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Abstract

Supplemental damping is known as an efficient and practical means to improve seismic re-

sponse of building structures. Presented in this paper is a mixed-integer programming approach

to find the optimal placement of supplemental dampers in a given shear building model. The

damping coefficients of dampers are treated as discrete design variables. It is shown that a

minimization problem of the sum of the transfer function amplitudes of the interstory drifts can

be formulated as a mixed-integer second-order cone programming problem. The global optimal

solution of the optimization problem is then found with an existing algorithm. Two numeri-

cal examples in literature are solved with discrete design variables. In one of these examples,

the proposed method finds a better solution than an existing steepest-decent-type method for a

continuous version of the optimization problem.

Keywords

Optimal damper placement; aseismic design; transfer function; structural control; mixed-

integer programming; global optimization.

1 Introduction

Supplemental damping has became a reliable and practical seismic design strategy including habil-

itation and retrofit of existing buildings. The placement of dampers is a key to efficiency of seismic

design. This paper concerns optimization of placement of viscous dampers in a given shear building

model. Particularly, an attempt is made to treat the damper damping coefficients as discrete design

variables.

Several methods have been proposed for design of passive damping. Shukla and Datta [22] used

a controllability index to define the optimal placement of dampers and proposed a procedure to in-

troduce damper units sequentially. This heuristic approach was called a sequential search algorithm

later by López Garćıa [17] and has been studied extensively [17, 22, 35]. Gluck et al. [7] adopted the

linear-quadratic regulator in the theory of optimal control to design of damper distribution. Agra-

novich and Ribakov [1] proposed a heuristic method modifying this solution as a realistic one with

reference to price of damper devices and energy required to activate dampers. To optimize damper

placement in a shear building model, Takewaki [26] formulated a minimization problem of the sum

of the transfer functions of the interstory drifts evaluated at the undamped natural frequency of the
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building model. Then the optimization problem was solved with a steepest-descent-type algorithm

based on the first-order sensitivity analysis. Subsequently, this method has been extended for more

complex structures [27, 28, 30]. A gradient-based optimization method was also proposed by Singh

and Moreschi [23]. Lavan and Levy [15] proposed an iterative procedure consisting of analysis and

redesign. This procedure was inspired by the fully stressed design of a truss, that minimizes the

structural weight under the stress constraints; see also Levy and Lavan [16] for comparison of this

method with an optimal control using the Riccati equation. López Garćıa [17] performed numeri-

cal experiments with recorded ground motions and found that the damper placement obtained by

the method of Takewaki [26] effectively reduces the sum of interstory drifts. Whittle et al. [33]

performed comparison of three representative methods for damper placement, i.e., a simplified se-

quential search algorithm [17], minimization of sum of the transfer functions of interstory drifts [26],

and a fully stressed design approach [15], with the uniform and stiffness-proportional damping dis-

tributions. In this comparison these three methods showed broadly comparable performance in

reduction of peak interstory drift, absolute acceleration, and residual interstory drift.

Among these methods, this paper revisits the seminal work of Takewaki [26] in optimization of

passive damper placement. While Takewaki [26] performed continuous optimization, in this paper

the damping coefficients of dampers, i.e., the design variables, are considered discrete variables.

Specifically, the damping coefficient of the damper placed at each story is supposed to be chosen

from {0, c̄, 2c̄, . . . , pc̄}, where a scalar c̄ > 0 and an integer p > 0 are specified. We show that

this discrete optimization problem can be reduced to a mixed-integer programming (MIP) problem.

More precisely, this problem is of the form

min cTx+ rTy

s. t. ∥Aix+Giy − bi∥ ≤ dT
i x+ eTi y − hi, i = 1, . . . , k,

x ∈ {0, 1}n,
y ∈ Rp.

Here, x and y are variables to be optimized, Ai ∈ Rmi×n and Gi ∈ Rmi×p (i = 1, . . . , k) are constant

matrices, c ∈ Rn, r ∈ Rp, bi ∈ Rmi , di ∈ Rn, and ei ∈ Rp (i = 1, . . . , k) are constant vectors, and

hi ∈ R (i = 1, . . . , k) are constant scalars. This optimization problem is called a mixed-integer

second-order cone programming problem (also called a mixed-integer conic quadratic programming

problem). If we relax binary constraints to continuous constraints, 0 ≤ xj ≤ 1 (j = 1, . . . , n),

then this problem is reduced to a second-order cone programming (SOCP) problem. Since an

SOCP problem is a convex optimization problem, a global solution of a mixed-integer second-order

cone programming problem can be found by using, e.g., a branch-and-bound method; see, e.g.,

Atamtürk and Narayanan [4], Drewes and Pokutt [6] and Vielma et al. [32] for more account. This

guaranteed global optimality is a major advantage of the proposed approach to the existing local

and/or heuristic algorithms for design of damper distribution.

The formulation proposed in this paper can be viewed as a natural extension of MIP formulations

of topology optimization of trusses with discrete member cross-sectional areas [11, 20] and that of

continua with binary design variables [25]. There exists a difference, however, that the optimization

problems in the literature cited above are mixed-integer linear programming problems, while this

paper addresses a mixed-integer nonlinear programming problem.

Optimization with discrete damper coefficients that performed in the present paper might have

the following importance:

• It is often in practice that a damper capacity should be chosen among available candidates
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due to manufacturing and commercial convenience. In such a situation discrete optimization

provides us with more realistic solutions than continuous optimization.

• The proposed approach can find a global optimal solution of the discrete optimization prob-

lem. Guarantee of global optimality is a distinguished feature of this approach. A numerical

example in section 4.2 will demonstrate that the proposed method finds a better solution than

the existing method in [26].

• The proposed approach solves a mixed-integer second-order cone programming problem. To

this purpose several well-developed software packages, e.g., Gurobi Optimizer [8], CPLEX [9],

and MOSEK [19], are available. Therefore, there is no need to implement optimization algo-

rithms. Also, algorithms specialized for damper placement optimization are not required.

• Combinatorial constraints on damper placement can be treated within the framework of the

proposed approach. Typical examples of such constraints will appear in section 3.4.

A potential disadvantage of the proposed approach is that computational cost to solve the op-

timization problem might increase drastically as the number of design variables increases and it

might be difficult to solve large-scale problems. This is because the approach is essentially based

on enumeration of solutions using, e.g., a branch-and-bound method.

In view of discrete optimization, it is relevant that meta-heuristics have been applied to damper

placement problems with discrete design variables [5, 13, 24, 31, 34]. Among them, Singh and

Moreschi [24] used a genetic algorithm to solve an optimal placement problem of viscous and vis-

coelastic dampers with discrete damping coefficients. Lavan and Dargush [13] proposed a genetic

algorithm for multi-objective optimization in which type of a damper is also treated as a design

variable. Again, a potential advantage of the MIP approach to these meta-heuristics is guaranteed

convergence to a global optimal solution.

The paper is organized as follows. In section 2 we recall the optimal damper placement problem

that minimizes the sum of the transfer functions of interstory drifts. In section 3 this problem with

discrete design variables is formulated as a mixed-integer second-order cone programming problem.

Two numerical examples are demonstrated in section 4. We conclude in section 5.

A few words regarding our notation: All vectors are column vectors. We use 1 = (1, 1, . . . , 1)T

to denote the all-ones vector. We use diag(a) to denote the n × n diagonal matrix with a vector

a ∈ Rn on its diagonal. We denote by i the imaginary unit. For a complex number z ∈ C, we use

Re z and Im z to denote its real and imaginary parts, respectively. We denote by |z| the modulus

of z ∈ C, i.e., |z| = [(Re z)2 + (Im z)2]1/2.

2 Definition of optimization problem

In section 2.1 the equation of motion in the frequency domain is recalled for a shear building model.

Section 2.2 summarizes the optimal damper placement problem based upon minimizing the sum of

the transfer functions of the interstory drifts evaluated at the undamped natural frequency.

2.1 Fundamentals of frequency-domain formulations

Consider an n-story shear building model with added supplementary viscous dampers. Figure 1

shows the case of n = 3. Let ki and mi denote the story stiffness and the mass, respectively, of

story i. We use ci to denote the damping coefficient of the viscous damper introduced to story
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i. For simplicity, we assume that the inherent structural damping is negligible compared with the

damping of the added dampers. Throughout the paper we suppose that k1, . . . , kn and m1, . . . ,mn

are given and that c1, . . . , cn are design variables to be optimized.

Let u ∈ Rn denote the displacement vector, where ui is the displacement of mass mi. We

use K ∈ Rn×n and M ∈ Rn×n to denote the system stiffness and mass matrices, respectively,

which are constant matrices. The damping matrix, denoted C ∈ Rn×n, depends on design variables

c = (c1, . . . , cn)T ∈ Rn. This dependency is sometimes written explicitly as C(c). Suppose that the

structure undergoes base acceleration üg. Then the equation of motion is written as

Ku+ Cu̇+M ü = −Müg1, (1)

where 1 = (1, . . . , 1)T ∈ Rn.

Let di denote the interstory drift of the ith story and let d = (d1, . . . , dn)T ∈ Rn. The relation

between d and u can be written as

d = HTu, (2)

where H ∈ Rn×n is a constant matrix with the form

H =


1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (3)

Let v(ω) and v̈g(ω) denote the Fourier transforms of u and üg, respectively, where ω is the

circular frequency of excitation. Fourier transformation of (1) reads

(K + iωC − ω2M)v(ω) = −Mv̈g(ω)1, (4)

which is the equation of motion in the frequency domain. Let δi(ω) denote the Fourier transform

of the interstory drift, di. It follows from (2) that δi’s are related to v by

δ(ω) = HTv(ω). (5)

2.2 Minimization of transfer functions of interstory drifts

The optimal damper placement problem proposed by Takewaki [26] is recalled in this section. The

problem attempts to minimize the sum of the transfer functions of the interstory drifts.

According to [26] (see also [28, Chap. 2]), attention is focused on the steady-state response at

the undamped fundamental frequency, which usually plays a crucial role in dynamic behavior of a

structure. Let ω̄ denote the fundamental natural circular frequency of the undamped structure, i.e.,

ω̄ is the minimum value of ω solving eigenvalue problem Kϕ = ω2Mϕ. Define v̂ ∈ Cn by

v̂ =
v(ω̄)

v̈g(ω̄)
. (6)

Note that v̂i is the transfer function of the floor displacement, ui, evaluated at the undamped fun-

damental frequency of the structure. In other words, v̂i is the resonant amplitude at the undamped

fundamental frequency. It follows from (4) and (6) that v̂ is a solution of the following equation:

(K + iω̄C − ω̄2M)v̂ = −M1. (7)
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Figure 1: A three-story shear building model with supplementary viscous dampers.

Thus, v̂ is independent of the base acceleration, üg. Let δ̂ denote a vector of the transfer functions

of the interstory drifts evaluated at ω̄, i.e.,

δ̂ =
δ(ω̄)

v̈g(ω̄)
.

By using (5) and (6), δ̂ can be written in terms of v̂ as

δ̂ = HTv̂. (8)

Following Takewaki [26], we adopt the moduli of transfer functions of interstory drifts, |δ̂i(c)| (i =
1, . . . , n), as measures of structural response that to be minimized. Specifically, the minimization

problem of the sum of |δ̂i(c)|’s is formulated as

min
c

n∑
i=1

|δ̂i(c)| (9a)

s. t.

n∑
i=1

ci ≤ cmax
sum , (9b)

ci ≥ 0, i = 1, . . . , n. (9c)

Here, cmax
sum > 0 is the specified upper bound for the sum of the damper damping coefficients.

Takewaki [26] derived the first-order optimality condition of problem (9) and proposed a steepest-

descent-type algorithm.

3 Mixed-integer programming formulation

In section 3.1 the optimal damper placement problem, (9), is restated with discrete design variables.

This optimization problem is reduced to a mixed-integer programming problem with second-order

cone constraints in section 3.2. As a variant, the minimization problem of the maximum inter-

story drift is studied in section 3.3. Section 3.4 collects some combinatorial constraints on damper

placement that can be treated with the proposed approach.
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3.1 Discrete damping coefficients

In practical applications it is often that the damper capacity is chosen among available candidates

for manufacturing and commercial reasons. This motivates us to treat damper damping coefficients

as discrete design variables. Specifically, suppose that ci is chosen from the finitely many given

candidate values as

ci ∈ {0, c̄, 2c̄, . . . , pc̄}, (10)

where a scalar c̄ > 0 and an integer p > 0 are constants. With reference to (9b), integer p is chosen

as

p =
⌊cmax

sum

c̄

⌋
,

i.e., as the largest integer not greater than cmax
sum/c̄. Alternatively, besides the constraints of problem

(9), we might consider the constraints

ci ≤ cmax, i = 1, . . . , n,

where cmax is the specified upper bound for ci. In this case, p is given by

p =
⌊cmax

c̄

⌋
.

When p is small and c̄ is relatively large, c̄ is considered the damping coefficient of a unit damper

and p is the maximum number of unit dampers which can be placed at each story. Alternatively,

when p is large and c̄ is sufficiently small, (10) is considered an approximation of the continuous

model, 0 ≤ ci ≤ pc̄.

In problem (9), δ̂i is defined by (7) and (8) and its modulus is written as

|δ̂i| =
√

(Re δ̂i)2 + (Im δ̂i)2.

Moreover, by introducing a new variable yi satisfying yi ≥ |δ̂i| for each i = 1, . . . , n, minimization

of
∑n

i=1 |δ̂i| is converted to minimization of
∑n

i=1 yi. By using these relations and incorporating

constraint (10), problem (9) is reduced to

min

n∑
i=1

yi (11a)

s. t. yi ≥

∥∥∥∥∥
[
Re δ̂i
Im δ̂i

]∥∥∥∥∥ , i = 1, . . . , n, (11b)

δ̂ = HTv̂, (11c)

(K + iω̄C(c)− ω̄2M)v̂ = −M1, (11d)
n∑

i=1

ci ≤ cmax
sum , (11e)

ci ∈ {0, c̄, 2c̄, . . . , pc̄}, i = 1, . . . , n. (11f)

Here, c ∈ Rn, y ∈ Rn, δ̂ ∈ Cn, and v̂ ∈ Cn are variables to be optimized. Note that the

constraints in (11b) are called second-order cone constraints. A continuous optimization problem

with a linear objective function and some second-order cone constraints are called a second-order

cone programming (SOCP) problem. See, e.g., Alizadeh and Goldfarb [2] and Anjos and Lasserre [3]

for fundamentals of SOCP; applications of SOCP in applied mechanics and structural engineering

are found in [10, 12, 18, 36].
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3.2 Reformulation to mixed-integer second-order cone programming

In this section we reformulate problem (11) to a form that can be solved by using an algorithm with

guaranteed convergence to a global optimal solution. A key idea for this reformulation is making

use of 0–1 variables to express (11f), i.e., the discreteness constraint on ci. Specifically, for each

story i = 1, . . . , n, we introduce variables xij ∈ {0, 1} (j = 1, . . . , p) satisfying

xi1 ≥ xi2 ≥ · · · ≥ xip. (12)

Then (11f) can be rewritten as

ci = c̄

p∑
j=1

xij (13)

for each i = 1, . . . , n.

Example 3.1. Suppose that xi3 = 1 and xi4 = 0. Since xij ∈ {0, 1}, (12) implies xi1 = xi2 = 1

and xi5 = · · · = xip = 0. Therefore, the right-hand side of (13) is reduced to

c̄

p∑
j=1

xij = 3c̄.

This corresponds to ci = 3c̄. Also, xi1 = 0 corresponds to ci = 0 and xip = 1 corresponds to

ci = pc̄. ■

Among the constrains of problem (11), constraint (11d) is nonconvex in terms of c and v̂. We

next show that this constraint can be reduced to a tractable form by using integer variables xij
(i = 1, . . . , n; j = 1, . . . , p). Specifically, attention is focused on the bilinear term, C(c)v̂. Since we

consider a shear building model, C(c) in (11d) can be written as

C(c) = H diag(c)HT, (14)

where H is defined by (3). Let q ∈ Cn and w̃ ∈ Cn be additional variables defined by

qi = ciw̃i, i = 1, . . . , n, (15)

w̃i = hT
i v̂, i = 1, . . . , n, (16)

where hi ∈ Rn is the ith column vector of H, i.e.,

H =
[
h1 h2 . . . hn

]
.

From (14), we obtain C(c)v̂ = Hq when q and w̃ satisfy (15) and (16). With this observation, we

can see that (11d) can be written as

(K − ω̄2M)v̂ + iω̄Hq = −M1 (17)

under constraints (15) and (16). Note that (16) and (17) are linear equality constraints. Constraint

(15) requires further reformulation, because both ci and w̃i are variables. Define wij (i = 1, . . . , n;

j = 1, . . . , p) by

wij = xijw̃i (18)

=

{
0 if xij = 0,

hT
i v̂ if xij = 1.

(19)
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By substituting (13) and (18) into (15), we obtain

qi = c̄

p∑
j=1

xijw̃i

= c̄

p∑
j=1

wij . (20)

On the other hand, (19) is equivalent to

|wij | ≤ µxij , (21)

|wij − hT
i v̂| ≤ µ(1− xij), (22)

where µ ≫ 0 is a sufficiently large constant. Thus, (15) and (16) can be rewritten as (20), (21), and

(22).

Example 3.2. In continuation of Example 3.1, suppose that

xi1 = xi2 = xi3 = 1, xi4 = · · · = xip = 0, (23)

i.e., ci = 3c̄. If xij = 1, (22) reads

|wij − hT
i v̂| ≤ 0,

while (21) reads a redundant constraint |wij | ≤ µ because µ is large. In contrast, if xij = 1, (21)

reads

|wij | ≤ 0,

while (22) reads a redundant constraint |hT
i v̂| ≤ µ. With this observation, we see that (21) and

(22) with (23) imply

wij = hT
i v̂, j = 1, 2, 3, (24a)

wij = 0, j = 4, . . . , p. (24b)

Substitution of (24) into (20) yields

qi = 3c̄hT
i v̂. (25)

This corresponds to the relation between qi and v̂ in (15) and (16); indeed, by eliminating w̃i from

(15) and (16) and using ci = 3c̄, we obtain (25). ■

The upshot of the discussion above is that constraint (11d) can be rewritten as (17), (20), (21),
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and (22). In conjunction with (12) and (13), we see that problem (11) is reduced to

min

n∑
i=1

yi (26a)

s. t. yi ≥

∥∥∥∥∥
[
Re δ̂i
Im δ̂i

]∥∥∥∥∥ , ∀i, (26b)

δ̂ = HTv̂, (26c)

(K − ω̄2M)v̂ + iω̄Hq = −M1, (26d)

qi = c̄

p∑
j=1

wij , ∀i, (26e)

|wij | ≤ µxij , ∀i; ∀j, (26f)

|wij − hT
i v̂| ≤ µ(1− xij), ∀i; ∀j, (26g)

c̄

n∑
i=1

p∑
j=1

xij ≤ cmax
sum , (26h)

xi1 ≥ xi2 ≥ · · · ≥ xip, ∀i, (26i)

xij ∈ {0, 1}, ∀i; ∀j. (26j)

In this problem, x ∈ Rn×p, y ∈ Rn, δ̂ ∈ Cn, q ∈ Cn, v̂ ∈ Cn, and w ∈ Cn×p are variables to be

optimized. The constraints consist of linear equality constraints in (26c), (26d), and (26e), linear

inequality constraints in (26f), (26g), (26h), and (26i), second-order cone constraints in (26b), and

integrality constraints in (26j). Thus all the constraints other than the integrality constraints are

convex constraints. Moreover, the objective function is a linear function. This means that a convex

relaxation problem can be obtained by replacing the integrality constraints, (26j), with the linear

inequalities,

0 ≤ xij ≤ 1, i = 1, . . . , n; j = 1, . . . , p. (27)

Therefore, problem (26) can be solved globally by using, e.g., a branch-and-bound algorithm. Specif-

ically, the relaxation problem is a second-order cone programming problem, and thence problem

(26) is called a mixed-integer second-order cone programming problem. Several software packages,

e.g., Gurobi Optimizer [8] and CPLEX [9], are available for computing a global optimal solution of

this problem.

Problem (26) includes complex variables. In practice, we solve problem (26) by converting these

complex variables to real variables. Specifically, introducing new variables δ̂Ri ∈ R and δ̂Ii ∈ R by

δ̂Ri = Re δ̂i, δ̂Ii = Im δ̂i,

we can rewrite (26b) as

yi ≥

∥∥∥∥∥
[
δ̂Ri
δ̂Ii

]∥∥∥∥∥ , ∀i.

Similarly, let q = qR + iqI and v̂ = v̂R + iv̂I. Then (26c), (26d), and (26e) are rewritten in real

9



variables as [
δ̂
R

δ̂
I
]
= HT

[
v̂R v̂I

]
,

[
O −ω̄H K − ω̄2M O

ω̄H O O K − ω̄2M

]
qR

qI

v̂R

v̂I

 =

[
−M1

0

]
,

[
qRi
qIi

]
=


c̄

p∑
j=1

wR
ij

c̄

p∑
j=1

wI
ij

 , ∀i.

Also, let wij = wR
ij + iwI

ij . Since µ is supposed to be sufficiently large, (26f) and (26g) can be

replaced by

|wR
ij | ≤ µxij , |wI

ij | ≤ µxij , ∀i; ∀j,
|wR

ij − hT
i v̂

R| ≤ µ(1− xij), |wI
ij − hT

i v̂
I| ≤ µ(1− xij), ∀i; ∀j.

The remaining constraints, (26h), (26i), and (26j), as well as the objective function includes only

real variables. Thus, problem (26) can be converted to an optimization problem with real variables.

3.3 Minimization of maximum interstory drift

In section 3.2 we have shown that the minimization problem of the sum of the transfer functions of

interstory drifts can be reduced to a mixed-integer second-order cone programming problem. Other

objective functions can also be handled within the framework of mixed-integer second-order cone

programming.

For instance, some authors adopt the maximum, instead of the sum, of the interstory drifts as

a measure of response of the structure; see, e.g., Lavan and Levy [15], Levy and Lavan [16], and

Takewaki et al. [29, section 7]. Specifically, consider a minimization problem of the maximum value

of interstory drift transfer functions, evaluated at the undamped natural frequency. This problem

is formally stated as

min
c

max{|δ̂1(c)|, . . . , |δ̂n(c)|} (28a)

s. t.

n∑
i=1

ci ≤ cmax
sum , (28b)

ci ∈ {0, c̄, 2c̄, . . . , pc̄}, i = 1, . . . , n. (28c)

In a manner similar to problem (26), problem (28) is reduced to a mixed-integer second-order

programming problem as follows. In problem (26), replace constraint (26b) by

y ≥

∥∥∥∥∥
[
Re δ̂i
Im δ̂i

]∥∥∥∥∥ , ∀i.

Here, y serves as an upper bound for max{|δ̂1(c)|, . . . , |δ̂n(c)|}. Consider a minimization problem

of y, instead of the objective function in (26a). This optimization problem is equivalent to problem

(28) and is a mixed-integer second-order cone programming problem.
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3.4 More constraints on damper placement

As stated in section 3.2, one of advantages of the presented MIP approach is that algorithms

with guaranteed convergence to a global optimal solution are applicable. Besides this, various

combinatorial constraints on damper placement, which are usually difficult to be dealt with in

continuous optimization, can be treated within the framework of the MIP approach. In this section

we explore some of them.

The first one is an upper bound constraint on the number of stories at which dampers are placed.

For instance, Ribakov and Agranovich [21] performed parametric study aimed for finding a small

number of damped stories that is necessary to achieve sufficient effect in aseismic control. Suppose

that dampers can be introduced to at most γ stories, where γ is a specified value. This constraint

can be written as

n∑
i=1

xi1 ≤ γ, (29)

because xi1 = 1 implies that a damper is placed at story i and vice versa.

Another example is a lower bound constraint on the damper damping coefficients. Even if the

damping coefficient is small, a damper occupies space of the building of the corresponding story.

Therefore, introducing dampers with small damping coefficients might be undesirable in practical

applications from a viewpoint of floor obstruction. The lower bound constraint on ci avoids such

small damping coefficients. Specifically, let cmin denote the minimum value of the damping coefficient

of the existing damper. In other words, the damping coefficient, ci, should satisfy the constraint

(ci = 0) ∨ (ci ≥ cmin), (30)

where ∨ denotes the logical “or.” By using (13), constraint (30) can be rewritten as(
c̄

p∑
j=1

xij = 0
)
∨
(
c̄

p∑
j=1

xij ≥ cmin
)
,

and hence there exists p̌ such that( p∑
j=1

xij = 0
)
∨
( p∑
j=1

xij ≥ p̌
)
. (31)

With reference to (12), we see that this condition means that xip̌ = 1 if xi1 = 1 and xi1 = 0 if

xip̌ = 0. Therefore, (31) can be rewritten as

xi1 ≤ xip̌.

The final example is a constraint avoiding simultaneously introducing dampers to two adjacent

stories. For instance, if there is a damper at the first story, then this constraint means that we

cannot place a damper at the second story. Also, if there is a damper at the third story, then

we cannot place a damper at the second and fourth stories. The constraint excluding adjacent

damped stories might be useful in practical applications when, for instance, some facilities should

be placed at least every two stories and occupancy of floors by dampers is not acceptable. Since

xi1 = 1 implies that a damper is introduced into the ith story, xi1 and xi+1,1 cannot be equal to

one simultaneously. Thus the constraint excluding adjacent damped stories can be written as

xi1 + xi+1,1 ≤ 1, i = 1, . . . , n− 1. (32)

11



Table 1: Optimal solutions of example (I) for minimizing
∑6

i=1 |δ̂i|.

Opt. sol. (×105Ns/m)

p c̄ (Ns/m) c1 c2 c3 c4 c5 c6
∑n

i=1 |δ̂i|

Case A 15 5× 105 50 40 0 0 0 0 0.135236m

Case A 30 2× 105 48 42 0 0 0 0 0.135132m

Case A 60 1× 105 48 42 0 0 0 0 0.135132m

Case B 15 5× 105 55 0 35 0 0 0 0.149515m

Case B 30 2× 105 54 0 36 0 0 0 0.149494m

Case B 60 1× 105 54 0 36 0 0 0 0.149494m

Similarly, suppose that at most one damped story is accepted among the adjacent three stories. For

instance, if there is a damper at the first story, then this constraint means that no damper can be

placed at the second and third stories. Also, if there is a damper at the third story, then no damper

can be placed at the first, second, fourth, and fifth stories. This constraint can be written as

xi1 + xi+1,1 + xi+2,1 ≤ 1, i = 1, . . . , n− 2.

All the constraints considered in this section are written as linear inequality constraints on

xij ’s. Therefore, they can be treated within the framework of mixed-integer second-order cone

programming.

4 Numerical experiments

The two numerical examples solved in [26] with continuous design variables are solved in this section

with discrete design variables. Computation was carried out on two 2.66GHz 6-Core Intel Xeon

Westmere processors with 64GB RAM. The mixed-integer second-order cone programming problem

formulated in section 3 was solved with commercial solvers. CPLEX Ver. 12.2 [9] and Gurobi

Optimizer Ver. 5.0 [8] were used for comparison, where the data of the problem was prepared with

MATLAB Ver. 7.13 in the CPLEX LP file format. The tolerance of integrality feasibility of each

solver was set as 10−8. The other parameters of the solvers were the default values.

4.1 Example (I): Model with uniform distribution of story stiffnesses

Consider a six-story shear building model, i.e., n = 6. All stories have the same stiffness, ki =

40,000 kN/m, and the same mass, mi = 80,000 kg (i = 1, . . . , 6). The undamped fundamental

frequency is ω̄ = 5.39 rad/s. Design variables are damper damping coefficients, c1, . . . , c6. The

upper bound for the sum of ci’s is c
max
sum = 9,000 kNs/m. This problem was solved in [26, section 4.1]

for continuous design variables; see also [28, section 2.7.1].

As for the set of candidate values of ci, we consider three cases:

• p = 15 and c̄ = 500 kNs/m, i.e., ci ∈ {0, 500, 1000, . . . , 7500} in kNs/m.

• p = 30 and c̄ = 200 kNs/m, i.e., ci ∈ {0, 200, 400, . . . , 6000} in kNs/m.

• p = 60 and c̄ = 100 kNs/m, i.e., ci ∈ {0, 100, 200, . . . , 6000} in kNs/m.

12



Table 2: Optimal solutions of example (I) for minimizing max{|δ̂1|, . . . , |δ̂6|}.

Opt. sol. (×105Ns/m)

p c̄ (Ns/m) c1 c2 c3 c4 c5 c6 maxi |δ̂i|

Case C 15 5× 105 50 40 0 0 0 0 0.0293061m

Case C 30 2× 105 50 40 0 0 0 0 0.0293061m

Case C 60 1× 105 51 39 0 0 0 0 0.0291444m

Case D 15 5× 105 55 0 35 0 0 0 0.0364951m

Case D 30 2× 105 54 0 36 0 0 0 0.0364832m

Case D 60 1× 105 54 0 36 0 0 0 0.0364832m

Table 3: Comparison of computational costs of example (I).

CPLEX Gurobi

p Time (s) No. of nodes Time (s) No. of nodes

Case A 15 3.1 25,233 7.7 20,536

Case A 30 172.6 837,374 135.2 465,107

Case A 60 2,103.5 6,164,308 1,210.9 1,954,957

Case B 15 0.8 2,317 0.8 2,380

Case B 30 5.2 9,837 6.3 7,234

Case B 60 13.7 17,118 23.1 16,143

Case C 15 3.6 35,037 6.5 26,188

Case C 30 68.1 399,745 95.8 348,183

Case C 60 887.3 2,106,923 513.0 671,475

Case D 15 0.7 2,609 1.9 5,658

Case D 30 3.1 8,663 6.9 8,432

Case D 60 13.6 18,318 24.2 18,961

Then we solve the minimization problem of the sum of transfer functions of interstory drifts. This

case is called case A. Besides, we consider three variations of optimization problems. Namely, we

examine the minimization of the maximum value of the interstory drifts, instead of the sum of

them, as discussed in section 3.3. Moreover, optimization problems together with the additional

constraints in section 3.4, (29) and (32), are also solved. By summing up, we consider the following

four different optimization problems:

• Case A: minimization of the sum of |δ̂1|, . . . , |δ̂6|, i.e., the discrete version of the problem solved

in [26].

• Case B: minimization of the sum of |δ̂1|, . . . , |δ̂6|, where the upper bound for the number of

damped stories is γ = 3 and adjacent damped stories are forbidden.

• Case C: minimization of the maximum of {|δ̂1|, . . . , |δ̂6|}.

• Case D: minimization of the maximum of {|δ̂1|, . . . , |δ̂6|}, where the upper bound for the

number of damped stories is γ = 3 and adjacent damped stories are forbidden.
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Figure 2: Transfer functions of interstory drifts evaluated at the undamped natural frequency of

example (I). “——” The optimal solutions with p = 30 in (a) case A; (b) case B; (c) case C; and

(d) case D. “– – –” The uniform damping.

Firstly, case A is investigated, where MIP problem (26) is solved. The obtained optimal solutions

are listed in Table 1. Dampers are placed at the first and second stories. The optimal solution for

p = 30 is same as that for p = 60. Its optimal value agrees well with the objective value reported

in [26], 0.1351m. The optimal damper distribution also agrees well with the result in [26]. The

optimal value for p = 15 is slightly larger due to coarse discretization of the design variables. In

the case of p = 30, the target transfer functions, |δ̂i| = |δi(ω̄)/v̈g(ω̄)|, at the optimal solution are

shown in Figure 2(a). For comparison, the result of the uniform damping, i.e., ci = 1,500 kNs/m

(i = 1, . . . , 6), is also depicted. The objective value of the uniform damper distribution is 0.213888m.

Figure 3 shows the variation of |δi(ω)/v̈g(ω)| with respect to ω for the optimal design and the uniform

design. It is observed that |δ̂i| is drastically decreased especially in the lower stories.

The computational costs are listed in Table 3. Here, “Time” shows the computational time and

“No. of nodes” shows the number of nodes of a branch-and-bound tree generated by a solver. For

p = 30, problem (26) has np = 180 binary variables, 402 continuous variables, 1615 linear inequality

constraints, 36 linear equality constraints, and 6 second-order cone constraints. For p = 60, it has

np = 360 binary variables, 762 continuous variables, 3235 linear inequality constraints, 36 linear

equality constraints, and 6 second-order cone constraints.

We next study the problem with additional constraints on damper distribution, case B. Specifi-
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Figure 3: Transfer functions of interstory drifts, |δi(ω)/v̈g(ω)|, of example (I) at (a) the 1st story;

(b) the 2nd story; (c) the 3rd story; (d) the 4th story; (e) the 5th story; and (f) the 6th story.

“——” The optimal solution in case A (p = 30); and “– – –” the uniform damping.

cally, the upper bound for the number of damped stories is γ = 3 and placement of dampers at two

adjacent stories is not allowed. The optimal solutions are listed in Table 1. Dampers are placed at

the first and third stories; only at two stories dampers are placed. The optimal values in case B

are slightly larger thatn those in case A. Figure 2(b) shows |δ̂i| of the optimal solution with p = 30.

Figure 4 depicts the transfer functions, |δi(ω)|/|v̈g(ω)|, of the optimal solution with p = 30. It is

observed that |δ̂2| is larger than that in case A, since in case B no damper is introduced to the

second story.

In case C and case D, we solve problem (28), i.e., the minimization problem of the maximum of

interstory drifts. The additional constraints considered in case D are same as those in case B. The

optimal solutions are listed in Table 2. The objective value of the uniform damper distribution,

i.e., ci = 1,500 kNs/m (i = 1, . . . , 6), is 0.0520132m. In case C dampers are placed at the first and

second stories. The optimal solutions with p = 30 and p = 60 are slightly different from those in

case A. The optimal solutions in case D coincide with the optimal solutions in case B. Figure 2(c)

and Figure 2(d) shows |δ̂i| of the optimal solutions with p = 30 in case C and case D, respectively.

Table 3 collects the computational costs required by the two solvers for solving the problems in
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Figure 4: Transfer functions of interstory drifts, |δi(ω)/v̈g(ω)|, of example (I) at (a) the 1st story;

(b) the 2nd story; (c) the 3rd story; (d) the 4th story; (e) the 5th story; and (f) the 6th story.

“——” The optimal solution in case B (p = 30); and “– – –” the uniform damping.

this section. It is observed that computational cost increases drastically as the number of variables

increases. The computational costs in case B and case D are much smaller than those in case A and

case C. This may be because the additional constraints considered in case B and case D reduce the

number of feasible solutions. In many cases the computational time required by CPLEX is less than

Gurobi Optimizer; exceptions are p = 30 and p = 60 in case A and p = 60 in case C. In contrast,

in most every case the nodes of a branch-and-bound tree generated by Gurobi Optimizer are less

than CPLEX; exceptions are p = 15 in case B and p = 15 and p = 60 in case D. In case A with

p = 60, Gurobi Optimizer requires about 20 minutes to solve the problem. For this problem, the

number of nodes generated by CPLEX is about 3.1 times larger than Gurobi Optimizer, while the

computational time required by CPLEX is about 1.7 times larger than Gurobi Optimizer.
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Figure 5: Transfer functions of interstory drifts evaluated at the undamped natural frequency of

example (II). “——” The optimal solutions in case A with p = 30; and “– – –” the uniform damping.
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Figure 6: Transfer functions of interstory drifts, |δi(ω)/v̈g(ω)|, of example (II) at (a) the 1st story;

(b) the 2nd story; (c) the 3rd story; (d) the 4th story; (e) the 5th story; and (f) the 6th story.

“——” The optimal solution in case A (p = 30); and “– – –” the uniform damping.
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Table 4: Optimal solutions of example (II).

Opt. sol. (×105Ns/m)

p c̄ (Ns/m) c1 c2 c3 c4 c5 c6
∑n

i=1 |δ̂i|

Case A 15 5× 105 0 0 30 25 20 15 0.201222m

Case A 30 2× 105 0 18 20 20 18 14 0.201162m

Case A 60 1× 105 0 19 20 19 18 14 0.201158m

Case B 15 5× 105 0 40 0 30 0 20 0.212097m

Case B 30 2× 105 0 40 0 32 0 18 0.211510m

Case B 60 1× 105 0 40 0 32 0 18 0.211510m

Case C 15 5× 105 0 65 0 0 0 25 0.234505m

Case C 40 2× 105 0 66 0 0 0 24 0.234311m

Case C 70 1× 105 0 67 0 0 0 23 0.234301m

Case D 15 5× 105 0 0 45 0 25 20 0.209588m

Case D 30 2× 105 0 0 44 0 28 18 0.209076m

Case D 60 1× 105 0 0 44 0 28 18 0.209076m

Table 5: Comparison of computational costs of example (II).

CPLEX Gurobi

p Time (s) No. of nodes Time (s) No. of nodes

Case A 15 26.3 146,817 16.6 100,999

Case A 30 1,455.6 6,158,001 880.6 4,623,129

Case A 60 62,021.6 128,500,335 33,917.6 88,934,141

Case B 15 2.4 4,421 2.6 7,457

Case B 30 8.9 18,339 9.9 20,329

Case B 60 32.3 54,149 52.1 58,396

Case C 15 0.7 1,524 0.9 1,858

Case C 40 4.0 4,404 10.7 7,046

Case C 70 9.5 7,000 31.0 9,374

Case D 15 5.2 10,213 3.7 10,419

Case D 30 16.6 31,347 15.3 29,641

Case D 60 42.3 63,727 60.6 60,439

4.2 Example (II): Model with uniform distribution of amplitudes of transfer

functions

This section deals with the example model presented in [26, section 4.2]; see also [28, section 2.7.2].

We consider another six-story shear building model, where the story stiffnesses are different from

those in section 4.1. The mass of each story and the upper bound for
∑6

i=1 ci are same as in

section 4.1, i.e., mi = 80,000 kg (i = 1, . . . , 6) and cmax
sum = 9,000 kN/s. The stiffness of each

story is given by k1 = 51,310 kN/m, k2 = 48,100 kN/m, k3 = 42,600 kN/m, k4 = 34,760 kN/m,

k5 = 24,440 kN/m, and k6 = 11,000 kN/m. The undamped fundamental frequency is ω̄ = 5.39 rad/s.

With the uniform damping, i.e., ci = 1,500 kNs/m (i = 1, . . . , 6), the distribution of |δ̂i| becomes
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uniform as depicted by a dotted line in Figure 5.

As for the set of candidate values of ci, we consider the three cases in section 4.1. The min-

imization problem of the sum of |δ̂1|, . . . , |δ̂6| is solved. With additional constraints on damper

distribution in section 3.4, we consider four cases:

• Case A: the problem without additional constraints, i.e., the discrete version of the problem

solved in [26].

• Case B: the problem with γ = 3 maximum damped stories and no adjacent damped stories.

• Case C: the problem with γ = 2 maximum damped stories and no adjacent damped stories.

• Case D: the problem with γ = 3 maximum damped stories.

The optimal solutions are listed in Table 4. The objective value of the uniform damper distri-

bution is 0.203292m. Computational costs are listed in Table 5. In case A, the obtained optimal

solutions are different from the solution presented in [26]. That is, dampers are placed at all stories

in the solution in [26], while dampers are not placed at the first story in the solutions in Table 4.

In the optimal solution with p = 15, the second story has also no damper. The objective value

reported in [26] is 0.2027m, which is slightly larger than the optimal values in case A in Table 4.

This means that the solution in [26] is not optimal. Thus the method proposed by Takewaki [26]

does not necessarily converge to an optimal solution. However, this weak point should not be exag-

gerated, because the difference of the objective values of this example is not large. In addition, this

optimization problem seems to be a difficult one, since large computational time is required by the

proposed method as observed in Table 5. Figure 5 shows the transfer functions at the undamped

natural frequency, |δ̂i|, of the optimal solution with p = 30. The variations of the transfer functions,

|δi(ω)|/|v̈g(ω)|, with respect to ω are shown in Figure 6. It is observed that the structural response

is not improved drastically from the uniform damping design.

At the optimal solutions in case B, dampers are placed at the second, fourth, and sixth stories.

The optimal values are slightly larger than those in case A. In case C dampers are placed at the

second and sixth stories. At the optimal solutions with p = 30 and p = 60, the upper bound

constraint for c2 becomes active, i.e., c2 = 6,000 kNs/m. Therefore, p = 40 and p = 70 were

examined for c̄ = 200 kNs/m and c̄ = 100 kNs/m, respectively. Then the upper bound constraint on

c2 becomes inactive as shown in Table 4. In case D, dampers are placed at the third, fifth, and sixth

stories. Thus the optimal set of damped stories highly depends on the additional combinatorial

constraints on damper distribution. The optimal values in cases B, C, and D are larger than the

objective value of the uniform damper distribution.

It is observed in Table 5 that case A requires the largest computational costs. For all problems

in case A, both the computational time and the number of nodes required by Gurobi Optimizer

are smaller than those required by CPLEX. Particularly, for p = 60, CPLEX spent about 17 hours,

which is more than 1.8 times larger than Gurobi Optimizer. The computational costs in case B,

case C, and case D are much less than those in case A. For most every problems in these three

cases, the computational costs required by CPLEX are less than Gurobi Optimizer.

5 Conclusions

In designing building structures, it is often that the design variables are essentially considered

discrete. Nonetheless, many research articles on optimization of such structures still treat continuous
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optimization. Approximate optimal solutions for the original discrete optimization problem may be

obtained by rounding the optimal solution of the continuous optimization problem. Outside of a few

exceptions, however, it remains unobvious what kind of rounding rules can generate good feasible

discrete solutions. This paper has fully addressed discrete optimization of damper placement in a

shear building model.

In this paper we have supposed that design variables, i.e., damper damping coefficients, are

chosen among multiples of a specified unit value. Then it has been shown that the minimization

problem of the sum of the transfer functions of the interstory drifts can be formulated as a mixed-

integer second-order cone programming problem. Several well-developed software packages are

available for finding the global optimal solution of this optimization problem.

The proposed method can handle discrete design variables without resorting any approximation.

Guaranteed convergence to a global optimal solution is a distinguished attribute. Besides this, the

proposed method can deal with various practical constraints on damper distribution, e.g., the upper

bound constraint on damped stories. A potential disadvantage of the method is that computational

cost may possibly increase drastically as the number of variables increases. However, it is worth

noting that the proposed method can provide benchmark examples for evaluating performances

of the other local and/or heuristic algorithms that are applicable to large-scale damper placement

optimization problems.

This paper has addressed only shear building models with viscous dampers. Extensions to the

other structural models and the other damper types remain to be explored.
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