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Abstract

Recently, the symplectic exponentially-fitted methods for Hamiltonian systems with
periodic or oscillatory solutions have been attracting a lot of interest. As an alterna-
tive to them, in this paper, we propose a class of energy-preserving exponentially-fitted
methods. For this aim, we show sufficient conditions for energy-preservation in terms
of the coefficients of continuous stage Runge–Kutta methods, and extend the theory of
exponentially-fitted Runge–Kutta methods in the context of continuous stage Runge–
Kutta methods. Then by combining these two theories, we derive second and fourth
order energy-preserving exponentially-fitted schemes.

Keywords
Continuous stage Runge–Kutta method Energy-preservation Exponential fitting Hamil-
tonian systems

1 Introduction

In this paper we consider numerical integration of Hamiltonian systems of the form

d

dt
y = J−1∇H(y), J =

(
0 −I
I 0

)
, (1)

where y ∈ R2d, J is a skew-symmetric constant matrix with the identity matrix I ∈ Rd×d,
and the Hamiltonian, which is also referred to as the energy, H : R2d → R is assumed to be
sufficiently differentiable. According to the result by Poincaré, the exact flow of Hamiltonian
systems is for every t symplectic. Another important property of the flow is that it preserves
energy, i.e., the Hamiltonian. In the spirit of geometric numerical integration, the ideal
integrator would be that inherits such geometric properties as much as possible. But since
a numerical integrator cannot inherit both symplecticity and energy-preservation [14, 57],
methods satisfying each of these properties have been studied in the last decades. We call
such methods symplectic or energy-preserving methods, respectively. It is widely accepted
that such methods produce qualitatively nice numerical solutions over a long time (see [32, 36]
for symplectic methods, and [32, 33] for energy-preserving methods, for example).
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In a slightly different context, exponentially-fitted (EF) methods for ordinary differential
equations with periodic or oscillatory solutions have been considered for deriving efficient
algorithms making maximal use of available information on the solutions. Briefly speaking,
EF methods are the methods that exactly integrate all functions of a given linear space that
is chosen depending on the nature of the solutions of the original problem. For example, a nu-
merical method which can exactly integrate all functions in a linear space {cos(ωt), sin(ωt)}
would be able to track T = 2π/ω periodic solutions more accurately than the standard
methods even if ω ≫ 1. Such periodic or oscillatory solutions often arise in general Hamilto-
nian systems in different fields of applied sciences such as celestial mechanics, astrophysics,
chemistry, electronics, molecular dynamics, and so on [1]. Therefore, for such Hamiltonian
systems, it would be appropriate to consider symplectic or energy-preserving exponentially-
fitted methods.

EF methods can be divided into two classes. The first class is based on linear multistep
methods, and mainly focuses on second order differential equations. Methods in this class are
also referred to as trigonometric methods. The second class is based on one-step methods,
and aims at first order equations. Although the first class can be reformulated as one-step
methods in principle, we basically distinguish these two classes because the constructions
are completely different. The researches on the first class have a long history over fifty years,
where a first good theoretical foundation was given by Gautschi [25] and Lyche [37]. Then
in the last decades, trigonometric methods have been developed mainly in the context of
highly oscillatory differential equations (see, for example, [16, 24, 27, 31, 32, 34, 48] and
references therein). It is worth mentioning that some of the methods are symplectic [18, 24].
Compared to the above, the study of EF one-step methods is relatively new. In 1998,
Paternoster [40] and Simos [45] constructed independently implicit and explicit EF one-step
methods, respectively, based on the theory of Runge–Kutta (RK) methods. After that, the
theory of so called exponentially-fitted RK (EFRK) methods has been developed by several
authors [20, 21, 22, 38, 39, 40, 51, 52, 53, 55]. Recently, the theory of symplectic EFRK
methods has been attracting much attention [7, 8, 9, 10, 11, 23, 49, 50, 54].

If we turn our attention to energy-preserving integrators, only a few papers ([56], for
example) have been written in this context, and it seems much is left to be investigated.
Taking these facts into account, in this paper we consider a construction of energy-preserving
EF one-step methods. Below we clarify the difficulty of this challenge. The symplectic EF
(one-step) methods have been constructed by the combination of the following theories:

• characterization of symplecticity in terms of the RK coefficients, and

• standard theory of EFRK methods.

From this, one might expect that energy-preserving EF methods can be constructed similarly
by the combination of

• characterization of energy-preservation in terms of the RK coefficients, and

• standard theory of EFRK methods.

But such a combination is impossible because energy-preserving methods are not RK meth-
ods in general [13], and the first point above does not make sense at all unfortunately. The
key to overcome this difficulty is to notice a recently discovered fact that certain classes of
energy-preserving methods can be expressed as so called continuous stage RK (cRK) methods
(Hairer [30] and Tang–Sun [47]). This can help constructing energy-preserving EF methods,
and actually below we show that we can newly develop two theories:
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• characterization of energy-preservation in terms of the cRK coefficients, and

• standard theory of EFcRK methods.

Here we stress that in the preceding studies, only the specific energy-preserving schemes
were given, and the above first point has remained open so far. We also emphasize that as
for the second point the extension is not straightforward, because we are forced to consider
the different nodes from the EFRK methods on which the numerical solution is fitted to the
given functions. Then we derive second and fourth order energy-preserving exponentially-
fitted cRK (EPEFcRK) schemes making use of the two theories. We do not further get
into higher order schemes, because the difficulty there seems to be not essential, but just
technical.

This paper is organized as follows. In Section 2, we briefly review basic concepts of EFRK
methods and summarize the construction of symplectic EFRK methods. In Section 3, we
show sufficient conditions of energy-preservation in terms of the coefficients of cRK methods.
Then we develop a theory of EF methods based on cRK methods (EFcRK methods), and
derive energy-preserving EFcRK schemes. In Section 4, we show two numerical examples.
Finally in Section 5 we conclude this paper with some discussion on the extension of the
proposed method to Poisson systems and some comments on our future works.

In this paper we use several abbreviations. The following table shows their list.

RK Runge–Kutta

EF exponential-fitting, exponentially-fitted

FF functional-fitting, functionally-fitted

SEFRK symplectic exponentially-fitted Runge–Kutta

cRK continuous stage Runge–Kutta

EPcRK energy-preserving continuous stage Runge–Kutta

EFcRK exponentially-fitted continuous stage Runge–Kutta

EPEFcRK energy-preserving exponentially-fitted continuous stage Runge–Kutta

2 A brief review of exponentially fitted RK methods and sym-
plectic exponentially-fitted RK methods

In this section, we briefly review basic concepts of the EFRK methods and summarize the
construction of SEFRK methods.

2.1 Characterizations of symplecticity and symmetry of RK methods

As is well known, the s-stage Gauss method is a symplectic and symmetric RK method with
the accuracy of order 2s. Most of the existing implicit EFRK methods with even order can
be seen as extensions of the Gauss method. In order to review SEFRK methods in this
section, we first summarize the characterizations of symplecticity and symmetry in terms
of the RK methods, which play a crucial role in constructing SEFRK methods. For more
details, see [32, 36, 44] for example.

We consider an s-stage modified RK (mRK) method defined by

Yi = γiy0 + h

s∑
j=1

aijf(Yj), i = 1, . . . , s, (2)
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y1 = ϕh(y0) = y0 + h
s∑

i=1

bif(Yi), (3)

where y1 ≈ y(t0 + h), Yi ≈ y(t0 + cih) (i = 1, . . . , s) and the real parameters ci and bi
(i = 1, . . . , s) denote the nodes and the weights of the method. In the standard RK methods,
all γi = 1, but several authors introduced γi’s in the context of exponential fitting [20, 51, 52]
(see Section 2.3). We often refer to (2) and (3) as internal and final stages, respectively. The
mRK method (2) and (3) is often represented by means of Butcher’s tableau

c γ A

b⊤
=

c1 γ1 a11 · · · a1s
...

...
...

. . .
...

cs γs as1 · · · ass
b1 · · · bs

or equivalently the quartet (c,γ,A, b).
The exact flow, denoted by ψt(y0), of the Hamiltonian system (1) is symplectic for every

t. This means that the Jacobian matrix of ψt(y0) satisfies

ψ′
t(y0)

⊤Jψ′
t(y0) = J.

A numerical method defined by the flow map ϕh is called symplectic if for all Hamiltonian
systems (1) it satisfies the condition

ϕ′h(y0)
⊤Jϕ′h(y0) = J.

In general, it is advantageous to adopt symplectic methods in terms of the long time
behaviour. This can be verified by backward error analyses. The conditions for a RK
method being symplectic were obtained independently by Lasagni, Sanz-Serna and Suris
(see [32, 35, 43, 44, 46] and references therein), and as an extension of them, those of a mRK
method were obtained by Van de Vyver [49, 50].

Theorem 2.1 ([49, 50]). A mRK method solving Hamiltonian systems is symplectic if the
following conditions are satisfied

bj
aji
γj

+ bi
aij
γi

− bibj = 0, 1 ≤ i, j ≤ s.

Symmetry is also an important concept because the accuracy order of a symmetric
method is even. The adjoint method ϕ∗h of a numerical method ϕh is the inverse map of the
original method with the reversed time step −h, i.e., ϕ∗h := ϕ−1

−h. In other words, y1 = ϕ∗h(y0)
is implicitly defined by ϕ−h(y1) = y0. A method satisfying ϕ∗h = ϕh is called symmetric.
In [7], for mRK methods whose coefficients are even functions of h, the symmetry conditions
are given by

c+ Sc = e, b = Sb, γ = Sγ, SA+AS = γb⊤, (4)

where

e = (1, . . . , 1)⊤ ∈ Rs and S = (sij) ∈ Rs×s with sij =

{
1, if i+ j = s+ 1,

0, otherwise.
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2.2 Exponentially-fitted RK methods

In this subsection, we briefly review basic concepts of the exponentially-fitted RK (EFRK)
methods. Recently, a collocation approach for constructing RK methods which exactly
integrates a set of linearly independent functions (not necessarily polynomials) has been
developed. The main idea consists in choosing the available parameters of the method (2)–
(3), i.e., c, γ, A and b, such that the resulting scheme is exact for a set of linearly independent
scalar functions in [t0, t0 + h]

F = {u1(t), u2(t), . . . , ur(t)}, r ≤ s.

We often refer to this set as the reference set. Originally, the set F = {1, t, t2, . . . , ts} was
considered, where the parameters of the resulting scheme is independent of h. If F contains
exponential or trigonometric functions, these methods are called EFRK methods. In more
general cases in which F contains general functions, these methods are called functionally-
fitted RK (FFRK) methods [38, 39]. In general, the coefficients (c,γ,A, b) of an EFRK or
FFRK method may depend on not only the fitting functions u1, . . . , ur, but also the step
size h. The coefficients of a FFRK method (2)–(3) are determined by the linear systems

uk(t0e+ hc)− γuk(t0) = hAu′k(t0e+ hc), k = 1, . . . , r, (5)

uk(t0 + h)− uk(t0) = hb⊤u′k(t0e+ hc), k = 1, . . . , r, (6)

where e = (1, . . . , 1)⊤ ∈ Rs and we use the notation g(v) = (g(v1), . . . , g(vs))
⊤ for v =

(v1, . . . , vs) ∈ Rs and a scalar function g.
In general cases, the coefficients may depend on t0, h and F , but under some usual

requirements on F , they are independent of t0. In this paper we will consider only such
usual cases.

Let us consider the solvability of the systems (5) and (6). When r = s, the coefficients b
and A are uniquely determined for all h > 0 and t ∈ [t0, T ], if the matrix

M(t, h) =

u
′
1(t+ c1h) · · · u′1(t+ csh)

...
. . .

...
u′s(t+ c1h) · · · u′s(t+ csh)


is non-singular [38]. Below we sum up the key idea of the proof of this statement. If the
functions uk(t) (k = 1, . . . , s) are sufficiently smooth, from the Taylor expansion we have

M(t, h) =W⊤(t)


1 1 · · · 1
c1h c2h · · · csh
...

...
. . .

...
(c1h)s−1

(s−1)!
(c2h)s−1

(s−1)! · · · (csh)s−1

(s−1)!

+O(hs), (7)

where W (t) is the Wronskian matrix defined by

W (t) :=

 u′1(t) · · · u′s(t)
...

. . .
...

u
(s)
1 (t) · · · u

(s)
s (t)

 ,

(
u(i) :=

di

dti
u(t)

)
.

Therefore, due to the continuity of determinant, if the nodes are different (ci ̸= cj , i ̸= j)
and W (t) is non-singular, the coefficients b and A are uniquely determined.
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In the context of EFRK methods, we usually consider

F1 = {exp(λt), exp(−λt)} (8)

or F2 = {cos(ωt), sin(ωt)}. Note that F2 is obtained from F1 with λ = iω. When we consider
the reference set F1, the linear systems (5)–(6) reduce to

A cosh(cz) =
sinh(cz)

z
, A sinh(cz) =

cosh(cz)− γ

z
,

b⊤ cosh(cz) =
sinh(z)

z
, b⊤ sinh(cz) =

cosh(z)− 1

z
,

where z = λh. For s = 2, by the above statement, the coefficients b and A are uniquely
determined in terms of the nodes c and parameters γ. By simply choosing the Gaussian

nodes (c1, c2) = (12 −
√
3
6 ,

1
2 +

√
3
6 ) and γ1 = γ2 = 1, we can obtain the fourth order EFRK

method which reduces to the two-stage Gauss method when λ = 0 [55]. Unfortunately,
however, this method is not symplectic as shown in [11], which indicates that the derivation
of symplectic EFRK methods needs some more tricks.

2.3 Symplectic exponentially-fitted RK methods

Recently, some symplectic (and symmetric) EFRK (SEFRK) methods has been proposed by
several authors. In Table 1, some existing methods are shown.

Table 1: SEF methods.

2nd order Van de Vyver [49]

4th order Vyver [50], Calvo et al. [8]

6th order Calvo et al. [7, 9]

8th order Calvo et al. [11], Vanden Berghe–Van Daele [54]

2s order Calvo et al. [10]

We illustrate here the key for the construction of SEFRK methods, following [8]. By
taking the derivation of fourth order SEFRK scheme as our example, let us start with a two
stage mRK formulation

c1 γ1 a11 a12
c2 γ2 a21 a22

b1 b2

.

The coefficients should be related by

c1 γ1 a11 a12
c2 γ2 a21 a22

b1 b2

=

1

2
− θ γ

γb

2
a

1

2
+ θ γ γb− a

γb

2
b b

(9)

for the method being symplectic and symmetric. Here Theorem 2.1 and (4) were used.
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When we consider the reference set of functions F1 (8), the linear systems (5)–(6) reduce
to

A cosh(cz) =
sinh(cz)

z
, A sinh(cz) =

cosh(cz)− γ

z
, (10)

b⊤ cosh(cz) =
sinh(z)

z
, b⊤ sinh(cz) =

cosh(z)− 1

z
, (11)

where z = λh. Firstly, from b1 = b2 = b, c1,2 =
1
2 ∓ θ, and (11), we can easily obtain

b1 = b2 = b =
sinh( z2)

z cosh(θz)
.

Next, from γ1 = γ2 = γ and (10), the coefficients A are given by(
a11 a12
a21 a22

)
=

1

z sinh(2θz)

(
γ cosh((12 + θ)z)− cosh(2θz) 1− γ cosh((12 − θ)z)

−1 + γ cosh((12 + θ)z) −γ cosh((12 − θ)z) + cosh(2θz)

)
.

The parameter γ can be also determined as

γ1 = γ2 = γ =
2 cosh(2θz)

cosh((12 + θ)z) + cosh((12 − θ)z)

in order to satisfy the relation (9). Finally we select the parameter θ using the order condi-
tions. The resulting scheme is of order four if θ =

√
3/6. This fourth order SEFRK scheme

coincides with that obtained in [50].

Remark 2.2. As pointed out in almost all papers dealing with EF methods, the coefficients
are subject to heavy cancellation when evaluated for small values of |z|. In that case the
following series expansions should be used:

a11 = a22 =
1

4
− 7

8640
z4 +

31

272160
z6 − 167

13063680
z8 + · · · ,

a12 =
1

4
−

√
3

6
+

√
3

216
z2 −

(
7

8640
+

√
3

6480

)
z4 +

(
31

272160
+

17
√
3

3265920

)
z6

−

(
167

13063680
+

31
√
3

176359680

)
z8 + · · · ,

a21 =
1

4
+

√
3

6
−

√
3

216
z2 +

(
− 7

8640
+

√
3

6480

)
z4 +

(
31

272160
− 17

√
3

3265920

)
z6

+

(
− 167

13063680
+

31
√
3

176359680

)
z8 + · · · ,

γ = 1− 1

288
z4 +

1

2160
z6 − 881

17418240
z8 + · · ·

b =
1

2
+

1

8640
z4 − 1

272160
z6 +

13

104509440
z8 + · · · .

It is clear that in the limit z → 0 the well known classical fourth-order Gauss method is
recovered.
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3 Continuous stage RK methods and energy-preserving con-
tinuous stage RK methods

In this section, we develop two theories:

• characterization of energy-preservation (and symmetry) in terms of cRK coefficients
(in Section 3.1),

• standard theory of EFcRK methods (in Section 3.2),

and derive second and fourth order energy-preserving exponentially-fitted cRK (EPEFcRK)
schemes (in Section 3.3) making use of the two theories.

3.1 Continuous stage RK methods and their characterizations of energy-
preservation and symmetry

For Hamiltonian systems (1), the Hamiltonian H(y(t)) is constant along the solution, i.e.,

d

dt
H(y(t)) = 0.

A numerical method defined by the flow map ϕh is called energy-preserving if for all Hamil-
tonian systems (1) it satisfies the condition

H(ϕh(y0)) = H(y0).

The simplest way to derive energy-preserving methods is to apply the projection method
([2, 3, 4, 17, 19, 28, 29], and their references therein). But it is now recognized that the
discrete gradient method [26, 42] is the most standard framework and in most cases produces
better numerical solutions. As a special case for obtaining a discrete gradient, Quispel–
McLaren proposed the average vector field (AVF) method [41] which is widely used these
days. The AVF method reads

y1 = y0 + hJ−1

∫ 1

0
∇H((1− τ)y0 + τy1)dτ. (12)

From the chain rule and the skew-symmetry of J , we have

H(y1)−H(y0)

=

∫ 1

0

d

dτ
H((1− τ)y0 + τy1)dτ

= h

(
y1 − y0
h

)⊤ ∫ 1

0
∇H((1− τ)y0 + τy1)dτ

= h

(∫ 1

0
∇H((1− τ)y0 + τy1)dτ

)⊤

J−⊤
(∫ 1

0
∇H((1− τ)y0 + τy1)dτ

)
= 0.

Therefore, the AVF method is energy-preserving and clearly of order two. Obviously, this
method is not a RK method. Moreover, as shown by Celledoni et al. [12, Proposition 4], no
RK method is energy-preserving in general.
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The AVF method (12) and its generalization to high-order can be expressed as cRK
methods [32, 47]. We consider an s-degree cRK method defined by

Yτ = y0 + h

∫ 1

0
Aτ,σf(Yσ)dσ, (13)

y1 = y0 + h

∫ 1

0
Bσf(Yσ)dσ, (14)

where Yτ is a polynomial of degree s with respect to τ satisfying Y0 = y0, and Aτ,σ and Bσ

are polynomial with respect to the variables in the subscripts. For example, when s = 1,
Aτ,σ = τ , and Bσ = 1, the cRK method (13)–(14) reduces to the AVF method (12). Below,
for simplicity, we restrict our consideration to Aτ,σ of degree s for τ , and s− 1 for σ.

Recall that in a mRK method the internal (2) and final (3) stages can be treated indepen-
dently in principle. In other words, the coefficients A and b can be chosen independently. Of
course, the internal stages (13) and final stage (14) correspond to those of the mRK method.
However, in a cRK method, there is a restrictive relation between the internal and final
stages for the consistency of the method, because y1 should coincide with Y1. Therefore, Bσ

should be expressed as Bσ = A1,σ.
Let us introduce the following tableau

a11 · · · a1q
...

. . .
...

ap1 · · · apq
b1 · · · bq

where aij and bj denote the coefficients in terms of τ iσj−1 and σj−1, respectively. The
condition Bσ = A1,σ is equivalent to

bj =

p∑
i=1

aij .

In this paper, we consider only the case p = q = s.
Although cRK methods were introduced in the context of energy-preserving methods [13,

30, 47], the characterization of energy-preservation has not yet known. In the following
theorem, we show sufficient conditions of energy-preservation in terms of the coefficient
Aτ,σ.

Theorem 3.1. A cRK method solving Hamiltonian systems is energy-preserving if d
dτAτ,σ

is symmetric, i.e.,

A′
τ,σ = A′

σ,τ where A′
τ,σ :=

d

dτ
Aτ,σ. (15)

Proof. We can express (d/dτ)Aτ,σ as

d

dτ
Aτ,σ =

s−1∑
l=0

a′(l, l)τ lσl +
∑
m<n

(
a′(m,n)τmσn + a′(n,m)τnσm

)
.

Note that the symmetry of (d/dτ)Aτ,σ is equivalent to a′(m,n) = a′(n,m). Thus we have

H(y1)−H(y0) =

∫ 1

0

d

dτ
H(Yτ )dτ =

∫ 1

0
Ẏτ

⊤∇H(Yτ )dτ

9



= h

∫ 1

0

(∫ 1

0

d

dτ
Aτ,σJ

−1∇H(Yσ)dσ

)⊤

∇H(Yτ )dτ

= h

s−1∑
l=0

a′(l, l)

(∫ 1

0
σl∇H(Yσ)dσ

)⊤

J−⊤
∫ 1

0
τ l∇H(Yτ )dτ

+ h
∑
m<n

{
a′(m,n)

(∫ 1

0
σn∇H(Yσ)dσ

)⊤

J−⊤
∫ 1

0
τm∇H(Yτ )dτ

+a′(n,m)

(∫ 1

0
σm∇H(Yσ)dσ

)⊤

J−⊤
∫ 1

0
τn∇H(Yτ )dτ

}
= 0.

In the last equality, the first term vanishes due to the skew-symmetry of J . The second term
vanishes because of (∫ 1

0
σn∇H(Yσ)dσ

)⊤

J−⊤
∫ 1

0
τm∇H(Yτ )dτ

= −
(∫ 1

0
σm∇H(Yσ)dσ

)⊤

J−⊤
∫ 1

0
τn∇H(Yτ )dτ

and the symmetry a′(m,n) = a′(n,m).

As shown in [30], the symmetry condition of a cRK method whose coefficients are even
functions of h can be written as

A1−τ,1−σ +Aτ,σ = Bσ. (16)

The known coefficients Aτ,σ of 2nd, 4th and 6th order EP schemes in [30] satisfy the
conditions of the above theorem and (16).

• 2nd order EP scheme (s = 1): Aτ,σ = τ ,

• 4th order EP scheme (s = 2): Aτ,σ = τ((4− 3τ)− 6(1− τ)σ),

• 6th order EP scheme (s = 3): Aτ,σ = τ((9− 18τ + 10τ2)− 12(3− 8τ + 5τ2)σ+ 30(1−
3τ + 2τ2)σ2).

They can be rewritten as follows.

1

1
,

4 −6
−3 6

1 0

,

9 −36 30
−18 96 −90
10 −60 60

1 0 0

.

3.2 Exponentially-fitted cRK methods

In this subsection, we develop a theory of standard EFcRK methods. But we consider a
wider class of functionally-fitted cRK (FFcRK) methods which contain EFcRK methods as
special cases. For s-stage FFRK methods, we can consider the fitting on s + 1 nodes, i.e.,
t = t0+c1h, . . . , t0+csh, t0+h, because the coefficients A and b can be chosen independently.
However, for s-degree FFcRK methods, since Aτ,σ and Bσ are dependent, we can consider
the fitting on only s nodes, and one of them should be t = t0 + h. This fact is the biggest
difference between FFRK methods and FFcRK methods.
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The coefficients Aτ,σ and Bσ of a FFcRK method are determined by the linear systems

uk(t0e+ hc)− uk(t0) = h

∫ 1

0
Ac,σũ′k(t0 + σh)dσ, k = 1, . . . , r, (17)

uk(t0e+ h)− uk(t0) = h

∫ 1

0
Bσũ′k(t0 + σh)dσ, k = 1, . . . , r, (18)

where c = (c1, . . . cs−1)
⊤ ∈ Rs−1, e = (1, . . . , 1)⊤ ∈ Rs−1. Here we also introduced the

following notation: for a scalar function g and a vector v = (v1, . . . , vs−1)
⊤ ∈ Rs−1, g(v)

means the abbreviation g(v) = (g(v1), . . . , g(vs−1))
⊤, and g̃(t0 + σh) denotes a polynomial

of degree s which is a linear combination of g(t0), g(t0 + c1h), . . . , g(t0 + cs−1h), g(t0 + h).

Proposition 3.2. Assume that u1, . . . , ur are sufficiently smooth. When r = s, the coeffi-
cients Aτ,σ are uniquely determined for all h and t ∈ [t0, T ] if the Wronskian matrix

W (t) :=

 u′1(t) · · · u′s(t)
...

. . .
...

u
(s)
1 (t) · · · u

(s)
s (t)


is non-singular and the nodes 0 < c1, . . . , cs−1 < 1 are different.

Proof. Since Ac,σ and ũ′k(t0 + σh) are polynomials of degree s − 1 and s in terms of σ, the
right hand side of (17) can be integrated exactly by the s-points Gaussian quadrature rule:

h

∫ 1

0
Aci,σũ

′
k(t0 + σh)dσ = h

s∑
j=1

b′jAci,c′j
ũ′k(t0 + c′jh)

where c′j (j = 1, . . . , s) denote the Gaussian nodes and

b′i =

∫ 1

0

s∏
j=1,j ̸=i

τ − c′j
c′i − c′j

dτ.

Therefore if the matrix ũ
′
1(t+ c′1h) · · · ũ′1(t+ c′sh))

...
. . .

...

ũ′s(t+ c′1h) · · · ũ′s(t+ c′sh)

 (19)

is non-singular, Aci,c′j
are uniquely determined. Moreover if the nodes 0 < c1, . . . , cs−1 < 1

are different, the coefficients of Aτ,σ are also uniquely determined.
Obviously the non-singularity of the matrix (19) is equivalent to that of M(t, h) in (7).

Following the discussion there, we can conclude that if the Wronskian matrix is non-singular,
the matrix (19) is also non-singular. This completes the proof.

3.3 Derivation of energy-preserving exponentially-fitted cRK schemes

In this subsection, we derive second and fourth order EPEFcRK schemes. In what follows,
we again consider F1 = {exp(λt), exp(−λt)}.
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3.3.1 Second order EPEFcRK scheme

Let us start with a one-degree cRK formulation: Aτ,σ = a11τ . In this case, the EP and
symmetry conditions are automatically satisfied. Therefore, the only thing we have to do is
to determine the parameter a11 satisfying the EF conditions. When we consider the reference
set F1 (8), the linear system (18) reduces to

ez = 1 + a11z
1 + ez

2
, e−z = 1− a11z

1 + e−z

2
,

where z = λh. We can easily obtain

a11 =
2 sinh( z2)

z cosh( z2)
,

and the resulting scheme reads

y1 = y0 + a11h

∫ 1

0
f((1− σ)y0 + σy1)dσ.

When we implement the scheme, if the value |z| is small, the following series expansion
should be used:

a11 = 1− 1

12
z2 +

1

120
z4 − 17

20160
z6 +

31

362880
z8 − 691

79833600
z10 +

5461

6227020800
z12 + · · · .

It is clear that in the limit z → 0 the well known AVF method (12) is recovered.

3.3.2 Fourth order EPEFcRK scheme

Let us start with a two-degree cRK formulation:

Aτ,σ = a11τ + a12τσ + a21τ
2 + a22τ

2σ.

Firstly, we consider the EP and symmetry conditions. The EP condition (15) is equivalent
to

a12 = 2a21,

and the symmetry condition (16) is equivalent to

a22 + 2a21 = 0, a22 + a12 = 0.

Therefore, it follows that a two-degree cRK method whose coefficients are related by

a11 a12
a21 a22
b1 b2

=

a11 2a21
a21 −2a21

a11 + a21 0

(20)

is energy-preserving and symmetric.
Next we consider the EF conditions. We write Yτ as a linear combination of y0, Yc and

y1, i.e.,

Yτ = y0
(τ − c)(τ − 1)

c
+ Yc

τ(τ − 1)

c(c− 1)
+ y1

τ(τ − c)

1− c
.

12



Then the method becomes

Yc = y0 + h

∫ 1

0
Ac,σf(Yσ)dσ,

y1 = y0 + h

∫ 1

0
Bσf(Yσ)dσ.

Note that although y1 is independent of c in standard cRK methods, the parameter c plays
an important role in EFcRK methods.

When we consider the reference set F1 (8), the linear systems (17) and (18) reduce to∫ 1

0
Ac,σ c̃osh(σz)dσ =

sinh(cz)

z
,

∫ 1

0
Ac,σ s̃inh(σz)dσ =

cosh(cz)− 1

z
, (21)∫ 1

0
Bσ c̃osh(σz)dσ =

sinh(z)

z
,

∫ 1

0
Bσ s̃inh(σz)dσ =

cosh(z)− 1

z
, (22)

where z = λh, c̃osh(σz) denotes a polynomial of degree two which is a linear combination
of cosh(0), cosh(cz) and cosh(z), and the similar notation is used for sinh. Since Bσ is
independent of σ (see (20)), the second conditions (22) are equivalent to

Bσ
(3c2 − 4c+ 1)− cosh(cz) + (3c2 − 2c) cosh(z)

6c2 − 6c
=

sinh(z)

z
,

Bσ
− sinh(cz) + (3c2 − 2c) sinh(z)

6c2 − 6c
=

cosh(z)− 1

z
.

We obtain c = 1/2 from the compatibility condition

(3c2 − 4c+ 1)− cosh(cz) + (3c2 − 2c) cosh(z)

sinh(z)
=

− sinh(cz) + (3c2 − 2c) sinh(z)

cosh(z)− 1

⇔ (2c− 1)(1− cosh(z)) + 2 sinh
(z
2

)
sinh

(
(2c− 1)z

2

)
= 0,

and then have

Bσ = a11 + a21 =
6(cosh(z)− 1)

z
(
4 sinh( z2) + sinh(z)

) . (23)

Using the relation (20) and c = 1/2, we can write Ac,σ as

A1/2,σ =
a11
2

+
a12
2
σ +

a21
4

+
a22
4
σ =

a21
2
σ +

(a11
2

+
a21
4

)
.

From the first EF conditions (21), a11 and a21 are uniquely determined as follows.

a11 =
6
(
−7 + 4 cosh( z2) + 3 cosh(z)

)
z
(
4 sinh( z2) + sinh(z)

) , (24)

a21 =
12
(
3− 2 cosh( z2)− cosh(z)

)
z
(
4 sinh( z2) + sinh(z)

) . (25)

Obviously they satisfy (23). Therefore, we can conclude that the EF conditions (21) and
(22) are compatible if and only if c = 1/2, (24) and (25). Note that for the numerical
computation, the following series expansions should be employed:

a11 = 4− 1

16
z2 +

7

5760
z4 − 113

3870720
z6 +

79

92897280
z8 − 229

11678515200
z10

13



+
55067

76517631590400

12

+ · · · ,

a21 = −3 +
1

16
z2 − 1

640
z4 +

17

430080
z6 − 31

30965760
z8 +

691

27249868800
z10

− 5461

8501959065600
z12 + · · · .

It is clear that in the limit z → 0 the standard fourth order EP method is reproduced.
The derived scheme has at least the accuracy of order two because it is symmetric.

Moreover since the coefficients satisfy the conditions for order three∫ 1

0

∫ 1

0

∫ 1

0
BσAσ,τAσ,νdσdτdν =

1

3
+O(z2),∫ 1

0

∫ 1

0

∫ 1

0
BσAσ,τAτ,νdσdτdν =

1

6
+O(z2),

the scheme has the accuracy of order four.

4 Numerical examples

In this section we present two numerical experiments that confirm the effectiveness of the
EPEFcRK methods. Through some typical Hamiltonian problems, we compare the EPE-
FcRK methods with the standard EPcRK methods. Note that although in the previous
section we considered F1 = {exp(λt), exp(−λt)}, we can automatically obtain EF schemes
for F2 = {cos(ωt), sin(ωt)} by substituting λ = iω. In the following examples, we consider
problems where we know a suitable value of the parameter ω in advance. Of course, the
choice of the parameter ω is one of the important issues in the use of EF methods. Sev-
eral standard ways are summarized in [48, Section 6]. All the computations were done in
the computation environment: 2 GHz Intel Core i7, 8 GB memory, OS X 10.8.2. We used
MATLAB (R2013a). Nonlinear equations were solved by fsolve with tolerance 10−16.

Example 1. We consider the Kepler two-body problem defined by the Hamiltonian

H(q,p) =
1

2

(
p21 + p22

)
− 1√

q21 + q22
,

with the initial conditions q1 = 1 − e, q2 = 0, p1 = 0, p2 =
√

(1 + e)/(1− e), where e
(0 ≤ e ≤ 1) represents the eccentricity of the elliptic orbit. This problem describes the
motion of two bodies which attract each other. By placing the first body in the origin,
(q1, q2) and (p1, p2) describe the position and velocity of the other body, respectively. The
exact solution of this initial value problem is a 2π-periodic elliptic orbit in the (q1, q2)-plane
with the eccentricity e. In the numerical experiments, we have chosen the values e = 0.02,
λ = iω with ω = (q21 + q22)

−3/2.
Before showing the numerical results, we mention some implementation issues. For

energy-preserving methods, we have to exactly compute the average of the vector field,
i.e., the right hand side of (13) and (14) before the implementation. Although we can in-
tegrate them exactly for second order schemes, we cannot do that for fourth order ones.
Instead, we have integrated them numerically, using quad with tolerance 10−10. Obviously,
the computational costs largely depend on not only the tolerance of fsolve but also that of
quad. In the next example, this kind of problem does not occur.
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The variations of the error of the Hamiltonian are shown in Fig. 1. All schemes preserve
the Hamiltonian well. The reason why the accuracy of the fourth order schemes fall behind
that of the second order schemes might be due to the tolerance of quad. In Fig. 2 (left) one
can see that the errors are growing linearly with time for all four schemes. The result by the
second order EPEFcRK scheme is more or less the same as that by the standard second order
EPcRK scheme. But the result by the fourth order EPEFcRK scheme is better than that
by the standard fourth order EPcRK scheme. Fig. 2 (right) shows the convergence of the
numerical solutions. One can observe the expected convergence rates in all of the schemes.
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Figure 1: The variation of the error of Hamiltonian for Example 1 (e = 0.02). The step size
was set to h = 0.1.
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Figure 2: Left: The variation of the maximum global error for Example 1 (e = 0.02). The
step size was set to h = 0.1. Right: The maximum global error at t = 5 for Example 1. The
dashed lines have slopes two and four.

In general, the computational cost per step of high order schemes is large compared with
that of low order schemes. In addition, in our situation, the effect of quad for fourth order
schemes on the computational cost is not negligible. In order to objectively evaluate these
effects we present in Fig. 3 the error versus CPU time, which indicates that the fourth order
EPEFcRK scheme is the best in all four schemes.
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Figure 3: The error versus CPU-time at t = 5 for Example 1. For second order methods,
the dots indicate the step length starting from the left-side with h = 0.1/2 and proceeding
with h = 0.1/2m, m = 2, 3, . . . . For fourth order methods, the dots indicate the step length
starting from the top-side with h = 1/2 and proceeding with h = 1/2m, m = 2, 3, . . . .

Example 2. We consider a cubic oscillatory Hamiltonian problem defined by

H(q, p) =
1

2
p2 +

1

2
ω2q2 − 1

4
q4.

with ω = 10 and the initial condition (q, p) = (1.5, 0).
The variations of the error of the Hamiltonian are shown in Fig. 4 (left). All schemes

preserve the Hamiltonian well. Apparently, the error of fourth order EPEFcRK scheme
seems to grow linearly. But we observed that this error is bounded and the error is more or
less the same as those of other schemes (see Fig. 4 (right)).

In Fig. 5 (left) one can see that the errors are growing linearly with time for all four
schemes. The results by the EPEFcRK schemes are better than those by the standard
EPcRK schemes. Fig. 5 (right) shows the convergence of the numerical solutions. One can
observe the expected convergence rates in all of the schemes.
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Figure 4: The variation of the error of Hamiltonian for Example 2. Left: The step size was
set to h = 0.05. Right: The step size was set to h = 0.5.
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Figure 5: Left: The variation of the maximum global error for Example 2. The step size was
set to h = 0.05. Right: The maximum global error at t = 10 for Example 2.

5 Discussions and conclusions

In this paper, we proved the conditions of energy-preservation in terms of the cRK methods,
and developed the theory of standard EFcRK methods. Then based on the theories we con-
structed second and fourth order energy-preserving EFcRK (EPEFcRK) schemes. Through
the numerical experiments for the problems with periodic or oscillatory solutions, we ob-
served that the derived schemes in fact gave better numerical solutions than the standard
energy-preserving schemes.

At this point, there naturally arises a question: is it possible to construct EPEF methods
for Poisson systems? We give a short comment on this topic in Section 5.1. After that we
discuss some future works in Section 5.2.

5.1 Extension to Poisson systems

We consider Poisson (non-canonical Hamiltonian) systems of the form

d

dt
y = B(y)∇H(y),

where B(y) is a skew-symmetric matrix. For Poisson systems, the Hamiltonian H(y(t)) is
also constant along the solution. The simplest example of energy-preserving methods for
Poisson systems is

y1 = y0 + hB

(
y0 + y1

2

)∫ 1

0
∇H((1− τ)y0 + τy1)dτ

which reduces to the AVF integrator (12) when B(y) is a constant matrix. The biggest differ-
ence between energy-preserving integrators for Hamiltonian and Poisson systems is that the
latter treats the factors B(y) and ∇H(y) differently. High-order energy-preserving method
for Poisson systems was constructed by Cohen–Hairer [15], where the authors extended the
energy-preserving cRK method [30] to a kind of partitioned methods.

We consider the following partitioned cRK method for Poisson systems defined by

Yτ = y0 + h

s∑
j=1

∫ 1

0
Aj

τ,σB(Yj)∇H(Yσ), (26)
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y1 = y0 + h
s∑

j=1

∫ 1

0
Bj

σB(Yj)∇H(Yσ), (27)

where Bj
σ = Aj

1,σ. The conditions of energy-preservation are shown in the following theorem.

Theorem 5.1. A partitioned cRK method solving Poisson systems is energy-preserving if
d
dτA

j
τ,σ is symmetric for each j.

Proof. The proof is similar to that of Theorem 3.1.

We can develop EPEF methods based on this theorem, but we omit concrete examples
because the procedure is similar to that illustrated in Section 3.

5.2 Future works

Our future works include the following.

• In this paper, we derive only second and fourth order EPEFcRK schemes. Higher order
EPEFcRK schemes and more general framework for Hamiltonian and Poisson systems
should be constructed. One of the difficulties there is that as far as we consider only
the conditions of energy-preservation, symmetry and exponential-fitting, the problem
is essentially underdetermined. There we have to consider order conditions as well.

• It would also be interesting to consider EPEF methods based on other generalization
of the AVF method such as the Hamiltonian boundary value method [5, 6].

• In general, it is of interest to study whether numerical methods, especially energy-
preserving methods, are conjugate symplectic and thus have the same long-time be-
haviour as symplectic methods. For standard energy-preserving methods (EPcRK
methods), this point was already discussed in [32, 33], based on the fact that the
energy-preserving methods can be expressed as B-series integrators. Similar discus-
sions should be done for EPEFcRK methods. However, since EF methods are not
B-series methods in general, we cannot directly apply the theory in [32, 33] to EPE-
FcRK methods.
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