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Abstract

A general framework for constructing energy dissipative or conservative Galerkin
schemes for time dependent partial differential equations is presented. The framework
targets wide variety of dissipative or conservative PDEs with variational structure and
has a welcome feature that the resulting scheme can be implemented only with P1 el-
ements. The concept of formal weak form and an L2-projection technique are used to
derive schemes and their underlying H1-weak forms.
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1 Introduction

For PDEs that enjoy the energy dissipation or conservation property, numerical schemes that
inherit the property are often advantageous, in that the schemes give qualitatively better
numerical solutions in practice. For example, the Cahn–Hilliard equation

∂u

∂t
=

∂2

∂x2

(
pu+ ru3 + q

∂2u

∂x2

)
, 0 < x < L, t > 0, (1)

where p < 0, q < 0, r > 0, has the energy dissipation property

d

dt

∫ L

0

(
p

2
u2 +

r

4
u4 − q

2

(
∂u

∂x

)2
)
dx ≤ 0, t > 0,

under appropriate boundary conditions. The Korteweg–de Vries (KdV) equation

∂u

∂t
=

∂

∂x

(
1

2
u2 +

∂2u

∂x2

)
, 0 < x < L, t > 0, (2)

has the energy conservation property

d

dt

∫ L

0

(
1

6
u3 − 1

2

(
∂u

∂x

)2
)
dx = 0, t > 0,
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again under appropriate boundary conditions.
In the last two decades, much effort has been devoted in this topic to finally find

out several frameworks to derive dissipative or conservative schemes. For example, Furi-
hata proposed the discrete variational derivative method (DVDM) [11] (see also Furihata–
Matsuo [12]) in finite difference context. In the method, originally spatial and temporal dis-
cretizations have been done simultaneously. However, in order to get a completely systematic
framework and extend the method in various ways, it is convenient to treat the spatial and
temporal discretizations separately. Celledoni et al. [4] explicitly pointed out this and applied
the average vector field method, one of the most commonly used discrete gradient method,
for the temporal discretization (see also the discrete gradient method [4, 11, 13, 14, 23]), and
Dahlby–Owren [7] established a linearly implicit technique (see also [19]). On the other hand,
for the spatial discretization, the DVDM has been developed on uniform meshes only. How-
ever, especially in multi-dimensional cases, the use of nonuniform meshes is of importance,
because the restriction to uniform meshes forces the domains to be rectangles. Further-
more, even in one dimensional cases, nonuniform meshes are often useful when solutions
exhibit locally complicated behavior. To extend the DVDM to nonuniform meshes, some
efforts have been devoted recently. For example, Yaguchi–Matsuo–Sugihara extended the
DVDM to nonuniform meshes by using either the mapping method [26] or discrete differen-
tial forms [27], and Matsuo [17] extended the DVDM to Galerkin (finite element) context.

In this paper, we consider the Galerkin framework, which we refer to as the discrete
partial derivative method (DPDM). The goal of this paper is to solve a big drawback of
the DPDM to make the method a completely systematic framework. Blow, we first briefly
review the DPDM to clarify the drawback.

Matsuo [17] considered real-valued equations of the form

∂u

∂t
= (−1)s+1

(
∂

∂x

)2s δG

δu
, s = 0, 1, 2, . . . , (3)

where δG/δu is the variational derivative of G(u, ux) with respect to u(t, x). Under appro-
priate boundary conditions, these PDEs become dissipative. For example, the Cahn–Hilliard
equation (1) belongs to this class with s = 1 and G(u, ux) = pu2/2 + ru4/4− qu2x/2 (where
ux = ∂u/∂x). Real-valued conservative PDEs of the form

∂u

∂t
=

(
∂

∂x

)2s−1 δG

δu
, s = 1, 2, 3, . . . , (4)

were also targeted. The KdV equation (2) is an example of this class with s = 1 and
G(u, ux) = u3/6 − u2x/2. Matsuo [17] succeeded in designing dissipative or conservative
Galerkin schemes for above equations and then the method has been applied to several
specific PDEs [16, 18, 20]. Moreover, it turned out that various dissipative/conservative
schemes in the literature can be reformulated as special cases of the method, such as the
famous Du–Nicolaides scheme for the Cahn–Hilliard equation [9]. In this sense, the DPDM
has been successful to a certain extent.

There remained, however, a big drawback. In the DPDM, we firstly defineH1-weak forms
which explicitly has dissipation or conservation properties, and then we discretize them ap-
propriately with P1 elements. P1 elements are preferable for less computational complexity,
in particular in two or three dimensional problems. It becomes, however, surprisingly dif-
ficult to find an appropriate H1-weak forms for PDEs as the variational structures become
more complicated than those in (3) and (4). Such PDEs can be categorized into the following
two types.

Type 1: PDEs whose energy functional contains higher order derivatives, i.e., (3) or (4)
with G = G(u, ux, uxx, . . . ). For such PDEs, the definition of the energy in H1 space
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is not obvious in the first place. One example of such dissipative PDEs is the Swift–
Hohenberg (SH) equation [24]

∂u

∂t
= −

(
−2u+ u3 + 2

∂2u

∂x2
+
∂4u

∂x4

)
, 0 < x < L, t > 0. (5)

This equation belongs to the class (3) with s = 0 and G(u, ux, uxx) = −u2+u4/4−u2x+
u2xx/2. One example of the conservative PDEs is the Kawahara equation (fifth-order
KdV-type equation) [15]

∂u

∂t
=

∂

∂x

(
−1

2
u2 − α

∂2u

∂x2
+ β

∂4u

∂x4

)
, 0 < x < L, t > 0. (6)

This equation belongs to the class (4) with s = 1 and G(u, ux, uxx) = −u3/6+αu2x/2+
βu2xx/2.

Type 2: PDEs whose differential operator in front of the variational derivative (namely, B
in ut = BδG/δu) is complicated. The dissipation or conservation property is due to the
skew-symmetric or negative semi-definite property of the differential operator. When
the operator cannot operate on a function in H1, we need some special treatments.
The Camassa–Holm equation [2, 3, 10]

ut − uxxt = uuxxx + 2uxuxx − 3uux, 0 < x < L, t > 0, (7)

and the Degasperis–Procesi (DP) equation [8]

ut − uxxt = uuxxx + 3uxuxx − 4uux, 0 < x < L, t > 0,

are typical examples. The Camassa–Holm equation can be written in the variational
(Hamiltonian) form with B = (1 − ∂x

2)−1(m∂x + ∂xm)(1 − ∂x
2)−1 and G(u, ux) =

−(u2+u2x)/2. Similarly, the DP equation can be written with B = (1−∂x2)−1∂x(4−∂x2)
and G(u) = −u3/6.

As far as the authors know, there is no systematic procedure to find dissipative or con-
servative H1-weak forms for above two types. This makes it difficult to apply the DPDM,
unless we use smoother function spaces. But we do not hope that for the following two
reasons.

• The H1-formulation can be implemented by cheap P1 elements, which is crucial in
multi-dimensional problems.

• There are some high-order PDEs with H1 solutions. The Camassa–Holm equation
which has peaked soliton solutions is a typical example. For such cases,H1-formulations
are preferable from the theoretical point of view.

Taking these backgrounds into account, in this paper we propose a new framework for
constructing H1 schemes for Types 1 and 2 PDEs. The proposed method utilizes the vari-
ational structure of the PDEs like the original DPDM, but it takes a different approach
in that it finds intended schemes without finding underlying dissipative or conservative H1-
weak forms. This nontrivial approach is made possible by the idea of L2-projection operators.
As will be pointed out in Section 5, the proposed method is not a superset of the original
DPDM.

Remark 1. A part of the ideas presented in this paper has been already reported in our recent
papers [21, 22] for specific PDEs without detailed discussions. In this paper we establish a
completely systematic framework which can be applicable to wide variety of PDEs.
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This paper is organized as follows. In Section 2, we briefly describe the idea and difficulty
of the discrete partial derivative method [17]. In Section 3, we propose a new method for one
dimensional problems. After describing a general framework, we show some applications.
In Section 4, we extend the proposed method to multi-dimensional problems. Concluding
remarks are given in Section 5.

We use the following notation. The numerical solution is denoted by u(n) # u(n∆t, ·)
where∆t is the time mesh size. Hj denotes the jth order Sobolev space. For one-dimensional
cases, the interval (domain) is set to [0, L], and the inner product is defined by (f, g) =∫ L
0 fgdx. Si’s and Wi’s denote the trial and test spaces, respectively. When we consider
the periodic boundary conditions, we often use the notation H1(T) (T denotes the torus
of length L). For multi-dimensional cases, Ω ⊂ Rd (d = 2, 3) denotes the domain. The
inner product is defined by (f, g) =

∫
Ω fgdx when f and g are scalar-valued functions or

(f , g) =
∫
Ω f · gdx when f and g are vector-valued functions (the dot means f · g = f"g).

L2 and Hj denote (L2)d and (Hj)d, respectively. Γ = ∂Ω and n denote the boundary of Ω
and the normal vector at the boundary. The Green theorem

∫

Ω
(f%g +∇f ·∇g)dx =

∫

Γ
fn ·∇g dΓ (8)

is used instead of the integration-by-parts formula.

2 Idea of the discrete partial derivative method and its diffi-
culty

In this section, we briefly describe the idea of the original discrete partial derivative method
(DPDM) [17] and its essential difficulty. The procedure of the DPDM can be divided into
the following three steps.

Step 1 Construct an H1-weak form that explicitly has the desired dissipation/conservation
property.

Step 2 Discretize the weak form in space to get a semi-discrete scheme so that it is consis-
tent in some finite dimensional approximation spaces of H1 and it keeps the dissipa-
tion/conservation property.

Step 3 Discretize the semi-discrete scheme in time so that the desired property remains
kept (this step is essentially the same as the discrete gradient method).

We demonstrate the above steps taking the the dissipative case with s = 0 as an example.

Step 1
With

δG

δu
=
∂G

∂u
− ∂

∂x

∂G

∂ux

in mind, a dissipative H1-weak form is defined as follows.

Weak form 1 (Dissipative H1-weak form for (3) when s = 0 [17]). Suppose u(0, ·) is given
in H1(0, L). Find u(t, ·) ∈ H1(0, L) such that, for any v ∈ H1(0, L),

(ut, v) = −
(
∂G

∂u
, v

)
−
(
∂G

∂ux
, vx

)
+

[
∂G

∂ux
v

]L

0

. (9)
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Proposition 1 (Weak form 1: Dissipation property [17]). Assume that the boundary con-
ditions satisfy

[
∂G

∂ux
ut

]L

0

= 0, (10)

and ut(t, ·) ∈ H1(0, L). Then the solution of Weak form 1 satisfies

d

dt

∫ L

0
G(u, ux)dx ≤ 0.

Proof.

d

dt

∫ L

0
G(u, ux)dx =

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
= −‖ut‖2 +

[
∂G

∂ux
ut

]L

0

≤ 0.

The first equality is just the chain rule, and the second follows from (9) with v = ut ∈
H1(0, L). The last inequality is shown by the assumption (10).

Note that the partial derivatives ∂G/∂u and ∂G/∂ux play an important role in con-
structing the above weak form (“DPDM” was named after this fact and its discrete version
below).

Step 2
In this step, we replace the function spaceH1(0, L) in Weak form 1 with finite dimensional

approximation spaces S1 and W1 ⊂ H1(0, L) to get the following semi discrete scheme.

Semi-discrete scheme 1 (Semi-discrete dissipative scheme for (3) when s = 0 [17]). Sup-
pose u(0, ·) is given in S1. Find u(t, ·) ∈ S1 such that, for any v ∈ W1,

(ut, v) = −
(
∂G

∂u
, v

)
−
(
∂G

∂ux
, vx

)
+

[
∂G

∂ux
v

]L

0

.

Proposition 2 (Semi-discrete scheme 1: Dissipation property [17]). Assume that boundary

conditions and the trial and test spaces are set such that

[
∂G

∂ux
ut

]L

0

= 0 and ut ∈ W1 hold.

Then the solution of Semi-discrete scheme 1 satisfies

d

dt

∫ L

0
G(u, ux)dx ≤ 0.

Proof. The proof is similar to that of Proposition 1:

d

dt

∫ L

0
G(u, ux)dx =

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
= −‖ut‖2 +

[
∂G

∂ux
ut

]L

0

≤ 0.

The substitution v = ut is allowed by the assumption ut ∈ W1.

Step 3
To discretize Semi discrete scheme 1 in time, we introduce the concept of discrete partial

derivatives.
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Definition 1 (Discrete partial derivatives [17]). We call the discrete quantities

∂Gd

∂(u(n+1), u(n))
,

∂Gd

∂(u(n+1)
x , u(n)x )

, (11)

the “discrete partial derivatives,” which correspond to ∂G/∂u and ∂G/∂ux, respectively, if
they satisfy the following identity:

1

∆t

∫ L

0

(
G(u(n+1), u(n+1)

x )−G(u(n), u(n)x )
)
dx

=

(
∂Gd

∂(u(n+1), u(n))
,
u(n+1) − u(n)

∆t

)
+

(
∂Gd

∂(u(n+1)
x , u(n)x )

,
u(n+1)
x − u(n)x

∆t

)
. (12)

Since (12) corresponds to the continuous chain rule:

d

dt

∫ L

0
G(u, ux)dx =

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
,

we refer to (12) as the discrete chain rule.
There are several approaches of calculating the discrete partial derivatives (readers may

refer to the discrete gradient method [4, 11, 13, 14, 23]). Here we show two of them. The
first one is based on the average vector field method [23]. The discrete partial derivatives
defined by

∂Gd

∂(u(n+1), u(n))
:=

∫ 1

0
Gu((1− ξ)u(n+1) + ξu(n), (1− ξ)u(n+1)

x + ξu(n)x )dξ, (13)

∂Gd

∂(u(n+1)
x , u(n)x )

:=

∫ 1

0
Gux((1− ξ)u(n+1) + ξu(n), (1− ξ)u(n+1)

x + ξu(n)x )dξ, (14)

where

Gu(u, ux) =
∂G

∂u
, Gux(u, ux) =

∂G

∂ux
,

satisfy the discrete chain rule (12). The second one is based on the decomposition introduced
by Furihata [11]. Consider generalized energy functions of the form

G(u, ux) =
M∑

l=1

fl(u)gl(ux),

where M ∈ {1, 2, . . . }, and fl, gl are sufficiently smooth real-valued functions. Then

∂Gd

∂(u(n+1), u(n))
:=

M∑

l=1

(
fl(u(n+1))− fl(u(n))

u(n+1) − u(n)

)(
gl(u

(n+1)
x ) + gl(u

(n)
x )

2

)
, (15)

∂Gd

∂(u(n+1)
x , u(n)x )

:=
M∑

l=1

(
fl(u(n+1)) + fl(u(n))

2

)(
gl(u

(n+1)
x )− gl(u

(n)
x )

u(n+1)
x − u(n)x

)
(16)

satisfy the discrete chain rule (12) [17]. This approach is particularly useful when G is
polynomial with respect to u and ux.

Let us return to the temporal discretization of Semi discrete scheme 1. Replacing the
time derivative ut with (u(n+1) − u(n))/∆t, and the partial derivatives ∂G/∂u and ∂G/∂ux
with the discrete partial derivatives (11) leads to the following fully discrete scheme.
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Scheme 1 (Dissipative Galerkin scheme for (3) when s = 0 [17]). Suppose u(0) is given in
S1. Find u(n+1) ∈ S1 (n = 0, 1, . . . ) such that, for any v ∈ W1,

(
u(n+1) − u(n)

∆t
, v

)

= −
(

∂Gd

∂(u(n+1), u(n))
, v

)
−
(

∂Gd

∂(u(n+1)
x , u(n)x )

, vx

)
+

[
∂Gd

∂(u(n+1)
x , u(n)x )

v

]L

0

. (17)

Theorem 3 (Scheme 1: Dissipation property [17]). Assume that boundary conditions and
the trial and test spaces are set such that

[
∂Gd

∂(u(n+1)
x , u(n)x )

(
u(n+1) − u(n)

∆t

)]L

0

= 0 (18)

and (u(n+1) − u(n))/∆t ∈ W1 hold. Then the solution of Scheme 1 satisfies

1

∆t

∫ L

0

(
G(u(n+1), u(n+1)

x )−G(u(n), u(n)x )
)
dx ≤ 0, n = 0, 1, 2, . . . .

Proof.

1

∆t

∫ L

0

(
G(u(n+1), u(n+1)

x )−G(u(n), u(n)x )
)
dx

=

(
∂Gd

∂(u(n+1), u(n))
,
u(n+1) − u(n)

∆t

)
+

(
∂Gd

∂(u(n+1)
x , u(n)x )

,
u(n+1)
x − u(n)x

∆t

)

= −

∥∥∥∥∥
u(n+1) − u(n)

∆t

∥∥∥∥∥

2

+

[
∂Gd

∂(u(n+1)
x , u(n)x )

(
u(n+1) − u(n)

∆t

)]L

0

≤ 0.

The first equality is just the discrete chain rule (12), and the second follows from (17) with
v = (u(n+1) − u(n))/∆t ∈ W1. The last inequality is shown by the assumption (18).

It is notable that the procedure of Steps 2 and 3 is completely automatic. In other words,
once we find a dissipative/conservative H1-weak form, an intended fully discrete Galerkin
scheme can be systematically obtained. In the existing works, dissipative/conservative H1-
weak forms for (3) or (4) were already found [17].

Unfortunately, however, it does not seem straightforward to find desired weak forms if the
PDEs are complicated as pointed out in Section 1. For Type 1 PDEs, the partial derivatives
do not always live in H1 space. For Type 2 PDEs, it is not easy to treat the complicated
operator in H1 space when the operator demands smoother function spaces.

3 New framework for one-dimensional problems

In order to tackle the above difficulty, we propose a new framework. The new procedure is
summarized as follows (see Fig. 1).

PHASE 1

Step 1′ Construct a formal weak form which is not necessarily formulated within H1 space,
but whose dissipation/conservation property can be explicitly obtained by formal cal-
culations. The meaning of “formal” will become clear soon.

7



Figure 1: Standard versus proposed strategies.

Step 2′ Discretize the formal weak form in space to get a semi discrete scheme so that
it is consistent in some finite dimensional approximation spaces of H1 and it keeps
the dissipation/conservation property. In this step, L2-projection operators play an
important role.

Step 3 Discretize the semi discrete scheme in time so that the desired property remains
kept.

If we are interested in theoretical aspects of the schemes such as convergence issues, the
following steps help us to find the underlying dissipative/conservative H1-weak forms.

PHASE 2

Step 4 In the semi discrete scheme derived in Step 2′, L2-projection operators are explicitly
used. Expand them to get a more familiar form.

Step 5 Pull the semi discrete scheme back to a weak form which is consistent in H1. In this
step, we only rewrite finite dimensional approximation spaces to infinite dimensional
subspaces of H1.

Step 6 Check the relation between the PDE and the obtained H1-weak form.

The key of the proposed method is to avoid proper dissipative/conservative H1-weak
forms which are difficult to be found. L2-projection operators enable this approach. Note
that our approach is completely automatic except for some degrees of freedom in Step 2′ (see
Remark 6).

Below in Section 3.1, we introduce the L2-projection operators. In Sections 3.2 and 3.3,
we define the proposed method for Type 1 and Type 2 PDEs, respectively. In Section 3.4,
we show some applications.
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3.1 L2-projection operators

We introduce the L2-projection operators which are the key devices of the proposed method.
Although we explain the concept of the L2-projection operators in relation to one-dimensional
case, it can be extended to multi-dimensional cases. We will come back to the extension in
Section 4.

We define the L2-projection operator PX : L2 → X ⊆ H1 (X is a closed (finite dimen-
sional approximation) space of H1) satisfying

(u, v) = (PXu, v) , (19)

for any v ∈ X. We also denote PXux by DXu for convenience, namely DX := PX∂x : H1 →
X. Roughly speaking, Dp

X(:= (DX)p) (p ≥ 1) is the operator that approximates ∂x
p. The

following formula is straightforward.

Lemma 4. For any u ∈ H1 and v ∈ X, it holds

(
Dp

Xu, v
)
=
(
(Dp−1

X u)x, v
)

(p ≥ 1). (20)

Proof. Eq. (20) can be shown by (19):

(
Dp

Xu, v
)
=
(
PX(Dp−1

X u)x, v
)
=
(
(Dp−1

X u)x, v
)
.

Note that the operator DX can operate on any functions in H1 any number of times
(note that Dp

X : H1 → X). From (20), we get the following equalities which show that
DX is skew-symmetric and D2

X is symmetric corresponding to the skew-symmetry of ∂x and
symmetry of ∂x

2, respectively.

Corollary 5. For any u ∈ X and v ∈ X, if [uv]L0 = 0, it holds

(DXu, v) = − (u,DXv) .

Also assume that [(DXu)v]L0 = [u(DXv)]L0 = 0. Then it holds
(
D2

Xu, v
)
=
(
u,D2

Xv
)
.

Proof. These properties can be proved by (20) and the integration-by-parts formula.

As long as we consider periodic boundary conditions, the above operators are enough for
the new method. However, as will be shown soon, these operators are not sufficient to deal
with several different boundary conditions. As an extension of PX , we define an operator
PX(Y ) : L

2 → X ⊆ H1 satisfying

(
PX(Y )u, v

)
= (u, v) (21)

for any v ∈ Y ⊆ H1. Accordingly, we define an operator DX(Y ) by DX(Y ) := PX(Y )∂x :
H1 → X.

Lemma 6. It follows that for any u ∈ H1 and v ∈ Y ,
(
DX(Y )u, v

)
= (ux, v) . (22)

Although the operators PX(Y ) and DX(Y ) have no longer the meaning of “projection,”
we also refer to them as “L2-projection” operators regarding them as extensions of PX and
DX .
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3.2 Proposed method for Type 1 PDEs

We here present the new method taking the dissipative equation (3) with G = G(u, ux, uxx)
and s = 0:

ut = −δG
δu

, G = G(u, ux, uxx) (23)

as a working example, which is sufficient to show the essential idea. Note that in this case
the variational derivative δG/δu is defined as

δG

δu
:=

∂G

∂u
− ∂x

∂G

∂ux
+ ∂x

2 ∂G

∂uxx
.

3.2.1 Design of dissipative schemes: PHASE 1

We define the procedure of Phase 1 (derivation of dissipative schemes) for (23).

Step 1′

We first note that it is not straightforward to find a dissipative H1-weak form for (23).
In fact, if we simply try to find a weak form, it would require H2 elements, due to the
term ∂G/∂uxx. Instead, motivated by the construction of Weak form 1, let us consider the
following formulation which is obtained by integrating-by-part only up to once each term:
Find u such that, for any v,

(ut, v) =−
(
∂G

∂u
, v

)
+

(
∂x
∂G

∂ux
, v

)
−
(
∂x

2 ∂G

∂uxx
, v

)

=−
(
∂G

∂u
, v

)
−
(
∂G

∂ux
, vx

)
+

[
∂G

∂ux
v

]L

0

+

(
∂x

∂G

∂uxx
, vx

)
−
[(
∂x

∂G

∂uxx

)
v

]L

0

.

Note that, by the restriction of the integration-by-part, the fourth term in the most right
hand side is not

−
(
∂G

∂uxx
, vxx

)

as in the standard finite-element formulation. This formulation still makes sense only in H2

(or smoother spaces) but not in H1. Next follow the rules below to define the following
formal weak form, so that only the test functions are in H1.

Rules for defining formal weak forms

(R1′ a) Eliminate all the derivatives in front of the partial derivatives by introducing in-
termediate functions

q = ∂x
∂G

∂uxx
, r = ∂x

2 ∂G

∂uxxx
, . . . ,

and associated equations (weak forms), such that only first order derivatives appear in
test functions (this step should be done recursively, when needed; see Remark 2).

(R1′ b) Leave other derivatives untouched.

For our working example, applying the rules to the above formulation, we obtain the
following formal weak form. We replace ∂x(∂G/∂uxx) with q and add (24b) by the rule (R1′

a), and leave anything other by (R1′ b).
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Formal weak form 1. Suppose u(0, ·) is given. Find u, q such that, for any v1, v2,

(ut, v1) = −
(
∂G

∂u
, v1

)
−
(
∂G

∂ux
, (v1)x

)
+

[
∂G

∂ux
v1

]L

0

+ (q, (v1)x)− [qv1]
L
0 , (24a)

(q, v2) = −
(
∂G

∂uxx
, (v2)x

)
+

[
∂G

∂uxx
v2

]L

0

. (24b)

As is obvious from the construction, the above formulation is still not formulated in H1

space, and thus it makes sense only formally (this is the reason why we call it a formal weak
form). The important point there is that if we ignore this defect, the dissipation property
can be explicitly obtained by formal calculations. Under the assumptions: [qut]

L
0 = 0,[

∂G

∂ux
ut

]L

0

= 0 and

[
∂G

∂uxx
uxt

]L

0

= 0,

d

dt

∫ L

0
G(u, ux, uxx)dx =

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
+

(
∂G

∂uxx
, uxxt

)

=

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
− (q, uxt) +

[
∂G

∂uxx
uxt

]L

0

=− ‖ut‖2 +
[
∂G

∂ux
ut

]L

0

− [qut]
L
0 ≤ 0. (25)

Here, the first equality is just the chain rule. The second follows from (24b) with v2 = uxt
and the third from (24a) with v1 = ut.

Remark 2. To help the readers’ understanding, we also mention on the case G = G(u, ux, uxx, uxxx).
Based on the formulation (obtained by integrating-by-part up to once):

(ut, v) =−
(
∂G

∂u
, v

)
+

(
∂x
∂G

∂ux
, v

)
−
(
∂x

2 ∂G

∂uxx
, v

)
+

(
∂x

3 ∂G

∂uxxx
, v

)

=−
(
∂G

∂u
, v

)
−
(
∂G

∂ux
, vx

)
+

[
∂G

∂ux
v

]L

0

+

(
∂x

∂G

∂uxx
, vx

)
−
[(
∂x

∂G

∂uxx

)
v

]L

0

−
(
∂x

2 ∂G

∂uxxx
, vx

)
+

[(
∂x

2 ∂G

∂uxxx

)
v

]L

0

,

and introducing intermediate functions suggested by the rule (R1′ a), we can formulate a
formal weak form as follows. Suppose u(0, ·) is given. Find u, q, r, r1 such that, for any
v1, v2, v3, v4,

(ut, v1) = −
(
∂G

∂u
, v1

)
−
(
∂G

∂ux
, (v1)x

)
+

[
∂G

∂ux
v1

]L

0

+ (q, (v1)x)− [qv1]
L
0

− (r, (v1)x) + [rv1]
L
0 ,

(q, v2) = −
(
∂G

∂uxx
, (v2)x

)
+

[
∂G

∂uxx
v2

]L

0

, (26)

(r, v3) = −(r1, (v3)x) + [r1, v3]
L
0 , (27)

(r1, v4) = −
(

∂G

∂uxxx
, (v4)x

)
+

[
∂G

∂uxxx
v4

]L

0

. (28)

The intermediate functions q, r and their associated equations (26), (27) are introduced by
the rule (R1′ a). The function r1 and its associated equation (28) are recursively introduced
by (R1′ a) in connection with r.
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Step 2′

In this step, we discretize the above formal weak form in space so that the semi discrete
scheme is consistent in some finite dimensional approximation spaces of H1. Follow the rules
below.

Rules for constructing semi-discrete schemes

(R2′ a) Set finite dimensional trial and test function spaces for solutions of the formal
weak form;

(R2′ b) Replace derivatives in G and in partial derivatives with DSj(Wj) by introducing
function spaces Sj ’s, Wj ’s as necessary such that

ux → DSj(Wj)u, uxx → DSj+1(Wj+1)DSj(Wj)u, . . .

(i.e. we introduce new function spaces for each additional derivatives);

(R2′ c) Place projection operators in front of partial derivatives, by introducing new func-
tion spaces for each partial derivative;

(R2′ d) Leave other derivatives (mainly in test functions) untouched.

Semi-discrete scheme 2 (with L2-projection operators). Suppose u(0, ·) is given in S1.
Find u(t, ·) ∈ S1, q ∈ S2 such that, for any v1 ∈ W1, v2 ∈ W2,

(ut, v1) = −
(
∂G

∂u
, v1

)
−
(
PS5(W5)

∂G

∂(DS3(W3)u)
, (v1)x

)
+

[(
PS5(W5)

∂G

∂(DS3(W3)u)

)
v1

]L

0

+ (q, (v1)x)− [qv1]
L
0 , (29a)

(q, v2) = −
(
PS6(W6)

∂G

∂(DS4(W4)DS3(W3)u)
, (v2)x

)
+

[(
PS6(W6)

∂G

∂(DS4(W4)DS3(W3)u)

)
v2

]L

0

,

(29b)

where G = G(u,DS3(W3)u,DS4(W4)DS3(W3)u).

Following (R2′ a), we introduce trial function spaces S1 and S2 for u(t, ·) and q, respec-
tively, and corresponding test function spaces W1 and W2. Following (R2′ b), we introduce
S3, W3, S4 and W4 to replace derivatives such that

ux → DS3(W3)u, uxx → DS4(W4)DS3(W3)u.

Following (R2′ c), we introduce S5, W5, S6 and W6 to place PS5(W5) and PS6(W6) in front of
partial derivatives. As long as we obey the rules, the numbering is arbitrary. The following
proposition reveals sufficient conditions for the dissipation property for each given numbering.

Remark 3. In the proposed method, (R2′ a), (R2′ b) and (R2′ d) make the semi discrete
scheme consistent in H1. The rule (R2′ c) is necessary for the dissipation property.

Remark 4. The proposed method forces us to use many function (test and trial) spaces. We
have to select each space so that they are consistent with the boundary conditions and satisfy
the assumptions in the following proposition. But this can be done based on the standard
theory of finite element methods. See Section 3.4.1 for a concrete example.
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Remark 5. Some remarks on the notation: ∂G/∂(DSj(Wj)u) denotes the substitution of
DSj(Wj)u,DSj+1(Wj+1)DSj(Wj)u, . . . into ux, uxx, . . . in ∂G/∂ux, and same notation is used
for ∂G/∂uxx, ∂G/∂uxxx, . . . . For example, for G(u, ux, uxx) = uuxuxx,

∂G

∂u
= (DSj(Wj)u)(DSj+1(Wj+1)DSj(Wj)u),

∂G

∂(DSj(Wj)u)
= u(DSj+1(Wj+1)DSj(Wj)u),

∂G

∂(DSj+1(Wj+1)DSj(Wj)u)
= u(DSj(Wj)u).

Proposition 7 (Semi-discrete scheme 2: Dissipation property). Assume that the boundary
conditions satisfy

[(
PS6(W6)

∂G

∂(DS4(W4)DS3(W3)u)

)
DS3(W3)ut

]L

0

= 0,

[(
PS5(W5)

∂G

∂(DS3(W3)u)

)
ut

]L

0

= 0, [qut]
L
0 = 0.

Also assume that S5 ⊆ W3, S6 ⊆ W4, S2 ⊆ W3, DS3(W3)ut ∈ W5, DS4(W4)DS3(W3)ut ∈ W6,
DS3(W3)ut ∈ W2,ut ∈ W1 and ux,DS3(W3)u ∈ C1(R+;L2(0, L)). Then the solution of Semi
discrete scheme 2 satisfies

d

dt

∫ L

0
G(u,DS3(W3)u,DS4(W4)DS3(W3)u)dx ≤ 0.

Proof. The proof is basically similar to the formal calculation (25). We carefully check each
equality.

d

dt

∫ L

0
G(u,DS3(W3)u,DS4(W4)DS3(W3)u)dx

=

(
∂G

∂u
, ut

)
+

(
∂G

∂(DS3(W3)u)
,DS3(W3)ut

)
+

(
∂G

∂(DS4(W4)DS3(W3)u)
,DS4(W4)DS3(W3)ut

)

=

(
∂G

∂u
, ut

)
+

(
PS5(W5)

∂G

∂(DS3(W3)u)
,DS3(W3)ut

)

+

(
PS6(W6)

∂G

∂(DS4(W4)DS3(W3)u)
,DS4(W4)DS3(W3)ut

)

=

(
∂G

∂u
, ut

)
+

(
PS5(W5)

∂G

∂(DS3(W3)u)
, uxt

)
+

(
PS6(W6)

∂G

∂(DS4(W4)DS3(W3)u)
, (DS3(W3)ut)x

)

=

(
∂G

∂u
, ut

)
+

(
PS5(W5)

∂G

∂(DS3(W3)u)
, uxt

)
−
(
q,DS3(W3)ut

)

+

[(
PS6(W6)

∂G

∂(DS4(W4)DS3(W3)u)

)
DS3(W3)ut

]L

0

=

(
∂G

∂u
, ut

)
+

(
PS5(W5)

∂G

∂(DS3(W3)u)
, uxt

)
− (q, uxt)

= −‖ut‖2 +
[(

PS5(W5)
∂G

∂(DS3(W3)u)

)
ut

]L

0

− [qut]
L
0 ≤ 0.

The first equality is just the chain rule. In the second equality, we have used (21) for the
second and third terms. This is allowed by the assumption DS3(W3)ut ∈ W5 for the second
term and DS4(W4)DS3(W3)ut ∈ W6 for the third term. Note that the terms included in the
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partial derivatives stay in L2: by the Sobolev embedding theorem, S3, S4 ⊂ H1 ⊂ C0 (see,
for example, [1, Theorem 7.3.8]).

The third equality is from (22) which is allowed by the assumptions S5 ⊆ W3 and
S6 ⊆ W4. The fourth follows from (29a) with v2 = DS3(W3)ut ∈ W2. The fifth is again
from (22) which is allowed by the assumption S2 ⊆ W3 and the sixth from (29b) with
v1 = ut ∈ W1.

Remark 6. The procedure of this step was defined so that it can be carried out completely au-
tomatically; but it can be slightly modified if necessary. In the above illustration, we consider
the energy of the form

∫ L

0
G(u,DS3(W3)u,DS4(W4)DS3(W3)u)dx.

However, other definitions are sometimes possible. For example, with the energy of the form

∫ L

0
G(u, ux,DS4(W4)DS3(W3)u)dx,

we can derive an intended semi-discrete scheme as well.

Step 3
In this step, we discretize Semi-discrete scheme 2 in time, so that the dissipation property

remains kept. Although this step is just the discrete gradient method, it is helpful to use
the following notation. Hereafter we also call the discrete quantities

∂Gd

∂(u(n+1), u(n))
,

∂Gd

∂(DSj(Wj)u
(n+1),DSj(Wj)u

(n))
,

∂Gd

∂(DSj+1(Wj+1)DSj(Wj)u
(n+1),DSj+1(Wj+1)DSj(Wj)u

(n))

the discrete partial derivatives, which correspond to ∂G/∂u, ∂G/∂ux and ∂G/∂uxx, respec-
tively, if they satisfy the following discrete chain rule:

1

∆t

∫ L

0

(
G(u(n+1),DSj(Wj)u

(n+1),DSj+1(Wj+1)DSj(Wj)u
(n+1))

−G(u(n),DSj(Wj)u
(n),DSj+1(Wj+1)DSj(Wj)u

(n))
)
dx

=

(
∂Gd

∂(u(n+1), u(n))
,
u(n+1) − u(n)

∆t

)

+

(
∂Gd

∂(DSj(Wj)u
(n+1),DSj(Wj)u

(n))
,
DSj(Wj)u

(n+1) −DSj(Wj)u
(n)

∆t

)

+

(
∂Gd

∂(DSj+1(Wj+1)DSj(Wj)u
(n+1),DSj+1(Wj+1)DSj(Wj)u

(n))
,

DSj+1(Wj+1)DSj(Wj)u
(n+1) −DSj+1(Wj+1)DSj(Wj)u

(n)

∆t

)
.

Actually, such quantities can be explicitly defined in a similar manner as (13), (14) or
(15), (16). Then using the discrete partial derivatives, we define a dissipative scheme as
follows.
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Scheme 2 (Dissipative H1-Galerkin schemes for (23)). Suppose u(0) is given in S1. Find

u(n+1) ∈ S1 and q(n+
1
2 ) ∈ S2 (n = 0, 1, . . . ) such that, for any v1 ∈ W1 and v2 ∈ W2,

(
u(n+1) − u(n)

∆t
, v1

)
= −

(
∂Gd

∂(u(n+1), u(n))
, v1

)

−
(
PS5(W5)

∂Gd

∂(DS3(W3)u
(n+1),DS3(W3)u

(n))
, (v1)x

)

+

[
PS5(W5)

∂Gd

∂(DS3(W3)u
(n+1),DS3(W3)u

(n))
v1

]L

0

+
(
q(n+

1
2 ), (v1)x

)
−
[
q(n+

1
2 )v1

]L
0
,

(
q(n+

1
2 ), v2

)
= −

(
PS6(W6)

∂Gd

∂(DS4(W4)DS3(W3)u
(n+1),DS4(W4)DS3(W3)u

(n))
, (v2)x

)

+

[(
PS6(W6)

∂Gd

∂(DS4(W4)DS3(W3)u
(n+1),DS4(W4)DS3(W3)u

(n))

)
v2

]L

0

.

By the construction of the scheme, the following theorem which indicates that the scheme
is dissipative immediately follows.

Theorem 8 (Scheme 2: Dissipation property). Assume that the boundary conditions satisfy
[(

PS6(W6)
∂Gd

∂(DS4(W4)DS3(W3)u
(n+1),DS4(W4)DS3(W3)u

(n))

)(DS3(W3)u
(n+1) −DS3(W3)u

(n)

∆t

)]L

0

= 0,

[(
PS5(W5)

∂Gd

∂(DS3(W3)u
(n+1),DS3(W3)u

(n))

)(
u(n+1) − u(n)

∆t

)]L

0

= 0,

[
q(n+

1
2 )

(
u(n+1) − u(n)

∆t

)]L

0

= 0.

Also assume that S5 ⊆ W3, S6 ⊆ W4, S2 ⊆ W3, (DS3(W3)u
(n+1) − DS3(W3)u

(n))/∆t ∈ W5,

(DS4(W4)DS3(W3)u
(n+1)−DS4(W4)DS3(W3)u

(n))/∆t ∈ W6, (DS3(W3)u
(n+1)−DS3(W3)u

(n))/∆t ∈
W2 and (u(n+1) − u(n))/∆t ∈ W1. Then the solution of Scheme 2 satisfies

1

∆t

∫ L

0

(
G(u(n+1),DS3(W3)u

(n+1),DS4(W4)DS3(W3)u
(n+1))

−G(u(n),DS3(W3)u
(n),DS4(W4)DS3(W3)u

(n))
)
dx ≤ 0, n = 0, 1, 2, . . . .

3.2.2 Design of dissipative schemes: PHASE 2

In Phase 1 (Steps 1-3), we have succeeded in designing the dissipative H1-Galerkin scheme.
In the remaining steps, we find an underlying H1-weak form of Scheme 2 to confirm the
validity of the scheme.

Step 4
In this step, we change the expression of Semi discrete scheme 2 to a more familiar form,

eliminating the L2-projection operators. Here we do not introduce any new concepts, but
just rewrite the expression of the semi discrete scheme. Hence, the following Semi discrete
scheme 2′ is mathematically equivalent to Semi discrete scheme 2. The procedure of this
step is based on the definition of the L2-projection operators. For instance, introducing
an intermediate function a1 ∈ S3, we rewrite the term ∂G/∂(DS3(W3)u) into ∂G/∂a1 with
adding a new equation (a1, v) = (ux, v) for any v ∈ W3 (see Lemma 6).
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Semi discrete scheme 2′ (without L2-projection operators). Find u(t, ·) ∈ S1, q ∈ S2,
a1 ∈ S3, a2 ∈ S4, r1 ∈ S5, r2 ∈ S6 such that, for any v1 ∈ W1, v2 ∈ W2, v3 ∈ W3, v4 ∈ W4,
v5 ∈ W5, v6 ∈ W6,

(ut, v1) = −
(
∂G

∂u
, v1

)
− (r1, (v1)x) + [r1v1]

L
0 + (q, (v1)x)− [qv1]

L
0 ,

(q, v2) = − (r2, (v2)x) + [r2v2]
L
0 ,

(a1, v3) = (ux, v3) ,

(a2, v4) = ((a1)x, v4) ,

(r1, v5) =

(
∂G

∂a1
, v5

)
,

(r2, v6) =

(
∂G

∂a2
, v6

)
.

Proposition 9 (Semi discrete scheme 2′: Dissipation property). Assume that the boundary
conditions satisfy

[r2(a1)t]
L
0 = 0, [r1ut]

L
0 = 0, [qut]

L
0 = 0.

Also assume that S5 ⊆ W3, S6 ⊆ W4, S2 ⊆ W3, (a1)t ∈ W5, (a2)t ∈ W6, (a1)t ∈ W2, ut ∈ W1

and ux, (a1)x ∈ C1(R+;L2(0, L)). Then the solution of Semi discrete scheme 2′ satisfies

d

dt

∫ L

0
G(u, a1, a2)dx ≤ 0.

Proof. Since Proposition 7 was already proved, we skip this proof. Of course, the claim can
be directly shown for Semi discrete scheme 2′.

Step 5
In this step, we replace all finite dimensional function spaces Si’s and Wi’s to the corre-

sponding infinite dimensional function spaces Sc
i ’s and W c

i ’s which are subspaces of H1(0, L)
to get the following weak form.

Weak form 2. Find u(t, ·) ∈ Sc
1, q ∈ Sc

2, a1 ∈ Sc
3, a2 ∈ Sc

4, r1 ∈ Sc
5, r2 ∈ Sc

6 such that, for
any v1 ∈ W c

1 , v2 ∈ W c
2 , v3 ∈ W c

3 , v4 ∈ W c
4 , v5 ∈ W c

5 , v6 ∈ W c
6 ,

(ut, v1) = −
(
∂G

∂u
, v1

)
− (r1, (v1)x) + [r1v1]

L
0 + (q, (v1)x)− [qv1]

L
0 ,

(q, v2) = − (r2, (v2)x) + [r2v2]
L
0 ,

(a1, v3) = (ux, v3) ,

(a2, v4) = ((a1)x, v4) ,

(r1, v5) =

(
∂G

∂a1
, v5

)
,

(r2, v6) =

(
∂G

∂a2
, v6

)
.

Obviously Weak form 2 is consistent in H1, and has the dissipation property.

Proposition 10 (Weak form 2: Dissipation property). Assume that the boundary conditions
satisfy

[r2(a1)t]
L
0 = 0, [r1ut]

L
0 = 0, [qut]

L
0 = 0.
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Also assume that Sc
5 ⊆ W c

3 , Sc
6 ⊆ W c

4 , Sc
2 ⊆ W c

3 , (a1)t ∈ W c
5 , (a2)t ∈ W c

6 , (a1)t ∈ W c
2 ,

ut ∈ W c
1 and ux, (a1)x ∈ C1(R+;L2(0, L)). Then the solution of Weak form 2 satisfies

d

dt

∫ L

0
G(u, a1, a2)dx ≤ 0.

Thus we found the desired underlying weak form, which is consistent in H1 and keeps
the dissipation property. Obviously, it is quite difficult to find this directly from the original
PDE (23); even determining the required intermediate functions (five in the above case) is a
hard task. But by simply following the proposed approach, we can automatically reach the
desired dissipative scheme and the underlying weak form. We would like to emphasize here
again that this is the point of the new method.

Step 6
Finally, we have to check the relation between (23) and Weak form 2. Actually, Weak

form 2 can be seen as the natural weak formulation of the system of equations

ut = −∂G
∂u

+ (r1)x − qx, q = (r2)x, a1 = ux,

a2 = (a1)x, r1 =
∂G

∂a1
, r2 =

∂G

∂a2
,

which is equivalent to (23).

3.3 Proposed method for Type 2 PDEs

We show the new method for the conservative equation:

ut = B δG
δu

, (30)

where B = B(u, ux, uxx, . . . , ∂x, ∂x2, . . . ) is skew-symmetric and polynomial with respect to
u, ux, uxx, . . . , ∂x, ∂x

2, . . . . For simplicity, we assume that G = G(u, ux).
In order to clarify the essential idea of the proposed method, we restrict our attention to

the conservative case and assume that the boundary conditions are periodic (see Remark 8).
Moreover we will describe the framework with the toy problem B = (uxx∂x + ∂xuxx) + ∂x

3

(as usual in this research field this operator operates on a function f in such a way that
(g∂x + ∂xg)f = gfx + ∂x(gf)), which contains two typical types of complicated differential
operators:

• B containing not only ∂x
s but some functions of u, ux, . . . ,

• B expressed as the summation of some differential operators.

Nowadays, we are often concerned with much more complicated operators such as the inverse
of differential operators. We will also demonstrate the treatment of such a case in the next
subsection with a concrete example.

3.3.1 Design of conservative schemes: PHASE 1

In this subsection, we show the procedure of Phase 1 (derivation of dissipative schemes) for
(30).

Step 1′

Let us simply consider the following formulation. Since this does not necessarily make
sense in H1 (depending on the operator B), we call the following the formal weak form.
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Formal weak form 2. Suppose u(0, ·) is given. Find u, p such that, for any v1, v2,

(ut, v1) = (Bp, v1),

(p, v2) =

(
∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)
.

If the operator B is skew-symmetric, the conservation property can be obtained by formal
calculations:

d

dt

∫

T
G(u, ux)dx =

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
= (p, ut) = (Bp, p) = 0. (31)

Step 2′

In this step, we discretize the above formal weak form in space so that the semi dis-
crete scheme is consistent in an approximation space Xp of H1(T). This step is completely
automatic and can be done just by replacing differential operators with DXp ; i.e., replace
B(uxx, ∂x, ∂x3) with Bsd = B(D2

Xp
u,DXp ,D3

Xp
). Note that for B(uxx, ∂x, ∂x3) defined above,

B(D2
Xp

u,DXp ,D3
Xp

) is skew-symmetric.

Semi-discrete scheme 3 (with L2-projection operators). Suppose u(0, ·) is given in Xp.
Find u(t, ·) and p ∈ Xp such that, for any v1 and v2 ∈ Xp,

(ut, v1) = (Bsdp, v1),

(p, v2) =

(
∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)

where G = G(u, ux).

Note that replacing the operator B with Bsd makes the scheme consistent in H1 space.

Proposition 11 (Semi discrete scheme 3: Conservation property). The solution of Semi
discrete scheme 3 satisfies

d

dt

∫

T
G(u, ux)dx = 0.

Proof. Since Bsd makes sense in H1 space, the calculation (31) is not formal but mathemat-
ically rigorous.

Step 3
In this step, we discretize the above semi-discrete scheme in time. Since this step is

nothing but the discrete gradient method, we show only the result.

Scheme 3 (Conservative H1-Galerkin schemes for (30)). Suppose u(0) is given in Xp. Find

u(n+1) ∈ Xp and q(n+
1
2 ) ∈ Xp (n = 0, 1, . . . ) such that, for any v1 ∈ Xp and v2 ∈ Xp,

(
u(n+1) − u(n)

∆t
, v1

)
= (Bdp

(n+ 1
2 ), v1),

(p(n+
1
2 ), v2) =

(
∂Gd

∂(u(n+1), u(n))
, v2

)
+

(
∂Gd

∂(u(n+1)
x , u(n)x )

, (v2)x

)
,

where Bd = B(D2
Xp

u(n+
1
2 ),DXp ,D3

Xp
) and u(n+

1
2 ) = (u(n+1) + u(n))/2.

Theorem 12 (Scheme 3: Conservation property). The solution of Scheme 2 satisfies

1

∆t

∫

T
(G(u(n+1), u(n+1)

x )−G(u(n), u(n)x ))dx = 0, n = 0, 1, 2, . . . .
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3.3.2 Design of conservative schemes: PHASE 2

Step 4
Recall that Bsdp = B(D2

Xp
u,DXp ,D3

Xp
)p = (D2

Xp
u)(DXpp) + DXp((D2

Xp
u)p) + D3

Xp
p.

Introducing new variables

u1 := DXpu, u2 := DXpu1,

p1 := DXpp, p2 := DXpp1, p3 := DXpp2,

q := DXp(u2p),

we can rewrite Semi discrete scheme 3 to a more familiar form as follows.

Semi discrete scheme 3′ (without L2-projection operators). Find u(t, ·),u1,u2,p,p1,p2,p3,q ∈
Xp such that, for any v1,v2,v3,v4,v5,v6,v7,v8 ∈ Xp,

(ut, v1) = (u2p1 + q + p3, v1),

(p, v2) =

(
∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)
,

(u1, v3) = (ux, v3), (u2, v4) = ((u1)x, v4),

(p1, v5) = (px, v5), (p2, v6) = ((p1)x, v6), (p3, v7) = ((p2)x, v7),

(q, v8) = ((u2p)x, v8).

Steps 5 and 6
One can easily obtain a conservative H1-weak form by changing Xp in Semi discrete

scheme 3′ into H1(T), and by confirming it is consistent with the original equation (30). We
omit the straightforward (but tedious) calculation here. Once again, like as the comment at
the end of Section 3.2, we like to emphasize that the weak form (with seven intermediate
functions) is not obvious at all.

Remark 7. We explained the proposed method with the definition Bsd = B(D2
Xp

u,DXp ,D3
Xp

).

But we can adopt other definitions such as B(D2
Xp

u, ∂x,D3
Xp

), as long as it is consistent with

H1 and skew-symmetric.

Remark 8. For PDEs whose G has higher order derivatives and B is complicated, one can
derive the desired Galerkin schemes by the combination of the proposed methods for Types 1
and 2. Similarly, general boundary conditions can be treated by a similar discussions in the
Type 1 procedure.

3.4 Some applications

In this subsection, we show some applications of the proposed method. In Section 3.4.1, we
consider the Swift–Hohenberg equation, which is a dissipative equation of Type 1, and discuss
the treatment of boundary conditions. In Section 3.4.2, we consider the Kawahara equation,
which is a conservative equation of Type 1, discuss the implementation issue, and show some
numerical experiments. In Section 3.4.3, we consider the Camassa–Holm equation, which is
a conservative PDE of Type 2.
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3.4.1 Type 1: The Swift–Hohenberg equation

The Swift–Hohenberg equation is an example of (23) with G(u, ux, uxx) = −u2+u4/4−u2x+
u2xx/2, which is usually solved subject to the boundary conditions

ux = uxxx = 0 at x = 0, L, (32)

or

u = uxx = 0 at x = 0, L. (33)

For either case, it can be easily confirmed that a classical solution has an energy-dissipation
property. By applying the procedure in Section 3.2, we automatically obtain the formal weak
form, semi discrete scheme and fully discrete scheme. Below we only show examples of the
choice of function spaces (as mentioned in Remark 4, the choice is based on the standard
theory of finite element methods). Let Sh ⊂ H1(0, L) be the piecewise linear function space
over the grids. Let Sh,0 = {v | v ∈ Sh, v(0) = v(L) = 0}. Obviously, Sh,0 corresponds to
H1

0 = {v | v ∈ H1, v(0) = v(L) = 0}. For (32), it is natural to chose S1 = W1 = S4 =
W4 = S6 = W6 = Sh,0 and S2 = W2 = S3 = W3 = S5 = W5 = Sh. Correspondingly,
Sc
1 = W c

1 = Sc
4 = W c

4 = Sc
6 = W c

6 = H1
0 and Sc

2 = W c
2 = Sc

3 = W c
3 = Sc

5 = W c
5 = H1.

For (33), it is natural to chose S2 = W2 = S3 = W3 = S6 = W6 = Sh,0 and S1 = W1 =
S4 = W4 = S5 = W5 = Sh. Correspondingly, Sc

2 = W c
2 = Sc

3 = W c
3 = Sc

6 = W c
6 = H1

0 and
Sc
1 = W c

1 = Sc
4 = W c

4 = Sc
5 = W c

5 = H1. These relations are consistent with the assumptions
in Propositions 7 and 10.

3.4.2 Type 1: The Kawahara equation

Let us consider the PDE of the form

ut = ∂x
δG

δu
, G = G(u, ux, uxx).

We illustrate how we can apply the proposed method taking the Kawahara equation (6) as
an example. We assume the periodic boundary conditions for simplicity. We set S1 = S2 =
· · · = W1 = W2 = · · · =: Xp ⊂ H1(T) (T denotes the torus of length L). Since it is lengthy to
show all steps (Steps 1-6), we only show a formal weak form, the resulting Galerkin scheme,
and its underlying weak form.

Firstly, let us define a formal weak form. Introducing an intermediate function p, we can
translate the equation into the system





ut = (p1)x,

p1 =
δG

δu

as suggested in the original DPDM [17]. Let us consider the following formulation which is
obtained by integrating-by-part up to once each term: Find u, p1 such that, for any v1, v2,

(ut, v1) = ((p1)x, v1),

(p1, v2) =

(
∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)
−
(
∂x

∂G

∂uxx
, (v2)x

)
.

We then follow the same procedure as in Section 3.2 to find the following formal weak form:
Find u, p, q such that, for any v1, v2, v3,

(ut, v1) = ((p1)x, v1) ,
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(p1, v2) =

(
∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)
− (q, (v2)x) ,

(q, v3) = −
(
∂G

∂uxx
, (v3)x

)
.

Note that the new intermediate function q is introduced by the rule (R1′ a). The conservation
property can be obtained by formal calculations:

d

dt

∫

T
G(u, ux, uxx)dx =

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
+

(
∂G

∂uxx
, uxxt

)

=

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
− (q, uxt)

= (p1, ut) = ((p1)x, p1) = 0.

Secondly, we derive a semi-discrete scheme by using the L2-projection operators. Suppose
u(0, ·) is given in Xp. Find u(t, ·), p1, q ∈ Xp such that, for any v1, v2, v3 ∈ Xp,

(ut, v1) = ((p1)x, v1) ,

(p1, v2) =

(
∂G

∂u
, v2

)
+

(
PXp

∂G

∂(DXpu)
, (v2)x

)
− (q, (v2)x) ,

(q, v3) = −
(
PXp

∂G

∂(D2
Xp

u)
, (v3)x

)
,

where

∂G

∂u
= −u2

3
,

∂G

∂(DXpu)
= αDXpu,

∂G

∂(D2
Xp

u)
= βD2

Xp
u.

Here ux and uxx in partial derivatives are replaced by DXpu and D2
Xp

u based on (R2′ b), and

PXp ’s are placed in front of partial derivatives based on (R2′ c). We implicitly obey (R2′ a),
but since in this case all function spaces are Xp due to the periodic boundary conditions,
we skip the discussion about the function spaces. This scheme is consistent in Xp ⊂ H1(T),
and has the conservation property which is not just formal but rigorous:

d

dt

∫

T
G(u,DXpu,D2

Xp
u)dx = 0.

Thirdly, we discretize the above semi discrete scheme in time to get the following fully

discrete scheme. Suppose u(0) is given in Xp. Find u(n+1), p
(n+ 1

2 )
1 , q(n+

1
2 ) ∈ Xp (n = 0, 1, . . . )

such that, for any v1, v2, v3 ∈ Xp,

(
u(n+1) − u(n)

∆t
, v1

)
=

(
(p

(n+ 1
2 )

1 )x, v1

)
, (34a)

(
p
(n+ 1

2 )
1 , v2

)
=

(
∂Gd

∂(u(n+1), u(n))
, v2

)
+

(
PXp

∂Gd

∂(DXpu
(n+1),DXpu

(n))
, (v2)x

)

−
(
q(n+

1
2 ), (v2)x

)
, (34b)

(
q(n+

1
2 ), v3

)
= −

(
PXp

∂Gd

∂(D2
Xp

u(n+1),D2
Xp

u(n))
, (v3)x

)
, (34c)

21



where

∂Gd

∂(u(n+1), u(n))
= −(u(n+1))2 + u(n+1)u(n) + (u(n))2

6
,

∂Gd

∂(DXpu
(n+1),DXpu

(n))
= α

(
DXpu

(n+1) +DXpu
(n)

2

)
,

∂Gd

∂(D2
Xp

u(n+1),D2
Xp

u(n))
= β

(
D2

Xp
u(n+1) +D2

Xp
u(n)

2

)
.

These discrete partial derivatives correspond to ∂G/∂u = −u2/2, ∂G/∂ux = αux and
∂G/∂uxx = βuxx (recall that G(u, ux, uxx) = −u3/6 + αu2x/2 + βu2xx/2) and satisfy the
discrete chain rule.

Theorem 13. The solution of the scheme (34a), (34b), (34c) satisfies

1

∆t

∫

T

(
G(u(n+1),DXpu

(n+1),D2
Xp

u(n+1))

−G(u(n),DXpu
(n),D2

Xp
u(n))

)
dx = 0, n = 0, 1, 2, . . . .

Finally, following the procedure of Phase 2, we obtain the underlying H1-weak form:
Find u(t, ·), p1, q, a1, a2 ∈ H1(T) such that, for any v1, v2, v3, v4, v5 ∈ H1(T),

(ut, v1) = ((p1)x, v1) ,

(p1, v2) =

(
−u2

2
, v2

)
+ α (a1, (v2)x)− (q, (v2)x) ,

(q, v3) = −β ((a2, (v3)x) ,
(a1, v4) = (ux, v4) ,

(a2, v5) = ((a1)x, v5) .

Let us turn to numerical experiments. The implementation of the scheme (34a), (34b),
(34c) is straightforward. The basis functions of Xp are denoted by ψi(x) (i = 0, 1, . . . , N−1).
The concrete form of the scheme is

A

(
u(n+1) − u(n)

∆t

)
= Bp

(n+ 1
2 )

1 , (35a)

Ap
(n+ 1

2 )
1 = f

(
u(n+1),u(n), q

(n+ 1
2 )

1

)
, (35b)

Aq
(n+ 1

2 )
1 = g

(
u(n+1),u(n)

)
, (35c)

where u(n) := (u(n)0 , u(n)1 , . . . , u(n)N−1) are the coefficient vectors of u(n)(x) =
∑N−1

i=0 u(n)i ψi(x)

(the same notation is used for p
(n+ 1

2 )
1 (x) and q

(n+ 1
2 )

1 (x)), and f and g are the vectors arising
from the right hand side of (34b) and (34c), respectively (f is nonlinear and g is linear in
terms of u(n+1)). The matrix A is the mass matrix whose elements are Aij = (ψi,ψj), and
B’s elements are Bij = ((ψi)x,ψj). Since the matrix A is invertible, (35a), (35b) and (35c)
immediately reduce to

A

(
u(n+1) − u(n)

∆t

)
= BA−1f

(
u(n+1),u(n),A−1g

(
u(n+1),u(n)

))
.
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Thus, the computation of the intermediate variables p
(n+ 1

2 )
1 and q

(n+ 1
2 )

1 can be skipped, and
the dimension of the nonlinear systems to be solved is N , instead of 3N .

The operatorDXp can be implemented as follows. If we denoteDXpu
(n) =

∑N−1
i=0 d(n)i ψi(x),

the coefficient d(n) = (d(n)0 , d(n)1 , . . . , d(n)N−1)
" is calculated by

Ad(n) = Bu(n),

which is equivalent to
(
DXu(n),ψi

)
= (ux,ψi) (i = 0, 1, . . . , N − 1).

Next we check the qualitative behavior and discrete conservation law of the numerical
solution. For simplicity, we use a uniform mesh and employed the P1 elements. The param-
eters were set to α = β = 1, t = [0, 400], x ∈ [0, 50], ∆x = 50/101 (N = 101), ∆t = 0.1.
Motivated by the fact that the Kawahara equation has a solitary wave solution [25]

u(t, x) =
105α2

169β
sech4

[
1

2

√
α

13β

(
x− x0 −

36α2

169β
t

)]
, x ∈ R,

we set the initial value to u (0, x) = (105/169)sech4((1/2)
√

1/13(x − 25)). Fig. 2 shows
the numerical solution obtained by the scheme (34a), (34b), (34c) and error in the discrete
energy. The scheme can well capture the solitary solutions over a long time and the error
well agrees with the discrete conservation law (Theorem 13).
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Figure 2: Scheme 3: (left) the numerical solution and (right) error in the discrete energy.

Finally let us look at the scheme from a different viewpoint. One of the simplest H1-weak
formulations for the Kawahara equation (6) would be the following. Find u(t, ·), p, q ∈ H1(T)
such that, for any v1, v2, v3 ∈ H1(T),

(ut, v1) =

(
u2

2
, (v1)x

)
+ α (p, (v1)x)− β (q, (v1)x) ,

(p, v2) = − (ux, (v2)x) ,

(q, v3) = − (px, (v3)x) .

We consider a standard spatial discretization of the above naive weak form (which is not
conservative), and the conservative semi discrete scheme derived by the proposed method,
and then discretize them in time by means of the fourth order explicit Runge–Kutta method.
Thus, the conservation is destroyed for both cases by the temporal discretization. Never-
theless, the results are truly different. The time mesh size was set to ∆t = 0.0025 (other
parameters were set to those employed in the above experiment). From Fig. 3, we observe
that numerical solution based on the conservative weak form was stable in t ∈ [0, 10], while
numerical solution based on the naive weak form blew up in first four steps. This exam-
ple implies that the conservative weak form itself obtained as a by-product of the proposed
method is meaningful.
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Figure 3: The numerical solutions obtained by 4th order explicit Runge–Kutta method based
on (left) conservative weak form and (right) naive weak form.

3.4.3 Type 2: The Camassa–Holm equation

In this example, we illustrate the derivation of conservative schemes for the Camassa–Holm
equation which is a conservative PDE of Type 2. Although one of the schemes was already
published in [21], we give additional discussions especially as for the weak formulation.

Let us start by emphasizing the difficulty of finding a conservative H1-weak form for
the Camassa–Holm equation (7). As is well known, the Camassa–Holm equation has a
characteristic peakon (peaked soliton) solution: u(t, x) = c exp(−|x− ct|) which lives in H1

but not in C1. One H1-weak formulation has been already given in [5] (see also [6]):

ut +
1

2

(
u2 +K

(
u2 +

u2x
2

))

x

= 0, where K = (1− ∂x
2)−1.

But this formulation is not convenient in our project, since it seems that the conservation
law cannot be directly established. On the other hand, Matsuo [18] proposed the following
weak form: Find m(t, ·), p ∈ H1(T) such that, for any v1, v2 ∈ H1(T),

(mt, v1) = ((m∂x + ∂xm)p, v1) ,

(p, v2) =

(
∂G

∂(Km)
,Kv2

)
+

(
∂G

∂(Kmx)
,K(v2)x

)
,

which directly leads to the conservation law. But this formulation has a drawback that it
can capture only H3 (when m ∈ H1) or smoother solutions in terms of the original variable
u. Note that when u represents peakon solutions, m becomes delta functions.

The Camassa–Holm equation has the Hamiltonian structure

mt = (m∂x + ∂xm)
δG

δm
,

where

G = −u2 + u2x
2

, and m = (1− ∂x
2)u,

or equivalently

ut = (1− ∂x
2)−1(m∂x + ∂xm)(1− ∂x

2)−1 δG

δu
. (36)
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Introducing an intermediate variable p, we can further translate (36) into the system




(1− ∂x

2)ut = (m∂x + ∂xm)p,

(1− ∂x
2)p =

δG

δu
.

(37)

Firstly, we consider the following formal weak form: Find u, p such that, for any v1, v2,

(
(1− ∂x

2)ut, v1
)
= ((m∂x + ∂xm)p, v1) , (38a)

(
(1− ∂x

2)p, v2
)
=

(
∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)
. (38b)

The conservation law can be explicitly obtained by formal calculations:

d

dt

∫

T
G(u, ux)dx =

(
∂G

∂u
, ut

)
+

(
∂G

∂ux
, uxt

)
=
(
(1− ∂x

2)p, ut
)

=
(
p, (1− ∂x

2)ut
)
= ((m∂x + ∂xm)p, p) = 0.

The first equality is just the chain rule. The second equality follows from (38b) with v2 = ut,
the third from the symmetry of (1− ∂x

2), and the fourth from (38a) with v1 = p. The last
is from the skew-symmetry of (m∂x + ∂xm).

Remark 9. The translation from (36) to (37) is automatic in the following sense. In the
translation, we note the two points:

• symmetric operators should be kept (in this case, (m∂x + ∂xm));

• variational derivative should be treated separately (such as the second equation of (37)).

Then we can easily find a system which is formally conservative. Such a system is not unique
in general, for example for the Camassa–Holm equation, we can also find





ut = (1− ∂x

2)−1(m∂x + ∂xm)(1− ∂x
2)−1p,

p =
δG

δu
;

but for all of them the subsequent procedure can be applied.

Secondly, we derive a semi-discrete scheme by using the L2-projection operators. Suppose
u(0, ·) ∈ Xp is given. Find u(t, ·), p(t, ·) ∈ Xp such that, for any v1, v2 ∈ Xp,

(
(1− (DXp)

2)ut, v1
)
= ((m∂x + ∂xm)p, v1) ,

(
(1− (DXp)

2)p, v2
)
=

(
∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)
,

where m = (1− (DXp)
2)u. This semi-discrete scheme is consistent in Xp ⊂ H1(T), and has

the conservation property which is not formal but rigorous:

d

dt

∫

T
G(u, ux)dx = 0.

Remark 10. If we strictly obey the rules of the proposed method, we should replace (m∂x +
∂xm) with (mDXp + DXpm). But as mentioned in Remark 7, we can leave the operator ∂x
because the operator (m∂x+ ∂xm) with the definition m = (1−D2

Xp
)u makes sense in H1 in

this case. The above semi-discrete scheme is exactly the same as the one already proposed in
our recent report [21].
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Thirdly, we discretize the above semi-discrete scheme in time to get the following fully
discrete scheme. Suppose u(0) ∈ Xp is given. Find u(n+1), p(n+

1
2 ) ∈ Xp (n = 0, 1, . . . ) such

that, for any v1, v2 ∈ Xp,
(
(
1− (DXp)

2
)u(n+1) − u(n)

∆t
, v1

)
=
(
(m(n+ 1

2 )∂x + ∂xm
(n+ 1

2 ))p(n+
1
2 ), v1

)
, (39)

((
1− (DXp)

2
)
p(n+

1
2 ), v2

)
=

(
∂Gd

∂(u(n+1), u(n))
, v2

)
+

(
∂Gd

∂(u(n+1)
x , u(n)x )

, (v2)x

)
, (40)

where m(n+ 1
2 ) = (1− (DXp)

2)(u(n+1) + u(n))/2,

∂Gd

∂(u(n+1), u(n))
= −u(n+1) + u(n)

2
,

∂Gd

∂(u(n+1)
x , u(n)x )

= −u(n+1)
x + u(n)x

2
.

Theorem 14. The solution of the scheme (39), (40) satisfies

1

∆t

∫

T

(
G(u(n+1), u(n+1)

x )−G(u(n), u(n)x )
)
dx = 0, n = 0, 1, 2, . . . .

Finally, following the procedure of Phase 2, we obtain the underlying H1-weak form.
Find u,m, p, q1, q2, q3 ∈ H1(T) such that, for any v1, . . . , v6 ∈ H1(T),

(mt, v1) = ((m∂x + ∂xm)p, v1) ,

(m, v2) = (u, v2) + (q1, (v2)x) ,

(q1, v3) = (ux, v3) ,

(q2, v4) =

(
∂G

∂u
, v4

)
+

(
∂G

∂ux
, (v4)x

)
,

(q2, v5) = (p, v5) + (q3, (v5)x),

(q3, v6) = (px, v6).

The solution of this weak form is conservative in the following sense:

d

dt

∫

T
G(u, ux)dx = 0.

4 Extension to multi-dimensional problems

In this section, we extend the proposed method to multi-dimensional cases. We explain the
extension through the following example. We consider the dissipative equation of the form

∂u

∂t
= (−1)s+1%s δG

δu
, G = G(u,∇u,%u), (41)

where the variational derivative in two or three dimensional cases is defined by

δG

δu
:=

∂G

∂u
−∇ · ∂G

∂∇u
+% ∂G

∂%u
.

Firstly we introduce the notation of the L2-projection operators for high dimensional
cases, and show their properties. Next we illustrate the derivation of dissipative schemes for
(41) with s = 0 taking the two-dimensional Swift–Hohenberg (2D-SH) equation

ut = −u3 + 2u− 2∇u−%2u, (42)

on the torus T2, as an example, whose energy functional is G(u,∇u,%u) = u4/4 − u2 −
|∇u|2+(%u)2/2. To save space, we show only a formal weak form and the resulting scheme,
but its underlying weak form can be also derived by the procedure of Phase 2.
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4.1 L2-projection operators in multi-dimensional cases

We define the L2-projection operators PX : L2 → X ⊆ H1(Ω) ⊂ L2(Ω) satisfying

(PXu, v) = (u, v)

for any v ∈ X, and PX : L2(Ω) → X ⊆ H1(Ω) ⊂ L2(Ω) satisfying

(PXu,v) = (u,v)

for any v ∈ X. We also denote PX∇u and PX∇ · u by DXu and DXu. That is, DX :=
PX∇ : H1(Ω) → X and DX := PX∇· : H1(Ω) → X. As for these operators, the following
formulas corresponding to Lemma 4 and Corollary 5 are straightforward.

Lemma 15. For any u ∈ H1(Ω) and v ∈ X, it holds

(DXu,v) = (∇u,v) ,

and for any u ∈ H1(Ω) and v ∈ X, it holds

(DXu, v) = (∇ · u, v) .

Corollary 16. For any u ∈ X and v ∈ X such that
∫
Γ u(n · v) dΓ = 0, it holds

(DXu,v) = − (u,DXv) . (43)

For any u ∈ X and v ∈ X such that
∫
Γ(n · DXu)v dΓ =

∫
Γ u(n · DXv) dΓ = 0, it holds

(DXDXu, v) = (u,DXDXv) . (44)

For any u ∈ X and v ∈ X such that
∫
Γ(DXu)(n · v) dΓ =

∫
Γ(n ·u)(DXv) dΓ = 0, it holds

(DXDXu, v) = (u,DXDXv) . (45)

Proof. Eq. (43) directly follows from the Green theorem (8). We immediately obtain (44)
and (45) from (43).

We can also define operators corresponding to PX(Y ) and DX(Y ), but we here omit them.

4.2 Application to the 2D-SH equation

We derive a dissipative scheme for the 2D-SH equation. We assume the periodic boundary
conditions for simplicity. We first show a formal weak form and fully discrete scheme, and
then show numerical results.

We start with the following formal weak form. Find u and q, such that, for all v1 and
v2,

(ut, v1) = −
(
∂G

∂u
, v1

)
−
(
∂G

∂∇u
,∇v1

)
+ (q,∇v1) ,

(q,v2) = −
(
∂G

∂%u
,∇ · v2

)
.

Since this formal weak form completely corresponds to Formal weak form 1, the subsequent
procedures are straightforward. Thus we here show the fully discrete scheme only. Suppose
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u(0) is given in Xp. Find u(n+1) ∈ Xp and q(n+
1
2 ) ∈ Xp (n = 0, 1, . . . ) such that, for any

v1 ∈ Xp and v2 ∈ Xp,

(
u(n+1) − u(n)

∆t
, v1

)
= −

(
∂G

∂(u(n+1), u(n))
, v1

)

−
(
PXp

∂G

∂(DXpu
(n+1),DXpu

(n))
,∇v1

)
+
(
q(n+

1
2 ),∇v1

)
, (46a)

(
q(n+

1
2 ),v4

)
= −

(
PXp

∂G

∂(DXpDXpu
(n+1),DXpDXpu

(n))
,∇ · v2

)
, (46b)

where

∂G

∂(u(n+1), u(n))
=

((u(n+1))2 + (u(n))2)(u(n+1) + u(n))

4
− (u(n+1) + u(n)),

∂G

∂(DXpu
(n+1),DXpu

(n))
= −(DXpu

(n+1) +DXpu
(n)),

∂G

∂(DXpDXpu
(n+1),DXpDXpu

(n))
=

DXpDXpu
(n+1) +DXpDXpu

(n)

2
,

which correspond to ∂G/∂u = u3 − 2u, ∂G/∂∇u = −2∇u, and ∂G/∂%u = %u.

Theorem 17. The solution of Scheme (46a) and (46b) satisfies

1

∆t

∫

Ω

(
G(u(n+1),DXpu

(n+1),DXpDXpu
(n+1))

−G(u(n),DXpu
(n),DXpDXpu

(n))
)

dx ≤ 0. n = 0, 1, 2, . . . .

Finally we show the numerical results. Suppose that Ω = (0, Lx) × (0, Ly). For compu-
tation, the parameters were set to Lx = Ly = 10, t ∈ [0, 10], ∆t = 0.01, and the initial value
was set to u(0, x) = 0.5 + 0.5 sin(2πx/Lx) sin(2πy/Ly). We employed the P1 elements. The
mesh is shown in Fig. 4. Fig. 5 shows the numerical solutions, which seem good, and Fig. 6
shows the evolution of the energy which well agree with Theorem 17.
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Figure 4: The mesh used for computation.
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Figure 5: Numerical solutions for the 2D-SH equation (42) at t = 0, 0.5, 1, 2, 5 and 10.
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Figure 6: Evolution of the energy.

5 Concluding remarks

In this paper, we constructed a general framework for finding energy dissipative/conservative
H1-Galerkin schemes and their underlying H1-weak forms for evolution equations. In the
proposed method, the intended schemes and their underlying H1-weak forms can be auto-
matically derived via the formal weak form, which is made possible by the use of the L2

projection operators.
Our future works include the followings.

• There are many dissipative or conservative PDEs for which the proposed method can
be applied. Such PDEs include, for example, the modified Camassa–Holm equation
and the phase-field-crystal equation. Numerical studies of such PDEs will be presented
in the near future elsewhere.

• In this paper, we did not discuss mathematical analyses such as unique solvability (or
existence) and convergence analysis of the derived schemes. Such analyses should be
studied for individual PDE and we are now working on this topic as well.

• Obviously PDEs of the form (3) or (4) can be also regarded as Type 2 PDEs. But
the proposed method sometimes finds different dissipative/conservative schemes and
their underlying H1-weak forms from the ones in [17]. This means that the new
method is not a superset of the original discrete partial derivative method (DPDM).
It would deserve trying to construct a more general framework which contains both
the proposed method and the original DPDM. Moreover, this fact also indicates that
dissipative/conservative H1-weak forms are not always unique. Comparison of such
formulations from numerical and theoretical points of view would be interesting.
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