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Abstract

In this paper, we study the sparse linear complementarity problem,
denoted by k-LCP: the coefficient matrix has at most k nonzero entries
per row. It is known that 1-LCP is solvable in linear time, while 3-
LCP is strongly NP-hard. We show that 2-LCP is strongly NP-hard,
while it can be solved in O(n3 log n) time if it is sign-balanced, i.e.,
each row has at most one positive and one negative entries, where
n is the number of constraints. Our second result matches with the
currently best known complexity bound for the corresponding sparse
linear feasibility problem. In addition, we show that an integer variant
of sign-balanced 2-LCP is weakly NP-hard and pseudo-polynomially
solvable, and the generalized 1-LCP is strongly NP-hard.

1 Introduction

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the linear complementarity
problem (LCP) is to find vectors w, z ∈ Rn such that

w −Mz = q, w, z ≥ 0, w⊤z = 0. (1)

We denote a problem instance of LCP with M, q by LCP(M, q). We say
that n is the order of LCP(M, q), where we note that the size of LCP(M, q)
is O(n2). The LCP, introduced by Cottle [10], Cottle and Dantzig [11],
and Lemke [25], is one of the most widely studied mathematical program-
ming problems, which, for example, contains linear and convex quadratic
programming problems. Deciding whether LCP(M, q) has a solution for an
arbitrary matrix M is NP-complete [7]. However, there are several classes
of matrices M for which the associated LCP can be solved in polynomial
time: for instance, positive semidefinite matrices [22], and Z-matrices (all
off-diagonal entries are nonpositive) [3, 14, 26]. It is also known that M is a
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P-matrix, in which principal minors are all positive, if and only if LCP(M, q)
has a unique solution for every q [29]. For details of theory of LCPs, see the
books of Cottle, Pang, and Stone [13] and Murty [27].

In this paper, we focus on LCP with sparse coefficient matrix M . We
denote by k-LCP the LCP whose coefficient matrix has at most k nonzero
entries per row. For example, 2-LCP can have the following matrices:

M1 =

 0 −1 3
0 1 1
−2 0 0

 , M2 =

2 −1 0
0 3 0
5 0 −4

 .

Remark that the general LCP can be reduced to 3-LCP by introducing new
variables, where the proof can be found in Appendix A.

Sparse LCP appears in the context of game theory. For example, mean
payoff games can be formulated as 3-LCP [2]. Moreover, bimatrix games,
which can be formulated as LCP, has been investigated in terms of sparsity
in algorithmic game theory. A bimatrix game is k-sparse if each column and
row in both payoff matrices of the game have at most k nonzero entries [6,
8, 16, 18].

Sparsity has also been attracting attention for the feasibility problem of
systems of linear inequalities. A system of linear inequalities, i.e., a system
of the form Ax ≤ b, where A ∈ Rm×n and b ∈ Rm, can be reformulated as
a system of linear inequalities where each inequality involves at most three
variables. If each inequality involves at most two variables, it is called a
TVPI system1. A TVPI system can be naturally represented as a graph
which has a vertex for each variable and an edge for each inequality, where
an edge connects the vertices corresponding to the variables involved by the
inequality. Shostak [31] proved that feasibility of a TVPI system can be
decided by following paths and cycles in such a graph. This idea was used
to design the first polynomial-time algorithm [1]. Cohen and Megiddo [9]
and Hochbaum and Naor [20] proposed improved algorithms which run in
O(mn2(logm+ log2 n)) time and O(mn2 logm) time, respectively, where m
and n denote the number of constraints and variables, respectively. Any
TVPI system can further be transformed to a sign-balanced TVPI system,
where the two nonzero coefficients in each inequality have opposite signs. A
sign-balanced TVPI system is also called a monotone TVPI system.

We say that 2-LCP is sign-balanced if the coefficient matrix M has at
most one positive and negative entries per row. The matrixM2 above is such
an example. We note that sign-balanced TVPI systems with nonnegativity
constraints can be formulated as sign-balanced 2-LCP.

The first main result of this paper is to present a polynomial-time com-
binatorial algorithm for sign-balanced 2-LCP.

1TVPI stands for “two variables per inequality.”
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Theorem 1. Sign-balanced 2-LCP of order n can be solved in O(n3 log n)
time.

We remark that the complexity of Theorem 1 matches with the currently
best known bound, due to Hochbaum and Naor [20], for the feasibility prob-
lem of sign-balanced TVPI systems with nonnegativity constraints. This
implies that in order to improve the complexity of Theorem 1, we need to
have a faster algorithm for the feasibility problem of sign-balanced TVPI
systems with nonnegativity constraints.

It should also be noted that Theorem 1 is not obtained from the results
for the other well-known subclasses of LCP that focus on the sign pattern of
M , such as Z-LCP (i.e., the coefficient matrix is restricted to be a Z-matrix)
and sign-solvable LCP introduced by Kakimura [21].

On the other hand, it turns out that 2-LCP seems to be intractable.

Theorem 2. 2-LCP is NP-hard in the strong sense.

Since 1-LCP can easily be solved in linear time, Theorems 1 and 2 com-
pletely reveal computational complexity of the LCP in terms of sparsity.
Note that 3-LCP is clearly NP-hard, since LCP can be reduced to 3-LCP in
polynomial time. The first row in Table 1 summarizes our results for LCP.

Toward proving Theorem 1, we first design a simple combinatorial al-
gorithm for sign-balanced 2-LCP. For a given instance of sign-balanced 2-
LCP(M, q), consider the TVPI system S obtained by dropping the comple-
mentarity condition in (1). The algorithm computes the least element of
S to find one of given constraints that needs to be satisfied with equality.
By repeating this at most n + 1 times, we can find in polynomial time a
solution of the instance or conclude that it is infeasible. To reduce the run-
ning time, we exploit deep results for sign-balanced TVPI systems. Cohen
and Megiddo [9] presented an efficient procedure to decide whether a given
feasible TVPI system is still feasible by adding new upper and lower bounds
for each variable. We apply the procedure to S, which is not necessarily
feasible, to find a constraint that needs to be satisfied with equality. Note
that the obtained result by applying the Cohen–Megiddo’s procedure might
be wrong, since we might apply it to an infeasible system S. Thus after
finishing all the iterations, we check if the obtained result is correct or not.

The LCP is said to be unit if the coefficient matrix M is restricted to
belong to {0,±1}n×n.

Theorem 3. Unit sign-balanced 2-LCP of order n can be solved in O(n2

log n) time.

The result is based on the framework of the simple algorithm for sign-
balanced 2-LCP, in which we compute the least element by reduction to the
shortest-path problem.
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In addition, we discuss an integer variant of LCP. Given a matrix M ∈
Zn×n, a vector q ∈ Zn, and a positive integer d, the integer LCP is the prob-
lem to find two integer vectors w, z satisfying (1) with z ∈ {0, 1, . . . , d−1}n.
Integer LCP was first considered by Du Val [17] and Chandrasekaran [4]
in the context of least element theory. Chandrasekaran, Kabadi and Srid-
har [5] and Cunningham and Geelen [15] independently proposed sufficient
conditions on a matrix M such that for every q, LCP(M, q) has an integer
solution.

In this paper, we obtain the following result on integer sparse LCP. See
also Table 1.

Theorem 4. Integer sign-balanced 2-LCP is weakly NP-hard, and can be
solved in pseudo-polynomial time.

The weak NP-hardness follows from the fact that finding an integer solu-
tion to a sign-balanced TVPI system is weakly NP-hard [24]. The algorithm
in Theorem 4 has a similar framework to the algorithm in Theorem 1. We
here need to find the least element of integer solutions in the sign-balanced
TVPI systems obtained from a given LCP instance, which can be done in
pseudo-polynomial time [19, 20]. Note that the proof of Theorem 2 imme-
diately implies that integer 2-LCP is NP-hard in the strong sense.

Finally, we investigate a generalization of LCPs in terms of sparsity. The
generalized LCP (GLCP), which was introduced by Cottle and Dantzig [12],
is a generalization of LCP from a square coefficient matrix to a vertical
rectangular one.

Theorem 5. 1-GLCP (i.e., the GLCP whose coefficient matrix that has at
most one nonzero entry per row) is NP-hard in the strong sense.

Table 1: Computational complexity of k-LCPs.
k 1 sign-balanced 2 2 ≤

LCP O(n) O(n3 logn) NP-hard

integer LCP O(n) pseudo-polynomial NP-hard

GLCP NP-hard

This paper is organized as follows. Section 2 describes existing results of
sign-balanced TVPI systems. Section 3 proposes a simple polynomial-time
algorithm for sign-balanced 2-LCP. Section 4 improves the algorithm in Sec-
tion 3 using the Cohen–Megiddo’s procedure. Section 5 analyses the running
time bound of Algorithm 1 for unit sign-balanced 2-LCP. Section 6 shows
the NP-hardness of 2-LCP. Section 7 discusses computational complexity of
integer 2-LCPs. Section 8 shows the NP-hardness of 1-GLCP.
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2 Sign-balanced TVPI systems

Let F be the feasible region of a sign-balanced TVPI system. It is well known
that if x, y ∈ F then the meet z = x ∧ y is contained in F , where (x ∧ y)i =
min(xi, yi). Indeed, for each inequality ajxj + akxk ≥ bi (aj > 0, ak < 0),
we may assume that zj = yj , and we have ajzj + akzk ≥ ajyj + akyk ≥ bi,
which implies z ∈ F . If F is bounded below, then there is a vector u ∈ F
such that for any z ∈ F , we have z ≥ u. Such a vector is called the least
element of F . Moreover, F ∩ Zn also has these properties.

The remaining of this section is organized as follows. In Section 2.1,
we present Shostak’s characterization of infeasibility of a TVPI system by
a graph. The characterization is used by Cohen and Megiddo to design a
combinatorial algorithm for solving TVPI systems. Their algorithm decides
O(n(log2 n + logm)) times whether a given feasible TVPI system is still
feasible by adding a bound for one variable, where m and n are the number
of constraints and variables, respectively. Cohen and Megiddo presented a
procedure (Algorithm 2.18 in [9]) which can be used to solve a more general
decision problem based on Shostak’s characterization, which runs in O(n2)
time. We describe the procedure in Section 2.2, which will be used in Section
4.

2.1 Characterization by a graph

Shostak [31] introduced a representation of a TVPI system by a graph and
gave a characterization of infeasibility of the system in terms of the graph.
The characterization is a generalization of a negative cycle in the shortest-
path problem.

Let S be a TVPI system over variables x1, . . . , xn. Shostak [31] repre-
sented S as an undirected graph G = (V,E) as follows. For each variable xi,
the graph G has the vertex vi. Moreover, G has an additional vertex v0. For
each inequality axj + bxk ≤ c (a, b ̸= 0), the graph G has the edge {vj , vk}.
For each single-variable inequality xi ≥ α (or xi ≤ β), the graph G has the
edge {vi, v0}. For notational convenience, we introduce a new variable x0
corresponding to v0, and regard xi ≥ α (resp., xi ≤ β) as xi + bx0 ≥ α
(resp., xi + bx0 ≤ β) with b = 0.

Let P = (e1, . . . , el) be a path in G, where ei = {vpi , vpi+1} represents
an inequality aixpi + bixpi+1 ≤ ci for i = 1, . . . , l. If bi and ai+1 have
opposite signs for i = 1, . . . , l − 1, that is, one is positive and the other
is negative, then P is said to be admissible. Note that the reverse of an
admissible path is also admissible, and v0 cannot be an intermediate vertex
of an admissible path. An admissible path P induces a new inequality
aPxp1 + bPxpl+1

≤ cP by eliminating common variables xp2 , . . . , xpl . For
example, two inequalities aixpi+bixpi+1 ≤ ci and ai+1xpi+1+bi+1xpi+2 ≤ ci+1

imply ai|ai+1|xpi + bi+1|bi|xpi+2 ≤ ci|ai+1| + ci+1|bi|. Any feasible solution
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to S satisfies all new inequalities induced by admissible paths in G.
A path is called a loop if the initial and last vertices are identical. An

admissible loop L with initial vertex vp1 induces a single-variable inequality
(aL+ bL)xp1 ≤ cL. Note that if vp1 = v0, then aL = bL = 0 holds. We define
the extended graph Ḡ of G by adding for each simple admissible loop L in
G with initial vertex vi (vi ̸= v0), a new edge which represents the single-
variable inequality induced by L. If Ḡ has an admissible loop L that induces
a new inequality (aL+bL)xi ≤ cL such that aL+bL = 0 and cL < 0, then the
loop L is called infeasible, in the sense that there is no vector satisfying the
new inequality. Shostak showed infeasibility of S is equivalent to existence
of a simple infeasible loop in Ḡ.

Theorem 6 ([31]). A TVPI system S is feasible if and only if the extended
graph Ḡ has no simple infeasible loop.

2.2 Cohen–Megiddo’s procedure

In this subsection, we present a procedure of Cohen and Megiddo, which
corresponds to Algorithm 2.18 in [9].

Let S be a feasible TVPI system, which may contain a single-variable
linear inequality. By Theorem 6, Ḡ has no simple infeasible loop. Let T
be a set of single-variable inequalities, and GT be the graph associated with
S∪T . Theorem 6 implies that infeasibility of S∪T is equivalent to existence
of a simple infeasible loop L in the extended graph ḠT of GT . Since Ḡ has
no simple infeasible loop, L contains the vertex v0, and at least one of the
two edges incident to v0 is an edge of T . Let T ′ ⊆ T be the set of single-
variable inequalities corresponding to the one or two edges. Then |T ′| ≤ 2
and S ∪ T ′ is infeasible by definition.

Given a feasible TVPI system S and a set T of single-variable inequali-
ties, the Cohen–Megiddo’s procedure decides whether S∪T is feasible or not,
by detecting a simple infeasible loop in ḠT if exists. By above discussion,
the procedure can be equivalently written as follows:

Cohen–Megiddo’s procedure

Input: a feasible TVPI system S and a set T of single-variable linear
inequalities.

Output: find a nonempty set T ′ ⊆ T such that |T ′| ≤ 2 and S ∪T ′ is
infeasible, or return that S ∪ T is feasible.

In particular, when S is a feasible sign-balanced TVPI system, the output
T ′ of the Cohen–Megiddo’s procedure has at most one upper and lower
bounds. This is implicitly shown in [9], but we give a proof for correctness.

Lemma 1. Let S be a feasible sign-balanced TVPI system. Let T be a set
of single-variable linear inequalities such that S ∪ T is infeasible. Then the
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output T ′ ⊆ T of the Cohen–Megiddo’s procedure contains at most one upper
and lower bounds.

Proof. Let L be a simple infeasible loop with initial vertex v0 and e1, e2 be
edges of L incident to v0. Let P be the path obtained by L\{e1, e2}. Since S
is sign-balanced, the inequality induced by P has one positive and negative
coefficients. Since L is admissible, this means that either e1 or e2 represents
an upper bound and the other represents a lower bound. At least one of e1
and e2 is due to T , and hence the statement holds.

Cohen and Megiddo achieved the following running time.

Theorem 7 ([9]). Let S be a feasible TVPI system with m inequalities and
n variables. The Cohen–Megiddo’s procedure terminates in O(mn) time.

3 Simple algorithm for sign-balanced 2-LCP

In this section, we present an O(n4 logn) time algorithm for sign-balanced
2-LCP. The main idea of our algorithm is reduction of the problem to a
sign-balanced TVPI system.

LCP(M, q) can be regarded as a problem to find a vector z satisfying
z⊤(Mz + q) = 0 in F := {z | Mz + q ≥ 0, z ≥ 0}. Once we obtain such
a vector z, the pair (w, z), where w = Mz + q, is a solution to LCP(M, q).
We denote SOL(M, q) := {z |Mz + q ≥ 0, z ≥ 0, z⊤(Mz + q) = 0}.

If F = ∅, then LCP(M, q) has no solution. Suppose that F ̸= ∅. Since F
is the feasible region of a sign-balanced TVPI system bounded below, F has
the least element u. If u satisfies u⊤(Mu+q) = 0, then u is clearly a solution
to LCP(M, q). Otherwise, i.e., if u does not satisfy u⊤(Mu + q) = 0, then
there is an index i ∈ [n] := {1, . . . , n} such that ui > 0 and (Mu+ q)i > 0.
This implies that any z ∈ SOL(M, q) satisfies zi ≥ ui > 0, and hence z
satisfies (Mz + q)i = 0. Thus SOL(M, q) ⊆ (F ∩ {z | (Mz + q)i ≤ 0}),
which means that we can restrict F with a constraint (Mz+q)i ≤ 0, that is,
replace F by F ∩{z | (Mz+q)i ≤ 0}. Since the inequality (Mz+q)i ≤ 0 has
at most one positive and negative coefficients, F is still the feasible region of
a sign-balanced TVPI system. Moreover, any z ∈ F satisfies zi(Mz+q)i = 0.

We repeat the procedure mentioned above until the least element of F
satisfies z⊤(Mz + q) = 0 or F turns out to be empty, i.e., LCP(M, q) is
infeasible. Consequently, sign-balanced 2-LCP(M, q) is solved. Note that
the number of repetition is at most n+ 1.

The algorithm is summarized as follows.

Algorithm 1

Step 1. F := {z |Mz + q ≥ 0, z ≥ 0}.
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Step 2. For j = 0, . . . , n

Find the least element u of F . If u does not exist, then return
that LCP(M, q) is infeasible.

If u satisfies u⊤(Mu+ q) = 0, then return u. If u does not satisfy
u⊤(Mu + q) = 0, then find an index i such that ui > 0 and
(Mu+ q)i > 0, update F ← {z ∈ F | (Mz + q)i ≤ 0}, and go to
the next iteration.

It remains to discuss how to find the least element of F at Step 2. The
least element of F is obtained by solving the linear programming problem
min{1⊤z | z ∈ F}, where 1 is the vector whose elements are all one. Since
Algorithm 1 requires to find the least element at most n+1 times, Algorithm
1 can find a solution to LCP(M, q) in polynomial time if exists.

The least element can be found more efficiently in a combinatorial way.
Hochbaum and Naor [20] noted that their algorithm for TVPI systems can
compute the least element of a sign-balanced TVPI system. Their algorithm
runs in O(n3 log n) time, where n is the order of a given LCP instance, and
hence the running time of Algorithm 1 reduces to O(n4 log n) time in total.

Theorem 8. Algorithm 1 solves sign-balanced 2-LCP of order n in O(n4

log n) time.

For example, consider LCP(M, q), where

M =

(
−1 1
−2 1

)
, q =

(
−2
3

)
.

The least element of F is u = (0 2)⊤, which does not satisfy z⊤(Mz+q) = 0
since Mu + q = (0 5)⊤. In this case, we have u2 > 0 and (Mu + q)2 > 0.
We update F to F ∩ {z | −2z1 + z2 + 3 ≤ 0}. Then the least element shifts
to u′ = (5 7)⊤. Since Mu′ + q = 0, we have u′ ∈ SOL(M, q).

4 Improved algorithm for sign-balanced 2-LCP

Recall that the main step of Algorithm 1 is finding the least element of the
feasible region of a sign-balanced TVPI system S to detect an index i such
that zi > 0 for any solution z of a given LCP(M, q). In our improved algo-
rithm, we directly detect such an index i without finding the least element.

For that purpose, we execute the Cohen–Megiddo’s procedure described
in Section 2.2 by setting T to be a set of single-variable inequalities in the
form of zi ≤ 0. However, the procedure is guaranteed to run correctly
only for feasible TVPI systems, while S is not necessarily feasible in our
algorithm. In fact, the procedure may return that S ∪ T is “feasible” when
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S is infeasible. For example, let S be the TVPI system consisting of the
following eight constraints:

e1 : z1 − 2z2 ≤ −1, e2 : 2z2 − z3 ≤ 3, e3 : z3 − z1 ≤ −3,
e4 : −z1 + 2z2 ≤ 1, e5 : −2z2 + z3 ≤ −3,
e6 : z1 ≥ 0, e7 : z2 ≥ 0, e8 : z3 ≥ 0,

and T = {e9 : z3 ≤ 0}. Let G be the graph associated with S as de-
scribed in Section 2.1, whose edges are e1, . . . , e8. The simple admissible
loop (e1, e2, e3) induces 0 ≤ −1, which implies infeasibility of S by Theorem
6. However, the extended graph ḠT of S ∪ T , which coincides with the
graph GT associated with S ∪ T , has only two simple admissible loops with
initial vertex v0, namely, (e6, e1, e2, e9) and (e7, e2, e9). Since neither of the
two loops is infeasible, the Cohen–Megiddo’s procedure decides that S ∪ T
is “feasible,” which is a contradiction.

Nevertheless, if the Cohen–Megiddo’s procedure finds a nonempty subset
T ′ of size at most two, then the system S ∪ T ′ is known to be infeasible
without regard to feasibility of S. Moreover, we will show in Lemma 2 below
that T ′ has the form {zi ≤ 0}, which corresponds to an index i such that
zi > 0 for any solution z to LCP(M, q). Then, in a similar way to Algorithm
1, we can add a new constraint (Mz + q)i ≤ 0 to S by complementarity,
and repeat this until the Cohen–Megiddo’s procedure returns that S ∪ T is
“feasible.” During and at the end of the repetition, we do not require that
the sign-balanced TVPI system S is feasible. Instead, we need to solve a
sign-balanced TVPI system at the last step in order to verify the feasibility
of S.

A formal description of our algorithm is given as follows. For a set
I ⊆ [n], let Ī := [n] \ I. We denote by zI a subvector of z which consists of
entries with coordinates in I ⊆ [n].

Algorithm 2

Step 1. I := [n], F := {z |Mz + q ≥ 0, z ≥ 0}.
Step 2. While I ̸= ∅, do Step 3.

Step 3. Let S be the sign-balanced TVPI system Mz + q ≥ 0, z ≥
0, (Mz + q)Ī ≤ 0 and T = {zi ≤ 0 | i ∈ I}.
Execute the Cohen–Megiddo’s procedure with inputs S and T .
If the procedure returns T ′ = {zi ≤ 0} (for some i ∈ I), then
update I ← I \ {i}, F ← F ∩ {z | (Mz + q)i ≤ 0} and go to the
next iteration. Otherwise, go to Step 4.

Step 4. Find a feasible vector of F ∩ {z | zI ≤ 0}, that is, solve

zI = 0, zĪ ≥ 0, (Mz + q)I ≥ 0, (Mz + q)Ī = 0. (2)

If a feasible vector z∗ exists, then return z∗. Otherwise, return
that LCP(M, q) is infeasible.

9



For correctness of Algorithm 2, we show the following lemma. Note
that throughout Algorithm 2, F remains to be the feasible region of a sign-
balanced TVPI system.

Lemma 2. Let LCP(M, q) be a sign-balanced 2-LCP instance. LCP(M, q)
has a solution if and only if the sign-balanced TVPI system (2) is feasible.

Proof. The if-part is easy to see. It suffices to show the only-if-part. Sup-
pose that LCP(M, q) has a solution. At Step 1, F is not empty because
SOL(M, q) ⊆ F .

We will show that throughout the execution of Step 3, it holds that

1. any z ∈ SOL(M, q) satisfies zi > 0 for all i ∈ Ī, and

2. SOL(M, q) ⊆ F .

These claims hold at the beginning, that is, when I = [n]. Suppose that
the claims hold for some I ⊆ [n]. We may assume that the Cohen–Megiddo’s
procedure returns a nonempty subset T ′ ⊆ T . Since T contains only upper
bounds, T ′ contains only one upper bound, that is, zi ≤ 0 for some i ∈ I, by
nonemptiness of F and Lemma 1. Since S∪{zi ≤ 0} is infeasible, any z′ ∈ F
satisfies z′i > 0, and hence any z ∈ SOL(M, q) satisfies (Mz + q)i = 0 by
SOL(M, q) ⊆ F . This implies that SOL(M, q) ⊆ (F ∩{z | (Mz+ q)i ≤ 0}).
Thus the claims hold.

Therefore, S always has a solution during Step 3 by the second claim.
Hence, when we go to Step 4, S ∪ {zi ≤ 0 | i ∈ I} is feasible, because the
Cohen–Megiddo’s procedure works correctly. Thus (2) has a solution.

We discuss the time complexity of Algorithm 2.

Theorem 9. Algorithm 2 solves sign-balanced 2-LCP of order n in O(n3

log n) time.

Proof. The number of repetitions in Step 3 is at most n since |I| decreases
by one at each repetition. The execution time of each repetition is O(n2)
time by Theorem 7. Therefore, Algorithm 2 takes O(n3) time to go through
Step 3. At Step 4, since the TVPI system (2) has at most 3n inequalities, it
is solvable in O(n3 log n) time by the algorithm of Hochbaum and Naor [20].
This concludes the proof.

Thus Theorem 1 immediately holds from Theorem 9.

Remark 1. The running time of Algorithm 2 can be written as O(n3 +
TLI(n, n)) time, where TLI(m,n) denotes the time complexity for solving a
TVPI system with m constraints and n variables. In other words, Algo-
rithm 2 reduces sign-balanced 2-LCP to sign-balanced TVPI system in O(n3)
time.
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Remark 2. A sign-balanced TVPI system Ax ≤ b, x ≥ 0 where A ∈
Rm×n, b ∈ Rn can be formulated as a sign-balanced 2-LCP instance with

M =

(m n

m 0 −A
n 0 0

)
, q =

(
b
0

)
.

This implies that sign-balanced 2-LCP cannot be solved faster than sign-
balanced TVPI system with nonnegativity constraints, whose current best
running time is O(n3 log n) [20] when m = O(n). Theorem 9 shows that
Algorithm 2 achieves the same running time.

5 Unit sign-balanced 2-LCP

In this section, we discuss the time complexity of unit sign-balanced 2-LCP.
Recall that LCP(M, q) is called unit if M ∈ {0,±1}n×n. We will show that
the running time of Algorithm 1 reduces to O(n2 log n) time.

Let F = {z | Mz + q ≥ 0, z ≥ 0}. The least element of F is the unique
optimal solution of the linear programming problem

min. 1⊤z

s.t. Mz + q ≥ 0, (3)

z ≥ 0,

where recall that 1 is the vector whose elements are all one.
If M ∈ {0,±1}n×n, then the linear programming problem (3) can be

solved more efficiently. First, we introduce a new variable z0, and rewrite
every single-variable constraint in (3) as follows:

• if zi ≤ α, then −zi + z0 ≥ −α,

• if zi ≥ α, then zi − z0 ≥ α.

Let D be a directed graph which has a vertex vi for each variable zi, and an
edge (vj , vi) with length −α for each inequality zi − zj ≥ α.

Then, the dual of (3) is the shortest-path problem from a vertex v0 to
all vertices on the directed graph D. Let d ∈ Rn+1 be the vector where
di is the shortest distance from v0 to vi on D. Note that d0 = 0. The
vector (−d1 · · · −dn)⊤ ∈ Rn is the optimal solution to the original problem
(3). Hence, by solving the shortest-path problem using the Bellman–Ford
algorithm, we can find the least element of F in O(n2) time.

Algorithm 1 finds the least element of F every time F is restricted to
F ∩ {z | (Mz + q)i ≤ 0} for some i ∈ [n]. We can construct the least
element of F ∩ {z | (Mz + q)i ≤ 0} from that of F in O(n log n) time by
an algorithm of Ramalingam, Song, Joskowicz and Miller [28]. If we apply
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their algorithm to find the least element on and after the second iteration at
Step 2 in Algorithm 1, then unit sign-balanced 2-LCP can be solved more
efficiently.

Theorem 10. Algorithm 1 solves unit sign-balanced 2-LCP of order n in
O(n2 log n) time.

This means that Theorem 3 holds.

6 NP-hardness for 2-LCP

In this section, we prove Theorem 2, which says that 2-LCP is NP-hard.
This is contrast to the fact that a TVPI system can be solved in polynomial
time even if the system is not sign-balanced. The NP-hardness can be proved
by reduction of monotone one-in-three 3SAT to 2-LCP.

Given a monotone 3CNF formula ψ =
∧m

j=1(xj1∨xj2∨xj3) with n literals,
the monotone one-in-three 3SAT is a problem to decide whether there exists
an assignment to (x1, . . . , xn) so that for each clause, exactly one literal is
true. The monotone one-in-three 3SAT is introduced and proved to be NP-
complete by Schaefer [30].

We now restate Theorem 2 and present the proof.

Theorem 2. 2-LCP is NP-hard in the strong sense.

Proof. Let ψ =
∧m

j=1(xj1 ∨ xj2 ∨ xj3) be a monotone one-in-three 3SAT
instance with n literals. We construct an instance of 2-LCP of order n+9m
from ψ as follows: for each literal i = 1, . . . , n, define

wi + zi = 1. (4)

Moreover, for each clause j = 1, . . . ,m, letting pj = n+ 9(j − 1), set

wpj+1 + zj2 + zj3 = 1, zj1 + wpj+2 + zj3 = 1, zj1 + zj2 + wpj+3 = 1, (5)

and in addition, set

wpj+4 − zpj+1 − zj1 = −1, wpj+5 + zpj+1 + zj1 = 1,

wpj+6 − zpj+2 − zj2 = −1, wpj+7 + zpj+2 + zj2 = 1, (6)

wpj+8 − zpj+3 − zj3 = −1, wpj+9 + zpj+3 + zj3 = 1.

Consider the instance of 2-LCP consisting of the above constraints (4), (5)
and (6). Note that (6) is equivalent to

zpj+1 + zj1 = 1, zpj+2 + zj2 = 1, zpj+3 + zj3 = 1, (7)

since wpj+ℓ ≥ 0 for ℓ = 4, 5, . . . , 9.
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We denote by M and q the coefficient matrix and the constant vector of
the above instance of LCP. We will show that LCP(M, q) has a solution if
and only if the monotone one-in-three 3SAT instance ψ is a true instance.

First assume that LCP(M, q) has a solution (w, z). By (4), for any
i = 1, . . . , n, it holds that (wi, zi) = (0, 1) or (wi, zi) = (1, 0). Assign each
literal xi true if zi = 1 and false otherwise.

We will claim that x is a truth assignment for ψ, that is, each clause has
exactly one true literal. Indeed, for each clause j, if zj1 = 0 then wpj+1 = 0
by (7) and the complementarity, and hence exactly one of zj2 and zj3 is
equal to one by the first equation in (5). If zj1 = 1 then zj2 = zj3 = 0 by the
second and third equations in (5). Thus each clause has exactly one true
literal.

Conversely, assume that ψ is a true instance. Let x = (x1, . . . , xn) be
a truth assignment of ψ. Define z ∈ Rn+9m as follows: For i = 1, . . . , n,
set zi = 1 if xi is true, and zi = 0 if xi is false. For j = 1, . . . ,m, set
zpj+ℓ = 1 − zjℓ for ℓ = 1, 2, 3 and zpj+ℓ = 0 for ℓ = 4, . . . , 9. Define
w = Mz + q. Then the pair (w, z) satisfies (4), (5) and (6), and w, z ≥ 0
holds.

We claim that the pair (w, z) is a solution of LCP(M, q). To prove this,
it remains to show that the pair (w, z) satisfies w⊤z = 0. For i = 1, . . . , n,
it clearly holds that wizi = 0 by (4). Let j ∈ {1, . . . ,m}. Since the clause
j has exactly one true literal, we may suppose by symmetry that zj1 = 1
and zj2 = zj3 = 0. By (5), it holds that wpj+1 = 1 and wpj+2 = wpj+3 = 0.
On the other hand, we have zpj+1 = 0 and zpj+2 = zpj+3 = 1 by (7),
which means that wpj+ℓzpj+ℓ = 0 for ℓ = 1, 2, 3. For ℓ = 4, . . . , 9, we have
wpj+ℓzpj+ℓ = 0 since zpj+ℓ = 0. Thus the complementarity condition is
satisfied.

Therefore, LCP(M, q) has a solution if and only if ψ is a true instance,
and thus the statement holds.

7 Integer solutions of sparse LCP

In this section, we discuss the computational complexity of integer 2-LCP
and prove Theorem 4. Recall that the integer LCP is the problem to find
two integer vectors w, z satisfying (1) with z ∈ {0, 1, . . . , d− 1}n. As well as
the LCP, it is equivalent to the problem to find a vector z ∈ {0, . . . , d− 1}n
satisfying the three constraints Mz + q ≥ 0, z ≥ 0 and z⊤(Mz + q) = 0.

We first show that integer sign-balanced 2-LCP is weakly NP-hard. This
is proved by reduction from integer sign-balanced TVPI system, which is
shown to be NP-hard by Lagarias [24]. In the proof, we use the fact that
if the integer sign-balanced TVPI system Ax ≤ b, x ∈ Zn is feasible, then
there exists a feasible vector with components of size at most 13(size(A) +
size(b)) [23], where size(A) and size(b) denote the sizes of A and b in the
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binary representation, respectively.

Lemma 3. Integer sign-balanced 2-LCP is NP-hard.

Proof. Let Ax ≤ b, x ∈ Zn be an integer sign-balanced TVPI system. Let
l ∈ Zn be the vector whose elements are all −213(size(A)+size(b)). We add lower
bounds x ≥ l. Then, by replacing x − l with y, the integer sign-balanced
TVPI system is rewritten as Ay +Al− b ≤ 0, y ≥ 0, y ∈ Zn, which can be
formulated as an integer sign-balanced 2-LCP(M, q), where

M =

(
0 −A
0 0

)
, q =

(
−Al + b

0

)
.

LCP(M, q) is polynomially equivalent to the integer sign-balanced TVPI
system.

We then obtain a pseudo-polynomial time algorithm for integer sign-
balanced 2-LCP(M, q) based on the framework of Algorithm 1. Let F =
{z | Mz + q ≥ 0, z ≥ 0, (Mz + q)I ≤ 0} for some I ⊆ [n]. It is known that
F ∩ Zn has the least element as mentioned in Section 2. Instead of finding
the least element of F in Algorithm 1, we find the least element of F ∩ Zn,
which can be computed in O(nd) time [19] by using transformation to 2SAT.
By repeating this at most n+1 times, we can find a solution to LCP(M, q).
Therefore, the following theorem holds.

Theorem 11. Algorithm 1 solves integer sign-balanced 2-LCP of order n in
O(n2d) time, where d is the upper bound of each component of a solution.

Theorem 4 immediately holds by Lemma 3 and Theorem 11.
Note that it remains open to find an integer solution to sign-balanced

2-LCP, i.e., when we do not have upper bounds, in pseudo-polynomial time.
It is known that it is still open even to find an integer solution for TVPI
system without finite bounds in pseudo-polynomial time.

We conclude this section with finding an integer solution to unit sign-
balanced 2-LCP. In this case, we use the same algorithm as unit sign-
balanced 2-LCP. Let us review the linear programming problem (3) in Sec-
tion 5, whose optimal solution is the least element of F . Since the vector q
is integer, the shortest distance d is integer, and so is the optimal solution
to (3). Therefore, the following corollary holds.

Corollary 1. Algorithm 1 solves integer unit sign-balanced 2-LCP of order
n in O(n2 log n) time.

On the other hand, the proof of Theorem 2 implies that integer unit
2-LCP is NP-hard even if d = 2.

Corollary 2. Integer unit 2-LCP is NP-hard.
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8 Extension to the generalized LCP

In this section, we discuss a well-studied generalization of LCPs and its
computational complexity in terms of sparsity. One of generalized prob-
lems of the LCP is the generalized LCP (GLCP), introduced by Cottle and
Dantzig [12].

We denote a matrix N ∈ Rp×n and vectors q, w ∈ Rp of type (p1, . . . , pn)
by

N =


N1

N2

...
Nn

 ∈ Rp×n, q =


q1

q2

...
qn

 , w =


w1

w2

...
wn

 ∈ Rp,

where p =
∑n

i=1 pi, N
i ∈ Rpi×n (i = 1, . . . , n) and qi, wi ∈ Rpi (i = 1, . . . , n).

Given a matrix N and a vector q of type (p1, p2, . . . , pn), the GLCP is
to find vectors w ∈ Rp, z ∈ Rn such that

w −Nz = q, w, z ≥ 0, zi

pi∏
j=1

wi
j = 0 (i = 1, . . . , n).

We similarly define k-GLCP by the GLCP whose coefficient matrix N
has at most k nonzero entries per row.

We now prove Theorem 5 stated in the Introduction.

Theorem 5. 1-GLCP is NP-hard in the strong sense.

Proof. We show this theorem by reduction from the 3SAT problem. Let
ψ =

∧m
j=1(yj1 ∨ yj2 ∨ yj3), where yi ∈ {xi, x̄i}, be an instance of the 3SAT

problem with n literals. We construct an instance of GLCP of order (n +
5m)× (n+2m) from ψ as follows. For each literal i = 1, . . . , n, the ith block
is defined to be only one equation:

wi + zi = 1. (8)

For each clause j = 1, . . . ,m, let kj = n+ 2(j − 1). The (kj + 1)th block is
defined to have three equations:

w
kj+1
ℓ =

{
1− zjℓ if yjℓ = xjℓ
zjℓ if yjℓ = x̄jℓ

(ℓ = 1, 2, 3), (9)

and the (kj + 2)th block is to have two equations:

w
kj+2
1 − zkj+1 = −1 and w

kj+2
2 + zkj+1 = 1. (10)

Observe that, for i = 1, . . . , n, a pair (w, z) of nonnegative vectors sat-
isfies (8) and wizi = 0 if and only if (wi, zi) = (0, 1) or (wi, zi) = (1, 0).
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For j = 1, . . . ,m, note that zkj+1 = 1 holds by (10) and w ≥ 0, and hence
the complementarity condition with respect to kj + 1 means that at least

one of w
kj+1
1 , w

kj+1
2 , and w

kj+1
3 is equal to zero. Hence, if we set xi to be

true if zi = 1 and false if zi = 0, then this is equivalent to that the clause
j is satisfied by (9). Therefore, the GLCP has a solution if and only if ψ is
satisfiable, which shows the statement.
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A Reduction of LCP to 3-LCP

In this section, we will show that any instance of LCP can be rewritten as
an instance of 3-LCP with polynomial size.

Let LCP(M, q) be an instance of k-LCP (k ≥ 4) of order n. We will
construct an equivalent instance LCP(M ′, q′) that is an instance of k′-LCP,
where k′ < k. By repeating the construction until M ′ has at most three
nonzero entries per row, we obtain an instance of 3-LCP.

Suppose that the ith equation wi − (Mz)i = qi is in the form of

wi − (a1z1 + · · ·+ apzp − ap+1zp+1 − · · · − ap+rzp+r) = qi, (11)
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where aj > 0 for j = 1, . . . , p+ r. We may assume that p+ r > 3 , since if
p + r ≤ 3, we do not transform this equation. We also assume that p ≥ r.
The argument for the case when p < r is similar. We transform the system
(11) and w, z ≥ 0 as follows:

Case 1: If r > 1, introducing new twelve variables zi1, . . . , z
i
6, w

i
1, . . . w

i
6, set

wi − (zi1 + zi2 − zi3) = qi, w, z ≥ 0, wi, zi ≥ 0, (12)

and

wi
1 − (zi1 −

⌈p/2⌉∑
j=1

ajzj) = 0, wi
2 − (−zi1 +

⌈p/2⌉∑
j=1

ajzj) = 0,

wi
3 − (zi2 −

p∑
j=⌈p/2⌉+1

ajzj) = 0, wi
4 − (−zi2 +

p∑
j=⌈p/2⌉+1

ajzj) = 0,

wi
5 − (zi3 −

k+l∑
j=k+1

ajzj) = 0, wi
6 − (−zi3 +

k+l∑
j=k+1

ajzj) = 0.

(13)

Case 2: If r = 1, introducing new eight variables zi1, . . . , z
i
4, w

i
1, . . . w

i
4, set

wi − (zi1 + zi2 − zp+1) = qi, w, z ≥ 0, wi, zi ≥ 0, (14)

and

wi
1 − (zi1 −

⌈p/2⌉∑
j=1

ajzj) = 0, wi
2 − (−zi1 +

⌈p/2⌉∑
j=1

ajzj) = 0,

wi
3 − (zi2 −

p∑
j=⌈p/2⌉+1

ajzj) = 0, wi
4 − (−zi2 +

p∑
j=⌈p/2⌉+1

ajzj) = 0.

(15)

Case 3: If r = 0, introduce the same new variables as in Case 2 and set

wi − (zi1 + zi2) = qi, w, z ≥ 0, wi, zi ≥ 0, (16)

and (15).

The new system is equivalent to the system (11) and w, z ≥ 0. Note that
since wi ≥ 0, the system (13) is equivalent to

zi1 =

⌈p/2⌉∑
j=1

ajzj , zi2 =

p∑
j=⌈p/2⌉+1

ajzj , zi3 =

k+l∑
j=k+1

ajzj ,
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and the system (15) is equivalent to

zi1 =

⌈p/2⌉∑
j=1

ajzj , zi2 =

p∑
j=⌈p/2⌉+1

ajzj .

By these equations and the constraint z ≥ 0, the constraint zi ≥ 0 is redun-
dant.

We transform wi − (Mz)i = qi, w, z ≥ 0 for i = 1, . . . , n in the way
above. Let the resulting system be denoted by

w′ −M ′z′ = q′, w′, z′ ≥ 0. (17)

We claim that LCP(M ′, q′) is equivalent to LCP(M, q). Indeed, the
system w −Mz = q, w, z ≥ 0 is equivalent to the system (17). Moreover,
any feasible solution to the system (17) satisfies wi = 0 for i = 1, . . . , n.
Therefore, it holds that LCP(M ′, q′) has a solution if and only if LCP(M, q)
has a solution.

The resulting LCP(M ′, q′) is an instance of k′-LCP where k′ < k. As in
(12)–(16), each equation in w′−M ′z′ = q′ has at most max(3, 1+ ⌈p/2⌉, 1+
r) ≤ max(3, 1+(p+r+1)/2) < p+r nonzero coefficients, by the assumption
that p+ r > 3 and p ≥ r.

It remains to show that the transformation is performed O(n3) times
until the resulting LCP(M ′, q′) is an instance of 3-LCP, and that the row
sizes of M ′ and q′ are also O(n3). Note that Case 1 is performed only
at the first transformation. After the kth repetition, it is observed that the
maximum number of nonzero elements per row inM ′ is at most max(3, 3(1−
1/2k) + n/2k). For each equation in the original LCP, at most six new
equations are generated at the first transformation, and then four equations
are generated at the kth repetition, where k > 1. Thus, after transforming
⌈log n⌉ times, we obtain the 3-LCP(M ′, q′), whose order is equal to the sum
of the order of the original LCP and the number of generated equations,
that is, n+ n× 6× 4logn+1 = O(n3).
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