Ω is 1:1 almost everywhere on its range; that is,
after a restriction to the complement of a Lebesgue null set. Similarly, generic finiteness and
generic k-to-one-ness mean being k:1 everywhere, with the same k. Theorem 2.3.5 ascertains
that every masking Ω will be either generically injective, generically k-to-one for some k ≥ 2,
or infinite. Note that the qualifier in rank r has always to be present for well-definedness.

For intuition, we illustrate the results in Theorem 2.3.5 with the simplest non-trivial (in
the sense of Proposition 2.3.3) example:

Example 2.3.8. Consider the set M(2× 2,1) of (2× 2)-matrices of rank 0 and 1. It is the set

M(2× 2, 1) =

¨�

a11 a21
a12 a22

�

∈ C2×2 ; a11a22 = a12a21

«

.

Consider the mask

M =

�

1 1
1 0

�

The masking given by M is

ΩM :

�

a11 a21
a12 a22

�

7→
�

a11 a21
a12

�

.
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We will write Ω = ΩM for convenience. Let B ∈M(2× 2,1) be some fixed matrix with

B =

�

b11 b21
b12 b22

�

.

Then, the fiber at B is

Ω−1(Ω(B)) =

¨�

b11 b21
b12 a22

�

∈ C2×2 ; b11a22 = b12 b21

«

.

Note that bi j are now fixed in that set, while a22 is the free entry. Now, one of the following two
cases has to happen:

Case 1: b11 6= 0. Then,

Ω−1(Ω(B)) =

¨�

b11 b21
b12 b22

�

∈ C2×2 ; a22 =
b12 b21

b11

«

= {B}.

In this case, dimBΩ = 0, and #BΩ = 1.

Case 2: b11 = 0. Then,

Ω−1(Ω(B)) =

¨�

0 b21
b12 a22

�

∈ C2×2 ; 0= b12 b21

«

=

¨

B+

�

0 0
0 λ

�

; λ ∈ C
«

.

In this case, dimBΩ = 1, and #BΩ =∞.

Case 1 is the generic case, as b11 is generically non-zero, see the first bullet in Example 2.2.2.
Thus, dimΩ = 0, and #Ω = 1, so Ω is generically injective, while not being injective (also
compare Proposition 2.3.3).

The algebraic theory also implies some results on possible degeneracies which may occur,
i.e., if A is not sampled generically (compare the two cases in Example 2.3.8):

Theorem 2.3.9. let Ω be an (m× n)-masking in rank r. Let B be any fixed (m× n)-matrix of
rank r or less (not necessarily generic). Then

(i) dimBΩ≥ dimΩ.

(ii) If dimBΩ = 0, then #BΩ≤ #Ω.

Proof. The proof is similar to that of Theorem 2.3.9. (i) follows from a more careful appli-
cation of the upper semicontinuity theorem (see e.g. I.8, Corollary 3 in Mumford [25]), (ii)
from purity of the branch locus Zariski [44] and the fact that #BΩ is upper bounded by the
degree of the field extension K(M(m× n, r))/K(Ω(M(m× n, r))), which is the same as #Ω.

Note that if dimΩ > 0, then Theorem 2.3.9 (i) implies #BΩ = ∞ for arbitrary B. That
is, if a generic matrix can not be reconstructed from a given masking, no matrix can be re-
constructed. The similar statement that if a generic matrix can be reconstructed, all matrices
can be reconstructed, is false, as the proof of Proposition 2.3.3 shows. Furthermore, for a
given masking, there can exist a matrix having unique reconstruction only if the masking is
generically finite. We want to remark another important consequence of Theorem 2.3.9:

18



Remark 2.3.10. We want to note that the results presented in Theorems 2.3.5 and 2.3.9 are
not specific for the case of Low-Rank Matrix Completion. They are special instances of classical
results from Algebraic Geometry, which are valid for any well-behaved5 algebraic map. Thus,
they are in similar form valid for any parametric estimation problem which can be decomposed
into an exact generative part, given by an algebraic map, and a noise part.

Theorems 2.3.5 and 2.3.9 allow to replace Question 2.3.2, which we have seen to be un-
informative without further specification, with a question that is equal in spirit and excludes
a null set of pathological cases.

Question 2.3.11. Given a fixed mask M, when is M identifiable in rank r? When is M finitely
identifiable in rank r?

Theorems 2.3.5 and 2.3.9 show that Question 2.3.11 is well-defined, since the answer
depends only on M and the true rank r. Also note that since generical injectivity implies
generic finiteness, any condition necessary for generic finiteness is also for injectivity, and
any condition sufficient for generic injectivity will be for sufficient generic finiteness. In
general, generic injectivity and generic finiteness do not coincide, as the following example
shows.

Example 2.3.12. The mask

M =











0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0











.

is generically two-to one in rank 2.

It is also important to note that the results of Theorems 2.3.5 and 2.3.9 do not hold (set-
theoretically), when working over a field which is not algebraically closed, for example the
real numbers R. Thus in particular, over an algebraically non closed field, Question 2.3.11 is
in general not well-defined. We give the probably simplest example where behavior over the
complex and reals numbers diverges:

Example 2.3.13. Consider the mask

M =











0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0











from Example 2.3.12. In rank 2, the masking ΩM is finitely identifiable, and generically two-
to-one. Denote by ΩR the restriction of ΩM to real rank at most 2 matrices. When considering
a generic real matrix A of rank 2 as true matrix, then the (set-theoretic) fiber Ω−1

R (ΩR(A)) con-
tains, generically, two or no elements. It is not true that it contains generically two elements, nor
is it true that it contains generically no element. However, even though A is generic real, the fiber
over the complex numbers Ω−1

M (ΩM (A)) will generically have two elements.

This behavior is very similar to that of the well-known quadratic equation

x2+ bx + c = 0, with b, c ∈ R
5that is, for any proper morphism of Noetherian schemes X → Y over an algebraically closed base field of

characteristic zero, and where X is irreducible
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which has two real solutions if b2 > 4c and no real solution if b2 < 4c. Both cases are generic
in the sense that they have positive Lebesgue measure, as the sets

G1 = {(b, c) ; b2 > 4c} and G2 = {(b, c) ; b2 < 4c}

are not null sets in R2 = {(b, c) ; b, c ∈ R}. The case b2 = 4c where a single solution occurs
is degenerate (and lies in the ramification locus of the parameter map, compare the proof of
Theorems 2.3.5 (ii) ). Over the complex numbers, the equation has, for generic choice of b, c,
always two solutions.

Example 2.3.13 shows that over the real numbers, there may be several generic behaviors
for the identifiability of Ω, and not only one as in the complex case treated in Theorem 2.3.5.
The sets where different types of generic behavior occur are semi-algebraic subsets of M(m×
n, r)∩Rm×n. That is, the sets are cut out by polynomial inequalities in the matrix entries, e.g.,
definiteness (or compare G1, G2 in Example 2.3.13). As it is in general hard to distinguish
and analyze those semi-algebraic subsets properly, we refrain from doing so for the rest of the
paper. However, Theorems 2.3.5 and 2.3.9 give bounds for identifiability; that is, for some
masking, being generically finite over the complex numbers is, by Theorem 2.3.9 a necessary
condition for any real matrix to have a finite set of possible reconstructions.

2.3.2 The Combinatorics of Matrix Completion

The generative model Low-Rank Matrix Completion is not only algebraic, but has also deep
combinatorial features. This was first noticed by Singer and Cucuringu [36], drawing par-
allels to Rigidity Theory (e.g., Graver et al. [13]). We develop these connections further,
studying a generic degree of freedom heuristics.

The combinatorial information in each mask is encoded in a bipartite graph associated to
it. We recall the notions of bipartite graph and its adjacency matrix:

Definition 2.3.14. A labeled bipartite graph G is a tuple G = (V, W, E), where V = [m] is the
set of red vertices, W = [n] is the set of blue vertices, and E ⊆ V1 × V2. The set E is interpreted
as the set of edges running between V and W. We will denote the set of edges E of a graph G by
E(G), and its cardinality by e(G) = #E(G).

Two bipartite graphs G1 = (V1, W1, E1) and G2 = (V2, W2, E2) are isomorphic is there are a
pair of bijections σV : V1→ V2 and σW : W1→W2 inducing a bijection (i, j) 7→ (σV (i),σW ( j))
on the edge sets. The equivalence classes under the induced relation are isomorphy types or
(unlabeled) bipartite graphs.

Given a bipartite graph G = (V, W, E), its transpose G> is the bipartite graph G> = (W, V, E>),
where ( j, i) ∈ E> if and only if (i, j) ∈ E.

The adjacency matrix of a labeled bipartite graph G = (V, W, E), is the (#V ×#W )-matrix
M(G), where each row corresponds uniquely to an element of V , and each column corresponds
uniquely to an element of W. The entry in row i and column j is 1 if and only (i, j) ∈ E, else it
is 0.

Note that in all of these definitions, the bipartition of a (labeled or unlabeled) bipartite
graph is fixed. Informally, labelled bipartite graphs are isomorphic if one can be obtained from
the other by some relabeling of each vertex class separately (i.e., preserving the bipartition).
The reason for separating labeled and unlabeled bipartite graphs is that masks correspond to
labeled bipartite graphs bijectively, via adjacency matrices, but generic completability will turn
out to depend only on the unlabeled bipartite graph associated with the mask (Proposition
2.5.26).
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Definition 2.3.15. LetΩ be a masking with mask M(Ω). We will call the unique labeled bipartite
graph G(Ω) which has adjacency matrix M(Ω) the adjacency graph of Ω. We will also write
E(Ω) = E(G(Ω)) and e(Ω) = e(G(Ω)). If we start with the mask M = M(Ω), we will also denote
G(Ω) by G(M), and similarly replace Ω by M in E(M) = E(Ω) and e(M) = e(Ω).

Also, M
�

G>
�

=M(G)>, but G and G> are in general not isomorphic.
Before continuing, we illustrate the definition of the adjacency graph of a masking by

some examples:

Example 2.3.16. Consider the masks from Example 2.1.6 The masks corresponding to the two
matrices are

M1 =







1 1 1
0 1 0
1 0 0






and M2 =







1 0 1
0 1 0
1 0 1






.

We now interpret M1 and M2 as bipartite adjacency graphs. That is, with Definitions 2.3.14
and 2.3.15, both graphs G(Mk), k = 1, 2 have three red and three blue vertices: the red vertices
are the three rows of Mk, and the blue vertices are the three columns of Mk. An edge is drawn
between red vertex/row i and blue vertex/column j if and only if Mk has the entry 1 at position
(i, j). Thus, the graphs Gk shown in figure are the adjacency graphs Gk = G(Mk).

Since a mask M is uniquely represented by its associated graph G(M), Question 2.3.11
can be rephrased into a question on algebraic graph combinatorics:

Question 2.3.17. Given a bipartite graph G with adjacency matrix M, what are combinatorial
conditions on G for M to be identifiable? What are the conditions for M to be finitely identifiable?

In the following, we give some combinatorial properties on the graph which are sufficient
or necessary for generic finiteness. This includes an exact characterization for the case of
rank one, which was already derived by Candès and Recht [4] and Singer and Cucuringu
[36] using other techniques.

First we give a sufficient condition that relies on a simple algorithmic procedure, which we
call r-closure. It corresponds algebraically to subsequently solving minor equations. For ease
of definition, we first formally define a replacement operation on graphs, which recursively
adds edges to existing sub-patterns.

Definition 2.3.18. Let H ′, H be (bipartite) graphs with the same vertex set. Let M ′, M be the
adjacency matrices of H ′, H. If M − M ′ is non-negative (i.e., it is a mask or adjacency matrix),
then the induced injection of graphs φ : H ′→ H (fixing vertices) is called a closing.6

The concept of closing will become important in an algorithmic context, where we search
for subgraphs H ′ and add all edges which are missing in H. The map φ is needed to describe
exactly where the edges are missing, since specification of H ′ and H does in general not
suffice:

6An alternative (shorter but more technical) definition of a closing is: a graph monomorphism φ : H ′ → H
with V (H ′) = V (H) is called closing.
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Example 2.3.19. Consider the masks/adjacency matrices

M ′ =

�

1 1 0
1 0 0

�

and M =

�

1 1 0
1 1 1

�

.

This induces an injection of graphs H ′ → H which is different from the injection one gets when
replacing M by

M ′′ =

�

1 1 1
1 1 0

�

,

since in one case two edges in the same row are added, in the other two edges in two different
rows and two different columns are added.

Definition 2.3.20. Let G be a (bipartite) graph with vertex set V, let φ : H ′ → H be a closing.
We define7 a graph cl[φ](G), having vertex set V and containing G, together with a closing
cl[φ] : G→ cl[φ](G), by the following properties:

(i) Every edge e in cl[φ](G) is an image of an edge e′ in G under cl[φ], or there exists a
subgraph F ⊆ G isomorphic to H ′ such that e′ connects vertices in the image cl[φ](F).

(ii) For each subgraph F ⊆ G isomorphic to H ′, there is a closure ρ such that the restriction of
cl[φ] to F factors as ρ ◦φ.

Let φ1, . . . ,φk be closings. Then we write cl0[φ1, . . . ,φk](G) = G, and, by induction,

cln[φ](G) = cl[φ1] . . . cl[φk]
�

cln−1[φ1, . . . ,φk](G)
�

for all integers n≥ 1.
If it is clear from the context, we let the operations cln also act on the adjacency matrices

instead of the graphs.

Intuitively, the operation cl[φ] takes all instances of H ′ in G, and adds all missing edges
in H, in the way the map φ prescribes it. cl[φ1, . . . ,φk] does the same for several closure
patterns φ1, . . . ,φk. Thus, it can be seen that the closing operation cln does not add any new
edges for big enough n, which makes the following definition well-posed.

Example 2.3.21. Let H = K2,2 be the complete bipartite graph with two red and two blue
vertices (often called biclique), and let H ′ = K−2,2 be K2,2 minus one edge. The graph H ′, which
we call the almost biclique, has the same isomorphism type for any choice of the missing edge,
so the notation H ′ = K−2,2 has no ambiguity, and the induced map φ : H ′ → H that adds the
missing edge from H ′ to H is canonical.

Let G be the bipartite graph with adjacency matrix

M =







0 1 1
1 1 0
1 0 0






.

Then,

cl[φ](M) =







1 1 1
1 1 1
1 1 0






and cl2[φ](M) =







1 1 1
1 1 1
1 1 1






.

7an alternative definition of cl[φ](G), is as follows: Take a closing φ which corresponds to two (m′×n′)-masks
M , M ′ with M − M ′ positive. Let G be a bipartite graph with (m× n) adjacency matrix A′. Let A be the unique
(m× n)-mask with the least number of non-zero entries such that for all row selection matrices Pm ∈ Cm′×m and
Pn ∈ Cn′×n (i.e., Pm, Pn are the first m′ resp. n′ rows of a permutation matrix), the matrix PmAP>n −M is positive if
PmA′P>n −M ′ is positive. Then, cl[φ](G) is defined as the graph G(A).
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Definition 2.3.22. Let φ1, . . . ,φk be closings. Let N ∈ N be any integer such that

clN[φ1, . . . ,φk](G) = clN−1[φ1, . . . ,φk](G).

Then, we write cl∞[φ1, . . . ,φk](G) = clN[φ1, . . . ,φk](G). The graph cl∞[φ1, . . . ,φk](G) is
called [φ1, . . . ,φk]-closure of G. If k = 1, we also write φ-closure instead of [φ]-closure.

For Matrix Completion, the most obvious closure operation is of same type as in Exam-
ple 2.3.21, i.e., adding missing edges to almost complete bicliques:

Definition 2.3.23. Denote by K−r+1,r+1 the complete bipartite graph Kr+1,r+1 minus one edge.
Let φ : K−r+1,r+1→ Kr+1,r+1 be the canonical inclusion map.

Let G be a bipartite graph with m red and n blue vertices. Instead of φ-closure of G, we will
also say r-closure of G. If cl∞[φ](G) = Km,n, then we call G an r-closable (bipartite) graph.

Intuitively, the r-closure of a graph G is obtained by repeatedly adding single missing
edges which complete a subgraph G to the complete subgraph Kr+1,r+1. It generalizes transi-
tive closure, as the following lemma shows:

Lemma 2.3.24. The 1-closure of a bipartite graph G is the transitive bipartite closure of G. A
bipartite graph is 1-closed if and only if it is connected.

Proof. It suffices to prove equivalence of 1-closure and transitive bipartite closure, as the
second statement follows from that.

First, we show that the 1-closure is contained in the transitive closure. This is equivalent
to showing that every edge contained in the 1-closure is contained in the transitive closure.
But that follows from the fact that any edge added in the closure process connects vertices in
the same connected component, since K−2,2 is connected, and the new edge is added between
two vertices of an already existing K−r+1,r+1.

Now we show that transitive closure is contained in the 1-closure; i.e., any edge contained
in the transitive closure is contained in the 1-closure. As closure is defined by adding edges at
positions given by subgraphs, it suffices to prove that for trees, by choosing a spanning forest
of G. A simple inductive argument can then be used to see that every edge in the connected
component is added via the closure process.

The graph theoretical concept of r-closure now allows to formulate a sufficient graph the-
oretical condition for finite completability, which was already obtained in [21]. We reproduce
the Proposition and the proof here.

Proposition 2.3.25. A masking Ω is generically injective in rank r if G(Ω) is r-closable.

Proof. If G(Ω) contains a subgraph isomorphic to K−r+1,r+1, this means that for a generic
matrix A, some (r+1× r+1)-sub-matrix A′ is known in Ω(A), except for one matrix element
- corresponding to the missing edge in K−r+1,r+1. Since A has rank r, the determinant of A′

vanishes. As all entries but one are known, the vanishing minor condition gives a linear
equation on the missing entry. The linear equation is non-trivial, i.e., not the trivial equation
0 = 0, since due to the genericity of A, the linear and constant coefficients are all non-zero.
Thus the linear equation allows to uniquely reconstruct A′ and thus uniquely determine an
unknown entry of A. Now r-closability translates to the fact that this process can be repeated
until the whole of A is uniquely reconstructed. As we have assumed that A is generic, this
implies generic injectivity for Ω.
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We want to mention that r-closability of the associated graph is neither a necessary condi-
tion for generic injectivity, nor for generic finiteness. The mask from Example 2.3.13 proves
the latter, as it is not 2-closable. We will now prove by example that r-closability is not
necessary for generic injectivity:

Example 2.3.26. The mask

M =



















1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 0 1 1 1
1 1 1 0 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1



















is uniquely completable in rank 3, but not 3-closable.
However, note: For m, n ≤ 3, generic injectivity and r-closability coincide. For m, n ≤ 5,

generic finiteness and r-closability coincide.

Proof. We can see that M is uniquely completable in rank 3 by first observing that the two
missing entries in the middle appears in two 4 × 4 vanishing minor equations, one in the
top left corner (rows 1 to 4 and columns 1 to 4) and another in the bottom right corner
(rows 3 to 6 and columns 4 to 7); note that both of these equations are linear with respect
to the two missing entries, because they appear in the same column. Therefore, the two
missing entries lie in the solution of a system of two linear equations, which is generically
unique. After the two missing entries are determined, the mask becomes 3-closable and
therefore unique. On the other hand, M is not 3-closable because for each missing entry
(i, j), the bipartite subgraph (N( j), N(i), E′), where N( j) is the set of neighbors of j and
E′ = E(M)∩ (N( j)× N(i)), does not contain a 3× 3 biclique. Due to symmetry, we need to
check only 5 bipartite subgraphs to see this.

The statements on finiteness and injectivity follow from an exhaustive search using the
algorithms in section 3

In section 2.5.3, we will see, that a necessary condition on generic finiteness can be
formulated in terms of some closure, which in general is not equivalent to some r-closure.

Now, we prove some necessary conditions for generic finiteness of a masking. First, recall
the definition of r-connectedness:

Definition 2.3.27. We say a bipartite graph G = (V, W, E) is r-edge-connected, or r-connected,
if for any non-trivial vertex partition8 of G into two graphs G1, G2, the set the number of edges
running between G1 and G2 is lower bounded by r, i.e.,

e(G)− e(G1)− e(G2)≥ r.

That means, G stays connected after removing an arbitrary set of r − 1 edges.
We also define an abbreviation for the number of degrees of freedom of (m× n)-matrices

of rank r, compare Remark 2.3.29:

Definition 2.3.28. For m, n ∈ N, we will write

dr(m, n) = mn−max(0, m− r)max(0, n− r).

If G is a graph with m red and n blue vertices, we will also write dr(G) = dr(m, n).
8one has V = V1∪V2, V1∩V2 =∅ and W =W1∪W2, W1∩W2 =∅ and E(G1)∪E(G2)⊆ E(G); non-trivial means

that each of G1, G2 contains at least one vertex
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Note that dr(m, n) = mn if m≤ r or n≤ r, else dr(m, n) = r · (m+ n− r).

Remark 2.3.29. The number dr(m, n) is the dimension of the determinantal variety M(m ×
n, r), which is classically known. Intuitively, this is the number of (algebraic) degrees of freedom
in the set of (m× n)-matrices of rank r (or less). If n ≤ r or m ≤ r holds, then M(m× n, r) ∼=
Cmn, and it directly follows that dr(m, n) = dimM(m× n, r) in that case. In all other cases,
dr(m, n) = r · (m + n − r). There are several way to prove that this number is the same as
dimM(m× n, r), we want to give two heuristic arguments (not proofs) why this should be the
case.

First, consider a rank r matrix A of size m× n. We can choose A by first choosing the column
span, which is a r-dimensional sub-vector V space of n-space. Classically, this choice is known to
have r(n− r) degrees of freedom, and is parameterized by the Grassmannian Gr(r, n) (the latter
is also an algebraic variety, and its dimension is r(n− r)). Then, one can choose each column of
A from V; since V is r-dimensional, this is only r degrees of freedom for each column, so in total

r(n− r) +mr = r · (m+ n− r)

degrees of freedom.
Alternatively, one can write A= UV> with U a (m× r), and V a (n× r)-matrix. There are

a total of r · (m+ n) entries in both U and V , but one can replace a particular choice of U , V by

U · B and V ·
�

B−1
�>

, where B is any full rank (r × r)-matrix. There are r2 degrees of freedom
to choose B. Since the choice of B are degrees of freedom which do not appear in the choice of A;
one has to subtract them from those in the choice of U , V , giving a total of

r · (m+ n)− r2 = r · (m+ n− r)

degrees of freedom.
Note that both arguments do not constitute proofs, as it has to be shown that the degrees

of freedom added together are not redundant in the first argument, and that there are no other
degrees of freedom which do not appear in A that could be subtracted. Both arguments give
r · (m+ n− r) as an upper bound on the degrees of freedom though.

Now we state some necessary conditions on generic finiteness:

Proposition 2.3.30. If a masking Ω is generically finite in rank r, then:

(i) e(Ω)≥ dr(G(Ω))

(ii) Each vertex of G(Ω) has degree at least r

(iii) G(Ω) is r-connected

Proof. (i) By the dimension formula, it holds that

dimΩ = dimM(m× n, r)− dimΩ(M(m× n, r)).

By definition, Ω is generically finite if and only if dimΩ = 0, thus Ω is generically finite if and
only if

dimM(m× n, r) = dimΩ(M(m× n, r)).

Again, by definition, one has dimΩ(M(m× n, r))≤ e(Ω). Thus, if Ω is generically finite, then

dr(G(Ω)) = dimM(m× n, r) = dimΩ(M(m× n, r))≤ e(Ω).
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(iii) implies (ii) in the special case of the partition in the graph in one vertex and the
rest. We will show that the statement (iii) follows from the more general Proposition 2.3.33.
Since Proposition 2.3.33 is proved later, note that there are no loops in the proof structure.
So assume that Ω is generically finite, Proposition 2.3.33 (iii) then shows that for any vertex
partition of G(Ω) into two graphs G1, G2, it holds that

e(G)− e(G1)− e(G2)≥ dr(G)− dr(G1)− dr(G2).

An elementary calculation shows that the right hand side is always r or greater if the Gi are
non-trivial, thus

e(G)− e(G1)− e(G2)≥ r

for any vertex partition of G(Ω) into G1, G2, which is the definition of r-connetedness.

The following example proves that the conditions given in Proposition 2.3.30 are not
sufficient:

Example 2.3.31. Consider the mask

M =











0 0 1 1 1
0 1 1 1 1
1 1 0 0 0
1 1 1 1 1











.

M is not finitely completable in rank 2, but 2-connected. In particular, each vertex in G(M) has
degree at least 2. This is equivalent to the fact that each row and each column of M has at least
2 non-zero entries. Also, e(Ω) = 14 ≥ 14 = r · (m+ n− r). Thus, no single of the conditions in
Proposition 2.3.30 is sufficient for finite completability, nor is their conjunction.

Example 2.3.31 also shows that r-connectedness is too weak to describe finite com-
pletability. Namely, if the graphs in a vertex partition, as in the Definition 2.3.27 of r-
connectedness, are similarly large, the number of edges running between them has to be
bigger than r; also, the more balanced the partition is, the more edges have to run between
the partition components.

We now introduce a concept of rank-related sparsity, which in its dual notion, will be
equivalenly reflecting that fact. Singer and Cucuringu [36] have already conjectured that
some sparsity concept might play a role in describing the completable masks.

Definition 2.3.32. A bipartite graph G is called rank-r-sparse, if for all subgraphs G′ ⊆ G it
holds that e(G′)≤ dr(G′).

If, additionally, G has exactly dr(G) edges, the graph G is called rank-r-tight.
We say G is spanned by a rank-r-tight graph if G contains a rank-r-tight graph with m red

and n blue vertices. Abbreviatingly, we also say that G is spanned in rank r.

Rank r-sparsity is closely related to combinatorial properties defined using partitions of
the vertices and edges (cf. the Nash-Williams-Tutte Arboricity Theorem Nash-Williams [26],
Tutte [42]):

Proposition 2.3.33. Let G be a bipartite graph with least dr(G) edges. Consider the following
statements:

(i) G is spanned in rank r.
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(ii) For all partitions of the edges9 of G into subgraphs graphs G1, . . . , GN ,

dr(G)≤
N
∑

i=1

dr(Gi).

(iii) For all partitions of the vertices inducing subgraphs10 of G into graphs G1, . . . , GN ,

e(G)− dr(G)≥
N
∑

i=1

�

e(Gi)− dr(Gi)
�

.

Then, the implications (i)⇒(ii)⇒(iii) hold, and each of the three conditions (i), (ii), (iii) is
necessary for Ω to be generically finite.

Proof. That (i) is necessary for Ω to be generically finite follows from Theorem 2.5.31; since
Theorem 2.5.31 will be proved later, it is important to note that there are no loops in the
proof argument. Necessity of (ii) and (iii) follow directly once the implications are proved.

(i)⇒(ii): We show that a graph G which violates the inequality in (ii) cannot be spanned
in rank r. Let G1, . . . , GN some edge partition such that

dr(G)>
N
∑

i=1

dr(Gi).

Let H be any rank-r-sparse graph contained in G. Denote by h the number of edges of H,
and by hi the number of edges of H, lying in Gi . By definition, one has hi ≤ dr(Gi), and
h= h1+ · · ·+ hN . Inserting into the inequality above gives

dr(G)>
N
∑

i=1

dr(Gi)≥
N
∑

i=1

hi = h,

which shows that H is not rank-r-tight.

(ii)⇒(iii): Let G1, . . . , GN be a vertex partition of G, as in (iii). Let H1, . . . , HM be single-
edge graphs for all the edges not contained in any of the Gi . Thus, G1, . . . , GN , H1, . . . , HM is
an edge partition of G. Then, by (ii), one has

dr(G)≤ M +
N
∑

i=1

dr(Gi).

The condition in (iii) follows from

M = e(G)−
N
∑

i=1

e(Gi)

and elementary arithmetic.

Remark 2.3.34. The conditions (i), (ii), and (iii) can be derived from various heuristics for
finite completability of a mask:

9i.e., if G = (V, W, E) and Gi = (Vi , Wi , Ei), then E = E1 ∪ E2 ∪ · · · ∪ EN , and Ei ∩ E j =∅ for all i, j
10i.e., if G = (V, W, E) and Gi = (Vi , Wi , Ei), then V = V1 ∪ V2 ∪ · · · ∪ VN , and Vi ∩ Vj =∅ for all i, j; same for W
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(i) To be minimally completable, a mask needs r · (m + n − r) total edges by a dimension
count, and no subgraph should be “overloaded”.

(ii) For any partition, the sum is an upper bound for the maximum size of a rank r-sparse
subgraph.

(iii) In a completable mask, if we replace the pieces of any partition of the rows and columns
with r × r sub-matrices, the associated contracted graph is also completable.

Condition (iii) was also proved directly in Király and Tomioka [20]; the proof path presented
here can be specialized to that one.

After we develop the machinery of determinantal matroids, we will be able to show that
(i) is indeed necessary for generic finite completability of a masking (Theorem 2.5.31), im-
plying the same thing for (ii) and (iii).

2.4 Partial Completion

Matrix Completion, as defined so far, asks whether a low-rank matrix can be completely
reconstructed from a set of its entries. However, in practical scenarios, e.g., recommendation,
or prediction, it is more common that one is only interested in reconstructing some of the
missing entries, not all. Most approaches overlook this fact as they rely on reconstructing the
complete matrix first.

We will call this task Partial Low-Rank Matrix Completion, or just Partial Completion.
Most important observations made in section 2.3 still hold for Partial Completion, for exam-
ple the existence of a zero-measure set of exceptions or that reconstructability only depends
on the pattern of observed entries. To prove this, we will use the tools from Algebraic Com-
binatorics from section 2.3. One can also decompose the generative sampling model into an
algebraic part, and a noise part - we leave that to the reader, as it is very similar to what is
presented in section 2.2.

First, we want to formally state the problem of Partial Completion. As the problem gen-
eralizes Matrix Completion, we already start with a refined formulation that includes generic
sampling:

Question 2.4.1. Given an (m× n)-mask M of rank r, and a generic matrix A: Which entries of
A can be reconstructed from the masked matrix ΩM (A)?

In order do get a formal grasp on Question 2.4.1, we define the analogues of masking for
Partial Completion:

Definition 2.4.2. Let N , M be (m× n)-masks such that N − M is a mask. Let ΩM ,ΩN be the
corresponding maskings in rank r. The unique map ΩN/M : ΩN (M(m× n, r))→ Cα such that

ΩM = ΩN/M ◦ΩN

is called a partial masking in rank r. The bituple (N , M) is called partial mask and denoted by
M(ΩN/M ). If N − M contains exactly one non-zero entry, in the i-th row and j-th column, we
will also write ((i j), M) for the partial mask. The inclusion map of graphs (G ,→ H) such that
H has adjacency matrix N and G has adjacency matrix M is called graph map of Ω and denoted
by G(Ω).

We also will look at one special fiber and define what fiber dimension and cardinality are
in this case:
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Definition 2.4.3. Let A be an (m× n)-matrix of rank r, let (N , M) be a partial (m× n)-mask.
Let ΩN ,ΩM be the corresponding maskings in rank r, let ΩN/M be the partial masking in rank
r. We will call the integer

dimAΩN/M = dimΩ−1
N/M (ΩM (A))

the fiber dimension (of ΩN/M ) at A. Similarly, we will call

#AΩN/M = #Ω−1
N/M (ΩM (A))

the fiber cardinality (of Ω) at A.

The analogue of Theorem 2.3.5 for the Partial Completion setting is:

Theorem 2.4.4. Let A be a generic (m×n)-matrix of rank r, let Ω be a partial masking in rank
r. Then, the following depend only on the true rank r and the mask M(Ω):

(i) The fiber dimension dimAΩ.

(ii) The fiber cardinality #AΩ.

(iii) Whether #AΩ = 1, i.e., whether the entries of A masked by Ω are uniquely completable.

Proof. The proof is completely analogous to that of Theorem 2.3.5. The only additional thing
to note is that the range of ΩN/M , which is ΩN (M(m× n, r)), is irreducible. But that is true
since ΩN (M(m× n, r)) is a projection of an irreducible variety.

The following are the generalized definitions concerning identifiability and generic be-
havior to the Partial Completion setting:

Definition 2.4.5. Let Ω be a partial (m× n)-masking in rank r, let A be a generic (m× n)-
matrix. We will write #Ω for the (generic) value of #AΩ, and dimΩ for the (generic) value of
dimAΩ.

Again, the generic values of dimension and cardinality bound all possible values:

Theorem 2.4.6. let Ω be an (m× n)-masking in rank r. Let B be any fixed (m× n)-matrix of
rank r or less (not necessarily generic). Then

(i) dimBΩ≥ dimΩ.

(ii) If dimBΩ = 0, then #BΩ≤ #Ω.

Proof. The proof is completely analogous to that of Theorem 2.3.9.

Now we introduce the analogues characterizing the generic behavior for Partial Comple-
tion:

Definition 2.4.7. Let Ω be a partial (m× n)-masking in rank r. We call

(i) Ω generically injective and M(Ω) identifiable or completable (in rank r), if #Ω = 1.

(ii) Ω (generically) finite and M(Ω) finitely identifiable or finitely completable (in rank r), if
#Ω<∞.

(iii) Ω generically k-to-one (in rank r), if #Ω = k.

(iv) Ω infinite and M(Ω) unidentifiable (in rank r), if dimΩ> 0.
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Remark 2.4.8. Let Ω be a partial masking with partial mask (N , M). Whether Ω is generically
injective, finite, etc. can be checked separately for single entries of N −M. That is, write

N −M =
n
∑

i=1

(Ni −M) with masks Ni

such that ‖Ni −M‖1 = 1, i.e., Ni −M contains only one non-zero entry. Then it can be shown:

(i) M(Ω) is identifiable if and only if (Ni , M) is identifiable for all 1≤ i ≤ n.

(ii) M(Ω) is finitely identifiable if and only if (Ni , M) is finitely identifiable for all 1≤ i ≤ n.

(iii) M(Ω) is unidentifiable if and only if there exists an i such that (Ni , M) is unidentifiable.

(iv) If Ω is generically k-to-one, and the prime factorization of k is k = p1 · p2 · · · · · p`, then for
all j there exists an i such that (Ni , M) is ki-to-one and p j divides ki .

(v) If ΩNi/M is generically ki-to-one, then Ω is at least lcm(ki)-to-one, and at most
�
∏n

i=1 ki

�

-
to-one.

Also, note that it may happen that some masks (Ni , M) are identifiable, while some other masks
(Ni , M) are finitely identifiable but not identifiable.

The statements can be proved by applying Galois theory to the fact that dimΩN/M is the
same as the transcendence degree of the field extension

C(ΩN (M(m× n, r)))/ΩM (M(m× n, r)).

To a partial mask, one can also associate a graph structure, namely, an injective graph
morphism:

Definition 2.4.9. Let Ω be a partial masking with partial mask M(Ω) = (N , M). We will call
the unique injective map of bipartite graph G(Ω) = (G ,→ H), where G is the adjacency graph of
M and H is the adjacency graph of N and the injection identifies vertices, the adjacency map of
(N , M).

Similarly, the adjacency map of a partial masking uniquely characterizes its completion
properties; however, for a more thorough discussion, the matroidal structure of matrix com-
pletion is needed which will be developed in the following sections.

2.5 Differential Analysis of Completion Patterns

This section is devoted to the analysis of the degrees of freedom in the matrix entries and
how they interact. In particular, we want to develop tools which allow us to see which entries
of a mask can be chosen independently, omitted without loss of information, or reconstructed
from the known ones.

2.5.1 Degrees of Freedom

Concerning completability and identifiability, it is an natural question which degrees of free-
dom are - in the case of a generically sampled true matrix - contained in the masked matrix.
That is, how many degrees of freedom get killed by the masking operation, and how to com-
binatorially or algebraically quantify and qualify them. Formally phrased, the question we
want to answer in this and the following sections is:

30



Question 2.5.1. Let Ω be a masking in rank r. How many degrees of freedom are in its image
Ω(M(m× n, r)), depending on the mask M(Ω)?

Finite completability of a mask can be then rephrased as the fact that the image and the
range ofΩ do have the same numbers of degrees of freedom, namely dr(G(Ω)) = r·(m+n−r).
As we have already seen in the previous section, Algebraic Geometry provides tools to bound
degrees of freedom - the formal concept for that is the (Krull) dimension - and in particular,
the number of the degrees of freedom which are lost by applying Ω (to a generic matrix)
is exactly the generic fiber dimension dimΩ. In this and the following section, we will go
a step further and develop tools which in the end will alow to combinatorially study and
algorithmically determine the exact number of degrees of freedom, in terms of the structure
of the map Ω, namely the mask M(Ω), and the true rank r. Singer and Cucuringu [36]
have already proposed a probablistic algorithm for checking finite completability of a mask
based on differentials, without giving a proof for its correctness. The results of this and the
following sections will allow to later fill that gap, and provide more general algorithms for
the mentioned purposes.

The main ingredient in the following is a refinement of a classical instrument from cal-
culus, the Jacobian matrix. The Jacobian and its generalizations are also classic tools in
Algebraic Geometry to describe fiber dimension of an algebraic map. We will now describe
in which specific instance it occurs in the context of Matrix Completion.

The masking Ω is - as it was defined in Definition 2.1.4 - a map

Ω : M(m× n, r)→ Cα.

If A ∈M(m× n, r), then there exist matrices U ∈ Cm×r and V ∈ Cn×r such that A= U · V>.
Conversely, given matrices U ∈ Cm×r and V ∈ Cn×r , the matrix A= U · V> has rank at most
r. This means, reformulated, that the set M(m× n, r) can be parameterized (non-uniquely)
by C(m+n)×r , via the surjective map

µ : C(m+n)×r = Cm×r ×Cn×r →M(m× n, r)

(U , V )→ U · V>.

So the composition of maps Ω ◦ µ is a map from complex r × (m + n)-space into complex
α-space, and its fiber dimension can be computed by the Jacobian matrix. That is, write

Ω ◦µ=
�

f1, . . . , fα
�

with algebraic maps fi . Consider the Jacobian matrix

J(U , V ) =











∂ f1
∂ U11
(U , V ) . . . ∂ f1

∂ Umr
(U , V ) ∂ f1

∂ V11
(U , V ) . . . ∂ f1

∂ Vnr
(U , V )

...
. . .

...
...

. . .
...

∂ fα
∂ U11
(U , V ) . . . ∂ fα

∂ Umr
(U , V ) ∂ fα

∂ V11
(U , V ) . . . ∂ fα

∂ VN r
(U , V )











,

where the derivatives have to be taken over all entries of the matrices U , V , i.e., all Ui j
with 1 ≤ i ≤ m and 1 ≤ j ≤ r and Vi j with 1 ≤ i ≤ n and 1 ≤ j ≤ r. It is possible to
show with classical tools from Algebraic Geometry11 that for A= U · V>, the fiber dimension
dimAΩ = dimΩ−1(Ω(A)), at some fixed matrix A= U ·V>, equals dr(m, n)− rk J(U , V ). Thus,

11One has dim(U ,V )(Ω◦µ) = dim(U ,V ) µ+dimAΩ, and dim(U ,V ) µ= r2, since one can show that the representation

U · V> is unique up to multiplyication U = UB and V = V
�

B−1�> with an invertible (r × r)-matrix B. On the
other hand, one has dim(U ,V )(Ω ◦µ) = r(m+ n)− rk J(U , V ) by the Jacobian criterion.
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the matrix A can be reconstructed, up to finite choice, from Ω(A) if and only if J(U , V ) has
rank dr(G(Ω)) = r · (m+ n− r). This means that finite completability is determined by the
rank of the Jacobian at generic U , V or at a generic A of rank r.

Arguments of this type can be refined to yield degrees-of-freedom-statments on any set of
entries of the matrix A. Namely, to each entry of A, one can associate one row of the Jacobian;
if one has more than one entry of A, one can calculate the degrees of freedom lying in those
by the dimension of the span of the corresponding row vectors. The following subsections
will be devoted to giving an exposition on the proper mathematical tools from Combinatorial
Commutative Algebra to do so, and how to apply them.

2.5.2 Differentials

In this section, we will develop the basic theory of derivatives and differentials, which is
a classical tool from commutative algebra to quantify and qualify degrees of freedom and
dependencies between objects.

The basic idea which characterizes dependence of algebraic quantities, e.g., the entries of
a low-rank matrix, is that of algebraic dependence. In the end, we will see that it is also the
right concept to count the degrees of freedom, as it exposes analogies to linear dependence
in Linear Algebra.

Definition 2.5.2. Let K be a field over C, (e.g. the field of rational functions12 C(T1, . . . , Tm))
let α1, . . . ,αn ∈ K. Then, α1, . . . ,αn are called algebraically dependent (over C) if there is a
non-zero polynomial13 f ∈ C[X1, . . . , Xn] such that

f (α1, . . . ,αn) = 0.

Else we call the αi algebraically independent (over C).

Intuitively, this means that if α1, . . . ,αn are algebraically dependent, then knowing some
n− 1 of the αi implies knowing that the remaining α j must be one of finitely many values.
Alternatively, one can think of an algebraically independent set of n elements carrying one
degree of freedom each, in total n, while an algebraically dependent set of elements has
redundancies and strictly less than n degrees of freedom14. We will explain this by the next
example and give a more precise statement in Proposition 2.5.4.

Example 2.5.3. Consider the (formal) polynomials α1 = X 2,α2 = X Y,α3 = Y 2. The three αi
are algebraically dependent, since for

f (X1, X2, X3) = X1X3− X 2
2 ,

one calculates that f (α1,α2,α3) = 0. On the other hand, there cannot be a non-zero polynomial
g(X1, X2) which evaluates to zero when substituting any two of the αi , as there is always one of
the two αi which contains a variable (i.e., X or Y ) which the other does not.

Now assume there is some truth (X , Y ) and we measure some of the αi . For a generic truth
(X , Y ), knowing any two of the αi will allow us to predict the third via f (α1,α2,α3) = 0, up to

a finite choice. For example, knowing α1 and α2, one can recover α3 =
α2

2

α1
exactly. On the other

hand, when one knows α1 and α3, the recovery of α2 =±
p
α1α2 is only possible up to sign, i.e.,

12C(T1, . . . , Tm) is the set of all formal fractional functions f /g, where f and g are in C[T1, . . . , Tk], see next
footnote

13C[X1, . . . , Xn] is the set of polynomials in the n variables X1, . . . , Xn and with coefficients in C
14In Algebra, this is formalized by the transcendence degree of the field extension
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one has two choices here. Moreover, knowing only one of the αi allows no prediction whatsoever
on the other α j , since one degree of freedom remains, either in choosing (X , Y ) or any second of
the α j .

The behavior in Exercise 2.5.3 occurs in fact in all similar situations:

Proposition 2.5.4. Let K = C(X1, . . . , Xn), let α1, . . . ,αk ∈ K . Then, α1, . . . ,αk are alge-
braically dependent over C if and only if for generic x ∈ Cn and possible reordering of the
indices of the α, the values α1(x), . . . ,αn−1(x) determine the value αn(x) up to finite choice.

Proof. We prove both directions by a series of equivalences. The fact that α1, . . . ,αk are
algebraically dependent over C, by definition, is equivalent to the fact that there exists a
non-zero complex polynomial

P : Ck→ C

such that P(α1, . . . ,αk) = 0. Since P is non-zero, we can reorder the indices of the α such
that the polynomial

P(α1, . . . ,αn−1, T )

is non-trivially dependent on the variable T . So, equivalently, for generic x ,

P(α1(x), . . . ,αn−1(x), T ) = 0

where P is not a constant polynomial in T . This is equivalent, for T = αn(x), that αn(x) is
determined up to finite choice for generic x .

Proposition 2.5.4 shows that algebraic dependency is the proper concept to treat degrees
of freedom in the Matrix Completion setting; however, as it can be seen from Example 2.5.3 or
more complicated examples as matrix completion itself, it is not always straightforward how
to determine the existence of algebraic dependencies, or how to prove their non-existence,
when given the measurement polynomials.

The central idea which makes the latter theoretically and also algorithmically feasible is
the differential study of the polynomials, as already explained in section 2.5.1. Namely, the
existence of dependencies and their degrees of freedom can be studied by the formal, or by
the evaluated derivatives of the polynomials.

For a more concise description, we need to introduce the concept of formal differentials
and their evaluations first. Here, we adopt an ad-hoc definition of differentials; more nat-
ural definitions and further results can be found in any introductory book on Commutative
Algebra.

Definition 2.5.5. Let K be a field over C (i.e., C⊆ K), with multiplication ·K . The set of formal
differentials of K over C is the set

Ω(K/C) = { f · dg ; f , g ∈ K}/{∼},

where ∼ is the equivalence relation given by

(i) dα= 0 for all α ∈ C

(ii) d(α f ) = αd f for all α ∈ C and f ∈ K

(iii) d( f + g) = d f + dg for all f , g ∈ K

(iv) d( f ·K g) = g · d f + f · dg for all f , g ∈ K
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where we write 0= d0 and d f = 1 · d f for all f ∈ K.
A multiplication · : ΩK/C× K → ΩK/C is defined as

( f , g · dh) 7→ ( f ·K g) · dh,

making ΩK/C a vector space over C. When clear from the context, we will omit · and/or ·K .

Intuitively, the equivalence relation ∼ imposes all usual differentiation rules which are
commonly known, e.g., for rational functions:

Example 2.5.6. Let K be the field K = C(X1, . . . , Xn), i.e., the set of all rational functions in the
formal variables X1, . . . , Xn with addition and multiplication. Then,

ΩK/C =

(

n
∑

i=1

fi dX i ; fi ∈ K

)

.

That means, if f = f (X1, . . . , Xn) is any rational function in the X i , we can always write d f in
the form

d f =
n
∑

i=1

fi dX i for some fi ∈ K .

It is also known from basic calculus what the fi are, and that, given f , they are unique. Namely,

fi =
∂ f

∂ X i
.

For example,

d
�

X1

X2

�

=
�

1

X2

�

dX1−
�

X1

X 2
2

�

dX2.

To the applied community, the formal operator d may also be known as the so-called total deriva-
tive.

If K is a rational function field, this behavior always occurs:

Proposition 2.5.7. Let K = C(X1, . . . , Xn). Then, ΩK/C is the n-dimensional K-vector space,
spanned by the formal differentials dX i , 1≤ i ≤ n. Given f ∈ K, there exist unique f1, . . . , fn ∈ K
such that

d f =
n
∑

i=1

fi dX i .

Proof. This follows from the uniqueness of the partial derivative of a complex rational func-
tion.

Definition 2.5.8. The rational functions fi ∈ K from Proposition 2.5.7 are called formal partial
derivative (of f with respect to X i) and denoted by

∂ f

∂ X i
= fi .

If K is a rational function field, the differentials can also be evaluated with respect to
some point:
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Definition 2.5.9. Let K = C(X1, . . . , Xn). Let f ∈ K. For P ∈ Cn, we define the evaluation of
d f at the point P as

d f |P =
n
∑

i=1

∂ f

∂ X i
(P)dX i .

Note that any evaluation yields a vector in the n-dimensional C-vector space, spanned by
the formal differentials dX i , 1≤ i ≤ n.

The following classical result relates algebraic dependence to linear dependence:

Proposition 2.5.10. Let K be a field over C, let α1, . . . ,αn ∈ K. Then, α1, . . . ,αn are alge-
braically dependent if and only if dα1, . . . , dαn are linearly dependent15 in ΩK/C (considered as
a K-module).

Proof. Since K contains C, the extension K/C is always separable. The statement is, for
example, implied by Proposition 16.14 inEisenbud [9].

Example 2.5.11. Let us consider the entries of a (2× 2)-matrix of rank 1

A=

�

a11 a21
a12 a22

�

,

where we consider the entries as indeterminates subject to the equation

f (a11, a12, a21, a22) = a11a22− a12a21 = 0.

Formally, the indeterminates live in the field K = C(a11, a12, a21, a22). The equation above, by
differentiating, gives a linear equation

d f = a11 da22+ a22 da11− a12 da21− a21 da21 = 0.

Since the coefficients of all dai j in this equation are non-zero polynomials, we see that any three
of the dai j are linearly independent. By Proposition 2.5.10, any three of the ai j are algebraically
independent. Indeed, if A is a generic matrix of rank 1, then any three of the four ai j can be fixed
independently, determining the remaining one up to a finite choice.

We now present the central result which will allow us to algorithmically test algebraic
independence of the entries in Matrix Completion:

Proposition 2.5.12. Let K = C(X1, . . . , Xm), let f1, . . . , fn ∈ K. Let P ∈ Cm be generic. Then,
f1, . . . , fn are algebraically dependent if and only if d f1|P , . . . , d fn|P are linearly dependent vec-
tors in the m-dimensional C-vector space spanned by the formal differentials dX1, . . . , dXm.

Proof. By Proposition 2.5.10, it suffices to prove: d f1|P , . . . , d fn|P are linearly dependent
(over C) if and only if d f1, . . . , d fn are linearly dependent (over K).

First we prove the if-direction. d f1, . . . , d fn are linearly dependent if and only if there
exist λ1, . . . ,λn ∈ K , not all zero, such that

n
∑

i=1

λi d fi = 0.

15Cave: the definition of linearly dependent in ΩK/C, as a K-module, allows for coefficients in K , as opposed
to coefficients on C. That is, dα1, . . . , dαn are linearly dependent, if and only if there exist λ1, . . . ,λn ∈ K , not all
zero, such that

∑n
i=1 λi dαi = 0. Again note that this is different from linear dependence over C.
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Thus, we also have
n
∑

i=1

λi|P d fi|P = 0,

where the λi|P are not all zero due to the genericity of P. Thus we have proved that
d f1, . . . , d fn are linearly dependent.

Now we prove the only if-direction. We assume d f1, . . . , d fn are linearly independent
(thus, n ≤ m) and show that d f1|P , . . . , d fn|P are also linearly independent. Since we as-
sumed d f1, . . . , d fn to be linearly independent, it follows, possibly after some reordering of
the indices of fi and X i , that the Jacobi polynomial

J := det











∂ f1
∂ X1

. . . ∂ f1
∂ Xn

...
. . .

...
∂ fn
∂ X1

. . . ∂ fn
∂ Xn











is not the zero polynomial. Thus, the evaluation J(P) will be non-zero due to the genericity16

of P. Thus,

0 6= J(P) = det











∂ f1
∂ X1
|P . . . ∂ f1

∂ Xn
|P

...
. . .

...
∂ fn
∂ X1
|P . . . ∂ fn

∂ Xn
|P











,

and linear independence of d f1|P , . . . , d fn|P follows.

Example 2.5.13. Keep the notations of Example 2.5.11. Substituting any rank 1 matrix A with
non-zero coefficients gives

d f = a11 da22+ a22 da11− a12 da21−
a11a22

a12
da21 = 0.

If a11, a12, a22 are generically sampled, f will always give rise to a non-zero dependence between
the dai j . For example, if

A=

�

2 4
1 2

�

,

one obtains the evaluated equation

d f = 2da22+ 2 da11− 4da21− da21 = 0.

We reformulate the results stated so far by collecting the relevant consequences for Matrix
Completion:

Theorem 2.5.14. Let (N , M) be a partial mask. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let ai j be the
formal variable for the (i j)-th entry of an (m× n) rank r-matrix, i.e., we present the ring of the
determinant variety M(m× n, r) as

C[M(m× n, r)] = C[a11, . . . , ai j , . . . , amn]/I(M(m× n, r)),

where I(M(m× n, r)) is the determinantal ideal of rank r. Then, the following are equivalent:

16a complex polynomial is non-zero if and only if it evaluates zero almost everywhere; follows, e.g., from the
Schwarz-Zippel-Lemma, or the fact that algebraic sets have Lebesgue-measure zero

36



(i) (N , M) is finitely identifiable in rank r.

(ii) There exists a subset S ⊂ E(M) such that the set A = {ai j ; (i j) ∈ S} is algebraically
independent over C, and for any (k`) ∈ E(N), the set {ak`}∪A is algebraically dependent.

(iii) The field extension C(ai j , (i j) ∈ E(N))/C(ai j , (i j) ∈ E(M)) is finite.

(iv) There exists a subset S ⊂ E(M) such that the set A = {dai j ; (i j) ∈ S} is linearly in-
dependent, and for any (k`) ∈ E(N), the set {dak`} ∪ A is linearly dependent (over
K = C(ai j , 1≤ i ≤ m, 1≤ j ≤ n)).

(v) Let U ∈ Cm×r , V ∈ Cn×r be generic, let A= U · V>. Let VM = span{dai j |A ; (i j) ∈ E(M)},
and VN = span{dai j |A ; (i j) ∈ E(N)}. One has VN ⊆ VM .

Proof. Let Ω be the partial masking defined by the mask (N , M), i.e.,

Ω : ΩN (M(m× n, r))→ ΩM (M(m× n, r)).

The generic fiber dimension of Ω is exactly the transcendence degree of the field extension,

dimΩ = dimΩN (M(m× n, r))− dimΩM (M(m× n, r))

= trdegC(ΩN (M(m× n, r)))/C(ΩM (M(m× n, r))).

Also, since ΩN and ΩM are projections onto the variables ai j in the respective edge sets, one
has

C(ΩN (M(m× n, r))) = C(ai j , (i j) ∈ E(N))

C(ΩM (M(m× n, r))) = C(ai j , (i j) ∈ E(M)).

The equivalence of (i), (ii) and (iii) follows from the above equalities. The equivalence of
(iii) and (iv) follows from Proposition 2.5.10, the equivalence of (iii) and (v) from Proposi-
tion 2.5.12.

Theorem 2.5.14 is in particular also a statement for masks as originally defined in Defi-
nition 2.1.4, by taking for N the matrix containing only ones. As another important conse-
quence, one can immediately state the following:

Proposition 2.5.15. Let M be an (m× n)-mask. Then, there is a unique biggest (w.r.t. number
of ones) mask N such that (N , M) is finitely identifiable.

Proof. Keeping the notations of Theorem 2.5.14(i) and (v), there is a unique biggest set S
such that the vector space VS = span{dai j |A ; (i j) ∈ S} is contained in VM . Taking N with
edge set E(N) := S, and using the equivalence of (i) and (v), this proves the proposition.

Proposition 2.5.15 motivates the following definition:

Definition 2.5.16. Let M be an (m×n)-mask. The unique biggest (w.r.t. number of ones) mask
N such that (N , M) is finitely identifiable in rank r is called (finite) completable closure of M in
rank r.

The following remark shows how Theorem 2.5.14 (v) can be made into an algorithmic
rule to determine finite completability:
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Remark 2.5.17. Generic dependencies between entries of the matrix A can be determined using
the affine paramterization of low-rank matrices:

Let A ∈ Cm×n matrix of rank r or less; then, there exist matrices U ∈ Cm×r and V ∈ Cn×r

such that A= UV>, and conversely, any matrix of the form A= UV> has rank at most r. Writing
ui , 1≤ i ≤ m for the rows of U and v j , 1≤ i ≤ n for the rows of V , one obtains the equation

ai j = ui v
>
j for all 1≤ i ≤ m, 1≤ j ≤ n.

Thus, one can consider the elements ai j to be contained in the set of rational functions

K = C(. . . , Ui j , . . . , Vk`, . . . )

in the r · (m+ n) variables Ui j , 1 ≤ i ≤ m, 1 ≤ j ≤ r and Vk`, 1 ≤ k ≤ n, 1 ≤ ` ≤ r, which
correspond to the (formal) entries of U and V . Thus, the equation

ai j = ui v
>
j =

r
∑

k=1

UikVjk

gives rise to the differential expansion

dai j = dui · v>j + ui · dv>j =
r
∑

k=1

�

Vjk dUik + Uik dVjk

�

.

Thus, using Proposition 2.5.12, algebraic dependency for some set of ai j can be evaluated by
choosing some random generic value U0, V0 for U , V , and then testing for linear dependency of
the r · (m+ n)-dimensional vectors dai j |(U0,V0) which live in the C-vector space generated by all
the formal differentials dUi j and dVi j .

Remark 2.5.17, together with Theorem 2.5.14 for the case of a non-partial masking, also
shows correctness of Algorithm 3 by Singer and Cucuringu [36].

2.5.3 The Determinantal Matroid

In section 2.5.2, we have seen that dependence of entries in any low-rank matrix may be
checked by calculating the vector space spanned by the tangent vectors at a generic low-rank
matrix. More specific, Theorem 2.5.14 shows that dependent sets of entries of the matrix
expose exactly the same properties as basis elements of a vector space; algebraically inde-
pendent entries behave like linearly independent vectors in a vector space. In the following,
we could in principle use this established link to prove dependence and degrees of freedom
properties of maskings and partial maskings. Instead, we will introduce an abstract concept
which bundles the relevant combinatorial properties for both linear and algebraic dependen-
cies, the matroid, which will then allow to derive and state the results in a concise and more
readable manner.

We begin by axiomatically defining what a matroid is. A matroid generalizes properties
of independent sets of vectors in a vector space:

Definition 2.5.18. Let E be a set. A collection I of subsets of E is called matroid (over E), if it
fulfills the following condition:

(i) ∅ ∈ I.

(ii) Let J ∈ I, and I ⊆ J . Then J ∈ I.
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(iii) Let I , J ∈ I, let #I < #J . Then there is e ∈ J and e 6∈ I such that I ∪ {e} ∈ I.

The elements of I are called the independent sets (of the matroid).

Intuitively, a matroid is the collection of all subsets of E which are independent in the
domain of E (e.g., linearly or algebraically independent). Definition 2.5.18 (ii) states that
subsets of independent sets are also independent, Definition 2.5.18 (iii) is (resp. implies) a
generalization of the basis exchange properties of independent sets in vector spaces.

Example 2.5.19. As stated, sets and subsets of vectors or algebraic elements give rise to ma-
troids:

(i) Let V ∼= Cn be a vector space, and v1, . . . , vk ∈ V. Let E = {v1, . . . , vk}. Then a basic fact from
Linear Algebra is that

I :=
�

I ⊆ E ; I is linearly independent
	

,

the collection of linearly independent subsets of S, is a matroid (over E).

(ii) Let K/C be a field extension, e.g. K = C(X1, . . . , Xn). Let α1, . . . ,αk ∈ K , let E = {α1, . . . ,αk}.
Then one can prove that

I :=
�

I ⊆ E ; I is algebraically independent
	

,

is a matroid (over E). This is a special instance of algebraic matroids, see [29, chapter 5].

That (ii) is indeed a matroid can also be seen by Theorem 2.5.14 which in fact gives a one-to-
one-correspondence to a linear matroid as in (i).

For reading convenience, we will introduce some of the usual matroid terminology:

Definition 2.5.20. Let I be a matroid over E, let S ⊆ E. Then we call

(i) S independent (w.r.t. I) if S ∈ I, else dependent

(ii) S a circuit if it is minimally dependent17.

(iii) B ⊆ S a basis of S if it is a maximally independent subset18 of S.

(iv) the maximal cardinality of a basis of S the rank of S and denote it by rk(S).

If I is an algebraic, or linear matroid, we will at times add the qualifiers “algebraic” or “linear”
to avoid confusion, e.g., algebraically dependent set, or algebraic circuit.

Matroids capture combinatorially the following facts which are well-known for finite vec-
tor configurations:

Proposition 2.5.21. Let I be a matroid over E. Then,

(i) given S ⊆ E, one has rk(S)≤ #S.

(ii) given S ⊆ E, one has rk(S) = #S if and only if S is independent.

17i.e., C ⊆ E is called a circuit if C is dependent and there does not exist C ′ ( C such that C ′ is dependent
(w.r.t. I)

18i.e., B ∈ S is called a basis of S if B is independent and there does not exist S ⊃ B′ ) B such that B′ is
independent (w.r.t. I)
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(iii) given S ⊆ E, one has rk(S) + 1 = #S if S is a circuit, the converse holds if every S′ ( S is
independent.

(iv) given S ⊆ E, a subset B ⊆ S is a basis of S if and only if #B = rk(B) = rk(S)

(iii) given circuits C1, C2 ⊆ E, and e ∈ C1 ∩ C2 there is a circuit C ⊆ (C1 ∩ C2) \ {e}.

Proof. The proofs of the statements are elementary and can be found inOxley [29]. (i) to (iii)
can be found the beginning of section 1.3, (iv) is Lemma 1.2.4., and (v) is Lemma 1.1.3.

Proposition 2.5.21 (i) and (ii) generalize the basis elimination principle from Linear Al-
gebra, and (iii) is commonly called circuit elimination.

One of the most important facts for our algebraic situation is that rank of a set of algebraic
elements is exactly the number of degrees of freedom it contains:

Proposition 2.5.22. Let I be the algebraic matroid corresponding to some collection of ele-
ments E = {α1, . . . ,αk} over C. For S ⊆ E, the rank rk E is exactly the transcendence degree
trdeg(K/C), where K denotes the extension field C(α ; α ∈ S) of C.

Proof. This is implied by the discussion between Examples 6.7.8 and 6.7.9 in Oxley [29] and
the fact that an algebraic matroid is a matroid.

We will now introduce some matroid-related concepts which are unique for the problem
of Matrix Completion, due to its inherent structures and symmetries:

Definition 2.5.23. We will denote by E(m× n, r) the set of entries ai j , 1 ≤ i ≤ m, 1 ≤ j ≤ n of
a matrix with rank at most r, interpreted as variables over C.

We will denote by D(m × n, r) the matroid over E(m × n, r) consisting of algebraically
independent subsets of E(m×n, r). It is called the algebraic independence matroid of E(m×n, r),
or determinantal matroid.

To the elements of both E(m× n, r) and D(m× n, r), we will also refer by their respective
indices. That is, we will simultaneously consider E(m× n, r) to be the set {(i j) ∈ N2 ; 1 ≤ i ≤
m, 1≤ j ≤ n}, and we will simultaneously consider elements of D(m×n, r) to be sets of bituples.

For E ⊆ E(m×n, r), we will denote by rkr(E) the rank rk(E) of E with respect to D(m×n, r).
If M is a (m× n) mask, we will also write rkr(M) = rkr(E(M)).

In the following, our goal is to make use of the fact that dependence structure of a low-
rank matrix does not depend on the ordering of rows and columns; this implies additional
structure for the determinantal matroid. In the proof of this, we need two lemmata:

Lemma 2.5.24. Let Ω : M(m× n, r)→ Cα be a masking. Then,

rkr(E(Ω)) = dr(m, n)− dimΩ.

Proof. This follows directly from the fact that dimΩ is the same as the transcendence degree
of the field extension

C(M(m× n, r))/C(Ω(M(m× n, r))).

Moreover, one has

dim(Ω) = trdeg (C(M(m× n, r))/C(Ω(M(m× n, r))))

= trdeg (C(M(m× n, r))/C)− trdeg (C(Ω(M(m× n, r)))/C)
= dim(M(m× n, r))− rk(E(Ω)),

from which the statement follows.
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Lemma 2.5.25. For arbitrary permutation matrices P ∈ Cm×m and Q ∈ Cn×n, define a map

µ(P,Q) : M(m× n, r)→M(m× n, r)

A 7→ P · A ·Q.

Also, (for each m, n) define a map

> : M(m× n, r)→M(n×m, r)

A 7→ A>.

The maps µ(P,Q) and > are well-defined, algebraic morphisms which are isomorphisms.

Proof. Well-definedness follows from the fact that the rank of a matrix cannot increase when
multiplying with another matrix or transposing. The maps M(P,Q) and > are algebraic
morphisms because the defining rules are algebraic. The maps are isomorphisms, since
M(P,Q) ◦M

�

P−1,Q−1
�

= id and >◦>= id .

Proposition 2.5.26. Let M be an (m × n)-mask. Then the rank rkr(M) depends only19 on
G(M). Furthermore, rkr(M) is equal to rkr(M>).

Proof. Let M and N be (m× n)-masks with maskings ΩM and ΩN . For the first statement, if
suffices to prove that if there are permutation matrices P ∈ Cm×m and Q ∈ Cn×n, such that
M = PNQ, then rkr(M) = rkr(N). Consider

ΩM = ΩN ◦µ(P,Q),

where µ(P,Q) is defined as in Lemma 2.5.25. By Lemma 2.5.25, µ(P,Q) is an isomorphism,
so dimµ(P,Q) = 0, thus it holds that

dimΩM = dimµ(P,Q) + dimΩN = dimΩN .

Applying Lemma 2.5.24 shows that rkr(M) = rkr(N). Similarly,

Ω = ΩM> ◦>.

By Lemma 2.5.25, > is an isomorphism, so dim>, thus it holds that

dimΩM = dim>+ dimΩM> = dimΩM> .

Applying Lemma 2.5.24 shows that rkr(M) = rkr(M>).

Proposition 2.5.26, together with Proposition 2.5.21 which characterizes the relevant con-
cepts in term of rank, shows that the following are well-defined:

Definition 2.5.27. If E is a subset of E(m× n, r), we will denote by G(E) the graph with edge
set E, where we assume that m, n is minimal and no superfluous, isolated vertices are present.

Let G be a bipartite graph with edge set E ⊆ E(m× n, r). We will say that

(i) G is an independent graph (in rank r) if E is an independent set in D(m× n, r).

(ii) G is a circuit graph (in rank r) if E is an circuit in D(m× n, r).

19I.e., rkr(M) does not depend on m, n, or the numbering of the vertices induced by the presentation in M ,
only on the unlabelled graph structure given by G(M).
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(iii) H is a basis graph (in rank r) of G if E(H) is a basis of E in D(m× n, r).

(iv) the r-rank rkr(G) of G is the rank rk(E) of E w.r.t. D(m× n, r).

Proposition 2.5.26 also relates the completable closure to the concept of graph closure:

Proposition 2.5.28. Let M be a (m × n)-mask with labeled bipartite graph G, let N be the
completable closure of M in rank r, with labeled bipartite graph H. Let γ : G ,→ H be the
corresponding adjacency map. Then, γ is equal to the closing

cl[φ1, . . . ,φk] : G→ cl[φ1, . . . ,φk](G) = H,

where the set of φi is the set of all injections of the form C− ,→ C such that C is a circuit graph,
C− is the graph C with one edge removed.

Proof. Let M , N be masks such that N−M is a mask. The mask (N , M) is finietly completable
if and only if the map

ΩN/M : ΩN (M(m× n, r))→ ΩM (M(m× n, r))

is generically finite. The latter is equivalent to the field extension

�

C(ΩN (M(m× n, r)))/C(ΩM (M(m× n, r)))
�

being finite. By Proposition 2.5.22, and the definition of rank, this is equivalent to

rkr(N) = rkr(M).

Thus, by uniquness of the completable closure in Proposition 2.5.15, the mask N is the com-
pletable closure of M if and only if E(N) is the biggest superset of E(M) with the same rank.
But that is the matroid closure of E(M) with respect to D(m× n, r), which can be character-
ized by closing circuits one-by-one, for a definition see chapter 1.4 of Oxley [29]. The latter
is equivalent to the graph closure described above due to Proposition 2.5.26.

Propositions 2.5.28 and 2.5.26 imply that the following definition on unlabeled bipartite
graphs captures all the information about the generic completablity of masks associated with
the type.

Definition 2.5.29. Let G be a bipartite graph. The closing of H = cl[φ1, . . . ,φk](G) from
Proposition 2.5.28 is called the completable closure of G in rank r.

Proposition 2.5.26 also allows us to state a Corollary of Proposition 2.5.22 for Matrix
Completion and Partial Matrix Completion:

Corollary 2.5.30. The following statements hold:

(i) Let Ω be some masking in rank r, let G = G(Ω). Then

dimΩ = dr(G)− rkr(G),

where rank has to be taken in D(m× n, r). In particular, Ω is finitely completable if and
only if rkr(G) = dr(G).

(ii) Let Ω be some masking in rank r, let G = G(Ω). Then Ω is finitely completable if and only
if G(Ω) contains a subgraph G′ which is independent in rank r and has e(G′) = dr(G).
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(iii) Let Ω be some partial masking in rank r, with (G ,→ H) = G(Ω). Then

dimΩ = rkr(H)− rkr(G).

In particular, Ω is finitely completable if and only if rkr(G) = rkr(H).

Proof. (i) is a reformulation of Lemma 2.5.24, together with the fact that finite completability
of Ω is equivalent to dimΩ = 0.

For (ii), note that (i) implies for finitely completable Ω that rkr(G) = dr(G). By Proposi-
tion 2.5.21 (iv) and Proposition 2.5.26, this is equivalent to the fact that there is a subgraph
G′ of G with rkr(G′) = e(G′) = dr(G). Note that the latter condition implies that G′ is an
independent graph.

(iii) follows from Lemma 2.5.24, by applying it to a partial masking (N , M) and the map
ΩN/M , while using ΩM = ΩN/M ◦ΩN and the dimension formula

dimΩM = dimΩN/M + dimΩN .

Corollary 2.5.30 is more than a mere reformulation of the previous results on fiber di-
mension, since it implicitly references the matroidal structure induced by dependence of the
matrix entries. Without the matroidal property it is difficult20 to see that, e.g., adding a single
known entry removes at most one degree of freedom, generically. More importantly, we can
use it to prove:

Theorem 2.5.31. If a masking Ω is generically finite in rank r, then G(Ω) is spanned in rank
r. In particular, all conditions (i),(ii),(iii) from Proposition 2.3.33 are all necessary for Ω to be
generically finite or generically injective.

Proof. The matroidal property of generic completability implies that it is no loss of generality
to reduce to the case in which Ω is minimally finitely completable, i.e., when it is finitely
completable but ceases to be so when any of its known entries are removed. Said differently,
this is when Ω is a basis of E(m× n, r).

Corollary 2.5.30 (i) implies that for any basis Ω in the determinantal matroid, e(G(Ω)) =
dr(m, n). A second application of Corollary 2.5.30 (i) implies that any masking Ω′ with
e(G(Ω′)) ≥ dr(G(Ω′)) + 1 contains a circuit in the determinantal matroid. Since since bases
are all independent, it follows that every subgraph G′ of G(Ω) has e(G′)≤ dr(G′). This shows
that G(Ω) is r-sparse with dr(m, n) edges; i.e., it is r-tight.

Given that generically finitely completable masks must be spanned in rank r, we might
wonder if this is a sufficient condition. In fact, it is not. The intuition is that it is possible to
glue r-tight graphs along r vertices to get another r-tight graph, but that finitely completable
masks glued along less than an r× r block will necessarily have left over degrees of freedom.

Theorem 2.5.32. Let r > 1. There exist rank-r-tight masks that are not finitely completable.

Proof. Let G1 and G2 be bipartite graphs, with, respectively, mi and ni red and blue ver-
tices, associated with minimally finitely completable masks. Assume also that mi and ni are
sufficiently large. By Theorem 2.5.31, the graphs Gi are r-tight.

That the average degree in each Gi is less than 2r implies that each of G1 and G2 have an
independent set of size r that is not all red or all blue vertices; select one such independent
set I1 and I2 in each of G1 and G2. Define H to be the graph formed by identifying I1 and I2.

20Though not impossible, since it can be seen as a consequence of Krull’s height theorem.
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The graph H has m1 + n1 +m2 + n2 − r vertices and r(m1 + n1 +m2 + n2 − 2r) edges.
Since the Gi are rank r-sparse and edge disjoint, H is as well. Thus H is r-tight.

Now form G′1 and G′2 by adding a new edge ei between a red and blue vertex in each Ii;
this is possible by construction. Define H ′ to be the graph obtained by identifying the Ii in
such a way that the ei are identified as well. Because the Gi were finitely completable, there
are two circuits in the determinantal matroid of H ′ going through e. Eliminating e shows that
there is a completion circuit in H ′ \ e = H. Edge counts now show that a basis of H in the
completion matroid has strictly fewer than dr(H) edges, and Theorem 2.5.31 implies that H
cannot be finitely completable.

In particular, the proof shows that there are circuits in the determinantal matroid that
are rank r-sparse. We now develop some further properties of circuits in the determinantal
matroid. Theorem 2.5.31 and the matroidal property imply that while there are circuits with
fewer than dr(G) + 1 edges, they cannot have more. Combined with a degree lower bound
for circuit, we can show that the number of red and blue vertices cannot be too unbalanced
in a circuit, which implies a bound on the number of circuit graphs with m red vertices.

Proposition 2.5.33. A circuit graph in rank r has vertex degrees at least r + 1. In particular, a
circuit graph with m and n red and blue vertices always has m> r and n> r.

Proof. Let G = (V, E) be a circuit graph. Theorem 2.5.14 and Remark 2.5.17 imply that the
rank resp. dimension of the C-vector space, generated by the differentials

dai j = dui · v>j + ui · dv>j , (i j) ∈ E

must be #E−1, where ui , 1≤ i ≤ m and v j , 1≤ j ≤ n are generic vectors in Cr , and the com-
ponents of the r-vectors dui resp. dv j are formal basis elements. Equivalently reformulated,
this means that there are λi j ∈ C, (i j) ∈ E, not all zero, such that

∑

(i j)∈E

λi j dai j = 0,

and that none of the λi j can be chosen zero if at least one is non-zero. Using the above
representation in the basis given by dui and dv j , the condition becomes

0=
∑

(i j)∈E

λi j

�

dui · v>j + ui · dv>j
�

=
m
∑

i=1

dui

∑

(i j)∈E

λi j v
>
j +

n
∑

j=1

dv j

∑

(i j)∈E

λi ju
>
i .

Since the components of dui and dv j form a basis of the vector space of differentials, this
implies that there are non-zero λi j such that

0=
∑

(i j)∈E

λi j v
>
j for any (arbitrary but fixed) i and 0=

∑

(i j)∈E

λi ju
>
i for any (a.b.f.) j.

Since the ui , v j are generic, and ui , v j ∈ Cr , this can hold only if Ni ≥ r + 1 and N j ≥ r + 1,
where

Ni = #{(i j) ; (i j) ∈ E} and N j = #{(i j) ; (i j) ∈ E}

(note that the definitions of Ni and N j implies that i resp. j are arbitrary but fixed). Since Ni
and N j are the vertex degrees of the vertex i resp. the vertex j, this implies that each vertex
in G has degree at least r + 1, which was the statement to prove.
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Proposition 2.5.34. The number of blue vertices in a circuit graph in rank r with m red vertices
is at most r(m− r) + 1.

Proof. Let G be a circuit graph in rank r with m red vertices and n blue vertices. As noted
above, Theorem 2.5.31 implies that e(G) ≤ dr(G) + 1, and the degree lower bound Propo-
sition 2.5.33 gives dr(G) = r(m+ n− r). Estimating the number of edges in G from below
using, again, Proposition 2.5.33, we get n(r + 1)≤ r(m+ n− r) + 1.

Corollary 2.5.35. The number of circuits in rank r with m red vertices is at most 2mr(m−r)+m.

Bernd Sturmfels and Zvi Rosen have told us they obtained, independently, a similar result
with a weaker conclusion. In rank one and m− 1 we can give an exact characterization of
the circuit graphs.

Proposition 2.5.36. The following statements are true:

(i) The circuit graphs in rank r = 1 are exactly the cycles.

(ii) The unique circuit graph in rank r = m− 1 is exactly Km,m.

Proof. By Lemma 2.3.24 and Proposition 2.3.25, the determinantal matroid is is isomorphic
to the graphic matroid, which has as its circuits the cycles [29, Proposition 1.1.7]. This proves
(i).

For (ii), Proposition 2.3.25 implies that the almost biclique is finitely completable, and,
since it has dm−1(m, m) edges, independent. Thus Km,m is a circuit. By Proposition 2.5.33,
in any other circuit graph G, every blue vertex must be connected to all of the red vertices,
forcing G to contain contains a copy of Km,m, contradicting minimality of circuits.

2.6 Completability of random masks

Up to this point we have considered the generic completability of a fixed mask, which we
have shown to be equivalent to questions about the associated bipartite graph. We now turn
to the case where the masking is sampled at random, which, by Corollary 2.5.30, implies
that, generically, this is a question about random bipartite graphs.

2.6.1 Random graph models

A random graph is a graph valued random variable. We are specifically interested in two such
models for bipartite random graphs:

Definition 2.6.1. The Erdős-Rényi random bipartite graph G(m, n, p(m, n)) is a graph on n
red vertices vertices with each edge present with probability p(m, n), independently. When the
context is clear we write p = p(m, n).

Definition 2.6.2. The d-regular random bipartite graph G(m, n, d, d ′) is the uniform distribu-
tion on graphs with m red vertices, n blue ones, and each red vertex with degree d and each blue
vertex with degree d ′.

Clearly, we need md = nd ′, and notices that when m = n, the Notice that when m = n,
the d-regular random bipartite graph is, in fact d-regular.

We will call a mask corresponding to a random graph a random mask. We now quote
some standard properties of random graphs we need.

Proposition 2.6.3. (Connectivity threshold) The threshold for G(m, n, p) to become connected,
w.h.p., is p =Θ((m+ n)−1 log n).
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(Minimum degree threshold) The threshold for the minimum degree in G(n, n, p) to reach d
is p = Θ((m+ n)−1(log n+ d log log n+ω(1))). When p = cn, w.h.p., there are isolated
vertices.

(Connectivity threshold) With high probability, G(m, n, d, d ′) is d-connected. (Recall that we
assume m≤ n).

(Density principle) Suppose that the expected number of edges in either of our random graph
models is at most Cn, for constant C. Then for every ε > 0, there is a constant c, depending
on only C and ε such that, w.h.p., every subgraph of n′ vertices spanning ate least (1+ε)n′

edges has n′ ≥ cn.

(Emergence of the k-core) Define the k-core of a graph to be the maximal induced subgraph
with minimum k. For each k, there is a constant ck such that p = ck/n is the first-order
threshold for the k-core to emerge. When the k-core emerges, it is giant and afterwards its
size and number of edges spanned grows smoothly with p.

2.6.2 Completability of incoherent matrices

The fundamental result in the area of matrix completion, proven independently in the papers
Candès and Tao [5], Keshavan et al. [19] is

Theorem 2.6.4. Let A be an incoherent rank r matrix, with r = O(1). Then, with high
probability, an Erdős-Rényi mask with p =Θ(rn log n) is sufficient to complete A uniquely.

We note that the conclusion is not that the mask is generically uniquely completable, since
the (crucial) incoherence assumption is about the underlying matrix A. In the next section,
we will give a generic version of Theorem 2.6.4.

In a sense, 2.6.4 is the best possible. There are incoherent matrices with a block diagonal
structure such that no sparser sampling can guarantee even finite completability with high
probability Candès and Tao [5].

In the generic case, Theorem 2.5.31 implies that a finitely completable mask requires
minimum degree r. The minimum degree threshold in the Erdős-Rényi model gives a similar
lower bound. Combined with the methods of Section 2.7 below, we may conclude.

Proposition 2.6.5. Let r be a fixed constant. There are constants c and C such that, if p =
c(n+m)−1 log n then, w.h.p., G(m, n, p) is not finitely completable and if p = C(n+m)−1 log n
then, w.h.p., G(m, n, p) is finitely completable.

2.6.3 Sparser sampling and partial completability

The lower bounds on sample size for completion of rank r incoherent matrices do not carry
over verbatim to the generic setting of this paper. This is because genericity and incoherence
are related, but incomperable concepts: there are generic matrices that are not incoherent
(consider a very small perturbation of the identity matrix); and, importantly, the block diag-
onal examples showing the lower bound for incoherent completability are not generic, since
many of the entries are zero.

Thus, in the generic setting, we expect sparse sampling to be more powerful. This is
demonstrated experimentally in Section 4.2. In the rest of this section, we derive some
heuristics for the expected generic completability behavior of sparse random masks. We are
particularly interested in the question of: when are Ω(mn) of the entries completable from a
sparse random mask? We call this the completability transition. We will conjecture that there
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is a sharp threshold for the completability transition, and that the threshold occurs well below
the threshold for G(n, m, p) to be completable.

Let c be a constant. We first consider the emergence of a circuit in G(n, n, c/n). Propo-
sition 2.5.33 implies that any circuit is a subgraph of the (r + 1)-core. By Theorem 2.5.31,
having a circuit is a monotone property, which occurs with probability one for graphs with
more than 2rn edges, and thus the value

tr := sup{t : G(n, n, d/n) is r-independent, w.h.p.}

is a constant. If we define Cr as

Cr := sup{c : the (r + 1)-core of G(n, n, c/n) has average degree at most 2r, w.h.p.}

smoothness of the growth of the (r + 1)-core implies that we have

cr+1 ≤ dr ≤ Cr+1

where we recall that cr+1 is the threshold degree for the (r + 1)-core to emerge. Putting
things together we get:

Proposition 2.6.6. There is a constant Cr such that, if c < tr then w.h.p., G(n, n, c/n) is
r-independent, and, if c > dr then w.h.p. G(n, n, c/n) contains a giant r-circuit inside the
(r + 1)-core. Moreover, tr is at most the threshold for the (r + 1)-core to reach average degree
2r.

Proposition 2.6.6 gives us some structural information about where to look for rank r
circuits in G(n, n, c/n): they emerge suddenly inside of the (r + 1)-core and are all giant
when they do. If rank r circuits were themselves finitely completable, this would then yield
a threshold for the completability transition. Unfortunately, Theorem 2.5.32 tells us that this
is not, in general, the case. Nonetheless, we conjecture:

Conjecture 2.6.7. The constant tr is the threshold for the completability transition in G(n, n, c/n).
Moreover, we conjecture that almost all of the (r + 1)-core is completable above the threshold.

We want to stress that the conjecture includes a conjecture about the existence of the
threshold for the completabilty transition, which hasn’t been established here, unlike the
existence for the emergence of a circuit. The subtlety is that we haven’t ruled out examples
of r-independent graphs with no r-spanning subgraph for which, nonetheless, the r-closure
is giant. Conjecture 2.6.7 is explored experimentally in Sections 4.1 and 4.2.

Our second conjecture is about 2r-regular masks.

Conjecture 2.6.8. With high probability G(n, n, 2r, 2r) is finitely completable. Moreover, we
conjecture that it remains so, w.h.p., after removing r2 edges uniformly at random.

We provide evidence in Section 4.2. This behavior is strikingly different than the incoher-
ent case.

2.6.4 Denser sampling and solving minor by minor

The conjectures above, even if true, provide only information about matrix completability and
not matrix completion. In fact, the convex relaxation of Candès and Recht [4] does not seem
to do very well on 2r-regular masks in our experiments, and the density principle for sparse
random graphs implies that, w.h.p., a 2r-regular mask has no dense enough subgraphs for
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our closability algorithm in section 3.2 to even get started. Thus is seems possible that these
instances are quite “hard” to complete even if they are known to be completable.

If we consider denser random masks, then the closability algorithm becomes more prac-
tical. A particularly favorable case for it is when every missing entry is part of some K−r+1,r+1.
In this case, the error propagation will be minimal and, heuristically, finding a K−r+1,r+1 is not
too hard, even though the problem is NP-complete in general.

Define the 1-step r-closure of a bipartite graph G as the graph G′ obtained by adding the
missing edge to each K−r+1,r+1 in G. If the 1-step closure of G is Kn,n, we define G to be 1-step
r-closable. We can give an upper bound on the threshold for 1-step r-closability.

Theorem 2.6.9. There is a constant C > 0 such that, if p = Cn−2/(r+2) log n then, w.h.p.,
G(n, n, p) is 1-step r-closable.

Proof. Fix r and set p as in the statement. The probability of a specific copy of K−r+1,r+1

appearing is p(r+1)2−1 and there are Θ(n(2r+2)) potential copies. Since K−r+1,r+1 is its own

least probable subgraph, we see that if p = Cn−2/(r+2) the expected number X of edge disjoint
copies of K−r+1,r+1 in G(n, n, p) is at least C ′n2 log n for some absolute constant C ′ depending
on C .

A fundamental result about the number of copies of a small subgraphs [18, Theorem
3.29]implies that X is sharply concentrated around its expectation, so, w.h.p, C ′′−1n2 log n≤
X ≥ C ′′n2 log n for a constant C ′′ depending only on r and C .

We now define the E to be the event that G(n, n, p) is 1-step r-closable. Also define the
event B to be the event that, in G(n, n, p), no pair of vertices (i, j) is the “missing” edge in
more than D log n copies of K−r+1,r+1, for some sufficiently large constant D. Since both E and
¬B are both increasing events, the FKG inequality (e.g., [18, Theorem 2.12]) implies that
Pr {E} ≤ Pr {E|¬B}. Using this esitmate we get

Pr {E} = Pr {E|B}Pr {B}+ Pr {E|¬B}Pr {¬B}
≥ Pr {E|B}Pr {B}+ Pr {E}Pr {¬B}

Rearranging, we conclude that Pr {E} ≥ Pr {E|B}.
Conditioning on B and the fact that there are at least C ′′−1n2 log n edge disjoint copies of

K−r+1,r+1, we consider the process that reveals each of these copies one at a time. Since, for
each pair of vertices (i, j), the probability that the next revealed copy has (i, j) as its missing
edge is Ω(1/n2), and C ′′ is arbitrary, we can increase the probability that any fixed pair is
covered by at least one copy to 1− 1/n3 and then apply a union bound.

An interesting question is determining the threshold for G(n, n, p) to be r-closable. Ex-
perimentally, it appears that: p = n−2/(r+2) is, in fact the order of the true threshold; when
G(n, n, p) is closable it is O(1)-step closable.

2.7 Sufficient Sampling Densities for Algebraic Compressed Sensing

For different conditioned sampling methods of both matrices and masks, the asymptotic be-
havior of completion has been well-analyzed, most notably in the case of uniform sampling of
masks, see e.g. Candès and Recht [4],Candès and Tao [5], Gross [14]. While much is implied
between the lines, none of the available literature addresses the question of conditioning only
on the mask while removing the conditioning on the matrices directly.

In fact, it turns out that in a novel more general algebraic framework, the analytic ar-
guments found in the previous work can be modified to provide identifiability results in the
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setting where a point on an algebraic variety is to be reconstructed from a set of random pro-
jections. Particularly, with Theorem 2.7.8, we will obtain a result which relates the necessary
number of observations directly to intrinsic properties of the variety (namely, its incoherence,
which we will define), notably without further conditioning how the point of the variety was
sampled. We believe that this result is the canonical expression of a general principle in com-
pressed sensing that relates the necessary sampling density to properties of the signal space
without further assumptions.

2.7.1 Finiteness of Random Maskings

In the following, we will examine compressed sensing under algebraic constraints. That
is, given a signal x ∈ Cn, where the inclusion into Cn is to be considered as a parametric
representation of the signal, and given an algebraic variety X ⊆ Cn which describes the com-
pression constraints, such that x ∈ X , we attempt to reconstruct the signal x from random
coordinate projections of x , under consideration of the compression constraints X . The main
result of this section will characterize the sampling density, i.e., the number of random co-
ordinate projections of x needed to reconstruct a generic x , in terms of X , without further
sampling assumptions on x .

As a corollary, we will obtain upper reconstruction bounds for Matrix Completion, where
x is a low-rank matrix, and X is the variety of low-rank matrices M(m× n, r).

First we introduce some formal concepts which describe the setting of compressed sens-
ing under algebraic constraints, in particular the sampling process which we will assume to
randomly, independently and uniformly sample coordinate projections of the signal without
repetition.

Definition 2.7.1. Let X ⊆ Cn be an algebraic varieties. Fix coordinates (X1, . . . , Xn) for Cn.
Let S(p) be a the Bernouilli random experiment yielding a random subset of {X1, . . . , Xn} where
each X i is contained in S(p) independently with probability p. We will call the projection map

Ω : X → Y

(x1, . . . , xn) 7→ (. . . , x i , . . . : X i ∈ S(p))

of X onto the coordinates in S(p), which is an algebraic-map-valued random variable, an alge-
braic random masking of X with selection probability p.

Intuitively, Ω takes a signal x from the signal space Cn, fulfilling the constraints in X ,
and independently samples a Bernoulli set Ω(x) of random coordinate projections x i with
sampling density p.

The constraints in X will play a crucial role in determining the necessary sampling den-
sity which allows reconstruction of the signal. Namely, the central property of X which will
determine the necessary density is the so-called coherence, which describes the degree of ran-
domness of a generic tangent plane to X ; intuitively, it can be interpreted as the infinitesimal
randomness of a signal.

Definition 2.7.2. Let H be a k-flat21 in Cn. Let P : Cn → H ⊆ Cn the orthogonal projection
operator onto H, let e1, . . . , en a fixed orthonormal basis of Cn. Then the coherence of H with
respect to the basis e1, . . . , en is defined as

coh(H) = max
1≤i≤n

‖P(ei)−P(0)‖2

21A k-flat is a linear subspace of dimension k which does not necessarily contain 0. Other names are affine
subspace or affine linear variety.
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The coherence of a k-flat is bounded in both directions:

Proposition 2.7.3. Let H be a k-flat in Cn. Then,

k

n
≤ coh(H)≤ 1,

and both bounds are tight.

Proof. Without loss of generality, we can assume that 0 ∈ H and therefore that P is linear,
since coherence, as defined in Definition 2.7.2, is invariant under translation of H.

First we show the upper bound. For that, note that for an orthogonal projection operator
P : Cn→ Cn and any x ∈ Cn, one has ‖P(x)‖ ≤ ‖x‖. Thus, by definition,

coh(H) = max
1≤i≤n

‖P(ei)‖2 ≤ max
1≤i≤n

‖ei‖2 = 1.

For strictness, take H as the span of e1, . . . , ek.
Let us now show the lower bound. We proceed by contradiction. Assume ‖P(ei)‖2 <

k
n

for all i. This would imply

k = n ·
k

n
>

n
∑

i=1

‖P(ei)‖2 = ‖P‖2F = k

which is a contradiction, where in the last equality we used the fact that orthonormal projec-
tions onto a k-dimensional space have Frobenius norm k.

The tightness of the lower bound was asserted in Candès and Recht [4], shortly after
Definition 1.2.

A similar definition of coherence, as in Definition 2.7.2, was used by Candès and Recht
[4]; we decided to remove dimensional normalization in order to make the definition more
intrinsic, i.e., not to depend on the dimension of the embedding. For completeness, we also
state the original concept:

Definition 2.7.4. Let H be a k-flat in Cn. The normalized coherence, or coherence in the sense
of Candès and Recht [4], is the quantity n

k
coh(H).

In our definition, one always has that coh(H) ≤ 1, possibly attaining the upper bound,
while the normalized coherence has 1 as a possibly attainable lower bound. A normalized
version of Proposition 2.7.3 was implicitly stated, but not proved in Candès and Recht [4].
While it should be straightforward, we decided to state it nevertheless since it will play an
important role in proving Proposition 2.7.10 which allows to apply the main results of this
section to Matrix Completion.

Definition 2.7.5. Let X be a complex algebraic variety of dimension d (affine or projective). Let
X ∗ be the dual variety22 of X . The coherence as given in Definition 2.7.2 defines a continuous
function

coh : X ∗→ [0,1]

[H] 7→ coh(H).

We define the infimum of coh on X ∗ to be the coherence of X , and denote it by coh(X ).
22For a variety X of dimension d, the dual variety is the set of tangent d-flats of X , which is known to be an

algebraic variety. More exact, the tangent d-flats at non-singular points of X form a relatively Zariski open set in
some (affine or projective) Grassmannian, its closure is an algebraic variety.
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Note that if X is a k-flat, then the definitions of coh(X ), given by Definitions 2.7.2 and
2.7.5 agree. Also, if X is projective, then X ∗ is compact, so the infimum is in fact a minimum.
These observations, together with Proposition 2.7.3, imply

Proposition 2.7.6. Let X be a complex algebraic variety in Cn. Then,

1

n
dim X ≤ coh(X )≤ 1,

and both bounds are tight.

Definition 2.7.7. A complex algebraic variety X is called maximally incoherent if

coh(X ) =
1

n
dim X .

The following theorem relates the coherence of a a variety X to the sampling density of
a generic (constrained) signal x ∈ X , which is needed to achieve reconstruction of x , up
to finite choice. The proof integrates some ideas of Candès and Recht [4] into our general
algebraic setting. Also, the proof uses two lemmata, namely Lemmata 2.7.12 and 2.7.13,
which can be found at the end of the section.

Theorem 2.7.8. Let X ⊆ Cn be an irreducible algebraic variety, let Ω be an algebraic random
masking with selection probability p, let x ∈ X be a smooth point. There is an absolute constant
C such that if

p ≥ C ·λ · coh(X ) · log n, with λ≥ 1,

then Ω is generically finite with probability at least

1− 3n−λ.

Proof. Without loss of generality we can assume that X is projective and thus compact (e.g.,
by using Chow’s lemma). Thus, there exists x ∈ X such that for the tangent space Tx X at x
it holds that coh(Tx X ) = coh(X ). Now let y = Ω(x), note that y is a point-valued discrete
random variable. By the equivalence of the statements (iv) and (v) in Lemma 2.7.12, it
suffices to show that the operator

Z =




p−1θ ◦ dΩ− id






is contractive, where θ is projection, from Ty onto Tx , with probability at least 1 − 3n−λ

under the assumptions on p. Let e1, . . . , en be the orthonormal coordinate system we choose
for Cn, and P the projection onto Tx . Then the projection θ ◦ dΩ has, when we consider Tx
to be embedded into Cn, the matrix representation

n
∑

i=1

εi ·P(ei)⊗P(ei),

where εi are independent Bernoulli random variables with probability p for 1 and (1− p) for
0. Thus, in matrix representation,

Z =
















n
∑

i=1

�

εi

p
− 1
�

·P(ei)⊗P(ei)
















.
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By Rudelson’s lemma 2.7.13, it follows that

E(Z)≤ C

r

log n

p
max

i
‖P(ei)‖

for an absolute constant C provided the right hand side is smaller than 1. The latter is true if
and only if

p ≥ C−2 log n max
i
‖P(ei)‖2.

Now let δ > 0, and let U be an open neighborhood of x such that coh(Ty X )< (1+δ) coh(X ).
Then, one can write

Z = sup
y1,y2∈U ′
















n
∑

i=1

�

εi

p
− 1
�

· 〈y1,P(ei)〉〈y2,P(ei)〉
















with a countable subset U ′ ( U . By construction of U ′, one has












�

εi

p
− 1
�

· 〈y1,P(ei)〉〈y2,P(ei)〉












≤ p−1(1+δ) coh(X ).

Applying Talagrand’s Theorem 9.1 from Candès and Recht [4], one obtains

P(‖Z −E(Z)‖> t)≤ 3exp
�

−
t

KB
log
�

1+
t

2

��

with an absolute constant K and B = p−1(1+δ) coh(X ). Since δ was arbitrary, it follows that

P(‖Z −E(Z)‖> t)< 3 exp
�

−
p · t

K coh(X )
log
�

1+
t

2

�

�

.

Substituting p = C ·λ′ ·coh(X )·log n, and proceeding as in the proof of Theorem 4.2 in Candès
and Recht [4] (while changing absolute constants), one arrives at the statement.

Corollary 2.7.9. Keep the notations of Theorem 2.7.8. If X is moreover maximally incoherent,
and

pn≥ C ·λ · dim(X ) · log n, with λ≥ 1,

then Ω is generically finite with probability at least

1− 3n−λ.

Proposition 2.7.10. M(m× n, r) is maximally incoherent.

Proof. Let A∈ Cm×n be any matrix of rank r or less, with A= UV> and U ∈ Cm×r , V ∈ Cn×r .
Let H be the tangent space to M(m× n, r) at A, and HU resp. HV the row-spans of U resp. V .
The calculation leading to [4, equation 4.9] shows that

coh(H) = coh(HU) + coh(HV )− coh(HU) coh(HV ).

Now for any pair of r-flats HU and HV in m-resp. n-space, there exists an A as above; on the
other hand, Proposition 2.7.3 shows that there exist HU , HV such that

coh(HU) =
r

m
and coh(HV ) =

r

n
.
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Thus, substituting, this implies that there exists H with

coh(H) = coh(HU) + coh(HV )− coh(HU) coh(HV ) =
r · (m+ n− r)

mn
.

Since coh (M(m× n, r)) ≤ coh(H) for any such H, this implies together which the lower
bound from Proposition 2.7.6 that

coh (M(m× n, r)) =
r · (m+ n− r)

mn
.

Corollary 2.7.11. Let M be an Erdős-Rényi random mask of size (m× n) and sampling proba-
bility p. There is an absolute constant C such that if

p ≥ C ·λ ·
r · (m+ n− r)

mn
·
�

log m+ log n
�

, with λ≥ 1,

then Ω is generically finite with probability at least

1− 3(mn)−λ.

Finally, we state the lemmata which were used in the proof of Theorem 2.7.8. The first
lemma relates local injectivity to generic finiteness and contractivity of a linear map. It is
related to Corollary 4.3 in Candès and Recht [4].

Lemma 2.7.12. Let ϕ : X → Y be a surjective map of complex algebraic varieties, let x ∈ X ,
and y = ϕ(x) be smooth points of X resp. Y . Let

dϕ : Tx X → Ty Y

be the induced map of tangent spaces23. Then, the following are equivalent:

(i) There is an complex open neighborhood U 3 x such that the restriction ϕ : U → ϕ(U) is
bijective.

(ii) dϕ is bijective.

(iii) There exists an invertible linear map θ : Ty Y → Tx X .

(iv) There exists a linear map θ : Ty Y → Tx X such that the linear map

θ ◦ dϕ− id,

where id is the identity operator, is contractive24.

If moreover X is irreducible, then the following is also equivalent:

(v) ϕ is generically finite.

23Tx X is the tangent plane of X at x , which is identified with a vector space of formal differentials where x is
interpreted at 0. Similarly, Ty Y is identified with the formal differentials around y . The linear map dϕ is induced
by considering ϕ(x + dv) = y + dv′ and setting dϕ(dv) = dv′; one checks that this is a linear map since x , y
are smooth. Furthermore, Tx X and Ty Y can be endowed with the Euclidean norm and scalar product it inherits
from the tangent planes. Thus, dϕ is also a linear map of normed vector spaces which is always bounded and
continuous, but not necessarily proper.

24A linear operator A is contractive if ‖A(x)‖< 1 for all x with ‖x‖< 1.
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Proof. (ii) is equivalent to the fact that the matrix representing dϕ is an invertible matrix.
Thus, by the properties of the matrix inverse, (ii) is equivalent to (iii), and (ii) is equivalent
to (i) by the constant rank theorem (e.g., 9.6 in Rudin [32]).

By the upper semicontinuity theorem (I.8, Corollary 3 in Mumford [25]), (i) is equivalent
to (v) in the special case that X is irreducible, the reasoning is completely analogous to the
proof of Theorem 2.3.5.

(ii)⇒ (iv): Since dϕ is bijective, there exists a linear inverse θ : Ty Y → Tx X such that
θ ◦ dϕ = id . Thus

θ ◦ dϕ− id= 0

which is by definition a contractive linear map.

(iv)⇒ (iii): We proceed by contradiction. Assume that no linear map θ : Ty Y → Tx X is
invertible. Since ϕ is surjective, dϕ also is, which implies that for each θ , the linear map
θ ◦ dϕ is rank deficient. Thus, for every θ , there exists a non-zero α ∈ Kerθ . By linearity
and surjectivity of dΩ, there exists a non-zero β ∈ Tx X with dΩ(β) = α. Without loss of
generality we can assume that ‖β‖ = 1, else we multiply α and β by the same constant
factor. By construction,





[θ ◦ dϕ− id](β)




= ‖θ(α)− β‖= ‖β‖= 1,

so θ cannot be contractive. Since θ was arbitrary, this proves that (iv) cannot hold if (iii)
does not hold, which is equivalent to the claim.

The second lemma is a consequence of Rudelson’s Lemma, see Rudelson [31], for Bernoulli
samples.

Lemma 2.7.13. Let y1, . . . , yM be vectors in Rn, let ε1, . . . ,εM be i.i.d. Bernoulli variables,
taking value 1 with probability p and 0 with probability (1− p). Then,

E

 















1−
M
∑

i=1

�

εi

p

�

yi ⊗ yi
















!

≤ C

r

log n

p
max

1≤i≤M
‖yi‖

with an absolute constant C, provided the right hand side is 1 or smaller.

Proof. The statement is exactly Theorem 3.1 in Candès and Romberg [3], up to a renaming of
variables, the proof can also be found there. It can also be directly obtained from Rudelson’s
original formulation in Rudelson [31] by setting substituting εip

p
yi in the above formulation

for yi in Rudelson’s formulation and upper bounding the right hand side in Rudelson’s esti-
mate.

2.7.2 Finiteness of Random Projections

The results of section 2.7.1, in particular Theorem 2.7.8 might lead to the belief that the
log-factor in the number of samples always, or almost always necessary for identifiability, in
terms of the chosen projections. That, however is not true. While Theorem 2.7.8 gives a
bound which is valid for any coordinate system and the coherence definition associated to it,
the following theorem states that for a general system of coordinates, a much lower bound
and a stricter statement is true:
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Theorem 2.7.14. Let X ⊆ Cn be an irreducible algebraic variety, let Ω be the projection onto a
generic k-flat. Let x ∈ X be a smooth point. Then,
Ω is generically finite if and only if

k ≥ dim(X ),

and Ω is generically injective if
k > dim(X ).

Proof. The statements above are more or less folklore; they follow from the more general
height-theorem-like statement that

codim (X ∩H) = codim(X ) + codim(H) = codim(X ) + n− k,

where H is a generic k-flat, a proof of which can be found for example in the Appendix
of Király et al. [22]. Then, the first statement about generic finiteness follows by taking a
generic y ∈ Ω(X ) and observing that Ω−1(y) = H ∩X where H is generic if k ≤ dim(X ). That
implies in particular that if k = dim(X ), then the fiber Ω−1(Ω(x)) for a generic x ∈ X consists
of finitely many points, which can be separated by an additional random projection, thus the
statement about generic injectivity follows.

Intuitively, Theorem 2.7.14 can be interpreted in two ways. On one hand, it means that
any point on X can be reconstructed from exactly dim(X ) random linear projections. On the
other hand, it means that if the chosen coordinate system in which X lives is random, then
dim(X ) entries in the mask suffice for (finite) identifiability of the map - no more structural
information is needed. In view of Theorem 2.7.8, this implies that the log-factor and the prob-
abilistic phenomena in identifiability only occur when the variety X is in a sense degenerate
with respect to the chosen coordinate system, or, in other words, intrinsically aligned.

3. Algorithms

3.1 Randomized Algorithms for Completability

In the following, we describe some algorithms which can be derived from the theory of dif-
ferentials and matroids in section 2.5. The algorithms in this section answer the question
which entries of a rank r matrix can be in principle computed from the given ones. As
Theorems 2.3.5 and 2.4.4 show, for a generic matrix this depends only on the position of
the known resp. measured entries, encoded in the so-called mask, and not on the values of
the entries. Calculations in the vector space of evaluated differentials then allow to simply
determine the entries which can be reconstructed up to finite choice.

First, with Algorithm 1, we present a randomized algorithm which checks whether all
missing entries can be reconstructed up to finite choice; in Singer and Cucuringu [36], a very
similar algorithm was already conjectured to be correct. In step 1, a (m× r)-matrix U and a
(n× r)-matrix V are sampled from a generic probability distribution. One can show (see for
example the genericity section in the appendix of Király et al. [22]) continuous probability
distribution, e.g., any Gaussian distribution on the matrices, will be generic and fulfill the
properties of Definition 2.2.1. Thus, U · V> will be a generic (m× n)-matrix of rank r. In
step 2, the differentials of A for all its known entries are calculated. The differentials dai j are
contained in the formalC-vector generated by all dUi j and dVi j; thus they can be conveniently
represented as a (rm+ rn)-vector, or a (r×m+ n)-matrix. In step 3, their span is calculated.
By checking their span in step 4 and its dimension, e.g., numerically, one can decide whether
M was finitely completable, which follows from the equivalence of Theorem 2.5.14 (i) and
(v), and Corollary 2.5.30, proving correctness of Algorithm 1.
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Algorithm 1 Finite completability in rank r.
Input: An (m× n) mask M . Output: Whether M is finitely completable in rank r.

1: Randomly sample U ∈ Cm×r , V ∈ Cn×r .
2: For all (i j) ∈ E(M), calculate

dai j :=
r
∑

k=1

�

Vjk dUik + Uik dVjk

�

where the dUi j , dVi j are to be considered as formal basis vectors of a (rm + rn)-
dimensional vector space.

3: Set VM = span{dai j ; (i j) ∈ E(M)}.
4: If dim(VM )C = r ·(m+n−r), return “finitely completable”, else “not finitely completable”.

Algorithm 2 Matroid rank.
Input: An (m× n) mask M . Output: The matroid rank of M in rank r.

1: Randomly sample U ∈ Cm×r , V ∈ Cn×r .
2: For all (i j) ∈ E(M), calculate

dai j :=
r
∑

k=1

�

Vjk dUik + Uik dVjk

�

where the dUi j , dVi j are to be considered as formal basis vectors of a (rm + rn)-
dimensional vector space.

3: Set VM = span{dai j ; (i j) ∈ E(M)}.
4: Return rkr(M) = dimC VM .

Similar principles can be used to calculate the number of degrees of freedom contained
in a set of given entries of a matrix. Theorem 2.3.5 again shows that, generically, it does
only depend on the position of the entries. In Algorithm 2 we perform the same steps as in
Algorithm 1, up to step 4, where we give back the (numerical) dimension of the span instead
checking whether it equates to r · (m+ n− r). Indeed, Algorithm 1 can be obtained as the
algorithm which just checks whether rkr(M) = r · (m+n− r). The correctness of Algorithm 2
follows from the equivalence of Theorem 2.5.14 (i) and (v), and Proposition Prop:rkdeg.
Corollary 2.5.30 exhibits the relation to Algorithm 1. Also note that since many objects in
matroid theory like circuits, independence, bases, etc., can be characterized by an evaluation
of the rank - compare Proposition 2.5.21 - Algorithm 2 can be in fact used to classify or
find such objects and determine their properties. For example, Algorithm 2 can be used in
classical matroid theoretical algorithms to find or count circuits, bases, or for determining the
structure of the whole determinantal matroid.

The randomized strategy, in its most general setting, allows to compute the set of all
entries which are in principle reconstructible, up to finite choice, from the known entries;
Algorithm 3 can be used to do that. Steps 1 to 3 are analogous as in Algorithms 1 and 2,
with the small distinction that in step 2, all differentials are computed, since they correspond
to the entries, and on has to check for all entries whether they can be reconstructed or not.
In step 2, one numerically then checks for each entry whether is differential is in the span
of those in the mask or not; an entry is reconstructible if and only it is contained in the
span, which follows from the equivalence of Theorem 2.5.14 (i) and (v). Algorithm 1 can
be seen as as special and simplified case of Algorithm 3 where it is only checked whether
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Algorithm 3 Completable closure.
Input: An (m× n) mask M . Output: The completable closure N of M in rank r.

1: Randomly sample U ∈ Cm×r , V ∈ Cn×r .
2: For all (i j), calculate

dai j :=
r
∑

k=1

�

Vjk dUik + Uik dVjk

�

where the dUi j , dVi j are to be considered as formal basis vectors of a (rm + rn)-
dimensional vector space.

3: Set VM = span{dai j ; (i j) ∈ E(M)}.
4: For each (i j), calculate whether dai j ∈ VM .
5: Define N as E(N) = {(i j) ; dai j ∈ VM}.

the completable entries are all entries, or not. Note also that Algorithm 3 can be applied to
determine whether a partial mask (N , M) is finitely completable, by checking whether G(N)
lies in the completable closure of G(M) (i.e., whether completable closure of M minus N is
non-negative).

3.2 Algorithms for checking Closability

An algorithm for one step r-closure is shown in Algorithm 4. Roughtly speaking we look
though each missing edge (i, j) ∈ V ×W\E and checks whether it can be closed by known
edges. This can be done by finding neighbors J = N(i) of i in W and neighbors I = N( j) of j
in V , and checking if the subgraph (I , J , I×J∩E) contains an r× r bi-clique. This is shown in
Algorithm 6. Since r × r clique cannot contain any vertex with degree less than r, we prune
these vertices beforehand; this is shown in Algorithm 5.

Algorithm 4 CloseOneStep((V, W, E), r)
Inputs: bipartite graph (V, W, E), rank r.
Output: associative array C:(i, j) 7→ (I , J) where (i, j) ∈ (V ×W )\E and I ⊆ V , J ⊆W such
that (i′, j′) ∈ E for all (i′, j′) ∈ (I ∪ {i})× (J ∪ { j}) except (i′, j′) = (i, j).
for each missing edge (i, j) in V ×W\E do

Let I ← N( j), J ← N(i), and E′← I × J ∩ E.
(I , J , E′)← PruneNodesWithDegreeLessThan((I , J , E′), r).
if |I |< r or |J |< r then

Continue.
end if
(I ′, J ′)← FindAClique((I , J , E′), r, r).
if |I ′|> 0 and |J ′|> 0 then

C(i, j)← (I ′, J ′).
end if

end for
Return C .

One can decide if a bipartite graph (V, W, E) is r-closable or not by repeatedly applying
Algorithm 4 and checking if the graph is a complete bipartite graph when there is no more
edge to add; this is shown in Algorithm 7.
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Algorithm 5 PruneNodesWithDegreeLessThan((V, W, E), d1, d2)
Inputs: bipartite graph (V, W, E), minimum degree d1 for the row vertices and d2 for the
column vertices.
Output: pruned bipartite graph (V, W, E).
while true do

V ′← {v ∈ V : |N(v)|< d1}.
W ′← {w ∈W : |N(w)|< d2}.
if V ′ = ; and W ′ = ; then

Return (V, W, (V ×W )∩ E).
end if
V ← V\V ′.
W ←W\W ′.

end while

Algorithm 6 FindAClique((V, W, E), d1, d2)
Inputs: bipartite graph (V, W, E), size of the bipartite clique to be found d1× d2.
Output: vertex sets of a clique (I , J).
if |V |< d1 or |W |< d2 then

Return (;,;).
end if
(V, W, E)← PruneNodesWithDegreeLessThan((V, W, E), d2, d1).
for each v ∈ V do

if d1 = 1 and |N(v)| ≥ d2 then
Return ({v}, N(v)).

end if
V ← V\{v}, W ′← N(v), E′← (V ×W ′)∩ E.
(I ′, J ′)← FindAClique((V, W ′, E′), d1− 1, d2).
if |I ′|> 0 and |J ′|> 0 then

Return (I ′ ∪ {v}, J ′).
end if

end for
Return (;,;).

Algorithm 7 IsClosable((V, W, E), r)
Inputs: bipartite graph (V, W, E), rank r.
Output: binary (true means closable, and false means not closable).
repeat

nnon−zero← |E|.
C ← CloseOneStep((V, W, E), r).
E← E ∪ keys(C).

until nnon−zero = |E|
Return true if E = I × J else false.
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3.3 Algebraic Reconstruction of Matrices

The algorithm described in the previous subsection can be used to actually perform matrix
completion. Each entry in the associative array C : (i, j)→ (I , J) provides a valid (r+1)×(r+
1) vanishing minor condition, which we can exploit to fill one missing entry. Our algorithm
is implemented in a breadth-first manner to minimize propagation of numerical erros. The
details are described in Algorithm 8.

Algorithm 8 CompletionByClosure(A, (V, W, E), r)
Inputs: partially observed matrix A, bipartite graph (V, W, E), rank r.
Output: completed matrix A, list of associative arrays Csave.
Csave = [].
repeat

nnon−zero← |E|.
C ← CloseOneStep((V, W, E), r).
Csave← [Csave, C]
for each (i, j) ∈ keys(C) do

E← E ∪ {(i, j)}.
A(i, j)← A(i, J)A(I , J)+A(I , j) where (I , J) = C(i, j).

end for
until nnon−zero = |E|
Return (A, Csave).

4. Experiments

4.1 Randomized Algorithms for Completability

In this section we will investigate the set of entries which is completable from a set of given
entries. In section 2.4 we have seen that the completable set of entries does not depend on
the value of the entries but only on their position, and Algorithm 3 provides a method to do
so.

In order to illustrate the input and the output of Algorithm 3, we first give an example
pair of input and output.

Example 4.1.1. The example input for Algorithm 3 consists of the mask M, which has ones at
the position of the known entries, the output is the mask N which has ones at the positions of
the entries which can be reconstructed up to finite choice. The rank is set to r = 2. For the input

M =



































0 1 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 1 0 0
0 1 0 0 0 1 1 0 1 1
1 0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 1
1 1 1 0 0 0 0 0 0 1
1 1 1 0 0 1 1 0 0 1
0 0 0 1 1 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0


































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Algorithm 3 computes the output

M =



































1 1 1 0 0 1 1 1 1 1
0 1 0 1 0 0 0 1 0 0
1 1 1 0 0 1 1 0 1 1
1 1 1 0 1 1 1 0 1 1
1 1 1 0 0 1 1 0 1 1
1 1 1 0 0 1 1 0 1 1
1 1 1 0 0 1 1 0 1 1
1 1 1 0 0 1 1 0 1 1
0 0 0 1 1 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0



































For a quantitative analysis, we perform experiments to investigate how the expected num-
ber of completable entries is influenced by the number of known entries. In particular, sec-
tion 2.6 suggests that a phase transition between the state where only very few additional
entries can be reconstructed and the state where a large set of entries can be reconstructed
should take place at some point. Figure 3 shows that this is indeed the case when slowly
increasing the number of known entries: first, the set of reconstructible entries is roughly
equal to the set of known entries, but then, a sudden phase transition occurs and the set of
reconstructible entries quickly reaches the set of all entries.
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(a) Results for m= 15, n= 15, r = 2
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(b) Results for m= 20, n= 20, r = 5

Figure 3: Expected number of completable entries (in rank r) versus the number of known
entries where the positions of the known entries are uniformly randomly sampled in an (m×
n)-matrix. The expected number of completable entries was estimated for each data points
from repeated calculations of the completable closure (200 for r = 2, and 20 for r = 5). The
blue solid line is the median, the blue dotted lines are the two other quartiles. The black
dotted line is the total number of entries, m · n.

4.2 Phase Transitions

Figure 4 shows phase transition curves of various conditions for 100×100 matrices at rank 3.
We consider uniform sampling model here. More specifically, we generated random 100×100
masks with various number of observed entries by first randomly sampling the order of edges
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Figure 4: Phase transition curves of various conditions for 100× 100 matrices at rank 3.

(using MATLAB randperm function) and sequentially adding 100 entries at a time from 100
to 6000. Therefore, we made sure to preserve the monotonicity of the properties considered
here. This experiment was repeated 100 times and averaged to obtain estimates of success
probabilities. The conditions plotted are (a) minimum degree at least r, (b) r-connected, (c)
finitely completable at rank r, (d) r-closable, (e) nuclear norm successful, and (f) one step
r-closable. We solved the following minimization problem

min
X

‖X‖∗,

subject to X (i, j) = A(i, j) ∀(i, j) ∈ E,

where ‖X‖∗ =
∑r

j=1σ j(X ) is the nuclear norm of X . The success of nuclear norm minimiza-
tion is defined as the relative error ‖X̂ − A‖F/‖A‖F less than 0.01, where X̂ is the minimizer
of the above minimization problem.

The success probabilities of the (a) minimum degree, (b) r-connected, and (c) finitely
completable are almost on top of each other, and exceeds chance (probability 0.5) around
|E| ' 1, 000. The success probability of the (d) r-closable curve passes through 0.5 around
|E| ' 1,300. Therefore the optimality gap of the r-closure method is small. On the other
hand, the nuclear norm minimization required about 2, 200 entries to succeed with probabil-
ity larger than 0.5.

Figure 5 shows the same plot as above for 100 × 100 matrices at rank 6. The success
probabilities of the (a) minimum degree, (b) r-connected, (c) finitely completable are again
almost the same, and succeeds chance probability 0.5 around |E| ' 1,400. On the other
hand, the number of entries required for r-closability is at least 3, 700, whereas that required
for the nuclear norm minimization to succeed is only 3,100.

Figure 6 shows the phase transition from a non-completable mask to a finitely com-
pletable mask for almost 2r-regular random masks. Here we first randomly sampled n× n
2r-regular masks using Steger & Wormald algorithm [39]. Next we randomly permuted the
edges included in the mask and the edges not included in the mask independently and con-
catenated them into a single list of edges. In this way, we obtained a length mn ordered list
of edges that become 2r-regular exactly at the 2rnth edge. For each ordered list sampled this
way, we took the first 2rn− i edges and checked whether the mask corresponding to these
edges was finitely completable or not for i = −15,−14, . . . , 5. This procedure was repeated
100 times and averaged to obtain a probability estimate. In order to make sure that the phase
transition is indeed caused by the regularity of the mask, we conducted the same experiment
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Figure 5: Phase transition curves of various conditions for 100× 100 matrices at rank 6.

with row-wise 2r-regular masks, i.e., each row of the mask contained exactly 2r entries while
the number of non-zero entries varied from a column to another.

In Figure 6, the phase transition curves for different n at rank 2 and 3 are shown. The
two plots in the top part show the results for the 2r-regular masks, and the two plots in
the bottom show the same results for the 2r-row-wise regular masks. For the 2r-regular
masks, the success probability of finite completability sharply rises when the number of edges
exceeds 2rn− r2 (i = −4 for r = 2 and i = −9 for r = 3); the phase transition is already
rather sharp for n = 10 and for n ≥ 20 it becomes almost zero or one. On the other hand,
the success probabilities for the 2r-row-wise regular masks grow rather slowly and approach
zero for large n. This is natural, since it is likely for large n that there is some column with
non-zero entries less than r, which violates the necessary condition in Proposition 2.3.30.

5. Conclusion

In this paper we have shown that Low-Rank Matrix Completion is a task with both algebraic
and combinatorial structure. We have shown that this structure can be made use of both in
the theoretical analysis and the construction of algorithms for Matrix Completion. We thus
reason that using the inherent algebraic structure of a Machine Learning problem is beneficial
and thus preferrable to structure agnostic methodology.

For the problem of Matrix Completion, we have also shown that its behavior depends
crucially on the sampling process while only marginally on the generative truth. That is,
given some entries of a low-rank matrix, the set of entries which can be reconstructed from
the entries and the condition that the matrix has low-rank, depends only on the position of
the known entries, and not on their particular values. Similarly, the properties of the recon-
struction process can be made independent from the values of the entries. We argue that this
is more natural than assuming the converse, i.e., that the intrinsic properties of the task are
determined by the generative truth, since the generative truth may change while the problem
itself and thus its intrinsic properties should not. Indeed, our results on Algebraic Compressed
Sensing, which generalize our findings on Matrix Completion, seem to imply that this is in
fact a general principle in Compressed Sensing: the properties of the sampling, for example
reconstructibility, necessary and sufficient sampling densities, etc., should be independent of
particular signal, and only dependent on sampling and compression properties.

We have also presented several combinatorial objects which can be used to study the pos-
sible set of completable entries in an incomplete low-rank matrix. Namely, one can associate
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Figure 6: Phase transition in an almost regular mask.

bipartite graphs to patterns of entries and study the degrees of freedom, or the set of com-
pletable entries by analyzing properties of the associated matroid. Moreover, the asymptotics
of the necessary number of entries for reconstruction can be now studied via the asymptotics
of the bipartite graphs and the matroids. The theory of formal differentials can be used to
design algorithms for calculating the combinatorial objects and their implication for recon-
structability.

The algorithms presented in this paper do not only allow the theoretical studies of the
phase transitions involved in the Matrix Completion of large matrices, but also give efficient
tools to the hand of the practitioner to determine which entries of a matrix can be com-
pleted or not, i.e., which reconstructed entries can be trusted or not, and methods, using the
algebraic combinatorial structure, to calculate the reconstruction itself.

We conjecture that the methods and principles presented in this paper can also be applied
to a wider class of problems with algebraic-combinatorial structure, in particular

• Matrix Completion with different constraints. Completing low-rank matrices which
are symmetric, antisymmetric, Hermitian, real, or endowed with other combinatorial
or algebraic constraints can be studied by using analogous methods. Also, the task of
completing matrices which instead of the low-rank constraint fulfill different algebraic
boundary conditions, e.g., different types of rigidity, or sparsity, or hybrid properties,
can be recast in our framework.

• Tensor Methods. Similar to matrices, the low-rank tensors can be expressed as being
contained in an algebraic manifold. Projections of tensors can be treated in a simi-
lar way to matrices, and the algebraic-combinatorial structures generalize, involving
multigraphs and their structured matroids.

• Algebraic Compressed Sensing. If the signal is parameterized by a finite dimensional
set of parameters, and the compression constraints can be given by polynomial equa-
tions, many of our methods which are not specific for Low-Rank Matrix Completion
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apply, in particular our theory for the study of the sampling properties independently
from signal properties.

Concluding, we argue that the additional use of algebraic or combinatoric structure in a
Machine Learning problem can only be beneficial compared to not using it. Since Algebraic
Geometry, Combinatorial Algebra an Discrete Mathematics are the proper tools to analyze
and utilize such kind of structure, we claim that Machine Learning, as well as the mentioned
fields, can only profit from a more widespread interdiscplinary collaboration with and be-
tween each other.
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A. Sheaves of Matroids

Several results in section 2.5.3 can be seen as an instance of a single principle in Algebraic
Geometry, where one considers the dependence structure of sections on a scheme, e.g., a
complex algebraic variety. The results will imply that the dependencies between the sections
exhibit a generic behavior, which implies constant behavior on Zariski open sets of the variety.

The basic idea of associating a generic matroid to a real or complex variety via the for-
mal differential is well-known (e.g, [40] contains an explicit discussion) in the combinato-
rial rigidity community and has been derived in a number of concrete cases, for example
[15, 23, 34, 40, 41, 43], among others. Thus, the form of Theorem A.10 will not surprise
experts. However, we are unaware of the general statement appearing in print. Moreover, as
the presentation here makes clear, the rank natural matroidal construction on a fixed global
section of the matroid sheaf is a generic invariant of smooth points, the exact dependence
structure requires more genericity, a fact which is used implicitly when defining rigidity ma-
troids as is done in [40] or when discussing combinatorial aspects of generic global rigidity
[6, 12, 17].

Definition A.1. Let R be an integral domain with field of fractions K, let M be an R-module,
let Λ ⊆ M be a finite multiset (a set where we allow finite repetitions). To Λ, we associate a
matroid M[Λ] in the following way: The matroid is defined over the power set P(Λ) of Λ, and
the independent sets are exactly the subsets J ⊆ Λ such that

dimK(K · J) = #J

where K ·J denotes the K-submodule of K⊗R M generated by J. By convention, K ·∅ is the trivial
K-module, i.e., the zero module.

That M[Λ] is in fact a matroid follows since K · J is a K-vector space.
Notice that the rank function of M[Λ] is exactly

rk(J) = dimK(K · J).

Definition A.2. Let ϕ : R→ S be a morphism of integral domains, let M be an R-module. The
morphism ϕ induces a map of matroids

ϕ : M[Λ]→M[ϕ(Λ)],

where ϕ(Λ) is the canonical image of Λ in the tensor product S ⊗R M , considered as S-module.
Accordingly, we will write ϕ(M[Λ]) :=M[ϕ(Λ)], or M[Λ]⊗R S :=M[ϕ(Λ)].

Note that the map of matroids is a well-defined homomorphism, as dependent sets are
mapped onto dependent sets.

Notations A.3. In the following, let X be an affine, integral, Noetherian scheme, let F be a
coherent sheaf on X .

Definition A.4. We define a presheaf of matroids MF, the matroid of sections, in the following
way: To each Zariski open subset U of X , we associate the set of all matroids

MF(U) = {M[Λ] ; Λ⊆ F(U),#Λ<∞},

where F(U) is considered as an OX (U)-module. To a restriction V ⊆ U of open subsets of X , one
associates the map of sets of matroids which is induced by the maps of matroids

M[Λ]→ resV,U(M[Λ])
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which is induced by the usual restriction morphism of the structure sheaf

resV,U OX (U)→ OX (V ).

Since the sheaf axioms hold, by assumption, for F, they directly transfer to the matroid
of sections MF, making it a sheaf.

Proposition A.5. Let V ⊆ U ⊆ X be open subsets, let M ∈MF(U). Then, as a matroid, M is
isomorphic to resV,U(M).

Proof. Since X is irreducible, the quotient fields of OX (U) and OX (V ) agree. Thus, the rank
functions are equivalent for all J and the image of J in OX (V ), proving isomorphy of matroids.

Remark A.6. By going to the direct limit, Proposition A.5 implies that for U open in X , and
x ∈ U, any matroid M ∈MF(U) is isomorphic to its canonical image in the stalk MF,x at x.

Notations A.7. Let x ∈ X , let k(x) be the residue field at x. Denote by

.(x) : Fx → F|x := Fx ⊗OX ,x
k(x)

the canonical evaluation of F at x . It induces a map on subsets Λ ⊆ F(U) with U 3 x, and we
will write Λ(x) for the (element-wise) canonical image of Λ in F|x and call it the evaluation of
Λ at x.

Definition A.8. We will denote by

MF|x :=MF,x ⊗OX ,x
k(x).

the set of matroids M[Λ] with Λ ⊆ F|x , where F|x is canonically considered as k(x)-module.
This induces a canonical evaluation morphism

.(x) : MF,x →MF|x ,

and for U 3 x and M ∈MF(U), we will write M(x) for its canonical image in MF|x and call it
the evaluation of M at x.

Definition A.9. Let U be an open set in X , let J ⊆ F(U), let x ∈ X . We will denote by rkx(J)
the number

rkx(J) = dimk(x)(k(x) · J(x)).

Note that by definition, rkx(J) is equivalent to the matroid rank of J(x) in any matroid
in MF|x (where J(x) is contained in the ground set).

The upper semi-continuity theorem can now be invoked to relate the evaluated matroids
to the non-evaluated ones, and provide a genericity result on the non-degeneratedness of the
evaluations.

Theorem A.10. Let U an open set in X , let J ⊆ F(U). Then, the function

U → N
x 7→ rkx(J)

is upper semi-continuous in the Zariski topology. Moreover, there is an open dense subset V ⊆ U
such that

rkx(J) = rkη(J) = rk(J) for all x ∈ V,
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where η is the generic point of X , and the last rank function can be considered in an arbitrary
matroid M ∈MF(U).

In particular, for each matroid M ∈MF(U), there is an open dense subset V ⊆ U such that
we have isomorphisms of matroids

M(x) = M(η) = M for all x ∈ V,

where η is the generic point of X .

Proof. Since OX ,x · J is again a coherent sheaf, with

k(x) · J(x) = (OX ,x · J)|x ,

Theorem A.11 implies upper semi-continuity of the map x 7→ rkx(J). This implies that rkx(J)
is constant for x ∈ V where V is open dense in U . Moreover, rkη(J) is equivalent to rk(J) for
any matroid M ∈MF(U) due to Remark A.6.

Now let M =M[Λ] with Λ ⊆ F(U) be a matroid in MF(U). Since Λ is finite, the power
set P(Λ) also is. By the above, for each J ∈ P(Λ), there is VJ , open dense in U , such that

rkx(J) = rkη(J) = rk(J) for all x ∈ VJ ,

where the last rank function is the rank in M . Set

V :=
⋂

J∈P(Λ)

VJ ,

which again open dense in U since P(Λ) is finite. Since a matroid is uniquely characterized
by the ranks of all subsets of the ground set, see Proposition 2.5.21, it follows that

M(x) = M(η) = M for all x ∈ V,

which was the statement to prove.

Note that Theorem A.10 does not imply that the stalks MF,x agree on an open dense
subset of X . For sake of completeness, we give the form of the upper semi-continuity theorem
which was used in the proof of Theorem A.10.

Theorem A.11. Let F be a coherent sheaf on a locally Noetherian scheme X . Then, for i ∈ N
fixed, the function

X → N
x 7→ dimk(x)(F|x)

is upper semi-continuous in the Zariski topology on X .

Proof. The proof of this theorem is classical and can be found for example in [16], as Exam-
ple 12.7.2, or by specializing Theorem 12.8 to the given setting.

Finally, we want to stress the relation between the sheaf of matroids over the differen-
tials, and algebraic independence sheaves, which has already surfaced in section 2.5.2, as
Theorem 2.5.14, and implicitly in [36].
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Proposition A.12. Let Y = Spec k, where k is a field of characteristic zero contained in K(X ),
and let X → Y be the corresponding morphism of schemes. Denote by ΩX/Y the relative sheaf of
differentials of degree one.

Then, MΩX/Y
is the sheaf of all algebraic independence matroids, i.e., it is isomorphic to the

sheaf G constructed in the following way: For U ⊆ X open, the elements of G(U) are the algebraic
independence matroids of finite subsets of OX (U) over k, and the restrictions are induced by the
restrictions of the structure sheaf OX . The isomorphism is given by the canonical differentiation

d : OX → ΩX/Y ,

inducing a canonical map G → MΩX/Y
. Thus, for U ⊆ X open, η the generic point of X , and

x ∈ U generic, and M ∈ G(U), one has the isomorphies of matroids

M = dM(η) = dM(x),

Proof. The last directly follows from Theorem A.10, so it suffices to show isomorphy of G and
MΩX/Y

.
Since d induces a bijection on the underlying sets of M and dM (note that we have al-

lowed multisets, so while d may identify elements, they are kept as copies), it suffices to
check that dependent sets in OX (U) are mapped to dependent sets in ΩX/Y (U), and inde-
pendent sets in OX (U) are mapped to independent sets in ΩX/Y (U). But that is implied by
Theorem 16.14 in [9], since k has characteristic zero.

Due to Proposition A.12, it is intrinsic to define the following:

Definition A.13. Keep the situation of Proposition A.12. Then the sheaf of matroids MΩX/Y
is

called the algebraic independence sheaf of X over Y .

Remark A.14. Proposition A.12 indeed gives not only a guarantee that one can always restrict
to an open dense subset such that the generic matroidal structure is preserved, but also a tool
on algorithmically calculating the generic matroid on irreducible components: namely, sample a
random point on the component and calculate the linear matroid on the respective elements in
the module of relative differentials, evaluated at that random point. The results of section 2.5
rephrase that in a way which is more specific for the case of Matrix Completion and more hands-
on.
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