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Triangle-free 2-matchings and

M-concave Functions on Jump Systems

Yusuke Kobayashi∗

Abstract

For an undirected graph and a fixed integer k, a 2-matching is said to be Ck-free if it
has no cycle of length k or less. The problem of finding a maximum cardinality Ck-free
2-matching is polynomially solvable when k ≤ 3, and NP-hard when k ≥ 5. It is known
that the polynomial solvability of this problem is closely related to jump systems. Indeed,
the degree sequences of the Ck-free 2-matchings form a jump system for k ≤ 4, and do not
always form a jump system for k ≥ 5.

As a quantitative extension of these results, we investigate a relationship between weighted
Ck-free 2-matchings and M-concave functions on constant-parity jump systems. It is known
that the weighted Ck-free 2-matchings induce an M-concave function on a constant-parity
jump system for k ≤ 2, and it is not always true for k ≥ 4, which is consistent with the poly-
nomial solvability of the maximization problem. In this paper, we show that the weighted
C3-free 2-matchings induce an M-concave function on a constant-parity jump system.

Keywords: Triangle-free 2-matching, Degree sequence, Jump system, M-concave
function

1 Introduction

In an undirected graph, an edge set M is said to be a 2-matching if each vertex is incident to
at most two edges in M (it is usually called a simple 2-matching in the literature). We say that
a 2-matching M is Ck-free if M contains no cycle of length k or less. The condition “C3-free”
is sometimes referred to as “triangle-free”. The Ck-free 2-matching problem is to find a Ck-free
2-matching of maximum size in a given graph. Note that the case k ≤ 2 is exactly the classical
simple 2-matching problem, which can be solved efficiently. Papadimitriou showed that the
Ck-free 2-matching problem is NP-hard for k ≥ 5 (see [5]). On the other hand, Hartvigsen [7]
proved that the problem is polynomial-time solvable for k = 3. The case k = 4 is left open.

The relationship between jump systems and Ck-free 2-matchings was investigated in [4, 10].
A jump system, introduced by Bouchet and Cunningham [3], is a set of integer lattice points
with an exchange property (see Section 2). It is a generalization of a matroid, a delta-matroid,
and a base polyhedron of an integral polymatroid (or a submodular system). Many efficiently
solvable combinatorial optimization problems closely relate to these structures. Cunningham [4]
proved that the degree sequences of the Ck-free 2-matchings form a jump system for k ≤ 3,
and do not always form a jump system for k ≥ 5. Later, it was shown in [10] that the degree
sequences of the C4-free 2-matchings form a jump system.
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In this paper, we consider the edge-weighted version. The concept of M-concave (M-convex)
functions on constant-parity jump systems is a general framework of optimization problems
on jump systems [13] (see Section 2 for a definition), and it is a generalization of valuated
matroids, valuated delta-matroids, and M-convex functions on base polyhedra. It is known
that the Ck-free 2-matchings induce an M-concave function on a constant-parity jump system
for k ≤ 2 [13], and it is not always true for k ≥ 4 [10]. These results are consistent with the
polynomial-time solvability of the weighted Ck-free 2-matching problem in the sense that this
problem is NP-hard when k ≥ 4 (see [2, 6]) and polynomial-time solvable when k = 2. The case
when k = 3 is still open.

In this paper, we show that the weighted C3-free 2-matchings induce an M-concave function
on a constant-parity jump system. This generalizes the result in [8], which shows the same
result in subcubic graphs.

We note that a polynomial-time algorithm for the (resp. weighted) Ck-free 2-matching prob-
lem does not imply that the (resp. weighted) Ck-free 2-matchings induce a jump system (resp. an
M-concave function on a jump system), and vice versa. On the other hand, the fact that the
degree sequences form a matroidal structure such as a jump system has a potential to be used
in a polynomial-time algorithm (see e.g. [2, 8]). Besides the theoretical interest on discrete
structures, this motivates us to consider the relationship between Ck-free 2-matchings and a
jump system (or an M-concave function on a jump system).

2 Preliminaries

2.1 Triangle-free 2-matchings

Let G = (V,E) be an undirected graph with vertex set V and edge set E. Let δ(v) denote the
set of edges incident to v ∈ V , and the degree of v is |δ(v)|. The degree sequence of an edge set
F ⊆ E is the vector dF ∈ ZV defined by dF (v) = |δ(v) ∩ F |. An edge set M ⊆ E is said to be
a 2-matching if dM (v) ≤ 2 for every v ∈ V . In other words, a 2-matching is a vertex-disjoint
collection of paths and cycles. An edge set M ⊆ E is said to be triangle-free (or C3-free) if M
contains no cycle of length three or less as a subgraph. In a graph with a weight function w on
the edge set, the weighted triangle-free 2-matching problem is to find a triangle-free 2-matching
M maximizing w(M) :=

∑
e∈M w(e). It is unknown whether or not the weighted triangle-free

2-matching problem can be solved in polynomial time.

2.2 Jump systems

Let V be a finite set. For u ∈ V , we denote by χu the characteristic vector of u, with χu(u) = 1
and χu(v) = 0 for v ∈ V \ {u}. For x, y ∈ ZV , a vector s ∈ ZV is called an (x, y)-increment if
x(u) < y(u) and s = χu for some u ∈ V , or x(u) > y(u) and s = −χu for some u ∈ V . We say
that a nonempty set J ⊆ ZV is a jump system if it satisfies the following [3]:

For any x, y ∈ J and for any (x, y)-increment s with x + s ̸∈ J , there exists an
(x+ s, y)-increment t such that x+ s+ t ∈ J .

A set J ⊆ ZV is a constant-parity system if x(V ) − y(V ) is even for any x, y ∈ J . Here
x(S) =

∑
v∈S x(v) for x ∈ ZV and S ⊆ V . For constant-parity jump systems, Geelen showed

that a nonempty set J is a constant-parity jump system if and only if it satisfies the following
(see [13] for details):

(EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t
such that x+ s+ t ∈ J and y − s− t ∈ J .
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A constant-parity jump system is a generalization of the base family of a matroid, an even
delta-matroid, and a base polyhedron of an integral polymatroid (or a submodular system).

The degree sequences of all subgraphs in an undirected graph are a typical example of a
constant-parity jump system [3, 12]. Cunningham [4] showed that the set of degree sequences of
all Ck-free 2-matchings is a jump system for k ≤ 3, but not a jump system for k ≥ 5. Kobayashi,
Szabó, and Takazawa [10] showed that it is also a jump system when k = 4.

2.3 M-concave functions

An M-concave function on a constant-parity jump system is a quantitative extension of a jump
system, which is a generalization of valuated matroids, valuated delta-matroids, and M-concave
functions on base polyhedra.

Definition 1 (M-concave function on a constant-parity jump system [13]). For J ⊆ ZV , we call
f : J → R an M-concave function on a constant-parity jump system if it satisfies the following
exchange axiom:

(M-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x+ s, y)-increment
t such that x+ s+ t ∈ J , y − s− t ∈ J , and f(x) + f(y) ≤ f(x+ s+ t) + f(y − s− t).

It directly follows from (M-EXC) that J satisfies (EXC), and hence J is a constant-parity
jump system. For simplicity, we identify f : J → R with a function f ′ : ZV → R ∪ {−∞}
defined by f ′(x) = f(x) for x ∈ J and f ′(x) = −∞ for x ∈ ZV \ J .

M-concave functions on constant-parity jump systems appear in many combinatorial opti-
mization problems such as the weighted matching problem, the minsquare factor problem [1], the
weighted even factor problem in odd-cycle-symmetric digraphs [11], and the weighted square-
free 2-matching problem [10]. Some maximization algorithms are proposed in [14, 15] and some
properties of M-concave functions are investigated in [9]. In particular, it is shown in [9] that
M-concave functions are closed under an operation called convolution, which is a quantitative
extension of sum. For two functions f1 : Z

V → R∪{−∞} and f2 : Z
V → R∪{−∞}, we define

their convolution as a function f1□f2 : Z
V → R ∪ {+∞,−∞} given by

(f1□f2)(x) = sup{f1(x1) + f2(x2) | x1 + x2 = x, x1 ∈ ZV , x2 ∈ ZV }.

The following theorem plays an important role in this paper.

Theorem 1 (Kobayashi et al. [9]). If f1 and f2 are M-concave functions then their convolution
f1□f2 is M-concave, provided f1□f2 < +∞.

3 Our result

For a graph G = (V,E), let Jtri(G) ⊆ ZV denote the set of all degree sequences of triangle-free
2-matchings in G, that is,

Jtri(G) = {dM | M is a triangle-free 2-matching in G}.

It is shown in [4] that Jtri(G) is always a constant-parity jump system. For a weighted graph
(G,w), define a function ftri on Jtri(G) by

ftri,G(x) = max

{
w(M)

∣∣∣∣ M is a triangle-free 2-matching, dM = x

}
,

where w(F ) =
∑

e∈F w(e) for an edge set F ⊆ E. Our main theorem is stated as follows.
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Theorem 2. For a graph G = (V,E) with a weight function w : E → R, ftri is an M-concave
function on the constant-parity jump system Jtri(G).

Note that the same result was shown in [8] for subcubic graphs. We also note that since
we do not have a polynomial-time algorithm to compute ftri,G(x), this result does not imply a
polynomial-time algorithm for the weighted C3-free 2-matching problem. However, our result
has a potential to be used in a polynomial-time algorithm (see e.g. [2, 8]).

The rest of this paper is devoted to the proof of Theorem 2. Since we consider triangle-free
2-matchings, we may assume that the given graph G is simple. In what follows in this paper,
when we deal with a graph with parallel edges, we call it a multigraph.

4 Applying induction

To show Theorem 2, we use the induction on the number of edges of G. That is, for a graph
G = (V,E), we show that ftri,G is an M-concave function under the assumption that ftri,G′ is
an M-concave function for any graph G′ that has fewer edges than G.

4.1 Induction step: applying the convolution

In this subsection, we consider the case when there exists a partition (E1, E2) of the edge set E
such that any triangle C ⊆ E is contained in either E1 or E2. In this case, an edge set M ⊆ E
is triangle-free if and only if M ∩ Ei is triangle-free in Gi = (V,Ei) for i = 1, 2. With this
observation, we have

ftri,G = ftri,G1□ftri,G2 .

Since ftri,Gi is an M-concave function by induction hypothesis, ftri,G is also an M-concave
function by Theorem 1.

Therefore, in what follows, we assume that for any partition (E1, E2) of E, there exists a
triangle C ⊆ E that intersects both E1 and E2.

4.2 Finding an (x+ s, y)-increment

For given degree sequences x, y ∈ Jtri(G), take triangle-free 2-matchings M,N ⊆ E such that
dM = x, dN = y, ftri,G(x) = w(M), and ftri,G(y) = w(N). In order to prove Theorem 2,
we show that for any (x, y)-increment s, there exists an (x + s, y)-increment t satisfying the
conditions in (M-EXC).

4.2.1 Induction step: removing irrelevant edges

Assume that there exists an edge e ∈ E\(M∪N). In such a case, for a graphG′ := G−e, we have
ftri,G′(x) = w(M) = ftri,G(x) and ftri,G′(y) = w(N) = ftri,G(y). Since ftri,G′ is an M-concave
function by induction hypothesis, for any (x, y)-increment s, there exists an (x+s, y)-increment
t such that x+ s+ t, y − s− t ∈ Jtri(G

′) ⊆ Jtri(G) and

ftri,G(x) + ftri,G(y) = ftri,G′(x) + ftri,G′(y)

≤ ftri,G′(x+ s+ t) + ftri,G′(y − s− t)

≤ ftri,G(x+ s+ t) + ftri,G(y − s− t).

This shows that there exists an (x+ s, y)-increment t satisfying the conditions in (M-EXC).
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4.2.2 Enumeration of base cases

If ∥x−y∥1 = 2, then t = y−x−s is an (x+s, y)-increment satisfying the conditions in (M-EXC).
Thus, by the arguments in Sections 4.1 and 4.2.1, it suffices to consider the case when G, x, y,M
and N satisfy the following conditions.

(1) For any partition (E1, E2) of E, there is a triangle C ⊆ E that intersects both E1 and E2,

(2) E = M ∪N , and

(3) ∥x− y∥1 ≥ 4.

By the second and third conditions, the following condition is also satisfied:

(4) the degree of each vertex of G is at most four and ∥4χV − dE∥1 ≥ 4.

Here, χV is a vector in ZV whose every element is one.
Now, we enumerate all graphs satisfying the conditions (1) and (4). We begin with the

following lemma.

Lemma 3. If a graph with at least two edges and no isolated vertices satisfies the condition (1),
then it can be obtained from a triangle by applying the following operations repeatedly.

(I) Add an edge e to a graph G′ = (V ′, E′) so that e is contained in a triangle in G′ + e.

(II) Add a new vertex u and two new edges uv1 and uv2 to a graph G′ = (V ′, E′) such that
v1, v2 ∈ V ′ and v1v2 ∈ E′.

(III) Add two new edges uv1 and uv2 to a graph G′ = (V ′, E′), where u, v1, v2 ∈ V ′, v1v2 ∈ E′,
and uv1, uv2 ̸∈ E′.

Proof. If a graph G = (V,E) has at least two edges and satisfies the condition (1), then it must
contain a triangle. For any subgraph G′ = (V ′, E′) of G, since there exists a triangle C ⊆ E
that intersects both E′ and E \ E′, we can apply one of the the operations (I), (II), and (III)
to G′. By using this argument repeatedly, we can construct G from a triangle.

Let G′′ = (V ′′, E′′) be the graph obtained from G′ = (V ′, E′) by applying one of the
operations (I), (II), and (III) in Lemma 3, and suppose that the degree of each vertex is at most
four in G′ and G′′. Then, we can see that

• if we apply the operation (I), then ∥4χV ′′ − dE′′∥1 = ∥4χV ′ − dE′∥1 − 2,

• if we apply the operation (II), then ∥4χV ′′ − dE′′∥1 = ∥4χV ′ − dE′∥1, and

• if we apply the operation (III), then ∥4χV ′′ − dE′′∥1 = ∥4χV ′ − dE′∥1 − 4.

With this observation, we have the following.

Lemma 4. If a graph with at least two edges and no isolated vertices satisfies the conditions (1)
and (4), then it is obtained from a triangle by applying the operations (I) and (II), repeatedly.
Furthermore, the operation (I) is executed at most once.

Proof. By Lemma 3, we can construct G from a triangle by applying the operations (I), (II),
and (III), repeatedly. For a triangle C = (V0, E0), it holds that ∥4χV0 − dE0∥1 = 6. Since
∥4χV −dE∥1 ≥ 4 by the condition (4), we cannot apply (I) more than once and we cannot apply
(III).
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By this lemma, we can enumerate all graphs satisfying the conditions (1) and (4) as in
Figure 1, which shows the following proposition.

Proposition 5. If a graph with at least two edges and no isolated vertices satisfies the conditions
(1) and (4), then it is one of the followings.

• G1, G2, . . . , G7, where each graph is shown in Figure 1.

• Hi for some i ≥ 1, where Hi is the graph consisting of i triangles as in Figure 1.

Since we may assume that the graph G has at least two edges and no isolated vertices, it
suffices to consider the case when G is one of the graphs in this proposition. Here, we note
that M and N might share an edge. By the conditions (2) and (3), if M and N share an edge,
then G = Hi for some i ≥ 1 and exactly one edge is contained in M ∩ N . In such a case, we
suppose that M and N are edge-disjoint by regarding G as a multigraph H ′

i (i ≥ 1), where H ′
i

is obtained from Hi by duplicating one edge as in Figure 2. Thus, we may assume that M and
N are edge-disjoint, and our remaining task is to find an (x+ s, y)-increment t when the given
(multi)graph is one of G1, . . . , G7, Hi (i ≥ 1), and H ′

i (i ≥ 1), which is discussed in the next
section.

5 Base cases

In this section, we find an (x+s, y)-increment t when the given (multi)graph is one of G1, . . . , G7,
Hi (i ≥ 1), and H ′

i (i ≥ 1), and we are given x, y,M,N , and s satisfying the conditions (1), (2),
(3), and (4). We first show that G1, . . . , G7, Hi (i ≥ 1), and H ′

i (i ≥ 1) have a nice property
called universality, and then we show that there exists an (x+s, y)-increment in every universal
multigraph. We say that a multigraph G = (V,E) is universal with respect to triangle-free
2-matchings if for any x, y ∈ Jtri(G) with x + y = dE , there exist edge-disjoint triangle-free
2-matchings M and N such that dM = x, dN = y, and M ∪N = E.

5.1 Universality of Gi

In this subsection, we show the universality of Gi.

Lemma 6. Graphs G1, . . . , G7 are universal with respect to triangle-free 2-matchings.

Proof. We consider each graph separately.

1. Consider the graph G1 = (V,E). If x, y ∈ Jtri(G1) satisfy x + y = dE , then {x, y} =
{(1, 1, 1, 1), (2, 2, 2, 2)} or {(1, 1, 2, 2), (2, 2, 1, 1)} (by relabeling vertices if necessary). Thus,
G1 is universal with respect to triangle-free 2-matchings by Figure 3.

2. Consider the graph G2 = (V,E). Let v1, v2, v3, v4 and v5 be vertices of G2 as in Fig-
ure 3. If x, y ∈ Jtri(G2) satisfy x + y = dE , then {x, y} = {(1, 1, 2, 2, 0), (2, 2, 2, 2, 2)},
{(1, 1, 2, 2, 2), (2, 2, 2, 2, 0)}, or {(1, 2, 2, 2, 1), (2, 1, 2, 2, 1)}. Thus, G2 is universal with re-
spect to triangle-free 2-matchings by Figure 3.

3. Consider the graph G3 = (V,E). Let v1, v2, v3, v4 and v5 be vertices of G3 as in Fig-
ure 3. If x, y ∈ Jtri(G3) satisfy x+ y = dE , then {x, y} = {(2, 2, 2, 2, 0, 0), (2, 2, 2, 2, 2, 2)},
{(2, 2, 2, 2, 0, 2), (2, 2, 2, 2, 2, 0)}, or {(2, 2, 2, 2, 1, 1), (2, 2, 2, 2, 1, 1)}. Thus, G3 is universal
with respect to triangle-free 2-matchings by Figure 3.
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H1

H2

H3

H4

H5

H6

(II)

(II)

(II)

(II)

(II)

(II)

(I) (II) (II)

(I)

(II)

(I)

(I)

(II)

G1 G2 G3

G5

G4

G6

(I)
(I)

G7

(II)

(I)

Figure 1: Graphs satisfying the conditions (1) and (4)
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Hi’

v1

vi+2

vi+1

vi

vi-1

vi-2

v3 v5

v2 v4

Figure 2: Definition of H ′
i

4. Consider the graph G4 = (V,E). Let v1, v2, v3, v4 and v5 be vertices of G4 as in Fig-
ure 3. If x, y ∈ Jtri(G4) satisfy x + y = dE , then {x, y} = {(1, 1, 1, 1, 2), (2, 2, 2, 2, 2)},
{(1, 1, 2, 2, 2), (2, 2, 1, 1, 2)}, or {(1, 2, 1, 2, 2), (2, 1, 2, 1, 2)} (by relabeling vertices if neces-
sary). Thus, G4 is universal with respect to triangle-free 2-matchings by Figure 3.

5. Consider the graph G5 = (V,E). Let v1, v2, v3, v4, v5 and v6 be vertices of G5 as in Fig-
ure 3. If x, y ∈ Jtri(G5) satisfy x+y = dE , then {x, y} = {(0, 1, 1, 2, 2, 2), (2, 1, 1, 2, 2, 2)} or
{(0, 2, 2, 2, 2, 2), (2, 0, 0, 2, 2, 2)} (by relabeling vertices if necessary). Note that (0, 0, 0, 2, 2, 2)
is not in Jtri(G5). Thus, G5 is universal with respect to triangle-free 2-matchings by Fig-
ure 3.

6. Consider the graph G6 = (V,E). Let v1, v2, v3, v4, v5 and v6 be vertices of G6 as in Fig-
ure 3. If x, y ∈ Jtri(G6) satisfy x+ y = dE , then {x, y} = {(1, 1, 2, 2, 2, 2), (2, 2, 2, 2, 2, 0)},
{(1, 1, 2, 2, 2, 0), (2, 2, 2, 2, 2, 2)}, or {(1, 2, 2, 2, 2, 1), (2, 1, 2, 2, 2, 1)}. Thus, G6 is universal
with respect to triangle-free 2-matchings by Figure 3.

7. Consider the graph G7 = (V,E). Let v1, v2, v3, v4, v5, v6 and v7 be vertices of G7 as in Fig-
ure 3. If x, y ∈ Jtri(G7) satisfy x+y = dE , then {x, y} = {(2, 2, 2, 2, 2, 0, 2), (2, 2, 2, 2, 2, 2, 0)},
{(2, 2, 2, 2, 2, 1, 1), (2, 2, 2, 2, 2, 1, 1)}, or {(2, 2, 2, 2, 2, 0, 0), (2, 2, 2, 2, 2, 2, 2)}. Thus, G7 is
universal with respect to triangle-free 2-matchings by Figure 3.

By the above cases, we obtain the lemma.

5.2 Universality of Hi

In this subsection, we show the universality of Hi.

Lemma 7. For i ≥ 1, Hi is universal with respect to triangle-free 2-matchings.

Proof. We can easily see that H1 is universal with respect to triangle-free 2-matchings. Consider
the graph Hi = (V,E) for some fixed i ≥ 2. Let v1, v2, . . . , vi, vi+1, and vi+2 be vertices of Hi

as in Figure 4. If x, y ∈ Jtri(Hi) satisfy x+ y = dE , then {x, y} is equal to one of the followings
by relabeling vertices if necessary:

{(0, 1, . . . , 1, 0), (2, 2, . . . , 2, 2)}, {(0, 1, . . . , 1, 2), (2, 2, . . . , 2, 0)},
{(0, 1, . . . , 2, 1), (2, 2, . . . , 1, 1)}, {(0, 2, . . . , 1, 1), (2, 1, . . . , 2, 1)},
{(0, 2, . . . , 2, 0), (2, 1, . . . , 1, 2)}, {(1, 1, . . . , 1, 1), (1, 2, . . . , 2, 1)}.

Note that x(vj) = y(vj) = 2 for j = 3, 4, . . . , i. We also note that (0, 2, 2, 0), (2, 2, 2, 0) ̸∈ Jtri(H2)
and (0, 2, 2, 2, 0) ̸∈ Jtri(H3), which means that we do not have to consider the cases with these
degree sequences. For each case, there exist edge-disjoint triangle-free 2-matchings M and N
such that dM = x, dN = y, and M ∪ N = E as in Figure 4, which shows that Hi is universal
with respect to triangle-free 2-matchings.
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M
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v4
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v3

v5

G3

v4

v1 v2

v3

v5

v6
G3

v4

v1 v2

v3

v5

v6
G4

v4

v1 v2

v3

v5

G6

G7

v4

v1 v2

v3

v5

v6

v7

v1 v2

v4 v3

v6

v5

G6

v4

v1 v2

v3

v5

v6

G6

v4

v1 v2

v3

v5

v6

G7v7

v1 v2

v4 v3

v6

v5

G7v7

v1 v2

v4 v3

v6

v5

G5

v1 v2

v3

v4v5

v6

G5

v1 v2

v3

v4v5

v6

Figure 3: Universality of G1, . . . , G7
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Figure 4: Universality of Hi

5.3 Universality of H ′
i

In this subsection, we show the universality of H ′
i.

Lemma 8. For i ≥ 1, H ′
i is universal with respect to triangle-free 2-matchings.

Proof. We can easily see that H ′
1 is universal with respect to triangle-free 2-matchings. Consider

the multigraph H ′
i = (V,E) for some fixed i ≥ 2. Let v1, v2, . . . , vi, vi+1, and vi+2 be vertices

of H ′
i as in Figure 5. If x, y ∈ Jtri(H

′
i) satisfy x + y = dE , then {x, y} is equal to one of the

followings:

{(1, 2, . . . , 1, 0), (2, 2, . . . , 2, 2)}, {(1, 2, . . . , 1, 2), (2, 2, . . . , 2, 0)},
{(1, 2, . . . , 2, 1), (2, 2, . . . , 1, 1)}.

Note that x(vj) = y(vj) = 2 for j = 2, 3, . . . , i. We also note that (2, 2, 2, 0) ̸∈ Jtri(H2), which
means that we do not have to consider the case with this degree sequence. For each case, there
exist triangle-free 2-matchings M and N such that dM = x, dN = y, and M ∪ N = E as in
Figure 5, which shows that H ′

i is universal with respect to triangle-free 2-matchings.

5.4 Finding an (x+ s, y)-increment in universal multigraphs

In this subsection, we show that there exists an (x + s, y)-increment in every universal multi-
graph.

Lemma 9. Suppose that a multigraph G = (V,E) is universal with respect to triangle-free 2-
matchings. For any edge-disjoint triangle-free 2-matchings M and N in G with M ∪ N = E,
dM = x, and dN = y and for any (x, y)-increment s, there exists an (x+ s, y)-increment t such
that w(M) + w(N) ≤ ftri,G(x+ s+ t) + ftri,G(y − s− t).

Proof. Since Jtri(G) is a jump system [4], there exists an (x + s, y)-increment t such that
x+s+ t, y−s− t ∈ Jtri(G). Since G is universal with respect to triangle-free 2-matchings, there
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Figure 5: Universality of H ′
i

exist edge-disjoint triangle-free 2-matchings M ′ and N ′ such that dM ′ = x+s+t, dN ′ = y−s−t,
and M ′ ∪N ′ = E. This shows that

w(M) + w(N) = w(M ′) + w(N ′) ≤ ftri,G(x+ s+ t) + ftri,G(y − s− t),

which completes the proof.

Suppose that we are given a multigraph G that is universal with respect to triangle-free
2-matchings and degree sequences x, y ∈ Jtri(G). Let M,N ⊆ E be triangle-free 2-matchings
such that dM = x, dN = y, ftri,G(x) = w(M), and ftri,G(y) = w(N), and assume that M and
N are edge-disjoint and they satisfy the conditions (1), (2), (3), and (4). In this case, for any
(x, y)-increment s, there exists an (x+ s, y)-increment t such that

ftri,G(x) + ftri,G(y) = w(M) + w(N) ≤ ftri,G(x+ s+ t) + ftri,G(y − s− t)

by Lemma 9. Therefore, by Lemmas 6, 7, and 8, we can see that there exists an (x + s, y)-
increment t when the given (multi)graph G is one of G1, . . . , G7, Hi (i ≥ 1), and H ′

i (i ≥ 1).
By combining these base cases and the arguments in Section 4, we obtain Theorem 2.
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