
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Online Unweighted Knapsack Problem with
Removal Cost

Xin HAN, Yasushi KAWASE, and Kazuhisa MAKINO

METR 2012–29 December 2012

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Online Unweighted Knapsack Problem with
Removal Cost

Xin Han1?, Yasushi Kawase2??, and Kazuhisa Makino2??

1 Dalian University of Technology
hanxin@dlut.edu.cn
2 University of Tokyo

{yasushi kawase, makino}@mist.i.u-tokyo.ac.jp

Abstract. In this paper, we study the online unweighted knapsack prob-
lem with removal cost. The input is a sequence of items u1, u2, . . . , un,
each of which has a size and a value, where the value of each item is
assumed to be equal to the size. Given the ith item ui, we either put
ui into the knapsack or reject it with no cost. When ui is put into the
knapsack, some items in the knapsack are removed with removal cost
if the sum of the size of ui and the total size in the current knapsack
exceeds the capacity of the knapsack. Here the removal cost means a
cancellation charge or disposal fee. Our goal is to maximize the profit,
i.e., the sum of the values of items in the last knapsack minus the total
removal cost occurred.
In this paper, we consider two kinds of removal cost: unit and propor-
tional cost. For both models, we provide their competitive ratios. Namely,
we construct optimal online algorithms and prove that they are best pos-
sible.

1 Introduction

The knapsack problem is one of the most classical problems in combinatorial
optimization and has a lot of applications in the real world [11]. The knapsack
problem is that: given a set of items with values and sizes, we are asked to
maximize the total value of selected items in the knapsack satisfying the capacity
constraint.

In this paper, we study the online version of the unweighted knapsack prob-
lem with removal cost. Here, “online” means i) the information of the input (i.e.,
the items) is given gradually, i.e., after a decision is made on the current item,
the next item is given; ii) the decisions we have made are irrevocable, i.e., once a
decision has been made, it cannot be changed. Given the ith item ui, we either
accept ui (i.e., put ui into the knapsack) or reject it with no cost. When ui is put
into the knapsack, some items in the knapsack are removed with removal cost

? Partially supported by NSFC(11101065).
?? Supported by a Grant-in-Aid for Scientific Research from the Ministry of Educa-

tion, Culture, Sports, Science and Technology of Japan and the Global COE “The
Research and Training Center for New Development in Mathematics.”

2 Xin Han, Yasushi Kawase, and Kazuhisa Makino

if the sum of the size of ui and the total size in the current knapsack exceeds
1, i.e., the capacity of the knapsack. Here the removal cost means a cancellation
charge or disposal fee. Our goal is to maximize the profit, i.e., the sum of the
values of items in the last knapsack minus the total removal cost occurred.

Related work

The online knapsack problem (under no removal condition) was first studied on
average case analysis by Marchetti-Spaccamela and Vercellis [13]. They proposed
a linear time approximation algorithm such that the expected difference between
the optimal profit and the one obtained by the algorithm is O(log3/2 n) under the
condition that the capacity of the knapsack grows proportionally to the number
of items n. Lueker [12] improved the expected difference to O(log n) under a
fairly general condition on the distribution.

Iwama and Taketomi [9] studied the online knapsack problem on worst case

analysis. They obtained a 1+
√
5

2 ≈ 1.618-competitive algorithm for the online
knapsack when (i) the removable condition (without removal cost) is allowed and
(ii) the value of each item is equal to the size (unweighted), and showed that this
is best possible by providing a lower bound 1.618 for the case. We remark that
the problem has unbounded competitive ratio, if at least one of the conditions
(i) and (ii) is not satisfied [9, 10]. For other models such as minimum knapsack
problem and knapsack problem with limited cuts, refer to papers in [7, 8, 14].

The removal cost has introduced in the buyback problem [1–6]. In the prob-
lem, we observe a sequence of bids and decide whether to accept each bid at the
moment it arrives, subject to constraints on accepted bids such as single item and
matroid constraints. Decisions to reject bids are irrevocable, whereas decisions to
accept bids may be canceled at a cost which is a fixed fraction of the bid value.
Babaioff et al. [3] showed that the buyback problem with matroid constraint

has
(

1 + 2f + 2
√
f(1 + f)

)
-competitive ratio, where f > 0 is a buyback factor.

Ashwinkumar [1] extended their results and show that the buyback problem

with the constraint of k matroid intersections has k(1 + f)(1 +
√

1− 1
k(1+f))

2-

competitive ratio. Babaioff et al. [3, 4] also studied the buyback problem with
(weighted) knapsack constraints. They show that if the largest item is of size at
most γ, where 0 < γ < 1, then the competitive ratio is 1 + 2f + 2

√
f(1 + f)

with respect to the optimum solution for the knapsack problem with capacity
(1− 2γ).

Our results

In this paper, we study the worst case analysis of the online unweighted knap-
sack problem with removal cost. We consider two kinds of models of removal
cost:the proportional and the unit cost models. In the proportional cost model,
the removal cost of each item ui is proportional to its value (and hence size), i.e.,
it is f · s(ui), where s(ui) denotes the size of ui and f > 0 is a fixed constant,

Online Unweighted Knapsack Problem with Removal Cost 3

called buyback factor. Therefore, we can view this model as the buyback problem
with knapsack constraints. In the unit cost model, the removal cost of each item
is a fixed constant c > 0, where we assume that every item has value at least
c, since in many applications, the removal cost (i.e., cancellation charge) is not
higher than its value. We remark that the problem has unbounded competitive
ratio if no such assumption is satisfied (see Section 3).

We show that the proportional and unit cost models have competitive ratios
λ(f) and µ(c) in (1) and (2), respectively, where λ(f) and µ(c) are given in
Figures 1 and 2. Namely, we construct λ(f)- and µ(c)-competitive algorithms
for the models and prove that they are best possible.

λ(f) =

{
2 (1/2 ≥ f > 0),
1+f+

√
f2+2f+5

2 (f > 1/2).
(1)

µ(c) =


max {η(k), ξ(k + 1)} (1−

√
k+1
k+2 ≤ c ≤ 1−

√
k
k+1 , k = 1, 2, . . .),

ξ(1) (1− 1√
2
≤ c ≤ 1/2),

1/c (c ≥ 1/2),

(2)

where

η(k) =
k(c+ 1) +

√
k2(1− c)2 + 4k

2k(1− kc)
and ξ(k) =

1

2
+

1

2

√
1 +

4

kc
. (3)

The main ideas of our algorithms for both models are: i) we may reject items
(with no cost) many times, but in at most one round, we remove items which
from the knapsack; ii) some items are removed from the knapsack, only when the
total value in the resulting knapsack gets high enough to guarantee the optimal
competitive ratio.

The rest of the paper is organized as follows. In the next section, we consider
the proportional cost model, and in Section 3, we consider the unit cost model.

2 Proportional cost model

In this section, we consider the proportional cost model, where each item ui
has removal cost f · s(ui) for some positive constant f . We first show that λ(f)
is a lower bound of the competitive ratio of the problem, and then propose a
λ(f)-competitive algorithm, where λ(f) is given in (1).

2.1 Lower bound

In this subsection, we show a lower bound of the competitive ratio λ(f) for the
problem.

4 Xin Han, Yasushi Kawase, and Kazuhisa Makino

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.2 0.4 0.6 0.8 1

c
o

m
p
e

ti
ti
v
e
 r

a
ti
o

f

λ(f)

Fig. 1. The competitive ratio λ(f) for the proportional cost model.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.2 0.4 0.6 0.8 1

c

µ(c)

Fig. 2. The competitive ratio µ(c) for the unit cost model.

Online Unweighted Knapsack Problem with Removal Cost 5

Theorem 1. There exists no online algorithm with competitive ratio less than
λ(f) for the online unweighted knapsack problem with proportional removal cost.

Proof. According to the value of f , we separately consider the following two
cases.
Case 1: 1/2 ≥ f > 0. Let A denote an online algorithm chosen arbitrarily. For
a sufficiently small ε (> 0), our adversary (see Figure 3) requests the sequence
of items whose sizes are

1

2
+ ε,

1

2
+
ε

2
, . . . ,

1

2
+

ε

d1/fe+ 1
, (4)

until A rejects some item in (4). If A rejects the item with size 1
2 + ε, then the

adversary stops the input sequence. On the other hand, if it rejects the item
with size 1

2 + ε
k for some k > 1, then the adversary requests an item with size

1
2 −

ε
k and stops the input sequence.

1
2

+ ε
accept // 1

2
+ ε

2

reject

%%KKKKKKKKKK
accept // 1

2
+ ε

3

accept //

reject

$$HHHHHHHHH
accept //

reject

##HHHHHHHHHHH 1
2

+ ε
d1/fe+1

1
2
− ε

2
1
2
− ε

3
1
2
− ε
d1/fe

Fig. 3. The adversary for the case 1/2 ≥ f > 0.

We first note that algorithm A must take the first item, since otherwise the
competitive ratio of A becomes infinite. After the first round, A always keeps
exactly one item in the knapsack, since all the items in (4) have size larger than 1

2
(i.e., a half of the knapsack capacity) and for any j < k we have (1

2 + ε
j)+(1

2−
ε
k)

is larger than 1. This implies that A removes the old item from the knapsack to
accept a new item. If A rejects 1

2 + ε
k for some k > 1, the competitive ratio is at

least 1/
(
1
2 + ε

k

)
, which approaches 2(= λ(f)) as ε → 0. Finally, if A rejects no

item in (4), then its profit is

1

2
+

ε

d1/fe+ 1
− f

d1/fe∑
k=1

(
1

2
+
ε

k

)
≤ 1

2
− f

d1/fe∑
i=1

1

2
≤ 0 (5)

while the optimal profit for the offline problem is 1
2 + ε, which completes the

proof for 1/2 ≥ f > 0.
Case 2: f > 1/2. Let A denote an online algorithm chosen arbitrarily, and let

x =
3+f−

√
f2+2f+5

2(1+f) . For a sufficiently small ε (> 0), our adversary requests the

following sequence of items

x, 1− x+ ε, 1− x, (6)

6 Xin Han, Yasushi Kawase, and Kazuhisa Makino

until A rejects some item in (6), and if A rejects the item then the adversary
immediately stops the input sequence.

Note that A must accept the first item x, since otherwise the competitive
ratio becomes infinite. If A rejects the second item, then the competitive ratio
is at least

1− x+ ε

x
≥ 1− x

x
= λ(f). (7)

If A takes the second item 1−x+ε (and removes the first item), the competitive
ratio is at least 1

1−x+ε−f ·x , which approaches to λ(f) (= 1
1−x−f ·x) as ε → 0,

which completes the proof for f > 1/2. ut

2.2 Upper bound

In this subsection, we propose a λ(f)-competitive algorithm. Note that the total
profit becomes small (even negative), if we remove items from the knapsack many
times. Intuitively, our algorithm accepts the item if the knapsack has room to put
it. If we can make the profit sufficiently high by accepting the item and removing
some items from the current knapsack, then our algorithm follows this, and after
this iteration, it rejects all the items. Otherwise, we simply rejects the item.

Let ui be the item given in the ith round. Define by Bi−1 the set of items
in the knapsack at the beginning of ith round, and by s(Bi−1) the total size in
Bi−1.

Algorithm 1

1: B0 = ∅
2: for all items ui, in order of arrival, do
3: if s(Bi−1) + s(ui) ≤ 1 then
4: Bi ← Bi−1 ∪ {ui}
5: if s(Bi) ≥ 1/λ(f) then STOP
6: else if ∃B′i−1 ⊆ Bi−1 s.t. 1

λ(f)
+ f · (s(Bi−1)− s(B′i−1)) < s(B′i−1) + s(ui) ≤ 1

then Bi ← B′i−1 ∪ {ui} and STOP
7: else Bi ← Bi−1

8: end for

Here STOP denotes that the algorithm rejects the items after this round.

Lemma 2. If s(Bi−1) + s(ui) > 1 and some B′i−1 ⊆ Bi−1 satisfies λ(f) ·
s(Bi−1) < s(B′i−1) + s(ui) ≤ 1, then the sixth line of Algorithm 1 is executed in
the ith round.

Online Unweighted Knapsack Problem with Removal Cost 7

Proof. Since s(Bi−1)+s(ui) > 1 and λ(f) ·s(Bi−1) < s(B′i−1)+s(ui), we obtain

1

λ(f)
+ f · (s(Bi−1)− s(B′i−1))

<
s(Bi−1) + s(ui)

λ(f)
+ f · (s(Bi−1)− s(B′i−1))

<
1 + fλ(f)− fλ2(f)

λ2(f)
s(B′i−1) +

1 + fλ(f) + λ(f)

λ2(f)
s(ui). (8)

As λ2(f) ≥ 1 + fλ(f) + λ(f) by the definition of λ(f), we have

1 + fλ(f)− fλ2(f)

λ2(f)
≤ 1 + fλ(f)− fλ2(f)

1 + fλ(f) + λ(f)
< 1 and

1 + fλ(f) + λ(f)

λ2(f)
≤ 1.

ut

Let OPT denote an optimal solution for the offline problem whose input
sequence is u1, . . . , ui.

Lemma 3. If s(Bi) < 1/λ(f) then we have |OPT \Bi| ≤ 1.

Proof. Bi contains all the items smaller than 1/2, since s(Bi) < 1/λ(f) ≤ 1/2.
Any item u ∈ OPT \ Bi has size greater than 1 − 1/λ(f) ≥ 1/2. Therefore,
|OPT \Bi| ≤ 1 holds by s(OPT) ≤ 1. ut

Theorem 4. The online algorithm given in this section is λ(f)-competitive.

Proof. Suppose that the sixth line is executed in round k. Then it holds that
1

λ(f) + f · (s(Bk−1)− s(B′k−1)) < s(B′k−1) + s(uk) = s(Bk). Since s(Bi) = s(Bk)

holds for all i ≥ k, we have

s(OPT)

s(Bi)− f · (s(Bk−1)− s(B′k−1))
≤ 1

s(Bk)− f · (s(Bk−1)− s(B′k−1))
< λ(f).

We next assume that the sixth line has never been executed. If s(Bi) ≥ 1/λ(f),
we have the competitive ratio s(OPT)/s(Bi) ≤ 1/s(Bi) ≤ λ(f). On the other
hand, if s(Bi) < 1/λ(f), |OPT\Bi| = 0 or 1 holds by Lemma 3. If |OPT\Bi| = 0,
we obtain the competitive ratio 1. Otherwise (i.e., OPT\Bi = {uk} for some k),
Lemma 2 implies that λ(f) ·s(Bk−1) ≥ s(B′k−1)+s(uk) for B′k−1 = OPT∩Bk−1
Therefore we obtain

s(OPT)

s(Bi)
≤
s(B′k−1) + s(uk) + s(Bi \Bk−1)

s(Bk−1) + s(Bi \Bk−1)

≤ max

{
s(B′k−1) + s(uk)

s(Bk−1)
,
s(Bi \Bk−1)

s(Bi \Bk−1)

}
≤ λ(f).

ut

Before concluding this section, we remark that the condition in the sixth line
can be checked efficiently.

8 Xin Han, Yasushi Kawase, and Kazuhisa Makino

Proposition 5. We can check the condition in the sixth line in O(|Bi−1| +

2λ
2(f)) time.

Proof. Let x = 1
1+f

(
1

λ(f) + fs(Bi−1)− s(ui)
)

and y = 1 − s(ui). Our goal is

to decide whether there exists B′i−1 ⊆ Bi−1 such that x < s(B′i−1) ≤ y in

O(|Bi−1| + 2λ
2(f)) time. As s(Bi−1) < 1/λ(f), s(ui) ≤ 1, and λ2(f) ≥ (1 +

f)λ(f) + 1 by the definition of λ(f), we get

y − x = 1− 1

λ(f)(1 + f)
− f

1 + f
(s(ui) + s(Bi−1))

> 1− 1

λ(f)(1 + f)
− f

1 + f
(1 +

1

λ(f)
)

=
λ(f)− 1− f
λ(f)(1 + f)

≥ λ(f)

λ2(f)− 1
− 1

λ(f)
=

1

λ3(f)− λ(f)
≥ 1

λ3(f)
. (9)

Let Bi−1 = {b1, b2, . . . , bm} satisfy s(b1) ≥ · · · ≥ s(bk) ≥ y − x > s(bk+1) ≥
· · · ≥ s(bm). Then we claim the existence of B′i−1 is equivalent to the existence of
A ⊆ {b1, b2, . . . , bk} such that x−

∑m
i=k+1 s(bi) < s(A) ≤ y. If such an A exists,

then B′i−1 = A∪{bk+1, . . . , bl} satisfies the conditions, where l = min{l ≥ k+1 |
s(A) +

∑l
i=k+1 s(bi) > x}. If there exists B′i−1 such that x < s(B′i−1) ≤ y, then

A = B′i−1 \ {bk+1, . . . , bm} satisfies x−
∑m
i=k+1 s(bi) < s(A) ≤ y.

Therefore we need to check the condition x −
∑m
i=k+1 s(bi) < s(A) ≤ y for

at most 2k < 2λ
2(f) subsets, since k ≤ s(Bi−1)/(y − x) < λ2(f). Thus we can

check the condition in the sixth line in O(|Bi−1|+ 2λ
2(f)). ut

3 Unit cost model

In this section, we consider the unit cost model, where it costs us a fixed constant
c > 0 to remove each item from the knapsack. Recall that every item has size at
least c. In this section, we show that the online unweighted knapsack problem
with unit cost is µ(c)-competitive, where µ(c) is defined in (2). We note that
µ(c) attains the maximum 1 +

√
2 when c = 1− 1/

√
2.

Remark: If items are allowed to have size arbitrarily smaller than c, the problem
becomes unbounded competitive ratio. To see this, for a positive number r, let ε
denote a positive number such that ε < 1/(d1/ce · r). For an online algorithm A
chosen arbitrarily, our adversary (see Figure 4) keeps requesting the items with
size ε, until A accepts d1/ce items or rejects r · d1/ce items. If A rejects r · d1/ce
items (before accepting d1/ce items), the adversary stops the input sequence;
otherwise, it requests an item with size 1 and stops the input sequence. In the

former case, the competitive ratio is at least rd1/ceε
d1/ceε = r. In the latter case, the

competitive ratio becomes 1
d1/ce·ε > r if A rejects the last item (with size 1).

Otherwise, A removes the d1/ce items to take the last item. This implies that the
profit is 1−d1/ce·c ≤ 0. Therefore, without the assumption, no online algorithm
attains a bounded competitive ratio.

Online Unweighted Knapsack Problem with Removal Cost 9

ε, ε, . . . , ε

reject r·d1/ce items

&&MMMMMMMMMM
accept d1/ce items // 1

STOP

Fig. 4. An input sequence to prove the competitive ratio is unbounded if the input
contains items with size smaller than c.

3.1 The case c ≥ 1/2

We first consider the case where c ≥ 1/2. In this case, it is not difficult to see
that the problem is 1/c (= µ(c))-competitive.

Theorem 6. If the unit removal cost c is at least 1/2, then there exists no online
algorithm with competitive ratio less than 1/c for the online unweighted knapsack
problem.

Proof. For an online algorithm A chosen arbitrarily, our adversary first requests
an item with size c. If A does not accept it, the adversary stops the input se-
quence. Otherwise, it next requests an item with size 1 and stops the input
sequence. It is clear that A must take the first item, since otherwise the com-
petitive ratio becomes infinite. If A rejects the second item, then we have the
competitive ratio 1/c. Otherwise (i.e., A accepts the second item by removing
the first item), the competitive ratio is 1/(1− c) ≥ 1/c, since c ≥ 1/2. ut

Theorem 7. There exists a 1/c-competitive algorithm for the online unweighted
knapsack problem with unit removal cost.

Proof. Consider an online algorithm which takes the first item u1 and rejects the
remaining items. Since s(u1) ≥ c and the optimal value of the offline problem is
at most 1, the competitive ratio is at most 1/c. ut

3.2 The case c < 1/2

In this section we consider the case in which c < 1/2.

3.2.1 Lower bound

For 0 < c < 1/2, we show that µ(c) is a lower bound of the competitive ratio for
the problem by starting with several propositions needed later.

Proposition 8. For any positive integer k, we have

1

2k + 4
< 1−

√
k + 1

k + 2
and 1−

√
k

k + 1
<

1

2k + 1
. (10)

10 Xin Han, Yasushi Kawase, and Kazuhisa Makino

Proof. Note that

1−
√
k + 1

k + 2
=

√
k + 2−

√
k + 1√

k + 2
=

1√
k + 2(

√
k + 2 +

√
k + 1)

>
1√

k + 2(
√
k + 2 +

√
k + 2)

=
1

2k + 4
, (11)

and

1−
√

k

k + 1
=

√
k + 1−

√
k√

k + 1
=

1
√
k + 1(

√
k + 1 +

√
k)

=
1

k + 1 +
√
k(k + 1)

<
1

2k + 1
. (12)

ut

Definition 9. We define xk and yk as follows:

xk =
k + 2− kc−

√
k2(1− c)2 + 4k

2
and yk =

kc+
√
k2c2 + 4kc

2
. (13)

Proposition 10. η(k) and ξ(k) in (3) satisfy the following equalities.

η(k) =
1

1− xk − kc
=

1− xk
kxk

=
k(c+ 1) +

√
k2(1− c)2 + 4k

2k(1− kc)
, (14)

ξ(k) =
1

yk − kc
=
yk
kc

=
1

2
+

1

2

√
1 +

4

kc
. (15)

We provide two kinds of adversaries.

Theorem 11. Assume that removal cost c satisfies 1−
√

k+1
k+2 ≤ c ≤ 1−

√
k
k+1

for a positive integer k. Then there exists no online algorithm with competitive
ratio less than η(k) for the online unweighted knapsack problem with unit removal
cost.

Proof. Let xk =
k+2−kc−

√
k2(1−c)2+4k

2 . For an online algorithm A chosen ar-
bitrarily, our adversary (see Figure 5) keeps requesting the items with size xk
until A accepts k items or rejects d1/xke items. If A rejects d1/xke items before
accepting k items, the adversary stops the input sequence (a). Otherwise (i.e., A
accepts k items), the adversary next requests an item with size 1−xk + ε where
ε is a sufficiently small positive number; if A rejects it, the adversary stops the
input sequence (b), and otherwise, the adversary next requests an item with size
1 − xk and stops the input sequence (c). Note that all the items have size at

least c, since 1−
√

k+1
k+2 ≤ c ≤ 1−

√
k
k+1 implies xk ≥ c and 1− xk ≥ c.

In the case of (a), we have the competitive ratio at least 1−xk

(k−1)xk
> 1−xk

kxk
=

η(k), where the last equality follows from Proposition 10. In the case of (b), the

Online Unweighted Knapsack Problem with Removal Cost 11

xk, xk, . . . , xk

reject d1/xke items

((PPPPPPPPPPPPP
accept k items // 1− xk + ε

reject

''PPPPPPPPPPPP
accept // 1− xk (c)

STOP (a) STOP (b)

Fig. 5. The adversary for Lemma 11

competitive ratio is at least 1−xk+ε
kxk

> 1−xk

kxk
= η(k) by Proposition 10. Finally,

in the case of (c), the competitive ratio is at least 1
1−xk+ε−kc . Proposition 10

implies that this approaches η(k) (= 1
1−xk−kc) as (ε→ 0). ut

Theorem 12. Assume that removal cost c satisfies 1 −
√

k
k+1 ≤ c < 1

2k for a

positive integer k. Then there exists no online algorithm with competitive ratio
less than ξ(k) for the online unweighted knapsack problem with unit removal cost.

Proof. Let A denote an online algorithm chosen arbitrarily. Then our adversary
(see Figure 6) keeps requesting items with size c until A accepts k items or rejects
d1/ce items. If A rejects d1/ce items before accepting k items, the adversary
stops the input sequence (a). Otherwise (i.e., A accepts k items), the adversary

requests an item with size yk = kc+
√
k2c2+4kc
2 which is at least 1 − c > c, since

1−
√

k
k+1 ≤ c < 1

2k ; if A rejects it, the adversary stops the input sequence (b),

and otherwise, the adversary requests an item with size 1−c and stops the input
sequence (c).

c, c, . . . , c

reject d1/ce items

''NNNNNNNNNNNN
accept k items // yk

reject

%%LLLLLLLLLL
accept // 1− c (c)

STOP (a) STOP (b)

Fig. 6. The adversary for Lemma 12

In the case of (a), the competitive ratio is at least 1−c
(k−1)c ≥

1
kc ≥

yk
kc =

ξ(k), where the last equality follows from Proposition 10. In the case of (b), the
competitive ratio is yk

kc = ξ(k) by Proposition 10. Finally, in the case of (c), the
competitive ratio is at least 1

yk−kc = ξ(k), which again follows from Proposition
10. ut

By Theorems 11 and 12, it holds that µ(c) is a lower bound of the competitive
ratio for 0 < c < 1/2.

12 Xin Han, Yasushi Kawase, and Kazuhisa Makino

3.2.2 Upper bound

In this subsection, we show that µ(c) is also an upper bound for the competitive
ratio of the problem when 0 < c < 1/2. We start with several propositions
needed later.

Proposition 13. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then we have

η(k) ≥ 2 ⇐⇒ c ≥ 2k − 1

2k(2k + 1)
, (16)

ξ(k + 1) ≥ 2 ⇐⇒ c ≤ 1

2(k + 1)
. (17)

Proof. We can get the results by simple calculations. ut

Proposition 14. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then we have

µ(c) = max {η(k), ξ(k + 1)} ≥ 2. (18)

Proof. If 2k−1
2k(2k+1) ≤ c ≤ 1−

√
k
k+1 then by (16), the claim is correct. Otherwise

(i.e., c < 2k−1
2k(2k+1) <

1
2(k+1)), we also have (18) by (17). ut

Proposition 15. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then we have

max

{
max

α∈{1,2,...,k}
η(α), ξ(k + 1)

}
= max {η(k), ξ(k + 1)} = µ(c). (19)

Proof. The second equality holds by the definition of µ(c). Thus we only need
to prove the first equality.

For α ≥ 2, it holds that

1−
√
α+ 1

α+ 2
<

2α− 1

2α(2α+ 1)
(20)

since 1−
√

α+1
α+2 <

2α−1
2α(2α+1) ⇐⇒ 12α2(α− 2) + 2α(6α− 1) + (α− 2) > 0.

If k > α ≥ 2, then it holds

η(α) =
α(c+ 1) +

√
α2(1− c)2 + 4α

2α(1− αc)
< 2 ≤ µ(c) (21)

by c ≤ 1−
√

k
k+1 ≤ 1−

√
α+1
α+2 <

2α−1
2α(2α+1) and Proposition 13.

Online Unweighted Knapsack Problem with Removal Cost 13

Moreover when α = 1, we have

η(1) =
(c+ 1) +

√
(1− c)2 + 4

2(1− c)
≤ 2 ≤ µ(c) (22)

for 0 < c ≤ 1/6 since
(c+1)+

√
(1−c)2+4

2(1−c) ≤ 2 ⇐⇒ (1 − 6c)(1 − c) ≥ 0. As

1 −
√

3/4 < 1/6 < 1 −
√

2/3, we remain to prove η(1) ≤ η(2) for 1/6 ≤ c <

1−
√

2/3. By c < 1−
√

2/3 < 1/2,

c+1+
√

(1−c)2+4

2(1−c) ≤ 2(c+1)+
√

4(1−c)2+8

4(1−2c)

⇐=
c+1+
√

(1−c)2+4

(1−c) ≤ (c+1)+
√

(1−1/2)2+2

(1−2c)

⇐⇒ (6c− 1)(1− c){(4c− 5)2 + 63} ≥ 0.

ut

Proposition 16. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then for any positive integer α ≤ k and real x ∈ (0, 1−αc), it holds that

min

{
1

1− x− αc
,

1− x
αx

}
≤ η(α) ≤ µ(c). (23)

Proof. Since 1
1−x−αc and 1−x

αx are respectively monotone increasing and decreas-
ing in x, the first inequality holds by Proposition 10. The second inequality is
obtained by Proposition 15. ut

Proposition 17. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then for any real y ∈ ((k + 1)c, 1], we have

min

{
1

y − (k + 1)c
,

y

(k + 1)c

}
≤ ξ(k + 1) ≤ µ(c). (24)

Proof. Since 1
y−(k+1)c and y

(k+1)c are respectively monotone decreasing and in-

creasing in y, the first inequality holds by Proposition 10. The second inequality
follows from the definition of µ(c). ut

We are now ready to prove that µ(c) is an upper bound for the competitive
ratio. According to the size of c, we make use of two algorithms described below.

Theorem 18. If 1 − 1√
2
≤ c ≤ 1

2 , there exists an online algorithm with com-

petitive ratio µ(c) for the online unweighted knapsack problem with unit removal
cost.

14 Xin Han, Yasushi Kawase, and Kazuhisa Makino

Algorithm 2

1: B0 = ∅
2: for all items ui, in order of arrival, do
3: if s(Bi−1) + s(ui) ≤ 1 then Bi ← Bi−1 ∪ {ui}

4: else if |Bi−1| = 1 and s(ui) ≥ c+
√
c2+4c

2
then Bi ← {ui} and STOP

5: else Bi ← Bi−1

6: end for

Here STOP denotes that the algorithm rejects the items after this round.

Proof. We consider the following algorithm, where Bi−1 denotes the set of items
in the knapsack at the beginning of the ith round where we assume that B0 = ∅,
and s(Bi−1) denotes the total size in Bi−1. Let ui be the item given in the ith
round.

Let OPT denote an optimal solution for the offline problem whose input
sequence is u1, . . . , ui. If the algorithm stops at the fourth line, the competitive

ratio is at most 1/
(
c+
√
c2+4c
2 − c

)
= c+

√
c2+4c
2c = µ(c), since s(OPT) ≤ 1.

Assume that the algorithm has never stopped at the fourth line and |Bi| = 1. If
s(Bi) ≥ 1/2, then the competitive ratio is at most 1

1/2 = 2 ≤ µ(c). Otherwise,

the item in Bi has size smaller than 1/2, while the item uj with j < i and uj 6∈ Bi
has size at least 1/2. This implies that |OPT| = 1 and the competitive ratio is

smaller than µ(c), since s(Bi) ≥ c and s(OPT) < c+
√
c2+4c
2 . If the algorithm has

never stopped at the fourth line and |Bi| > 1, the competitive ratio is at most
1
2c < µ(c), since c ≥ 1− 1/

√
2 > 1/6 implies c+

√
c2 + 4c > 1. ut

Theorem 19. If 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k
k+1 , there exists an online algorithm

with competitive ratio µ(c) for the online unweighted knapsack problem with unit
removal cost.

Proof. We show that the following algorithm satisfies the desired property.

Let OPT denote an optimal solution for the offline problem whose input
sequence is u1, . . . , ui. If the algorithm stops at the eleventh line in round
l ≤ i, s(Bi) = s(Bl) = s(B′l−1) + s(ul) and the profit of the algorithm is
s(B′l−1) + s(ul) − |Bl−1 \ B′l−1|c. Therefore, the competitive ratio is at most

1
s(B′l−1)+s(ul)−|Bl−1\B′l−1|c

≤ µ(c), since s(OPT) ≤ 1. Otherwise, the algorithm

has never removed old items from the knapsack. If s(Bi) ≥ 1/2, then the com-
petitive ratio is at most 1

1/2 = 2 ≤ µ(c). On the other hand, if s(Bi) < 1/2,

then any item in Bi has size at most 1/2, while any item in OPT \ Bi has size
larger than 1/2. This implies |OPT \Bi| ≤ 1 by s(OPT) ≤ 1. If |OPT \Bi| = 0,
then we have OPT = Bi, which implies that the competitive ratio is 1. Thus
we assume that |OPT \ Bi| = 1. Note that |Bi| ≤ k + 1 holds, since any b ∈ Bi
satisfies s(b) ≥ c ≥ 1 −

√
k+1
k+2 ≥

1
2k+4 , where the last inequality follows from

Proposition 8. Since the algorithm has never removed items, |Bl| ≤ k + 1 also

Online Unweighted Knapsack Problem with Removal Cost 15

Algorithm 3

1: B0 = ∅
2: for all items ui, in order of arrival, do
3: if s(Bi−1) + s(ui) ≤ 1 then
4: Bi ← Bi−1 ∪ {ui}
5: else
6: Let Bi−1 = {b1, b2, . . . , bm} s.t. s(b1) ≥ s(b2) ≥ · · · ≥ s(bm).
7: B′i−1 ← ∅
8: for j = 1 to m do
9: if s(B′i−1) + s(bj) ≤ 1− s(ui) then B′i−1 ← B′i−1 ∪ {bj}

10: end for
11: if s(B′i−1) + s(ui)− |Bi−1 \B′i−1|c ≥ 1/µ(c) then
12: Bi ← B′i−1 ∪ {ui} and STOP
13: else
14: Bi ← Bi−1

15: end if
16: end if
17: end for

Here STOP denotes that the algorithm rejects the items after this round.

holds for each l with l ≤ i. Let

{ul} = OPT \Bi, α = |Bl−1 \B′l−1|, x = 1− (s(ul) + s(B′l−1)). (25)

Since Bl−1 \B′l−1 6= ∅, we have

α > 0 and x < 1− αc. (26)

Since s(Bi) = s(Bl−1) + s(Bi \ Bl−1) and s(OPT) ≤ s(ul) + s(Bl−1 ∩ OPT) +
s(Bi \Bl−1), the competitive ratio is at most

s(ul) + s(Bl−1 ∩OPT) + s(Bi \Bl−1)

s(Bl−1) + s(Bi \Bl−1)
≤ max

{
s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
, 1

}
.

We claim that s(ul)+s(Bl−1∩OPT)
s(Bl−1)

≤ µ(c).

Let Bl = {b1, b2, . . . , bm} satisfy s(b1) ≥ s(b2) ≥ · · · ≥ s(bm). To see this
claim, we separately consider the following two cases:

Case 1. Consider the case in which there exists bj ∈ B′l−1 such that bh 6∈ B′l−1
holds for some h > j. Let us take bj as the largest such item, i.e., bj ∈ B′l−1 and
bg 6∈ B′l−1 for all g (< j).

In this case, we obtain the following inequalities:

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤ s(bh) + 1− x

s(bh) + αx
≤ max

{
1,

1− x
αx

}
. (27)

Here the numerator and denominator in the left hand side of (27) respectively
satisfy s(ul) + s(Bl−1 ∩OPT) ≤ 1 < s(bh) + s(ul) + s(B′l−1) = s(bh) + 1− x and
s(Bl−1) = s(B′l−1) + s(Bl−1 \B′l−1) ≥ s(bh) + αx, since bh 6∈ B′l−1 and s(b) > x

16 Xin Han, Yasushi Kawase, and Kazuhisa Makino

holds for any b ∈ Bl−1 \B′l−1. Finally, we show 1−x
αx ≤ µ(c), which completes the

claim.
Since the algorithm has not stopped at the eleventh line and 1−x−αc > 0 by

(26), we have 1
1−x−αc = 1

s(B′l−1)+s(ul)−αc > µ(c). Note that α ≤ |Bl−1\{bh}| ≤ k,

since |Bl−1| ≤ k + 1. Therefore, we obtain 1−x
αx ≤ µ(c) by Proposition 16.

Case 2. We next consider the case in which bj ∈ B′l−1 implies bh ∈ B′l−1 for all
h (> j), i.e., B′l−1 consists of the |B′l−1| smallest items of Bl−1. Then we have

s(b) > 1− s(ul) for any b ∈ Bl−1 \B
′

l−1. This implies Bl−1 ∩OPT ⊆ B′l−1, and
s(Bl−1 \B′l−1) > αx holds by (25).

If α ≤ k, thus, the competitive ratio is at most

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤
s(ul) + s(B′l−1)

s(Bl−1 \B′l−1)
≤ 1− x

αx
≤ µ(c), (28)

where the last inequality follows from a similar argument to Case 1. On the
other hand, if α = k + 1, let y = s(ul) + s(B′l−1). Then we have

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤ y

(k + 1)c
, (29)

where the inequality follows from the fact that s(ul) + s(Bl−1 ∩OPT) ≤ s(ul) +
s(B′l−1) = y and s(Bl−1) ≥ s(Bl−1 \B′l−1) ≥ (k+ 1)c, since Bl−1 ∩OPT ⊆ B′l−1
and any item has size at least c. Finally, since y > (k+1)c and the algorithm has
not stopped at the eleventh line, it holds that 1

y−(k+1)c = 1
s(B′l−1)+s(ul)−(k+1)c >

µ(c). This together with Proposition 17 implies y
(k+1)c ≤ µ(c). ut

References

1. Ashwinkumar, B.V.: Buyback problem - approximate matroid intersection with
cancellation costs. In: ICALP. pp. 379–390 (2011)

2. Ashwinkumar, B.V., Kleinberg, R.: Randomized online algorithms for the buyback
problem. In: WINE. pp. 529–536 (2009)

3. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling banner ads: Online algorithms
with buyback. In: Proceedings of 4th Workshop on Ad Auctions (2008)

4. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: Online algo-
rithms with cancellations. In: ACM Conference on Electronic Commerce. pp. 61–70
(2009)

5. Biyalogorsky, E., Carmon, Z., Fruchter, G.E., Gerstner, E.: Research note: Over-
selling with opportunistic cancellations. Marketing Science 18(4), 605–610 (1999)

6. Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mechanism for
ad slot reservations with cancellations. In: SODA. pp. 1265–1274 (2009)

7. Han, X., Makino, K.: Online minimization knapsack problem. In: WAOA. pp. 182–
193 (2009)

8. Han, X., Makino, K.: Online removable knapsack with limited cuts. Theoretical
Computer Science 411, 3956–3964 (2010)

9. Iwama, K., Taketomi, S.: Removable online knapsack problems. Lecture Notes in
Computer Science pp. 293–305 (2002)

Online Unweighted Knapsack Problem with Removal Cost 17

10. Iwama, K., Zhang, G.: Optimal resource augmentations for online knapsack. In:
APPROX-RANDOM. pp. 180–188 (2007)

11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
12. Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. Jour-

nal of Algorithms 29(2), 277–305 (1998)
13. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.

Mathematical Programming 68, 73–104 (1995)
14. Noga, J., Sarbua, V.: An online partially fractional knapsack problem. In: ISPAN.

pp. 108–112 (2005)

