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Hyundong Shin, Shahram Yousefi

Abstract

This paper reveals a previously-unknown infinite linear combination of Gamma distributions with

simple coefficients for the symbol-detection signal-to-noise ratio (SNR) in multiple-input/multiple-output

(MIMO) communications employing spatial multiplexing and zero-forcing detection (ZF), whereby the

intended (detected) and interfering symbol streams experience correlated Rician and Rayleigh fading,

respectively. Our derivation of the exact moment generating function (m.g.f.) of the ZF SNR for the

Rician-fading stream bypasses the noncentral-Wishart distribution, whose intractability has required

previously approximation with a central-Wishart distribution of equal mean. We also express exactly

the ZF SNR moments and probability density function, as well as the ZF average error probability,

outage probability, and ergodic capacity. Numerical results from analysis and Monte Carlo simulations

confirm the accuracy of our new expressions and reveal that the symbol-detection performance for the

Rician-fading stream is: 1) unaffected by the ‘direction’ of the channel-vector mean, 2) unaffected by

transmit-correlation, at realistic K values (unlike for Rayleigh–Rayleigh fading), 3) seriously degraded

by Rayleigh-fading interference even for large K, which is of concern in heterogeneous networks.
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I. INTRODUCTION

A. Background, Motivation, and Assumptions

Multiple-input/multiple-output (MIMO) wireless communication theory, simulation, and im-

plementation have demonstrated that substantial performance gains are possible by suitable signal

processing at the transmit and receive antennas [1] [2] [3] [4] [5] [6] [7] [8]. In single-user (SU)

MIMO systems, a multi-antenna base-station communicates in each time–frequency slot with a

sole mobile station that uses multiple antennas. On the other hand, in multi-user (MU) MIMO

systems, the multi-antenna base-station communicates with several mobile stations (i.e., spatial

multiple access [4]), with each employing one or several antennas. Spatial multiplexing, whereby

streams of symbols are transmitted from each antenna, enhances data rate [4].

Although SU and MU MIMO spatial multiplexing have already been standardized in modern

wireless systems [5] [9] [10] [11], the effects of realistic propagation features, e.g., a channel

matrix with nonzero mean and correlation, on performance are not yet fully understood even for

low-complexity linear symbol-detection methods, e.g., zero-forcing detection (ZF) and minimum

mean-square error detection (MMSE) [12]. The former cancels interstream interference but may

enhance the noise, whereas the latter balances interference and noise but requires knowledge of

the noise variance1. Whereas MMSE is often adopted in baseline performance evaluations of

MIMO [5] [10] [11], it is also difficult to analyze [14] [15] [13] [16] [17] [18]. Thus, we focus

herein on analyzing ZF, and leave MMSE for future work.

Conventionally, MIMO ZF performance has been studied for simple channel models, e.g.,

Rayleigh fading and zero spatial correlation [19] [20] [21] [22] [23]. However, the state-of-the-

art WINNER II channel model [24] [25] has revealed that measured fading is characterized by

the Rician distribution. Then, the mean and correlation of the complex Gaussian fading gains are

determined by the scenario-dependent values of the K-factor and azimuth spread (AS) [26]. The

AS represents the second central moment of the power azimuth spectrum, which is typically

assumed to be of Laplacian type, e.g., in WINNER II. Other empirically-based closed-form

expressions that accurately relate the power azimuth spectrum to important scenario parameters

have also been proposed — see [27] and references therein.

1Note that, since the streams are detected independently, by regarding one stream as intended and the remaining as interfering,

MMSE and optimum combining are equivalent [13, Remark, p. 2349].
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In addition, only approximate analyses of ZF are available when all streams encounter Rician

fading, with [26] [28] [29] [30] exploiting an approximation of the intractable noncentral-Wishart

matrix distribution with a central-Wishart matrix distribution of equal mean, as proposed in [31].

Thus, Siriteanu et al. [26] derived for MIMO ZF an approximate average error probability (AEP)

expression from the moment generating function (m.g.f.) of the Gamma-distributed approxima-

tion of the symbol-detection signal-to-noise ratio (SNR). However, as explained in [26] and later

in this paper, this approximation is unreliable. Therefore, our motivation herein is to provide the

first exact (i.e., reliable) ZF analysis, by circumventing the Wishart distribution approximation.

We assume zero receive-correlation, which is realistic for widely-spaced receive-antennas

immersed in rich scattering. This assumption also helps ensure analytical tractability [19] [20]. On

the other hand, nonzero transmit-correlation is allowed, which is relevant for: 1) SU MIMO with

insufficient transmit-antenna spacing or narrow transmit-AS, and 2) MU MIMO with streams

from different mobile stations experiencing correlated fading [24]. Nevertheless, we shall find

that the transmit-correlation has little effect on ZF performance for realistic Rician fading.

We also consider the following realistic fading model: only the intended stream (i.e., detected

stream, whose symbol-detection performance is analyzed and simulated herein) encounters Rician

fading, whereas the unintended (i.e., interfering) streams encounter Rayleigh fading. This scenario

is referred to herein as Rician–Rayleigh fading2. Analyses of MIMO optimum combining and

maximal ratio combining (MRC) have appeared in [13] [15] [32] [33] based on this Rician–

Rayleigh fading model, which was supported there by the view that intended and interfering

streams propagate as line-of-sight and non-line-of-sight, respectively, in microcellular and indoor

environments. The Rician–Rayleigh assumption is also relevant for heterogeneous network [11],

as envisioned in [34] [35] [36] based on the following standard femtocell–macrocell interference

scenarios proposed in [37] [38] [39] [40]: 1) intended stream from an indoor femtocell user and

interfering streams from outdoor mobile macrocell users reach multi-antenna femtocell base-

station; 2) intended stream from the femtocell base-station and interfering streams from macrocell

base-stations reach the multi-antenna femtocell user-station.

Note that ZF is applicable only when the number of receive antennas NR is not smaller than

the number of transmitted streams NT, i.e., NR ≥ NT, so that we can compute a crucial matrix

2Or, simply, as Rician fading. On the other hand, Rayleigh–Rayleigh fading is also referred to herein as Rayleigh fading.
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inverse that enters the ZF definition [2, p. 153]. But, although our derivations herein require the

assumption NR ≥ NT, our results also apply for NR < NT if the contributions from NT − NR

interferers can be compounded with the receiver noise into a zero-mean white Gaussian vector.

B. Previous Work. Contributions

For transmit-correlated Rayleigh–Rayleigh fading, Gore et al. [19] showed that the ZF SNR is

Gamma distributed by using the central-Wishart distribution of the matrix that appears in the SNR

expression commonly used in ZF analyses [19, Eq. (5)]. This matrix has a noncentral-Wishart

distribution when any of the streams encounter Rician fading, rendering intractable the derivation

of the exact SNR distribution as in [19]. The approximation with a central-Wishart-distributed

matrix of equal mean employed in [28] [29] [30] has been found fairly reliable for the case of a

rank-one channel-matrix mean that is formed as an outer-product of the transmit and receive array

steering vectors [26]. Although the channel-matrix mean is also rank-one for Rician–Rayleigh

fading, our numerical results herein reveal that the Wishart distribution approximation is then

unreliable. Thus, we have sought to bypass the Wishart distribution by recasting the ZF SNR in

a more tractable form than the conventional ratio form [19, Eq. (5)].

Thus, we have found that Kang and Alouini expressed the signal-to-interference ratio for

MIMO optimum combining as a Hermitian form with separated intended and interfering contri-

butions, in [33, Eq. (7)], for receive-correlated Rician–Rayleigh fading in an interference-limited

scenario (i.e., NR < NT), and derived its probability density function (p.d.f.) by using James’

result [33, Theorem 1] on the distribution of a Hermitian-like form. For ZF, Kiessling and Speidel

were the first to cleverly recast the SNR for transmit-correlated Rayleigh–Rayleigh fading as

the Hermitian form in [20, Eq. (7)], which conveniently separates, similarly but not exactly as

for optimum combining in [33, Eq. (7)], the intended and interfering contributions: the vector

accounts for the intended channel vector, whereas the matrix, which is idempotent3, accounts for

the interfering channel vectors. This Hermitian-form expression for the ZF SNR is little-known

compared to [19, Eq. (5)], but has appeared in [17, Eq. (15)] [41, Eq. (38)].

Now, in general, m.g.f. derivation for a Hermitian form in a random vector and a random matrix

requires tedious averaging over both. Averaging over the random matrix requires averaging over

3Matrix A is idempotent if A2 = A. Its eigenvalue matrix is then idempotent. Thus, its eigenvalues are either 0 or 1.
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its eigenvalues and eigenvectors. Such a derivation is illustrated by McKay et al. in [15], and the

resulting expression of the m.g.f. for the signal-to-interference-plus-noise of optimum combining

in (uncorrelated) Rician–Rayleigh is very complicated [15, Eqs. (13)-(19)]. Basnayaka et al.

[41] followed the same approach for ZF in Rayleigh–Rayleigh fading and a single interferer,

but produced an m.g.f. expression that cannot be used for performance-measure derivations [41,

Eq. (41)]. On the other hand, by explicitly accounting for the fact that the eigenvalues of the

random idempotent matrix that enters the ZF SNR Hermitian form are deterministic and take

values zero and one, Kiessling and Speidel [20] easily rederived for the ZF SNR the Gamma

distribution which was originally found by using the Wishart distribution by Gore et al. in [19,

Eqs. (9)].

Therefore, as in [20], but for transmit-correlated Rician–Rayleigh fading, we recast herein the

ZF SNR as a Hermitian form in a Gaussian vector and an idempotent matrix. The exact expression

for the m.g.f. of this Hermitian form is then derived by first conditioning on, and then averaging

over, the idempotent matrix (i.e., over its eigenvectors). This m.g.f. expression yields new and

relatively simple expressions for the MIMO ZF SNR moments, p.d.f., and cumulative distribution

function (c.d.f.). From them, we express exactly, for the first time for Rician–Rayleigh fading,

the ZF AEP, outage probability, and capacity. Finally, we use these expressions to investigate

and reveal interesting effects on performance of the interference, K, and AS.

C. Notation

Scalars, vectors, and matrices are represented with lowercase italics, lowercase boldface,

and uppercase boldface, respectively, e.g., h, h, and H; h ∼ Nc(hd,Rh) indicates that h

is a complex-valued circularly-symmetric Gaussian random vector [2, p. 39] with mean (i.e.,

deterministic component) hd and covariance Rh; subscripts ·d and ·r identify, respectively, the

deterministic and random components of a scalar, vector, or matrix; subscript ·n indicates a

normalized variable; i = 1 : N stands for the enumeration i = 1, 2, . . . N ; superscripts ·T and

·H stand for transpose and Hermitian (i.e., complex-conjugate) transpose; [·]i,j indicates the i, jth

element of a matrix; ‖H‖2 =
∑NR

i

∑NT
j |[H]i,j|2 = tr(HHH) is the squared Frobenius norm of

H; r represents rank(Hd); E{·} denotes statistical average; ' indicates that the random variables

on the left and right have the same distribution; M (p)(s) stands for the derivative of order p;

functions gamma, incomplete gamma, and complementary incomplete gamma are defined as
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Γ(κ) = (κ − 1)!, γ(κ, x) =
∫ x

0
tκ−1e−tdt, Γ (κ, x) =

∫∞
x
tκ−1e−tdt [42, Eqns. (2.4), (2.39),

(2.40)], respectively. Finally, (N)n is the Pochhammer symbol [42, p. 273], i.e., (N)0 = 1 and

(N)n = N(N+1) . . . (N+n−1), ∀n > 1, and 1F1(·; ·; ·) is a generalized hypergeometric function

[43, Section 18.9.1] [44, Chapter 13] also known as the confluent hypergeometric function [42,

Eq. (10.8), p. 323] [42, Eq. (9.1), p. 299].

D. Paper Organization

Section II introduces our statistical models for the transmitted signal, noise, and channel

fading. Section III derives the exact m.g.f., p.d.f., and moments for the SNR of MIMO ZF in

Rician–Rayleigh fading. Then, Section IV derives important performance measures for ZF, e.g.,

the diversity order, AEP, outage probability, and ergodic capacity. Section V presents numerical

results from our analysis and Monte Carlo simulations. Appendix A sketches from [20, Section 3]

the derivation of the ZF SNR for the intended stream conditioned on the channel matrix of the

interferers. Finally, Appendix B discusses SIMO (NT = 1) maximal ratio combining (MRC) as

a special case of MIMO ZF, and Rayleigh fading as a special case of Rician fading, revealing

analogies and confirming that our analysis results reduce for these cases to previous results.

II. SIGNAL, NOISE, AND FADING MODELS

We consider an uncoded multiantenna-based wireless communication system over a frequency-

flat fading channel. As mentioned, we assume that there are NT and NR antenna elements at

the transmitter and receiver, respectively, with NT ≤ NR. Letting x = [x1 x2 · · · xNT ]T denote

the NT × 1 zero-mean transmit-symbol vector with E{xxH} = INT , the NR × 1 vector with the

received signals can be represented as [2, p. 63]:

r =

√
Es

NT
Hx + n. (1)

Above, Es/NT is the energy transmitted per symbol (i.e., per antenna), so that Es is the energy

transmitted per channel use. The additive noise vector n is uncorrelated, circularly-symmetric,

zero-mean, complex Gaussian with n ∼ Nc(0, N0 INR) [45]. Finally, H is the NR×NT complex-

Gaussian channel matrix, assumed to have rank NT. The deterministic (i.e., mean) and random

components of H are denoted as Hd and Hr, respectively, so that H = Hd + Hr. If [Hd]i,j = 0

then | [H]i,j | has a Rayleigh distribution; otherwise, | [H]i,j | has a Rician distribution [3].
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Typically, the channel matrix for Rician fading is written as [2, p. 41] [46] [47]

H = Hd + Hr =

√
K

K + 1
Hd,n +

√
1

K + 1
Hr,n, (2)

where it is assumed for normalization purposes that ‖Hd,n‖2 = NTNR and E{| [Hr,n]i,j |2} =

1,∀i, j, so that E{‖H‖2} = NTNR [46] [47] [48]. Power ratio

‖Hd‖2

E{‖Hr‖2}
=

K
K+1
‖Hd,n‖2

1
K+1

E{‖Hr,n‖2}
= K (3)

is known as the Rician K-factor. Then, K = 0 yields Rayleigh fading, because Hd = 0 and

Hr = Hr,n. On the other hand, K 6= 0 can yield Rician fading. WINNER II [24] has modeled

measured K (in dB) as a random variable with scenario-dependent lognormal distribution.

Throughout this paper, we assume zero receive-correlation. On the other hand, we assume

nonzero transmit-correlation. We also need to assume, for tractability, as in previous work [19]

[20], that all transposed rows of Hr,n have distribution Nc(0,RT). Then, all transposed rows of

Hr have distribution Nc(0,RT,K), where RT,K = 1
K+1

RT.

Then, the elements of RT can be computed from the AS as shown in [26, Section VI.A]

when assuming Laplacian power azimuth spectrum, as in WINNER II. Note that, WINNER

II [24] has modeled measured AS (in degrees) as a random variable with scenario-dependent

lognormal distribution. Other measurement-based work expressed the power azimuth spectrum

in more detail, i.e., in terms of the base station antenna, average building height, base–mobile

distance, etc.— see [27] and references therein.

III. EXACT SNR M.G.F. AND P.D.F. DERIVATION FOR MIMO ZF

A. ZF Symbol-Detection SNR in Conventional (Ratio) and Hermitian Forms

Given H and nonsingular W = HHH, ZF for the signal from (1) means separately mapping

each element of the following vector into the closest modulation constellation symbol [2, p. 153]

[49]: √
NT

Es

[
HHH

]−1
HH r = x +

√
NT

Es

[
HHH

]−1
HHn. (4)

There is no interference among the transmitted streams, which explains the ZF name for this

technique. However, the noise vector that corrupts the transmitted signal vector x in (4) has

correlation matrix NTN0

Es
W−1. Thus, ZF is suboptimal because, although the noise vector ele-

ments are mutually correlated, the streams are detected independently. Furthermore, ZF yields
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noise enhancement when W is poorly-conditioned. Nevertheless, ZF has low complexity, e.g.,

compared to the maximum-likelihood approach, for large NT and modulation constellations [2,

p. 153] [49]. Also, unlike MMSE, ZF does not require knowledge of the noise variance.

From (4), the SNR for stream k = 1 is readily expressed in the ratio form

γ1 =
Es
N0

1
NT

[W−1]1,1
, (5)

that has been employed typically in ZF studies [19] [21] [26] [28]. Then, by partitioning NT×NT

matrix W, scalar γ1 can be written as the determinant of the Schur complement of a submatrix

of W [19, Eq. 8]. When all the elements of channel matrix H are Rayleigh-fading, W has a

central-Wishart distribution with NR degrees of freedom [50, p. 82]. Then, the Schur-complement

determinant that enters γ1 is a scalar that has a central-Wishart distribution with N = NR−NT+1

degrees of freedom [19, Theorem], i.e., γ1 is Gamma-distributed [19] for the special case of

Rayleigh fading. On the other hand, when some of the channel-matrix elements are Rician-

fading, matrix W has a noncentral-Wishart distribution and the distribution of γ1 is unknown.

Therefore, [26] evaluated an approximation of the noncentral-Wishart distribution with a central-

Wishart distribution of equal mean. However, as explained in [26] and later in Section V, this

approximation is not always reliable.

The Wishart distribution can be bypassed by rewriting the ZF SNR as a Hermitian form, as

shown next from [20]. Instead of partitioning W = HHH as done in [19], let us partition the

channel matrix H itself as

H =
[
h1 | H̃

]
=
[
h1,d | H̃d

]
+
[
h1,r | H̃r

]
, (6)

where h1 is the NR × 1 channel vector corresponding to the intended stream, and H̃ is the

NR × (NT − 1) matrix, assumed of rank NT − 1, with the channel vectors corresponding to the

interfering streams. Then, as in [20], we can rewrite γ1 from (5) as

γ1 =
Es

N0

1

NT
hH1 [INR − H̃

(
H̃HH̃

)−1

H̃H]︸ ︷︷ ︸
=Q

h1 =
Es

N0

1

NT
hH1 Qh1, (7)

where the NR × NR Hermitian matrices H̃
(
H̃HH̃

)−1

H̃H and Q are idempotent, have ranks
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NT − 1 and N , respectively, and have eigenvalues as listed below:

H̃
(
H̃HH̃

)−1

H̃H : 1, 1, . . . , 1, 0, 0, . . . , 0. (8)

Q : 0, 0, . . . , 0,︸ ︷︷ ︸
NT−1

1, 1, . . . , 1︸ ︷︷ ︸
N

. (9)

Next, the m.g.f. of the SNR from (7) is derived by first conditioning on H̃ (i.e., Q) and then

by averaging over it.

B. Derivation of the M.G.F. of the Conditioned SNR

Since h1 and the columns of H̃ are assumed correlated in (6), conditioning γ1 on H̃ based

on (7) requires explicit conditioning of h1 on H̃ (i.e., Q). For this, we follow the procedure

from [20, Section 3] in Appendix A, to recast the distribution of γ1 conditioned on Q as

γ1|Q = Γ1x
H
1 Qx1, (10)

Γ1 =
Es

N0

1

NT

1[
R−1

T,K

]
1,1

, (11)

x1 ∼ Nc

(√[
R−1

T,K

]
1,1
µµµ, INR

)
, (12)

with µµµ deterministic and defined in (44) in Appendix A.

Using Turin’s result from [51, Eq. (4a)], the m.g.f. of γ1 given Q can be written as

Mγ1|Q(s) = Eγ1|Q{esγ1 |Q}

= |INR − sΓ1Q|−1 exp{−
[
R−1

T,K

]
1,1
µµµH
[
INR − (INR − sΓ1Q)−1]µµµ}. (13)

The natural next step is to average Mγ1|Q(s) from (13) over Q, which is performed in the next

subsection, but this requires the following further manipulation of Mγ1|Q(s). First, let us consider

the singular value decomposition H̃ = UΣΣΣVH, where NR×NR matrix U and (NT−1)×(NT−1)

matrix V are unitary, i.e., UHU = UUH = INR and VHV = VVH = INT−1, and NR× (NT−1)

matrix ΣΣΣ is the matrix with the singular values of H̃. Then, it can be shown that Q = INR −

H̃
(
H̃HH̃

)−1

H̃H has the eigendecomposition Q = UHΛΛΛNU. We assume that diagonal matrix

ΛΛΛN has the N unit-valued eigenvalues of Q grouped at the top-left on its main diagonal. Since

only U is random, the conditioning of γ1 on Q from (13) reduces to the conditioning of γ1 on
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U. By defining the NR×1 deterministic unit-norm vector µµµ1 = µµµ/‖µµµ‖, further manipulating (13)

yields

Mγ1|U(s) =
1

(1− Γ1s)
N

exp
{ [

R−1
T,K

]
1,1
‖µµµ‖2︸ ︷︷ ︸

=α

Γ1s

1− Γ1s
µµµH1 UΛΛΛN UHµµµ1︸ ︷︷ ︸

=ννν1

}
, (14)

=
1

(1− Γ1s)
N

exp
{
α

Γ1s

1− Γ1s
νννH1 ΛΛΛNννν1

}
= Mγ1|ννν1(s), (15)

where ννν1 is a random NR × 1 vector whose distribution is discussed below.

C. Special Case: Rician–Rayleigh Fading

The analysis presented heretofore holds for the general case when any element of the channel

matrix may experience Rician fading. On the other hand, the analysis presented hereafter applies

only for the special case of Rician–Rayleigh fading, whereby stream 1 may experience Rician

fading whereas streams i = 2 : NT experience Rayleigh fading, i.e., H̃d = 0NR×(NT−1) in (6).

Although this assumption reduces the generality of our results it is required for tractability4.

Since matrix H̃ is zero-mean complex-valued Gaussian distributed, matrix U is isotropically

(also known as Haar) distributed on the group of NR × NR unitary matrices5 [52, Lemma 1]

[1, Appendix A.2] [53, §3] [17, Appendix A]. Because U is isotropically distributed and µµµ1 is

deterministic and belongs to the subset ΩNR of unit-norm vectors, ννν1 is isotropically distributed

on ΩNR [52, Lemma 2] [1, Appendix A.2]. Now, it is also known, from [1, Appendix A.1], that

if z ∼ Nc (0, INR), then z
‖z‖ is isotropically distributed on the subset ΩNR . Thus, ννν1 ' z

‖z‖ , and

so

νννH1 ΛΛΛNννν1 '
zH

‖z‖
ΛΛΛN

z

‖z‖
=

zHΛΛΛNz

‖z‖2
=

zHΛΛΛNz

zHINRz

4
= η1, (16)

i.e., η1 is a new random variable of the same distribution as νννH1 ΛΛΛNννν1. Substituting η1 in (15)

yields

Mγ1|ννν1(s) 'Mγ1|η1(s) =
1

(1− Γ1s)
N

exp

{
α

Γ1s

1− Γ1s
η1

}
. (17)

4It is also required for the Bartlett decomposition of a noncentral-Wishart distributed matrix in [50, Theorem 10.3.8, p. 448].
5Therefore, the NR×N submatrix UN of U comprising its first N columns has uniform distribution over the Stiefel (NR, NT)

manifold [17, Appendix A].
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D. Averaging the M.G.F. of the Conditioned SNR

Averaging (17) over η1 yields

Mγ1(s) = Eη1{Mγ1|η1(s)} =
1

(1− Γ1s)
N
Mη1

(
α

Γ1s

1− Γ1s

)
, (18)

where Mη1(t) is the m.g.f. of η1, which is derived next. Let us rewrite η1 from (16) as follows:

η1 =

∑N
i=1 |zi|2∑NR
i=1 |zi|2

=

∑N
i=1 |zi|2∑N

i=1 |zi|2 +
∑NR

i=N+1 |zi|2
=

2N
2(NR−N)

[∑N
i=1 |zi|2
2N

]
/

[∑NR
i=N+1 |zi|

2

2(NR−N)

]
2N

2(NR−N)

[∑N
i=1 |zi|2
2N

]
/

[∑NR
i=N+1 |zi|2

2(NR−N)

]
+ 1

. (19)

Note that
∑N

i=1 |zi|2 ∼ χ2(2N) and
∑NR

i=N+1 |zi|2 ∼ χ2(2(NR −N)) [54, Ch. 18]. Because they

are also independent, we have that [43, Section 6.4.3, §2][∑N
i=1 |zi|2

2N

]
/

[∑NR
i=N+1 |zi|2

2(NR −N)

]
∼ F (2N, 2(NR −N)), (20)

i.e., the Fisher–Snedecor distribution with parameters 2N and 2(NR − N) [54, Ch. 27] [43,

Section 6.8]. Therefore, the distribution of η1 from (19) is [54, Vol. 2, p. 327] [43, Section 6.8.3,

§4] [44, §26.5.3, p. 944]

η1 =
zHΛΛΛNz

zHINRz
∼ Beta(N,NR −N), (21)

i.e., η1 is Beta distributed with shape parameters N and NR − N [54, Ch. 25]. Therefore, the

m.g.f. of η1 is [43, Section 6.2.1]

Mη1(σ) =
∞∑
n=0

(N)n
(NR)n

σn

n!︸ ︷︷ ︸
=An(σ)

= 1F1(N ;NR;σ), ∀σ ∈ R, (22)

whereby the infinite sum converges for any σ [42, p. 332] [42, Eq. (9.1), p. 299]. Finally,

replacing (22) into (18) yields the following m.g.f. for the ZF SNR in Rician–Rayleigh fading:

Mγ1(s) =
1

(1− Γ1s)
N 1F1

(
N ;NR;α

Γ1s

1− Γ1s

)
. (23)

Our earlier assumption that the interfering streams experience Rayleigh fading, i.e., H̃d =

0NR×(NT−1), and (44) in Appendix A, yield µµµ = h1,d. Thus, ‖µµµ‖2 = ‖h1,d‖2 = ‖
[
h1,d | 0NR×(NT−1)

]
‖2 =

‖Hd‖2 = K
K+1

NRNT, and, from (14), α = KNRNT
[
R−1

T

]
1,1

. Interestingly, ZF performance in

Rician fading is affected by transmit correlation only through scalar
[
R−1

T

]
1,1

, and by h1,d only

through ‖h1,d‖. The particular magnitudes and phases of the elements of h1,d, i.e., its ‘direction’,
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do not affect performance. This directional information gets discarded because UHµµµ1 in (14)

has the same (isotropic) distribution for any µµµ1.

Appendix B shows that the MIMO ZF SNR m.g.f. expression derived above for Rician fading

reduces to that derived in previous work for SIMO (NT = 1) MRC. It also reveals that a

performance analogy is possible between MIMO ZF and SIMO MRC for Rayleigh fading but

not for Rician fading. Finally, it discusses per-stream performance-measure expression availability

for MIMO ZF in Rician–Rayleigh and Rayleigh-Rayleigh fading.

E. Infinite Linear Combination of Gamma Distributions for ZF SNR

Based on (22), we can write the hypergeometric-function term from (23) as

1F1

(
N ;NR;α

Γ1s

1− Γ1s

)
=
∞∑
n=0

(N)n
(NR)n

1

n!

(
α

sΓ1

1− sΓ1

)n
=
∞∑
n=0

(N)n
(NR)n

αn

n!︸ ︷︷ ︸
=An(α)

(
sΓ1

1− sΓ1

)n

=
∞∑
n=0

An(α)

(
−1 +

1

1− sΓ1

)n
=
∞∑
n=0

An(α)
n∑

m=0

(
n

m

)
(−1)m

(
1

1− sΓ1

)n−m
,

so that the ZF SNR m.g.f. from (23) can be recast as

Mγ1(s) =
∞∑
n=0

An(α)
n∑

m=0

(
n

m

)
(−1)m

1

(1− sΓ1)N+n−m︸ ︷︷ ︸
=Mn,m(s)

. (24)

Notice that Mn,m(s) is the m.g.f. of a Gamma distribution with shape parameter N + n − m

and scale parameter Γ1, whose p.d.f. is then [26, Section IV.D] [43, Section 6.9.1]:

pm,n(t) =
t(N+n−m)−1e−t/Γ1

[(N + n−m)− 1]! ΓN+n−m
1

, t ≥ 0. (25)

Thus, the ZF SNR p.d.f. corresponding to the m.g.f. from (24) is expressed as the following

infinite linear combination of p.d.f.s of Gamma distributions:

pγ1(t) =
∞∑
n=0

An(α)
n∑

m=0

(
n

m

)
(−1)mpm,n(t), t ≥ 0. (26)

For Rayleigh fading, i.e., α = 0, only the terms for n = m = 0 remain from (24) and (26),

which yield the following, known, expressions for the ZF SNR m.g.f. and p.d.f. [19] [20]:

Mγ1,Rayleigh(s) =
1

(1− sΓ1)N
(27)

pγ1,Rayleigh(t) =
tN−1e−t/Γ1

(N − 1)! ΓN1
, t ≥ 0, (28)

i.e., the ZF SNR has a Gamma distribution with shape parameter N and scale parameter Γ1.
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TABLE I

MOMENTS, VARIANCE, AND AMOUNT OF FADING FOR γ1

Rician Rayleigh

E{γ1} = M (1)(0) N Γ1

(
1 + α

NR

)
N Γ1

E{γ2
1} = M (2)(0) N(N + 1) Γ2

1

[(
1 + α

NR

)2
− α2

N2
R

1
(NR+1)

]
N(N + 1) Γ2

1

V{γ1} = E{γ2
1} − (E{γ1})2 NΓ2

1

[(
1 + α

NR

)2
− α2

N2
R

N+1
(NR+1)

]
NΓ2

1

A{γ1} = V{γ1}/ (E{γ1})2 1
N

[
1− N+1

NR+1
α2

(α+NR)2

]
1
N

F. Moments of MIMO ZF SNR

By using in (23) the following 1F1(·; ·; ·) derivative property [42, p. 300]

dp

dσp
1F1 (N ;NR;σ) =

(N)p
(NR)p

1F1 (N + p;NR + p;σ) , (29)

we have obtained, with some difficulty, closed-form expressions for the first two derivatives of

Mγ1(s), which are not shown. From them, we have expressed in Table I the corresponding SNR

moments as well as the SNR variance V{γ1} and the amount of fading A{γ1} [3, p. 18], for

Rician and Rayleigh fading. The top line reveals that Rician fading improves the average SNR

by a factor of 1 + α
NR

= 1 +KNT
[
R−1

T

]
1,1

vs. Rayleigh fading.

Using (23) and (29) to derive closed-form expressions for SNR moments of order p = 3, 4, . . .

becomes increasingly tedious. On the other hand, from our alternative SNR m.g.f. expression

in (24) we can easily express the derivative of any order p of Mγ1(s) as the infinite sum

M (p)
γ1

(s) = Γp1

∞∑
n=0

An(α)
n∑

m=0

(
n

m

)
(−1)m

(N + n−m)p
(1− sΓ1)N+n−m+p

, (30)

which yields the moment of order p of γ1 as follows

E{γp1} = M (p)
γ1

(0) = Γp1

∞∑
n=0

An(α)
n∑

m=0

(
n

m

)
(−1)m(N + n−m)p. (31)
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IV. ZF PERFORMANCE MEASURES

A. ZF Diversity Order

The diversity order is the AEP slope magnitude when the transmit-SNR, i.e., Es
N0

, grows large.

Now, the MIMO ZF SNR m.g.f. expression from (24) can be rewritten as

Mγ1(s) =
1

sN
+
∞∑
n=1

An(α)
n∑

m=0

(
n

m

)
(−1)m

1

(1− sΓ1)N+n−m

=
1

sN
+O

(
1

sN+1

)
. (32)

According to [55, Proposition 1], a transmit–receive scheme whose SNR m.g.f. can be expressed

as in (32) has diversity order N . Thus, ZF has diversity order N for both Rician and Rayleigh

fading6. Nevertheless, there is an array gain7 with Rician fading over Rayleigh fading, as shown

in Section V.

B. Exact ZF AEP and Outage Probability Expressions

When the SNR m.g.f. expression is available, one can apply the elegant AEP-derivation

procedure from [3, Chapter 9], e.g., for MPSK modulation (the same procedure also applies for

other modulations). Given γ1, the error probability for stream 1 can be written as [3, Eq. (8.22)]

Pe(γ1) =
1

π

∫ M−1
M

π

0

exp

{
−γ1

sin2 π
M

sin2 θ

}
dθ. (33)

Then, the AEP can be written in terms of the m.g.f. of γ1 as follows [3, Chapter 9]:

Pe,1 = E{Pe(γ1)} =
1

π

∫ M−1
M

π

0

Mγ1

(
−

sin2 π
M

sin2 θ

)
dθ. (34)

Substituting (23) into (34) yields the following exact ZF AEP expression for the stream that

experiences Rician fading when all the other streams experience Rayleigh fading:

Pe,1 =
1

π

∫ M−1
M

π

0

(
sin2 θ

sin2 θ + Γ1 sin2 π
M

)N
1F1

(
N ;NR;−α

Γ1 sin2 π
M

sin2 θ + Γ1 sin2 π
M

)
dθ. (35)

On the other hand, substituting (24) into (34) yields the equivalent exact ZF AEP expression

Pe,1 =
∑∞

n=0An(α)
∑n

m=0

(
n
m

)
(−1)m

1

π

∫ M−1
M

π

0

(
sin2 θ

sin2 θ + Γ1 sin2 π
M

)N+n−m

dθ. (36)

6Because ZF employs NT − 1 degrees of freedom to cancel interference and the remaining N to yield diversity gain.
7Array gain is the left-shift of the plot AEP vs. Es

N0
, at large Es

N0
.
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For Rayleigh fading, i.e., α = 0, only the term for n = m = 0 remains from (36), i.e.,

Pe,1,Rayleigh =
1

π

∫ M−1
M

π

0

(
sin2 θ

sin2 θ + Γ1 sin2 π
M

)N
dθ. (37)

Note that the integrals in (36) and (37) can be written in closed-form as explained in [56,

Appendinx A].

Note that a ZF analysis approach based on the Wishart distribution approximation is described

in [26]. There, the ZF SNR for fading that is allowed to be Rician–Rician is approximated

as Gamma-distributed. Then, the same AEP derivation procedure as shown above yields the

approximate AEP expression [26, Eq. (39)]. Its accuracy is compared to that of the exact AEP

expression from (35) in Section V.

Finally, integrating (26), the ZF outage probability for the threshold SNR γ1,th is [3, Eq. (1.4)]

Po = Pr(γ1 ≤ γ1,th) =
∞∑
n=0

An(α)
n∑

m=0

(
n

m

)
(−1)m

γ (N + n−m, γ1,th/Γ1)

Γ(N + n−m)
. (38)

Note that the outage probability is actually the SNR c.d.f.

C. Exact ZF Ergodic Capacity Expression

Given the SNR γ1 at the ZF receiver, with p.d.f. expressed in (26), the instantaneous capacity

in bits per channel use is C(γ1) = log2(1 + γ1) [57, Eq. (30)], and the ergodic capacity is

defined as Eγ1{C(γ1)}. Since the ergodic capacity corresponding to a virtual SNR with the

Gamma p.d.f. from (25) is given by [57, Eq. (40)]

Cn,m(N,Γ1) = (log2 e)e
1/Γ1

N+n−m−1∑
κ=0

Γ (−κ, 1/Γ1)

Γκ1
, (39)

the ZF ergodic capacity for Rician–Rayleigh fading can be expressed from (26) as follows:

Eγ1{C(γ1)} =
∞∑
n=0

An(α)
n∑

m=0

(
n

m

)
(−1)mCn,m(N,Γ1). (40)

V. NUMERICAL RESULTS

Numerical results are presented for Rician–Rayleigh and Rayleigh–Rayleigh fading, NR = 4,

NT = 1 : 4, stream k = 1, and relevant ranges of the average SNR per transmitted bit γb =

Es
N0NT

1
log2M

. Correlation matrix RT has been computed as in [26], for a uniform linear antenna

array with interelement distance normalized to carrier half wavelength dn = 1, realistic Laplacian
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power azimuth spectrum centered at θc = 5◦, and values of K and AS, shown in dB and degrees,

respectively, that are relevant from the perspective of the WINNER II model [26, Table I]. The

shown AEP results are mostly from the new expression (35) and Monte Carlo simulations, but

we also illustrate the Wishart-approximation-based AEP expression from [26, Eq. (39)].

Fig. 1 shows, for NT = 4, close agreement between the AEP from the new expression (35)

and from simulation, which is consistent with our claim that (35) is exact. Fig. 1 also confirms

a diversity order of N = 1 for both Rayleigh and Rician fading. Finally, Fig. 1 reveals a

gap between the AEP from the approximate expression [26, Eq. (39)] and from simulation,

although the Rician–Rayleigh scenario yields Hd with r = 1, and [26] found the approximation

generally accurate for rank-one Hd generated as the outer product of receive and transmit array

steering vectors. Other results (not shown) have revealed that the accuracy of the approximate

AEP expression [26, Eq. (39)] degrades with increasing NR − NT and with decreasing NR =

NT. Also, other numerical results from our analysis and from simulations have confirmed that

ZF performance is independent of the particular combination of magnitudes and phases of the

elements of h1,d.

Fig. 2 shows the AEP from the new expression (35) for SNR sufficiently high to reveal the

ZF diversity order for all NT choices (although the upper end of this SNR range yields some

impractically-low AEP values). These results confirm that the diversity order is N = NR−NT +1

for both Rician and Rayleigh fading, and that Rician fading outperforms Rayleigh fading by an

array gain (dependent on NT). As shown in [26], for outer-product-based Hd (i.e., r = 1 and

all streams experience Rician fading when K 6= 0), the AEP averaged over all streams reveals

a diversity order of N , but Rician fading is outperformed by Rayleigh fading (i.e., K = 0).

Fig. 3 shows the AEP from exact expression (35), for QPSK modulation, NT = 2, NR = 4,

and AS and K set to the averages for WINNER II scenarios A1 (indoor), C2 (typical urban

macrocell), and D1 (rural macrocell) [26, Table I]. Note that K = 7 dB in all scenarios, for

Rician–Rayleigh fading. For Rayleigh–Rayleigh fading, AEP decreases with increasing transmit

AS, because of decreasing correlation. This performance improvement is due to array gain, since,

as the figure also reveals, the diversity order is N = NR − NT + 1 = 3 for any AS. On the

other hand, for Rician–Rayleigh fading, the AEP appears unaffected by transmit correlation.

Simulation results (not shown, to avoid cluttering the figure) have confirmed this finding. For

outer-product or all-ones Hd (i.e., r = 1), earlier work found that the transmit AS affects the AEP
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NT=4, NR=4, K=7 dB, AS=51◦ (A1); θc=5◦, dn=1; ZF

Rayleigh, exact
Rayleigh, sim.
Rayleigh, approx.
Rice, exact
Rice, sim.
Rice, approx.

Fig. 1. AEP from exact expression (35), simulation, and approximate expression [26, Eq. (39)], for k = 1, QPSK modulation,

NR = NT = 4, K = 7 dB, AS = 51◦ (i.e., WINNER II scenario A1 averages).

averaged over all streams [26, Figs. 4, 5] [29, Fig. 2]. For the Rician–Rayleigh case discussed

herein, other (unshown) numerical results have further revealed that decreasing K yields an

increasing AEP gap for different AS values. This is expected because, for K → 0, Rician–

Rayleigh fading approaches Rayleigh–Rayleigh fading. It is nevertheless interesting that, for

WINNER II-like values of K, the transmit AS (i.e., correlation) does not affect ZF performance

for the Rician-fading stream.

Fig. 4 shows the AEP from the exact expression (35) and simulation vs. the Rician K factor,

for γb = 10 dB, and NT = 1 : 4. The AEP decreases with increasing K until it reaches a floor

(not shown for NT = 1, because it is very low). This figure reveals that performance can degrade

dramatically for the Rician stream even at high K with more interfering Rayleigh streams, due

to diminishing diversity order N , which is relevant in femtocells that experience interference.

McKay et al. [15, Fig. 3] have revealed similar issues for MIMO optimum combining.

Fig. 5 depicts the amount of fading from Table I for the feasible AS range and several relevant

values of K. Note that higher K yields lower amount of fading, as expected. Also, for higher
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Fig. 2. AEP from exact expression (35), for Rician fading and Rayleigh fading, for k = 1, QPSK modulation, NR = 4,

NT = 1 : 4, K = 7 dB, AS = 51◦.

K, the amount of fading varies less with the AS, which corroborates the observation that AS

does not affect the AEP made earlier based on results shown for the Rician case in Fig. 3.

Fig. 6 shows the p.d.f. of γ1 (in linear units) from the exact expression (26) and from

simulation, for NT = 3, NR = 4, AS = 51◦, K = 0 dB, and γb = 5.2 dB. For the same

settings, Fig. 7 shows the outage probability vs. γb, from the exact expression (38) and from

simulation. The threshold SNR γth has been set to 8.2 dB, which corresponds for QPSK to

the relevant error probability value Pe,th = 10−2 [56]. These figures again reveal a close match

between our analysis and simulations. The Po plot also confirms a diversity order of N for both

Rician and Rayleigh fading, with the former displaying an additional array gain.

VI. SUMMARY AND CONCLUSIONS

This work has derived exact expressions for performance measures of spatial multiplexing

with ZF detection in Rician–Rayleigh fading. Instead of relying on the Wishart distribution

in the SNR analysis, we have exploited the SNR expressed as a Hermitian form to derive its

m.g.f. Thus, we have revealed that the ZF SNR distribution is an infinite linear combination
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Rayleigh, AS = 7 (D1)
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Rayleigh, AS = 51 (A1)
Rice, AS = 7, K = 7 (D1)
Rice, AS = 12, K = 7 (C2)
Rice, AS = 51, K = 7 (A1)

Fig. 3. AEP from exact expression (35), for k = 1, QPSK modulation, NR = 4, NT = 2, and AS (◦) and K (dB) set to

averages for WINNER II scenarios A1, C2, and D1.

of Gamma distributions with simple coefficients. From the derived ZF SNR m.g.f., p.d.f., and

c.d.f. expressions, we have expressed the SNR moments, as well as the ZF diversity order, average

error probability, outage probability, and average capacity. Numerical results have validated our

analysis against Monte Carlo simulations, and have offered new insights into effects of channel

fading parameters on ZF performance for Rician–Rayleigh fading. Thus, we have learned that

symbol-detection performance for the ZF-detected Rician stream is: 1) not affected by the

‘direction’ of the mean of its channel vector; 2) largely unaffected by transmit correlation,

at realistic K values; 3) dramatically degraded by more Rayleigh interferers, even for large K,

which is relevant for femtocells.
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Fig. 4. AEP vs. K from the exact expression (35) and from simulation, for k = 1, QPSK modulation, NR = 4, NT = 1 : 4,

AS = 51◦, K = 0 dB, γb = 10 dB.

APPENDIX A

DERIVATION OF γ1 CONDITIONED ON H̃ (I.E., Q)

The derivation shown below follows closely that from [20, Section 3], but we provide it for

completeness. We partition the NT ×NT transmit correlation matrix RT,K according to (6) as

RT,K =

 RT,K11
RT,K12

RT,K21
RT,K22

 , (41)

where RT,K22
is a (NT− 1)× (NT− 1) matrix and RT,K11

is a scalar. It can then be shown that

[20, Appendix] [58, Section 9.11.3, §2.b][
R−1

T,K

]
1,1

= 1/
(
RT,K11

−RT,K12
R−1

T,K22
RT,K21

)
, (42)

May 14, 2013 DRAFT



21

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

AS (degrees)

A
m
o
u
n
t
o
f
F
a
d
in
g

NT=2, NR=4; θc=5◦, dn=1; ZF

K = -10 dB
K = 0 dB
K = 7 dB
K = 10 dB

Fig. 5. Amount of fading from expression in Table I vs. AS, for k = 1, NR = 4, NT = 2, and K = −10, 0, 7, 10 dB.

which is needed below and in the main text. Now, since the elements of h1 and H̃ in (6) are

jointly Gaussian, the distribution of h1 given H̃ is [20, Appendix]

h1|H̃ ∼ Nc

h1,d +
[
H̃− H̃d

]
R−1

T,K22
RT,K21︸ ︷︷ ︸

=a

, INR ⊗
1[

R−1
T,K

]
1,1

 (43)

∼ Nc

[h1,d − H̃da
]

︸ ︷︷ ︸
=µµµ

+H̃a,
1[

R−1
T,K

]
1,1

INR

 , (44)

where a and µµµ are deterministic vectors of dimensions (NT − 1)× 1 and NR × 1, respectively.

As in [20, Section 3], defining the random vector

x ∼ Nc

(
µµµ,

1[
R−1

T,K

]
1,1

INR

)
, (45)

and substituting it in (44) yields

h1|H̃ ' x + H̃a ∼ Nc

(
µµµ+ H̃a,

1[
R−1

T,K

]
1,1

INR

)
. (46)

May 14, 2013 DRAFT



22

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

t

p
γ
1
(t
)

NT=3, NR=4, K=0 dB, AS=51◦; θc=5◦, dn=1; γb=5.2 dB; ZF

Rayleigh, exp.
Rayleigh, sim.
Rice, exp.
Rice, sim.

Fig. 6. P.d.f. of γ1 (in linear units) from exact expression (26) and from simulation, for NR = 4, NT = 3, AS = 51◦, K = 0

dB, γb = 5.2 dB.

Thus, the receive-correlation remains zero after conditioning on H̃. On the other hand, the

transmit-correlation enters the distribution of h1|H̃ through a = R−1
T,K22

RT,K21
and

[
R−1

T,K

]
1,1

.

Now, substituting (46) in (7) and further manipulating as in [20, Eqs. (11),(12)] yields

γ1|H̃ ' Es

N0

1

NT

(
x + H̃a

)H [
INR − H̃

(
H̃HH̃

)−1

H̃H
](

x + H̃a
)

=
Es

N0

1

NT
xH
[
INR − H̃

(
H̃HH̃

)−1

H̃H
]
x =

Es

N0

1

NT
xHQx = γ1|Q, (47)

which can be written more conveniently as shown in the main text at page 9, Eqs. (10)-(12).

Notice that, although (47) has removed the explicit dependence of γ1 on a, an implicit

dependence would remain, through the mean of x, i.e., µµµ = h1,d− H̃da. However, our main-text

assumption H̃d = 0 yields µµµ = h1,d, which removes also the implicit dependence. Thus, the

transmit-correlation RT affects the ZF SNR only through scalar
[
R−1

T,K

]
1,1

.
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Fig. 7. Outage probability from exact expression (38) and from simulation, for k = 1, QPSK modulation, NR = 4, NT = 3,

AS = 51◦, K = 0 dB, and γth = 8.2 dB.

APPENDIX B

SPECIAL CASES, PERFORMANCE RELATIONSHIPS

A. SIMO MRC in Uncorrelated Rician Fading

For SIMO, i.e., when the single transmitted stream8 is received with NR antennas, ZF reduces

to MRC. As throughout this work, we assume receive-uncorrelated fading. The fading is herein

also assumed to be Rician. Since in this case NT = 1, we have N = NR and then (22) yields

1F1 (NR;NR;σ) = eσ [42, Eq. (9.35)]. Further, matrix RT reduces to the unit scalar, α from (14)

reduces to KNR, and Γ1 from (11) reduces to Es
N0

1
K+1

. Thus, the m.g.f. for the MRC SNR in

uncorrelated Rician fading reduces from (23) to:

Mγ1,MRC,Rice(s) =
1

(1− Γ1s)
NR

exp

{
KNR

Γ1s

1− Γ1s

}
. (48)

The following corresponding AEP expression is obtained by substituting (48) into (34):

Pe,1,MRC,Rice =
1

π

∫ M−1
M

π

0

[(
sin2 θ

sin2 θ + Γ1 sin2 π
M

)
exp

{
−K

Γ1 sin2 π
M

sin2 θ + Γ1 sin2 π
M

}]NR

dθ. (49)

8For notational consistency, the stream index is maintained for SIMO, even though a single stream is transmitted.
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The SNR m.g.f. and AEP expressions we previously derived for SIMO MRC and correlated

Rician fading in [59, Eqs. (22), (26)] reduce for uncorrelated fading to (48), and (49).

B. MIMO ZF vs. SIMO MRC Performance in Rayleigh and Rician Fading

For MIMO, let us now also assume zero transmit-correlation, i.e., RT = INT , and Rayleigh

fading. Then, in the MIMO ZF SNR m.g.f. expression (27), Γ1 = Es
N0

1
NT

accounts for the fact

that energy Es
NT

is spent for each of the NT transmitted symbols, so that energy Es is spent during

each symbol interval. On the other hand, for SIMO MRC in Rayleigh fading, (27) for NT = 1

or (48) for K = 0 yield the SNR m.g.f. expression

Mγ1,MRC,Rayleigh(s) =
1

(1− Γ1s)
NR
, (50)

whereby Γ1 = Es
N0

reflects the fact that the entire energy Es is transmitted in a single symbol.

Thus, comparing the SNR m.g.f. expressions for MIMO ZF from (27) and for SIMO MRC

from (50) reveals performance equivalence when Es,MRC = Es,ZF/NT,ZF, and NR,MRC = NZF =

NR,ZF−NT,ZF + 1, for uncorrelated Rayleigh fading9. However, (23) and (48) do not support an

analogous performance relationship between MIMO ZF and SIMO MRC for Rician fading.

C. Per-Stream Performance for MIMO ZF in Rayleigh and Rician Fading

For MIMO ZF in Rayleigh–Rayleigh fading (i.e., K = 0) that is receive-uncorrelated, the

SNR m.g.f. for stream 1 is expressed in (27). The SNR m.g.f. for any other stream can be

expressed analogously, i.e., the SNR for stream k is Gamma distributed with shape parameter

N and scale parameter [19] [20]:

Γk =
Es

N0

1

NT

1[
R−1

T,K

]
k,k

. (51)

Thus, for Rayleigh fading, ZF AEP performance for any stream k = 2 : NT is described by

the same expression as for stream 1, i.e., Eq. (37), simply by replacing Γ1 with Γk. A similar

analogy is not possible for Rician–Rayleigh fading because, whereas the exact SNR m.g.f. for

the Rician stream is given by (23), that for the Rayleigh streams is unknown10.

9This is not surprising because, by definition, spatial multiplexing transmits multiple symbols whereas ZF cancels the

interference and provides diversity gain.
10Nevertheless, for the Rayleigh streams, the SNR m.g.f. derived by approximating the Wishart distribution as described in

[26] has been found satisfactorily accurate (through unshown numerical results).
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