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Abstract

Many of practical design specifications are provided by finite frequency properties described by inequal-
ities over restricted finite frequency intervals. In this paper, we consider a characterization of the finite
frequency domain inequalities (FFDIs) for n-dimensional systems from a view point of dissipation theory
using quadratic differential forms (QDFs), which are useful algebraic tools for the dissipation theory based
on the behavioral approach. The QDFs allow us to derive a clear characterization of the FFDIs using some
inequality analogous to dissipation inequality with a compensating rate and an inequality of an integral of
the supply rate with a matrix integral quadratic constraint as a main result. This characterization leads to a
physical interpretation in terms of dissipativity for subbehavior with some rate constraints. We also show
how we resolve a difficulty on the expression of a compensating rate peculiar to n-dimensional systems.
The results of this paper can be regarded as a finite frequency version for the characterizations of frequency
properties over the entire frequency domain due to Pillai and Willems (2002).

1 Introduction

Many of practical design specifications are provided by sets of finite frequency properties which are expressed

as inequalities over restricted finite frequency intervals. The properties play important role for dynamical system

design including control and signal processing. In n-dimensional systems [1][6][10][14] 1, the finite frequency

properties appear in many context such as filter design [3][4][15], image processing [2][20], and so on including

Fornasini-Marchesini [7][8] and Roessor [20] (discrete-time) state-space systems.

Dissipativity is one of the most important properties which captures a dynamical system from the view

point of energy and power interactions with its external environment [21][22][23]. It is well-known that the

dissipativity can be equivalently transformed to the matrix inequality over the imaginary axis [21]. Hence, it

may be important to articulate the relationship between finite frequency properties and dissipativity. This claim
1We call a system that depend on n independent variables (n ≥ 2) as an n-dimensional system.
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can also be validated by the fact that a stability condition for a feedback system is given in terms of integrals

over entire frequencies, called integral quadratic constraint [16].

A quadratic differential form (QDF) is a useful algebraic tool in dissipation theory based on the behavioral

approach [24][18], because it has a one-to-one correspondence to a two-variable polynomial matrix. The be-

havioral approach is a theoretic framework which does not assume an input-output relationship, a particular

representation and causality in advance. Since an n-dimensional system has an infinite-dimensional state space

and no causality in the space coordinates, we can naturally analyze and design an n-dimensional system based

on the approach. Using QDFs, Willems and Trentelman [25] proved that a dissipativity of a behavior is equiva-

lent to a certain frequency domain inequalities on the entire frequency range. This equivalence is characterized

by the dissipation inequality in terms of QDFs. This characterization was extended to n-dimensional systems

by Pillai and Willems [19]. On the other hand, for a characterization of finite frequency properties, the authors

of this paper clarified that the properties are equivalent to a dissipativity of some rate constrained subbehavior

in time domain based on QDFs for one-dimensional systems [12]. A key point was to prove the existence of

a compensating rate which appears in the inequality corresponding to the dissipation inequality for the finite

frequency case. Since the most of physical systems are described by partial differential-algebraic equations

at the beginning of analysis and synthesis, we have a great interest in how the finite frequency properties can

be expressed from a theoretical viewpoint of dissipativity in n-dimensional systems. However, there has never

been derived a characterization for the n-dimensional case. Hence, we conceived to derive a characterization of

the properties using from this viewpoint in n-dimensional systems.

In this paper, motivated by the observation in the above paragraphs, we will characterize the finite frequency

properties of n-dimensional systems based on QDFs. As a main result, we derive a characterization of the

properties using some inequality and an integral of a supplied rate. We also characterize the properties in

terms of dissipativity of some subbehavior of the original behavior. These characterizations are obtained by

generalizing the idea of [12] for the one-dimensional system to the n-dimensional case. Although a nonnegative

property of a compensating rate played an important role in [12], we find that a straightforward extension of

[12] is not easy in n-dimensional systems, since the expression of a compensating rate satisfying the property

is not clear in this case. Hence, we need a further theoretical consideration for the characterization in the

generalization. We show how this theoretical difficulty can be resolved in n-dimensional systems. The results

of this paper allow us to understand the significance of the properties directly. Figure 1 illustrates a series of

these results comparing with the previous works [25][19][12].

The organization of this paper is as follows. In Section 2, we review some basic definitions and results on the

behavioral system theory and QDFs. We give the problem formulation of finite frequency characterization for

n-dimensional systems in Section 3. In Section 4, we derive a characterization of the finite frequency properties

using QDFs as a main result. A numerical example demonstrates our characterization in Section 5.

We adopt the following notations in this paper.

The set of p × q real and complex matrices are denoted by Rp×q and Cp×q, respectively. We also denote

Sq×q and Hq×q as the set of q × q real symmetric and Hermitian matrices, respectively. The set of p × q real

coefficient n-variable polynomial matrices are defined byRp×q[ξ] 2. The set of p×q complex coefficient n- and

2We denote the indeterminates ξ := (ξ1, · · · , ξn) and ζ := (ζ1, · · · , ζn), η := (η1, · · · , ηn) when we consider n- and 2n-variable

polynomial matrices, respectively.
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Figure 1: The relationship between our results and the previous works. The notations“1-D” and “n-D” means that one-
dimensional and n-dimensional systems, respectively. Contributions of this paper are illustrated with black arrows.

2n-variable polynomial matrices are denoted byCp×q[ξ] andCp×q[ζ, η], respectively. We also denoteHq×q[ζ, η]

as the set of Hermitian 2n-variable polynomial matrices, i.e. Φ(ζ, η) = Φ(η̄, ζ̄)∗ for any Φ ∈ Hq×q[ζ, η].

We denote WT as the set of maps from T to W. Define C∞(Rn,V) as the set of infinitely differentiable

functions from Rn to the vector space V, and denote D∞(Rn,V) as the set C∞(Rn,V) with compact support.

Finally, the row dimension of the matrix A is denoted by rowdim(A). We define the rank of polynomial

matrix R(ξ) and constant matrix R(λ) are denoted by rankR and rankR(λ), respectively. We denote the matrix[
A>1 A>2 · · · A>n

]>
by col (A1, A2, · · · , An). We also define He (A) := 1

2 (A + A∗).

2 Preliminaries

In this section, we review the basic definitions and results from the behavioral system and dissipation theory for

n-dimensional behaviors from the references [18][19].

2.1 Linear Continuous-time Systems

In the behavioral system theory, a dynamical system is defined as a triple Σ = (T,W,B), where T is the set

of independent variables, and W is the signal space in which the trajectories take their values on. The behavior

B ⊆WT is the set of all possible trajectories.

In this paper, we consider an n-dimensional linear time-invariant continuous-time system Σ = (Rn,Cq,B)

with the independent variable x := (x1, · · · , xn) ∈ Rn. Such a Σ is typically represented by the linear partial

differential-algebraic equation expressed as

L1∑

i1=0

· · ·
Ln∑

in=0

Ri1,··· ,in
∂i1

∂xi1
1

· · · ∂in

∂xin
n

w(x1, · · · , xn) = 0, (1)

where Ri1,··· ,in ∈ Cp×q (ik = 0, 1, · · · , Lk; k = 1, · · · , n) and Lk ≥ 0. The variable w ∈ C∞(Rn,Cq) is called

the manifest variable.
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For a simplicity of the description, we introduce the multi-index notation [19][17] by i := (i1, · · · , in) ∈ Zn

and ξ := (ξ1, · · · , ξn), where ik (k = 1, · · · , n) is a nonnegative integer. By using this notation, we define the

n-variable polynomial matrix R ∈ Cp×q[ξ] by

R(ξ) :=
L∑

i=0

Riξ
i =

L1∑

i1=0

· · ·
Ln∑

in=0

Ri1,··· ,inξi1
1 · · · ξin

n , (2)

where ξi is defined by ξi := (ξi1 , · · · , ξin). For the multi-index i = (i1, · · · , in) ∈ Zn (ik ∈ Z; k = 1, · · · , n),

we define the corresponding partial differential operator di

dxi as

di

dxi
:=

∂i1

∂xi1
1

· · · ∂in

∂xin
n

.

Then, (1) is expressed as

R

(
d
dx

)
w =

L∑

i=1

Ri
di

dxi
w = 0 (3)

in short hand, where d
dx denotes

d
dx

:=
(

∂

∂x1
, · · · ,

∂

∂xn

)
.

Then, the behavior B ⊂ C∞(Rn,Cq) is defined as the kernel of the operator R
(

d
dx

)
given by

B =
{

w ∈ C∞(Rn,Cq)
∣∣∣∣ R

(
d
dx

)
w = 0

}
. (4)

For this reason, (3) is called the kernel representation of B. The representation (3) is said to be the minimal

representation of B if rowdimR ≤ rowdimR′ holds for any other R′ ∈ Rp′×q[ξ] which induces a kernel

representation of B.

The behavior B ⊂ C∞(Rn,Cq) is called controllable if for any w1, w2 ∈ B and X1, X2 ⊂ Rn with a

disjoint closure, there exists a w ∈ B such that

w|X1
= w1|X1

and w|X2
= w2|X2

,

where w|X denotes the restriction of the trajectory w ∈ C∞(R,Cq) to the domain X ⊂ Rn. The behavior B is

controllable if and only if rankR(λ) is constant for all λ ∈ Cn [18].

Whenever B is controllable, it can be described by an image representation

w = M

(
d
dx

)
`, (5)

where M ∈ Rq×m[ξ] and the variable ` ∈ C∞(Rq,Cm) is called the latent variable. Then, B is given by

B = {w ∈ C∞ (Rn,Cq) | ∃ ` ∈ C∞ (Rn,Cm) s.t. (5)} .

When B is represented by an image representation, B is called observable if w = M
(

d
dx

)
` = 0 implies

` = 0. The representation (5) is observable if and only if the constant matrix M(λ) is of full column rank for

all λ ∈ Cn [18].

As we have mentioned in the above, every controllable behavior admits an image representation. However,

for n-dimensional behaviors, it should be noted that every controllable behavior does not necessarily have an

observable image representation contrary to the one-dimensional case [18].
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2.2 Quadratic Differential Forms

We review the definition and basic results of QDFs [25][19] for n-dimensional behaviors, which play a central

role in this paper.

We consider a 2n-variable polynomial matrix in Cq1×q2 [ζ, η] and, similarly to Section 2.1, we use the multi-

index notation [19][17] by i := (i1, · · · , in) ∈ Zn, j := (j1, · · · , jn) ∈ Zn and ζ := (ζ1, · · · , ζn), η :=

(η1, · · · , ηn), where ik and jk (k = 1, · · · , n) are nonnegative integers. We also denote ζi := (ζi1 , · · · , ζin)

and ηi := (ηj1 , · · · , ηjn). We can describe any matrix in Cq1×q2 [ζ, η] as

Φ(ζ, η) =
∑

i∈Zn

∑

j∈Zn

Φi,jζ
iηj , Φi,j ∈ Cq1×q2 , (6)

where the above sum ranges over all nonnegative multi-indices i ∈ Zn, j ∈ Zn, and is assumed to be finite. The

degree of Φ(ζ, η) with respect to ζk and ηk (k = 1, · · · , n) are defined as

degζk
Φ := max

(i,j)∈I
ik and degηk

Φ := max
(i,j)∈I

jk,

respectively, where I ⊂ Z2n is the set defined by

I :=
{

(i, j) ∈ Z2n
∣∣ Φi,j 6= 0q1×q2

}
.

For Φ(ζ, η) in (6), we define the mapping

∂ : Cq1×q2 [ζ, η] → Cq1×q2 [ξ],

∂Φ(ξ) := Φ(−ξ, ξ).

We define a bilinear differential form for n-dimensional behaviors in the following [19].

A bilinear differential form (BDF) is induced by the 2n-variable polynomial matrix Φ(ζ, η) in (6). The BDF

is represented by

LΦ : C∞(Rn,Cq1)× C∞(Rn,Cq2) → C∞(Rn,R),

LΦ(`1, `2) :=
K1∑

i=0

K2∑

j=0

(
di`1

dxi

)∗
Φi,j

dj`2

dxj
, (7)

where Ki := (Ki,1, · · · ,Ki,n) ∈ Zn (i = 1, 2), K1,k := degζk
Φ and K2,k := degηk

Φ (k = 1, · · · , n). The

definition (7) means that ζ and η correspond to the partial differentiations on `∗ and `, respectively.

We call Φ(ζ, η) Hermitian if Φ(ζ̄, η̄)∗ = Φ(η, ζ) holds, which implies q1 = q2 =: q and K1 = K2 =: K.

Then, Φ(ζ, η) is expressed as

Φ(ζ, η) =
K∑

i=0

K∑

j=0

Φi,jζ
iηj . (8)

In this case, Φ(ζ, η) in (8) induces a quadratic differential form (QDF) represented by

QΦ : C∞(Rn,Cq) → C∞(Rn,R),

QΦ(`) :=
K∑

i=0

K∑

j=0

(
di`

dxi

)∗
Φi,j

dj`

dxj
.
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Consider the 2n-variable polynomial matrix

Ψ(ζ, η) =




Ψ1(ζ, η)
...

Ψn(ζ, η)


 ∈ Cnq×q[ζ, η],

where Ψk ∈ Hq×q[ζ, η] (k = 1, · · · , n). This induces a vector of QDFs (VQDFs)

QΨ : C∞(Rn,Cq) → C∞(Rn,Rn),

QΨ(`) :=




QΨ1(`)
...

QΨn(`)


 .

The divergence of the VQDF QΨ(`) is defined by

divQΨ(`) :=
n∑

k=1

∂

∂xk
QΨk

(`).

This is also a QDF. Let ∇Ψ ∈ Hq×q[ζ, η] induce divQΨ(`), i.e. divQΨ(`) = Q∇Ψ(`). Then, it is given by

∇Ψ(ζ, η) =
n∑

k=1

(ζk + ηk)Ψk(ζ, η).

2.3 Dissipation Theory

In this section, we review the basic definitions and properties of dissipativity for n-dimensional behaviors using

QDFs [19].

We assume that B in (4) is controllable in this section. Then, B has an observable image representation (5).

Let Φ ∈ Hq×q[ζ, η] in (8) be given.

We give the definition of dissipativity of a behavior.

Definition 1 [19] Let Φ ∈ Hq×q[ζ, η] in (8) be given. Then, a behavior B is called dissipative with respect to

the supply rate QΦ(w) if the inequality ∫

Rn

QΦ(w)dx ≥ 0 (9)

holds for all w ∈ B ∩ D∞(Rn,Cq). ¤

We may think of QΦ(w) as the power delivered to the behavior B. The dissipativity implies that the net

flow of energy into the system is nonnegative. This shows the system dissipates energy. Hence, due to this

dissipation, the rate of increase of the energy stored inside of the system does not exceed the power supplied to

it. This interaction between supply, storage, and dissipation is now formalized in Definition 2 and Proposition 1

below.

We give the definitions of storage function and dissipation rate.

Definition 2 [19] Assume that B is controllable. Let Φ ∈ Hq×q[ζ, η] be given.
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(i) The VQDF QΨ(`) induced by

Ψ(ζ, η) =




Ψ1(ζ, η)
...

Ψn(ζ, η)


 ∈ Cnm×m[ζ, η], Ψk ∈ Hm×m[ζ, η] (k = 1, · · · , n) (10)

is called a storage function for B with respect to the supply rate QΦ(w) if

divQΨ(`) ≤ QΦ(w) (11)

holds for all w ∈ B with the image representation (5). We call (11) the dissipation inequality.

(ii) The QDF Q∆(`) induced by ∆ ∈ Hm×m[ζ, η] is called a dissipation rate for QΦ(w) if

Q∆(`) ≥ 0, ∀ w ∈ B

and
∫

Rn

QΦ(w)dx =
∫

Rn

Q∆(`)dx, ∀ w ∈ B ∩ D∞(Rn,Cq)

hold with the image representation (5).

There is a one-to-one relation between a storage function QΨ(w) and a dissipation rate Q∆(w) defined by

divQΨ(w) = QΦ(w)− Q∆(w). (12)

The equation (12) is called the dissipation equality.

The next proposition gives a characterization of dissipativity in terms of a storage function and a dissipation

rate.

Proposition 1 [19] Let Φ ∈ Hq×q[ζ, η] be given. The following statements (i), (ii) and (iii) are equivalent.

(i) The behavior B is dissipative with respect to the supply rate QΦ(w).

(ii) There exists a 2n-variable polynomial matrix Ψ ∈ Cnm×m[ζ, η] in (10) satisfying the dissipation inequal-

ity (11) for all ` ∈ D∞(Rn,Rm) with the image representation (5).

(iii) There exist 2n-variable polynomial matrices Ψ ∈ Hnm×m[ζ, η] in (10) and ∆ ∈ Hm×m[ζ, η] satisfying

the dissipation equality (12) and Q∆(`) ≥ 0 for all ` ∈ D∞(Rn,Rm) with the image representation (5).

Remark 1 As we have remarked in Section 2.1, the observability of (5) does not hold for n-dimensional behav-

iors. This implies that the storage function does not necessarily becomes a function of manifest variable [19].

Hence, the uniqueness of the storage function does not hold, i.e. there will be many possible storage functions.

Remark 2 We give an interpretation of the inequality (24) in terms of flux [19] in this remark. This enables us

to further clarify the above physical interpretation.
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Suppose that the independent variable x1 = t represents the time variable and the remaining variables

x2, · · · , xn are the space variables. Then, the dissipation equality (12) can be rewritten as

∂

∂t
QΨ1(`) = QΦ(w)−

n∑

i=2

∂

∂xi
QΨi(`)− Q∆(`).

The interpretation of the above equality is described as follows. The change in the stored energy ∂
∂tQΨ1(`) in

an infinitesimal volume exactly equals to the difference between the supply rate QΦ(w) into the infinitesimal

volume, the energy lost
∑n

i=2
∂

∂xi
QΨi(`) by the volume, which is called flux, and the dissipation Q∆(`) within

the volume. Hence, the rate of change of the stored energy does not exceed the power supplied the system due

to this dissipation and flux.

In the remainder of this section, we explain how the dissipativity can be equivalently described in the fre-

quency domain.

Suppose that (5) is an image representation of B. Consider the frequency domain inequality (FDI) expressed

as

M(jω)∗∂Φ(jω)M(jω) ≥ 0, ∀ ω ∈ Rn. (13)

The FDI (13) is an interpretation of dissipativity of B in entire frequency domain.

Proposition 2 [19] Suppose that B is represented by an image representation (5). Let Φ ∈ Hq×q[ζ, η] in (8)

be given. Then, the following statements (i) and (ii) are equivalent.

(i) The behavior B is dissipative with respect to the supply rate QΦ(w).

(ii) The FDI (13) holds for all ω ∈ Rn.

The above proposition shows that (13) is an inequality which interprets dissipativity in the frequency domain.

3 Problem Formulation

We characterize finite frequency properties for a linear time-invariant system Σ = (Rn,Cq,B) using QDFs.

We give the problem formulation in this section for this purpose.

We consider the behavior B typically represented by the kernel representation (3), where w ∈ C∞(Rn,Cq)

is the manifest variable and R ∈ Cp×q[ξ] is the polynomial matrix. Then, B is given by (4). We set the following

assumption on B throughout this paper.

Assumption 1

(i) The behavior B in (4) is controllable.

(ii) The kernel representation (3) is minimal.

(iii) An image representation of B is described by (5), which is possibly unobservable.
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Let Φ ∈ Hq×q[ζ, η] in (8) be given. Suppose that this Φ(ζ, η) induces the supply rate for B. Let ω ∈ Rn be

the frequency vector given by ω := (ω1, · · · , ωn). Define the frequency domain Ω ⊂ Rn as a product of finite

intervals by

Ω :=
n∏

k=1

Ωk = Ω1 × · · · × Ωn, (14)

Ωk := {ωk ∈ R | τk(ωk −$k,1)(ωk −$k,2) ≤ 0} (k = 1, · · · , n),

where $k,1, $k,2 ∈ R, $k,1 ≤ $k,2 are given and τk ∈ Z is either +1 or −1.

The domain Ω can represent the various type of finite frequency domain by the choice of τk and $k,1, $k,2 ∈
R. For τk = +1, ∀ k = 1, · · · , n, Ω becomes the middle frequency domain

Ωm :=
n∏

k=1

Ωm,k, Ωm,k := {ωk ∈ R | $k,1 ≤ ωk ≤ $k,2} (k = 1, · · · , n).

We can also consider the low frequency domain

Ωl :=
n∏

k=1

Ωl,k, Ωl,k := {ωk ∈ R | |ωk| ≤ $k} (k = 1, · · · , n) (15)

by putting $k,1 = −$k and $k,2 = $k for k = 1, · · · , n, where $ := ($1, · · · , $n) ∈ Rn is a given vector

satisfying

$k ≥ 0, ∀ k = 1, · · · , n. (16)

On the other hand, Ω expresses the high frequency domain

Ωh :=
n∏

k=1

Ωh,k, Ωh,k := {ωk ∈ R | ωk ≤ $k,1, $k,2 ≤ ωk} (k = 1, · · · , n)

for τk = −1, ∀ k = 1, · · · , n. The domain Ω also becomes the entire real vectors, i.e. Ω = Rn, by choosing the

parameters $k,1 = $k,2 = 0 in addition. Of course, we can represent other frequency domains by choosing the

values of τk and $k,1, $k,2, appropriately.

Consider the finite frequency property described by the following finite frequency domain inequality (FFDI)

M∗(jω)∂Φ(jω)M(jω) ≥ 0, ∀ ω ∈ Ω. (17)

Our goal is to find a characterization of the above FFDI using QDFs from the viewpoint of dissipativity in-

troduced in Section 2.3. Especially, we want to give clear answers to the following two questions from the

viewpoint of dissipativity under the restriction of the frequency domain to the product of finite intervals, which

is formulated mathematically in this section.

Question

(i) What power function newly appears in the dissipation inequality (11), or equivalently dissipation equal-

ity (12), for compensating the restriction of the frequency domain? Specifically, what is the different point

comparing with the finite frequency characterization for one-dimensional behaviors [12].

(ii) What additional property of B to the dissipativity is equivalent to the FFDI (17)?

9



An interpretation of the FFDI (17) from the behavioral approach is the following. Consider the QDF QΦ(w)

induced by Φ ∈ Hq×q[ζ, η] in (8). Fourier transform of QΦ(w) is computed as

ŵ(jω)∗∂Φ(jω)ŵ(jω) = ˆ̀(jω)∗M(jω)∗∂Φ(jω)M(jω)ˆ̀(jω),

where ŵ ∈ L2(Cn,Cq) and ˆ̀ ∈ L2(Cn,Cm) are Fourier transforms of w ∈ B ∩ D∞(Rn,Cq) and ` ∈
D∞(Rn,Cm), respectively. Since ` can be taken an arbitrarily trajectory in D∞(Cn,Cm), the inequality

ŵ(jω)∗∂Φ(jω)ŵ(jω) ≥ 0, ∀ w ∈ B ∩ D∞(Rn,Cm), ω ∈ Ω

is equivalent to the FFDI (17). We can regard the above inequality imposes a weighted frequency constraint

on w ∈ B over the restricted frequency domain Ω. Hence, it expresses the weighted rate limitation on the

trajectories contained in B, although the FFDI (17) is described by using M(ξ).

Remark 3 Chakrabarti et.al. [3] considered the two-dimensional frequency domain Ω ⊂ R2 which is a compact

subset of [0,∞) × [0,∞) containing col(0, 0) in the design of a two-dimensional low pass filter. For example,

the set is expressed by a linear combination of $1 and $2 as

Ω =
{

ω ∈ R2
∣∣ ω1 ≥ 0, ω2 ≥ 0 and ω1 + ω2 = $0

}
,

where $0 ∈ R is a nonnegative constant. This set cannot be represented in the form of (14), since the domain is

described by the sum of the frequency variables. It remains as a future work to characterize the finite frequency

properties for such frequency domains.

4 Characterization of Finite Frequency Properties

This section derives a characterization of the finite frequency properties using QDFs for n-dimensional behav-

iors as a main result. We give a finite frequency property characterization in Section 4.1. A physical interpre-

tation of the characterization is provided in Section 4.2. Finally, we give a characterization of the property in

terms of B-canonical polynomial matrices [13] in Section 4.3.

4.1 Main Theorem

In this subsection, we derive a characterization of the FFDI (17) using QDFs as a main result.

We first point out what issues should be solved in this paper before we provide our main result. In order

to generalize the previous characterizations [19][12] to the n-dimensional and finite frequency case, we should

examine the following two points from a theoretical view point, which are also illustrated in Figure 1.

• We cannot originally consider a spectral factorization of the polynomial matrix ∂Φ(ξ) constructed by

Φ ∈ Hq×q[ζ, η] in (8), which played an important role to construct a dissipation rate in the characterization

of [19] 3.
3In n-dimensional behaviors, there exists a problem that a spectral factor F (ξ) does not always becomes a polynomial matrix in the

spectral factorization M(ξ)∼∂Φ(ξ)M(ξ) = F (ξ)∼F (ξ), i.e. F (ξ) can be a rational function matrix. Pillai and Willems [19] have

solved the problem by developing a constructive proof for the existence of a polynomial spectral factor. However, since we avoid a

spectral factorization based on [12] in this paper, we need not to deal with the problem.
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• It is not clear how a compensating rate can be expressed in the n-dimensional case. In [12], the character-

ization was derived by using a property that a compensating rate is induced by a polynomial matrix which

is nonnegative definite in the (finite) frequency domain.

We can resolve the first point on the spectral factorization by naturally generalizing the idea of [12] to the

n-dimensional case. See the proof of Lemma B.1 (i)⇒(ii) for the detail. Thus, it can be the main focus to tackle

the second point on a compensating rate. We explain it in detail after we show the main result (Theorem 1) of

this paper. This relates to an answer to the latter part of Question (i).

For the purpose stated in the above paragraph, we introduce some notions to construct a compensating rate.

Define $k,−, $k,+ ∈ R (k = 1, · · · , n) by

$k,− :=
$k,2 −$k,1

2
and $k,+ :=

$k,1 + $k,2

2
. (18)

and the set G ⊂ Hm×m[ζ, η] by

G :=





Γ ∈ Hm×m[ζ, η]

∣∣∣∣∣∣∣∣∣∣

Γ(ζ, η) :=
n∑

k=1

χk(ζ, η)Υk(ζ, η)

for some Υk ∈ Hm×m[ζ, η]

(k = 1, · · · , n) such that (21)





, (19)

χk(ζ, η) =

[
1

ζk

]∗ [
−$k,1$k,2 −j$k,+

j$k,+ −1

][
1

ηk

]
, (20)

τkQΥk
(`) ≥ 0, ∀ ` ∈ C∞(Rn,Cm), (21)

where τk is equal to either +1 or −1 for k = 1, · · · , n. We see that Γ ∈ G satisfies the inequality

∂Γ(jω) = −
n∑

k=1

τk (ωk −$k,1) (ωk −$k,2) · τk∂Υk(jω)

≥ 0, ∀ ω ∈ Ω. (22)

We have seen from Proposition 1 that the FDI (13) is equivalent to the dissipation inequality (11). Since we

consider the case where the FDI (13) is restricted to the domain Ω, we can imagine that an analogous inequality

to (11) holds from Proposition 1. This is explained as follows.

Assume that there exist 2n-variable polynomial matrix

Ψ(ζ, η) :=




Ψ1(ζ, η)
...

Ψn(ζ, η)


 , Ψk ∈ Hm×m[ζ, η] (k = 1, · · · , n) (23)

and Γ ∈ G satisfying the inequality

divQΨ(`) ≤ QΦ(w)− QΓ(`) (24)

for all w ∈ B with the image representation (5). The above inequality corresponds to the dissipation inequal-

ity (11) in the finite frequency case. This is equivalent to the existence of ∆ ∈ Hm×m[ζ, η] satisfying the

2n-variable polynomial matrix equation

∇Ψ(ζ, η) = M(ζ)∗Φ(ζ, η)M(η)− Γ(ζ, η)−∆(ζ, η) (25)

11



and Q∆(`) ≥ 0, ∀ ` ∈ C∞(Rn,Cm). Substituting ζ = −jω and η = jω into (25), we obtain the FFDI

M(jω)∗∂Φ(jω)M(jω) = ∂Γ(jω) + ∂∆(jω)

≥ 0, ∀ ω ∈ Ω

from (22). The above inequality guarantees that the FFDI (17) holds.

The inequality (24) also gives a necessary condition for the finite frequency property. Thus, we obtain

the following main result which equivalently characterizes the property in terms of QDFs. This theorem gives

answers to Questions (i) and (ii) in Section 3.

Theorem 1 Let B in (4) and Φ ∈ Hq×q[ζ, η] in (8) be given. Suppose that Assumption 1 holds. Define Ω by

(14) and G by (19). Then, the following statements (i), (ii) and (iii) are equivalent.

(i) The FFDI (17) holds for all ω ∈ Ω.

(ii) There exist 2n-variable polynomial matrices Ψ ∈ Cnm×m[ζ, η] in (23) and Γ ∈ G satisfying the inequality

(24) with the image representation (5).

(iii) The inequality ∫

Rn

QΦ(w)dx ≥ 0 (26)

holds for all w ∈ B with the image representation (5) and ` ∈ D∞(Rn,Cm) satisfying

τk

∫

Rn

He
[(

∂zk

∂xk
− j$k,1zk

)(
∂zk

∂xk
− j$k,2zk

)∗]
dx ≤ 0 (27)

for k = 1, · · · , n, where zk ∈ D∞(Rn,C{
Qn

l=1(Nk,l+1)}m) is defined by

zk := ZNk

(
d
dx

)
`, (28)

ZNk
(ξ) :=




Im

ξIm

...

ξNkIm



∈ R{

Qn
l=1(Nk,l+1)}m×m[ξ]

for some multi-index Nk := (Nk,1, · · · , Nk,n) ∈ Zn.

Proof See Appendix B.1 for the proof. ¤

We describe the answers to Questions in Section 3 corresponding to their statements.

Answer 1
(i) In the inequality (24), the QDF QΓ(`) is called a compensation rate for B with respect to the supply

rate QΦ(w) and the frequency domain Ω. This QDF is the new function which appears in the dissipation

inequality (11). Since B is not dissipative with respect to the supply rate QΦ(w), QΓ(`) guarantees dissipativity

of some rate constrained subbehavior related to B and Ω. This claim gives an answer to the former part of
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Question (i). See also Answer 2 (i) in Section 4.2 for the further property of this function. It clarifies this point

using a dissipation rate for the subbehavior.

In the following, we give an answer to the latter part of Question (i). The authors [12] proved that a

compensating rate is induced by a polynomial matrix which is nonnegative definite in the frequency domain.

Although we can use the idea due to [12], the straightforward extension of [12] is not clear. For the difficulty, this

paper clarifies that a compensating rate QΓ(`) is induced by a 2n-variable polynomial matrix Γ(ζ, η) expressed

as a summation of 2n-variable polynomial matrices which are nonnegative definite on each frequency domain.

This is described in (19) and (22).

The above resolution is completed by proving that a compensating rate satisfies the inequality

v∗∂Γ(jω)v

= −
n∑

k=1

χk(jωk)v∗∂Υk(jω)v

= tr







vv∗ 0 · · · 0
0 vv∗ · · · 0
...

...
. . .

...
0 0 · · · vv∗




·




−∂χ1(jω1)∂Υ1(jω) 0 · · · 0
0 −∂χ2(jω2)∂Υ2(jω) · · · 0
...

...
. . .

0 0 · · · −∂χn(jωn)∂Υn(jω)







≥ 0, ∀ ω ∈ Ω

for some v 6= 0 and, if there exists an Υk(ζ, η) which does not satisfy the inequality

−∂χk(jωk)∂Υk(jω) ≥ 0, ∀ ω ∈ Ω,

the nonnegativity of the compensating rate is violated in the frequency domain. We omit the detail description

due to a space limitation. See the proof of Lemma B.1 (i)⇒(ii) and (ii)⇒(iii) for the detail.

(ii) The statement (iii) in Theorem 1 gives an answer to Question (ii). We see that the matrix inte-

gral quadratic constraint (27) is opposed to the inequality (9) as the additional property. See Answer 2 (ii) in

Section 4.2 for the further description. This point is explained exactly in terms of dissipativity of some rate

constrained subbehavior of B.

Remark 4 In n-dimensional behaviors, there does not always exist an observable image representation [18].

Hence, the QDFs QΨ(`) and QΓ(`) do not necessarily become the functions of the manifest variable w contrary

to the one-dimensional case [12].

Remark 5 We should remark that χk(ζ, η) (k = 1, · · · , n) in (20) is a real coefficient polynomial if Ω is sym-

metric about the origin, e.g. the low frequency domain Ωl in (15). If M(ξ) and Φ(ζ, η) are all real polynomial

matrices, we can restrict Ψ(ζ, η) and Γ(ζ, η) in Theorem 1 to real symmetric 2n-variable polynomial matrices

without loss of generality.
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Remark 6 Similarly to Remark 2, if we regard the variable x1 = t and x2, · · · , xn as the time and space

variables, respectively, then the inequality (24) is rewritten as

∂

∂t
QΨ1(`) ≤ QΦ(w)−

{
∂

∂x2
QΨ2(`) + · · ·+ ∂

∂xn
QΨn(`)

}
− QΓ(`).

This inequality can be interpreted as follows from the viewpoint of dissipativity. The rate of change of the

stored energy ∂
∂tQΨ1(`) does not exceed the power QΦ(w) supplied the system with energy lost due to flux∑n

i=2
∂

∂xi
QΨi(`) and with the compensating power QΓ(`).

4.2 Physical Interpretation

In this subsection, we clarify a physical interpretation of Theorem 1 from the view point of the dissipation

theory.

Define the subbehavior BΩ ⊂ B by

BΩ :=

{
w ∈ D∞(Rn,Cq)

∣∣∣∣∣
w = M

(
d
dx

)
`,

∀ ` ∈ D∞(Rn,Cq) s.t. (27)

}
. (29)

The trajectories of BΩ vary in the frequency in Ω. This implies that BΩ is the rate constrained subbehavior of

B. Then, we have the following corollary.

Corollary 1 Let B in (4) and Φ ∈ Hq×q[ζ, η] in (8) be given. Suppose that Assumption 1 holds. Define G by

(19) and define BΩ by (29) for Ω in (14). Then, the following statements (i), (ii) and (iii) are equivalent.

(i) The FFDI (17) holds for all ω ∈ Ω.

(ii) There exist 2n-variable polynomial matrices Ψ ∈ Cnm×m[ζ, η] in (23), ∆ ∈ Hm×m[ζ, η] and Γ ∈ G
satisfying

divQΨ(`) = QΦ(w)− Q∆+Γ(`), (30)

Q∆+Γ(`) ≥ 0 (31)

for all w ∈ BΩ.

(iii) The behavior BΩ in (29) is dissipative with respect to the supply rate QΦ(w).

Proof See Appendix B.2 for the proof. ¤

Corollary 1 provides a physical interpretation of Theorem 1 from the view point of dissipativity. This gives

a clear answer to the latter part of Question (ii) in Section 3.

Answer 2
(i) Answer 1 (i) states that the compensating rate QΓ(`) is the new function which newly appears in the

dissipation inequality (11). We further clarify the role of the function in this answer.

From Corollary 1 (ii), if we concentrate ourselves to the subbehavior BΩ, the QDF Q∆+Γ(`) becomes the

dissipation rate for BΩ with respect to the supply rate QΨ(w). This can be verified as follows.
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Since (31) and
∫

Rn

Q∆+Γ(`)dx =
∫

Rn

QΦ(w)dx, ∀ w ∈ BΩ ∩ D∞(Rn,Cq) s.t. (5)

hold, we observe that the QDF Q∆+Γ(`) in (30) and (31) becomes the dissipation rate for BΩ with respect

to the supply rate QΦ(w). Since the QDF QΓ(`) guarantees the dissipativity, QΓ(`) can be considered as a

compensating power. This shows that the compensating rate QΓ(`) plays a role which guarantees dissipativity

of BΩ. This is the reason why we call QΓ(`) as the compensation rate for B with respect to the supply rate

QΦ(w). Then, we should also stress that the QDF QΨ(`) becomes the storage function for BΩ with respect to

the supply rate QΦ(w).

(ii) It is not difficult to see that B is not necessarily dissipative with respect to the supply rate QΦ(w)

from Proposition 1. However, Corollary 1 (iii) states that, if we concentrate ourselves to the subbehavior BΩ,

then BΩ becomes dissipative with respect to the supply rate QΦ(w). This corresponds to an answer to the latter

part of Question (ii).

4.3 Characterization Using B-canonical Polynomial Matrices

In Theorem 1, the degree of Ψ(ζ, η) and Γ(ζ, η) in the statement (ii) are not specified explicitly. However,

thanks to B-canonical polynomial matrices [13], we can determine the bounds by the degree of the polynomial

matrix which induces a kernel representation of B. See Appendix A and the reference [13] for the definition

and basic properties of B-canonical polynomial matrices.

We set some assumptions to characterize the upper bound of the degree of Ψ(ζ, η) and Γ(ζ, η).

Assumption 2

(i) The polynomial matrix R ∈ Cp×q[ξ] in (2) is row reduced [11][13].

(ii) The 2n-variable polynomial matrix Φ ∈ Hq×q[ζ, η] in (8) is B-canonical.

(iii) The behavior B in (4) is represented by an observable image representation (5).

Assumption 2 (i) does not lose any generality, because there always exists a unimodular polynomial matrix

U ∈ Cp×p[ξ] satisfying Rred(ξ) = U(ξ)R(ξ), where Rred ∈ Cp×q[ξ] is row reduced. It should be noted that

Rred(ξ) may be obtained by using the package Singular [9]. Assumption 2 (ii) implies that the following degree

constraint holds.

degξk
R ≥ degζk

Φ− 1 = degηk
Φ− 1, ∀ k = 1, · · · , n (32)

This assumption does not lose the generality. If (32) does not hold, i.e. deg Rξk
< degζk

Φ− 1 = degηk
Φ− for

some k ∈ {1, · · · , n}, we can reduce it to (32) by taking Ri = 0p×q for all multi-indices i ∈ Zn which have at

least one element greater than degξk
R . Hence, it is sufficient to prove under the assumption (32). Finally, we

should remark that the discussions in Section 4.3 does not hold without Assumption 2 (iii), i.e. the observability

assumption.
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In order to derive a characterization for the B-canonical case, we redefine G ⊂ Hm×m[ζ, η] in (19) under

Assumption 2 (iii). Define the set G′ ⊂ Hq×q[ζ, η] by

G′ :=





Γ′ ∈ Hq×q[ζ, η]

∣∣∣∣∣∣∣
Γ′(ζ, η) :=

n∑

k=1

χk(ζ, η)Υ′
k(ζ, η)

for some Υ′
k ∈ Hq×q[ζ, η] (k = 1, · · · , n) such that (34)





, (33)

τkQΥ′k
(w) ≥ 0, ∀ w ∈ B, (34)

where τk is equal to either +1 or −1 and χk ∈ C[ζ, η] is defined by (20). From Theorem 1 and Lemma A.3, we

obtain a characterization for the finite frequency property using B-canonical polynomial matrices.

Proposition 3 Let B in (4) and let Φ ∈ Hq×q[ζ, η] in (8) be given. Suppose that Assumptions 1 and 2 hold.

Define Ω by (14) and G′ by (33). Then, the following statements (i), (ii) and (iii) are equivalent.

(i) The FFDI (17) holds for all ω ∈ Ω.

(ii) There exist unique 2n-variable polynomial matrices

Ψ′(ζ, η) =




Ψ′
1(ζ, η)

...

Ψ′
n(ζ, η)


 ∈ Hnq×q[ζ, η]

and Γ′ ∈ G′ with B-canonical Ψ′
k,Υ

′
k ∈ Hq×q[ζ, η] (k = 1, · · · , n) satisfying

divQΨ′(w) ≤ QΦ(w)− QΓ′(w). (35)

(iii) The inequality (26) holds for all w ∈ B satisfying

τk

∫

Rn

He
[(

∂z′k
∂xk

− j$k,1z
′
k

)(
∂z′k
∂xk

− j$k,2z
′
k

)∗]
dx ≤ 0 (36)

for k = 1, · · · , n, where z′k ∈ D∞(Rn,C{
Qn

l=1(N ′
k,l+1)}q) is defined by

z′k = ZN ′
k

(
d
dx

)
w

for some multi-index N ′
k := (N ′

k,1, · · · , N ′
k,n) ∈ Zn, N ′

k,l ≤ degξl
R− 1 (l = 1, · · · , n).

Proof See Appendix B.3 for the proof. ¤

Proposition 3 shows that the upper bounds of the degree of Ψ(ζ, η) and Γ(ζ, η) are determined by that of

R(ξ).
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5 A Numerical Example

In this section, we apply Theorem 1 and Corollary 1 to a numerical example.

Consider a two-dimensional behavior B ⊂ C∞(R2,R2) whose kernel representation is described by

R

(
d
dx

)
w = 0, R(ξ) :=

[
−1 ξ1 + ξ2

2 + 1
]
,

where w := col (w1, w2) is the manifest variable. Define the frequency domain and the symmetric matrix by

Ω :=
{
ω ∈ R2 | ω1 ∈ R, |ω2| ≤ 1

}
and Φ :=

[
0 1

1 1

]
,

respectively. The domain Ω is restricted to the low frequency with respect to ω2, however it represents an entire

interval with respect to ω1.

Since B is controllable, B can be represented by the image representation

w = M

(
d
dx

)
`, M(ξ) :=

[
ξ1 + ξ2

2 + 1

1

]
,

which is an observable image representation. Then, we have

M?(ζ)Φ(ζ, η)M(η) = ζ1 + ζ2
2 + η1 + η2

2 + 3

From the above equation, we obtain

M∗(jω)∂Φ(jω)M(jω) = 3− 2ω2
2,

which implies that the FFDI (17) holds for all ω ∈ Ω. We observe that M?(ζ)Φ(ζ, η)M(η) can be decomposed

to

M?(ζ)Φ(ζ, η)M(η) =
[
ζ1 + η1 ζ2 + η2

]
Ψ(ζ, η) + Γ(ζ, η) + ∆(ζ, η).

where Ψ ∈ R2×1[ζ, η], Γ ∈ R[ζ, η] and ∆ ∈ R[ζ, η] are given by

Ψ(ζ, η) :=

[
1

ζ2 + η2

]
, Γ(ζ, η) := 2(1− ζ2η2) and ∆(ζ, η) := 1,

respectively. Then, we have the inequality

divQΨ(`) = QΦ(w)− QΓ(`)− Q∆(`)

≤ QΦ(w)− QΓ(`), ∀ ` ∈ C∞(R2,R2), (37)

which satisfies Theorem 1 (ii). The inequality (37) shows that B dissipates a power with the compensating

power QΓ(w).

From Corollary 1, (37) is equivalently rewritten by the dissipation inequality

divQΨ(`) ≤ QΦ(w), ∀ w ∈ BΩ,
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where BΩ ⊂ D∞(R2,R2) is the subbehavior of B defined by

BΩ :=

{
w ∈ D∞(R2,R2)

∣∣∣∣∣
w = M

(
d
dx

)
`,

∀ ` ∈ D∞(R2,R2) s.t. (38) and (39)

}
,

∫

R2

∂`

∂x1

∂`>

∂x1
dx ≥ 0, (38)

∫

R2

(
∂z

∂x2

∂z>

∂x2
− zz>

)
dx ≤ 0, z :=

[
`
∂`

∂x1

]
. (39)

This shows that BΩ is dissipative with respect to the supply rate QΦ(w). ¤

6 Conclusions

In this paper, we have characterized the finite frequency properties using some inequality with the compensating

rate and an inequality of an integral of the supply rate with a matrix integral quadratic constraint based on QDFs

as a main result. We have resolved a problem of an expression of a compensating rate in n-dimensional behav-

iors. The characterization has led to a physical interpretation in terms of the dissipation inequality, equivalently

dissipativity, for the subbehavior with some rate constraints. These results can be regarded as a generalization of

the previous one-dimensional results [12] to the n-dimensional behaviors. Such an interpretation has not been

clarified by the previous studies of finite frequency properties. The aforementioned characterization also yields

a characterization in terms of B-canonical polynomial matrices.

As a future direction, an LMI characterization should be derived, which is a tractable condition for a nu-

merical checking of the finite frequency properties. For this problem, Yang et.al. [26] derived the generalized

KYP lemma to the two-dimensional discrete-time Roessor state-space system as a sufficient characterization. It

is desired to derive a necessary and sufficient characterization which should be tackled in our future work.

This work was supported by Grant-in-Aids for Young Scientists (Start-up) 20860025 and Young Scientists

(B) 22760313, 25820177 of Japan Society for the Promotion of Science.

Appendix A Background Materials

In this appendix, we collect the background materials which are used in the proofs.

A.1 Coefficient Matrices

We define the coefficient matrix of a polynomial matrix. For this purpose, we first introduce an ordering on the

multi-index i = (i1, · · · , in) using the multi-index notation [19]. Of course, many orderings are possible. We

choose the ordering based on anti-lexicographic ordering [5].

The ordering is defined as follows. For given multi-indices i := (i1, · · · , in), j := (j1, · · · , jn) ∈ Zn

(ik ≥ 0; k = 1, · · · , n), we define the ordering i < j if and only if the rightmost nonzero entry of (i1− j1, i2−
j2 · · · , in − jn) is negative.

We give the definition of the coefficient matrix of the 2n-variable polynomial matrices based on the ordering

of the multi-index defined in the above paragraph. With every Φ ∈ Hq×q[ζ, η] in (8), we define its coefficient
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matrix Φ̃ ∈ H{
Qn

l=1(Kl+1)}q×{Qn
l=1(Kl+1)}q by

Φ̃ :=




Φ0,0 Φ0,1 · · · Φ0,K

Φ1,0 Φ1,1 · · · Φ1,K

...
...

. . .
...

ΦK,0 ΦK,1 · · · ΦK,K




, (A.1)

where the (i, j)th block matrix Φi,j (i, j = 0, 1, · · · ,K) are aligned based on the ordering of multi-indices

and K = (K1, · · · ,Kn). See pp. 1116-1118 of [17] for the more detailed construction of Φ̃. Then, Φ(ζ, η) is

expressed as Φ(ζ, η) = ZK(ζ)>Φ̃ZK(η).

The nonnegativity of a QDF is characterized by the nonnegativity of its coefficient matrix as seen in the

following lemma.

Lemma A.1 [17] Let Φ ∈ Hq×q[ζ, η] in (8) be given. Define Φ̃ ∈ H{
Qn

l=1(Kl+1)}q×{Qn
l=1(Kl+1)}q by (A.1).

Then, we have QΦ(`) ≥ 0 for all ` ∈ C∞(Rn,Cq) if and only if Φ̃ ≥ 0 holds.

A.2 B-canonical Polynomial Matrices

We introduce B-canonicity of polynomial matrices in this appendix, which are taken from the refer-

ences [11][13].

We assume that R ∈ Cp×q[ξ] in (3) is row reduced [11][13] in this section. The assumption does not lose

the generality as we have explained in Section 4.1.

Definition A.1 [13] Let B be represented by a kernel representation (3) for R ∈ Cp×q[ξ]. Assume that R(ξ)

is row reduced. Let D ∈ Cp×q[ξ] be given. Let ri ∈ C1×q[ξ] and di ∈ C1×q[ξ] (i = 1, · · · , p) denote the ith

rows of R(ξ) and D(ξ), respectively. A polynomial matrix D(ξ) is called B-canonical if deg di ≤ deg ri − 1,

∀ i = 1, · · · , p holds.

The next lemma ensures the uniqueness of an R-canonical polynomial matrix up to B-equivalence.

Lemma A.2 [13] Let B be represented by a kernel representation (3) for R ∈ Cp×q[ξ]. Assume that R(ξ) is

row reduced. For any D ∈ Cp×q[ξ], there exists a unique B-canonical D′ ∈ Cp×q[ξ] satisfying D
(

d
dt

)
w =

D′ ( d
dt

)
w, ∀ w ∈ B.

For Φ ∈ Hq×q[ζ, η] in (8), there exist F̃ ∈ CrankeΦ×{Qn
l=1(Kl+1)}q satisfying Φ̃ = F̃ ∗ΣΦF̃ , where ΣΦ ∈

SrankeΦ×rankeΦ, F̃ is of full row rank, and detΣΦ 6= 0. In this case, we get rankΣΦ = rankΦ̃. With such a

factorization of Φ̃, we obtain a canonical factorization of Φ(ζ, η) as

Φ(ζ, η) = F (ζ)∗ΣΦF (η), (A.2)

where F ∈ CrankeΦ×q[ξ] is defined by F (ξ) := F̃ZK(ξ).

Definition A.2 [13] Let B be represented by a kernel representation (3) for R ∈ Cp×q[ξ]. Assume that R(ξ) is

row reduced. Let Φ ∈ Hq×q[ζ, η] be given by (8). Let F ∈ CrankeΦ×q[ξ] be defined by the canonical factorization

(A.2). Then, Φ(ζ, η) is called B-canonical if F (ξ) is B-canonical.
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The following result is an immediate consequence of the uniqueness of the canonical factorization of Φ(ζ, η)

and of Lemma A.2.

Lemma A.3 [13] Let B be represented by a kernel representation (3) for R ∈ Cp×q[ξ]. Assume that R(ξ) is

row reduced. Let Φ ∈ Hq×q[ζ, η] be given by (8). Then, for any Φ(ζ, η), there exists a unique B-canonical

Φ′ ∈ Hq×q[ζ, η] satisfying QΦ′(w) = QΦ(w), ∀ w ∈ B.

Appendix B Proofs

In this appendix, we summarize the proofs of the results obtained in this paper.

Appendix B.1 Proof of Theorem 1

We give the proof of Theorem 1 in this subsection. The proof consists of three parts. We first show a character-

ization for the low frequency property in Appendix B.1.1. We generalize the discussion in Appendix B.1.1 to

the case where the frequency domain is given as a combination of low and high frequency domains in Appendix

B.1.2. Finally, we conclude the proof in Appendix B.1.3 for the general frequency property. The most part of

the proof is devoted to the low frequency case in Appendix B.1.1.

Appendix B.1.1 Low Frequency Case

In this subsection, we restrict our attention to the low frequency property and derive a characterization of the

property as preliminary lemma.

Define the low frequency domain Ωl ⊂ Rn in the rectangular domain by (15). Then, G in (19) and χk ∈
H[ζ, η] in (20) become

Gl :=





Γ ∈ Hm×m[ζ, η]

∣∣∣∣∣∣∣
Γ(ζ, η) :=

n∑

k=1

χk(ζ, η)Υk(ζ, η) for some

Υk ∈ Hm×m[ζ, η] (k = 1, · · · , n) such that (21)





(B.1)

and

χk(ζ, η) := $2
k − ζkηk,

respectively. We see that

∂Γ(jω) =
n∑

k=1

(
$2

k − ω2
k

)
∂Υk(jω)

≥ 0, ∀ ω ∈ Ωl. (B.2)

holds for any Γ ∈ Gl.

We obtain a necessary and sufficient condition which is equivalent to the low frequency property using

QDFs.

Lemma B.1 Let B in (4) and Φ ∈ Hq×q[ζ, η] in (8) be given. Suppose the Assumption 1 holds. Define Ωl by

(15) and Gl by (B.1). Then, the following statements (i), (ii) and (iii) are equivalent.
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(i) The FFDI (17) holds for all ω ∈ Ωl.

(ii) There exist 2n-variable polynomial matrices Ψ ∈ Cnm×m[ζ, η] in (23) and Γ ∈ Gl satisfying (24) with

the image representation (5).

(iii) The inequality (26) holds for all w ∈ B with the image representation (5) and ` ∈ D∞(Rn,Cm) satisfying
∫

Rn

(
∂zk

∂xk

∂z∗k
∂xk

−$2
kzkz

∗
k

)
dx ≤ 0 (k = 1, · · · , n), (B.3)

where zk ∈ D∞(Rn,C{
Qn

l=1(Nk,l+1)}m) is defined by (28) for some multi-index Nk :=

(Nk,1, · · · , Nk,n) ∈ Zn.

Proof (ii)⇒(iii) By integrating (24) from xk = −∞ to xk = +∞ for k = 1, · · · , n, we obtain the inequality
∫

Rn

QΦ(w)dx ≥
∫

Rn

QΓ(`)dx.

It follows from the definition of Γ(ζ, η) that the inequality

∫

Rn

QΦ(w)dx ≥
n∑

k=1

∫

Rn

{
$2

kQΥk
(`)− QΥk

(
∂`

∂xk

)}
dx (B.4)

holds. Since QΥk
(`) is expressed as QΥk

(`) = z∗kΥ̃kzk, where Υ̃k ∈ H{
Qn

l=1(Nk,l+1)}m×{Qn
l=1(Nk,l+1)}m is

the coefficient matrix of Υk(ζ, η) and zk ∈ C∞(Rn,C{
Qn

l=1(Nk,l+1)}m) is defined by (28) for Nk,l := degζl
Υk

(l = 1, · · · , n). In the right hand side of (B.4), the inner term of the integral can be rewritten by

$2
kQΥk

(`)− QΥk

(
∂`

∂xk

)
= $2

kz
∗
kΥ̃kzk −

∂z∗k
∂xk

Υ̃k
∂zk

∂xk

= tr
[
Υ̃k

(
$2

kzkz
∗
k −

∂zk

∂xk

∂z∗k
∂xk

)]
.

Substituting the above equality to (B.4) yields

∫

Rn

QΦ(w)dx ≥
n∑

k=1

∫

Rn

tr
[
Υ̃k

(
$2

kzkz
∗
k −

∂zk

∂xk

∂z∗k
∂xk

)]
dx

=
n∑

k=1

tr
[
Υ̃k

∫

Rn

(
$2

kzkz
∗
k −

∂zk

∂xk

∂z∗k
∂xk

)
dx

]

= tr







Υ̃1 · · · 0
...

. . .
...

0 · · · Υ̃n







A1 · · · 0
...

. . .
...

0 · · · An





 ,

where Ak ∈ H{
Qn

l=1(Nk,l+1)}m×{Qn
l=1(Nk,l+1)}m (k = 1, · · · , n) is the constant matrix defined by

Ak :=
∫

Rn

(
$2

kzkz
∗
k −

∂zk

∂xk

∂z∗k
∂xk

)
dx.

Since Υ̃k ≥ 0, ∀ k = 1, · · · , n holds from the definition of Υk(ζ, η) and Lemma A.1, the inequality (26) holds

for all ` ∈ D∞(Rn,Cm) satisfying (B.3). This concludes the claim.
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(iii)⇒(i) We give the proof of the claim by showing the contraposition.

Suppose that there exists a frequency vector ω′ := (ω′1, · · · , ω′n) ∈ Ωl such that ω′k ≥ 0 (k = 1, · · · , n) and

∂Φ(jω′) � 0. We can assume ω′k > 0 because it can be proved the case where ω′k = 0 by replacing ω′k with

ω′k + ε (ε > 0) and taking the limitation ε → 0. We can also assume ω′k 6= $k by the similar reason.

Let v ∈ Cm be the eigenvector corresponding to the minimum eigenvalue of ∂Φ(jω′). Since the eigenvalue

is negative, we observe

QΦ

(
M

(
d
dx

)
ej(
Pn

k=1 ω′kxk)v
)

= v∗M(jω′)∗∂Φ(jω′)M(jω′)v < 0.

In order to show the claim, we choose a special latent variable `h ∈ C∞(Rn,Cm), h ∈ Z. This is constructed

as follows. Define `h,k ∈ C∞(R,C) (k = 1, · · · , n) by

`h,k(xk) :=





ejω′kxk

(
|xk| ≤ 2πh

ω′k

)

˜̀
k

(
xk +

2πh

ω′k

) (
xk < −2πh

ω′k

)

˜̀
k

(
xk − 2πh

ω′k

) (
xk >

2πh

ω′k

)
,

where ˜̀
k ∈ D∞(R,C) (k = 1, · · · , n) is chosen as a function which does not depend on h and be such that

`h is a smooth function for h. Then, the variable `h ∈ D∞(Rn,Cm), h ∈ Z is constructed as a product of

`k,1, · · · , `k,n by

`h(x) =

(
n∏

k=1

`h,k(xk)

)
v. (B.5)

We now proceed to show the claim. For `h in (B.5), define the variable

zk,h := ZNk

(
d
dx

)
`h ∈ D∞(Rn,C{

Qn
l=1(Nk,l+1)}m).

Compute the value of the following integral
∫

Rn

(
∂zk,h

∂xk

∂z∗k,h

∂xk
−$2

kzk,hz∗k,h

)
dx. (B.6)

Note that this integral is finite, since `h has a compact support. The integral in (B.6) is rewritten by

∫

Rn

(
∂zk,h

∂xk

∂z∗k,h

∂xk
−$2

kzk,hz∗k,h

)
dx =

∫

Rn−1





∫ + 2πh
ω′

k

− 2πh
ω′

k

(
∂zk,h

∂xk

∂z∗k,h

∂xk
−$2

kzk,hz∗k,h

)
dxk



 dsk

+
∫

Rn−1





∫ +∞

+ 2πh
ω′

k

(
∂zk,h

∂xk

∂z∗k,h

∂xk
−$2

kzk,hz∗k,h

)
dxk



 dsk

+
∫

Rn−1

{∫ − 2πh
ω′

k

−∞

(
∂zk,h

∂xk

∂z∗k,h

∂xk
−$2

kzk,hz∗k,h

)
dxk

}
dsk

where sk := (x1, · · · , xk−1, xk+1, · · · , xn) ∈ Rn−1. Finally, we can compute the integral in (B.6) as
∫

Rn

(
∂zk,h

∂xk

∂z∗k,h

∂xk
−$2

kzk,hz∗k,h

)
dx

=
(4πh)n

(
ω′2k −$2

k

)
∏n

k=1 ω′k
ZNk

(j$)vv∗ZNk
(j$)∗ + hn−1Bn−1 + · · ·+ hB1 + B0,
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where B0, B1, · · · , Bn−1 ∈ H{
Qn

l=1(Nk,l+1)}m×{Qn
l=1(Nk,l+1)}m are Hermitian matrices which do not depend

on h. Since ωk > $k and ωk 6= 0 holds for all k = 1, · · · , n, we have the inequality
∫

Rn

(
∂zk,h

∂xk

∂z∗k,h

∂xk
−$2

kzk,hz∗k,h

)
dx ≤ 0

for sufficiently large h.

Next, we compute the value of the integral
∫

Rn

QΦ

(
M

(
d
dx

)
`h

)
dx

for `h(x) defined by (B.5). This integral can be decomposed to

∫

Rn

QΦ

(
M

(
d
dx

)
`h

)
dx =

∫

Rn−1





∫ + 2πh
ω′

k

− 2πh
ω′

k

QΦ

(
M

(
d
dx

)
`h

)
dxk



 dsk

+
∫

Rn−1





∫ +∞

+ 2πh
ω′

k

QΦ

(
M

(
d
dx

)
`h

)
dxk



 dsk

+
∫

Rn−1

{∫ − 2πh
ω′

k

−∞
QΦ

(
M

(
d
dx

)
`h

)
dxk

}
dsk.

The above integral can be computed as
∫

Rn

QΦ

(
M

(
d
dx

)
`h

)
dx

=
(4πh)n

∏n
k=1 ω′k

v∗M(jω′)∗∂Φ(jω′)M(jω′)v + hn−1Cn−1 + · · ·+ hC1 + C0,

where C0, C1, · · · , Cn−1 ∈ R are the constants which do not depend on h. Since

v∗M(jω′)∗∂Φ(jω′)M(jω′)v < 0 holds, if we take h as sufficiently large in the above equality, we

have
∫

Rn

QΦ

(
M

(
d
dx

)
`h

)
dx < 0.

This leads to a contradiction which completes the proof.

(i)⇒(ii) Assume that the statement (ii) does not hold. This is the case if and only if there does not

simultaneously exist a pair of Ψ ∈ Cnm×m[ζ, η] in (23) and Γ ∈ G satisfying

divQΨ(`)− QΦ(w) + QΓ(`) ≤ ε ‖`‖2 , ∀ ` ∈ C∞(Rn,Cm)

for some ε > 0. The above inequality is equivalent to the following 2n-variable polynomial matrix equation

∇Ψ(ζ, η)−M?(ζ)Φ(ζ, η)M(η) + Γ(ζ, η) + ∆(ζ, η) = εIm (B.7)

for some ∆ ∈ Hm×m[ζ, η] such that Q∆(`) ≥ 0, ∀ ` ∈ C∞(Rn,Cm). More exactly, from the definitions of

Ψ(ζ, η) and Γ(ζ, η), the statement (ii) does not hold if and only if there exists an ε > 0 such that the 2n-variable

polynomial matrix equation
n∑

k=1

(ζk + ηk)Ψk(ζ, η)−M?(ζ)Φ(ζ, η)M(η) +
n∑

k=1

(
$2

k − ζkηk

)
Υk(ζ, η) + ∆(ζ, η) = εIm
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does not have a solution Ψk(ζ, η) and Υk(ζ, η) satisfying (21). This implies that there exists an ε > 0 such that

the frequency domain equality

−M(jω)∗∂Φ(jω)M(jω) +
n∑

k=1

(
$2

k − ω2
)
∂Υk(jω) + ∂∆(jω) = εIm

does not have a solution Υk(ζ, η) satisfying (21). This is the case if and only if the FFDI

M(jω)∗∂Φ(jω)M(jω) ≥
n∑

k=1

(
$2

k − ω2
k

)
∂Υk(jω), ∀ ω ∈ Ωl

does not have a solution Υk(ζ, η) satisfying (21). Pre- and post-multiplying the above inequality by v∗ and v

(v ∈ Rm, v 6= 0), respectively, we get

v∗M(jω)∗∂Φ(jω)M(jω)v

≥
n∑

k=1

(
$2

k − ω2
k

)
v∗∂Υk(jω)v

= tr







vv∗

vv∗

. . .

vv∗







(
$2

1 − ω2
1

)
∂Υ1(jω) (

$2
1 − ω2

2

)
∂Υ2(jω)

. . . (
$2

n − ω2
n

)
∂Υn(jω)







=
n∑

k=1

tr
{
vv∗

(
$2

k − ω2
k

)
∂Υk(jω)

}
.

We easily see that vv∗ ≥ 0 holds. Hence, if there exists a k such that
(
$2

k − ω2
k

)
∂Υk(jω) ≥ 0, ∀ ω ∈ Ωl does

not hold, we do not have vM(jω)∗∂Φ(jω)M(jω)v ≥ 0, ∀ ω ∈ Ωl. This implies that

M(jω)∗∂Φ(jω)M(jω) � 0

holds for some ω ∈ Ωl. Hence, the statement (i) does not hold, which proves the claim. ¤

Appendix B.1.2 Combinatorial Frequency Case

In this subsection, we generalize the discussion in the last subsection to the case where frequency domain is

given as a combination of low and high frequency domains for each frequency variable.

Define the frequency domain Ωc ⊂ Rn as a combination of low and high frequency domains by

Ωc :=
n∏

k=1

Ωc,k, Ωc,k := {ω ∈ Rn | τk (ωk −$k) (ωk + $k) ≤ 0} (k = 1, · · · , n), (B.8)

where $ := ($1, · · · , $n) ∈ Rn is a given vector satisfying (16). Then, G in (19) becomes

Gc :=





Γ ∈ Hm×m[ζ, η]

∣∣∣∣∣∣∣
Γ(ζ, η) :=

n∑

k=1

χk(ζ, η)Υk(ζ, η) for some

Υk ∈ Hm×m[ζ, η] (k = 1, · · · , n) such that (21)





. (B.9)

24



Then, we also have

∂Γ(jω) =
n∑

k=1

τk

(
$2

k − ω2
k

) · τk∂Υk(jω)

≥ 0, ∀ ω ∈ Ωc

holds for any Γ ∈ Gc. We have the following lemma.

Lemma B.2 Let B in (4) and Φ ∈ Hq×q[ζ, η] in (8) be given. Suppose that Assumption 1 holds. Define Ωc by

(B.8) and Gc by (B.9). Then, the following statements (i), (ii) and (iii) are equivalent.

(i) The FFDI (17) holds for all ω ∈ Ωc.

(ii) There exist 2n-variable polynomial matrices Ψ ∈ Cnm×m[ζ, η] in (23) and Γ ∈ Gc satisfying (24) with

the image representation (5).

(iii) The inequality (26) holds for all w ∈ B with the image representation (5) and ` ∈ D∞(Rn,Cm) satisfying

τk

∫

Rn

(
∂zk

∂xk

∂z∗k
∂xk

−$2
kzkz

∗
k

)
dx ≤ 0 (k = 1, · · · , n),

where zk ∈ D∞(Rn,C{
Qn

l=1(Nk,l+1)}m) is defined by (28) for some multi-index Nk :=

(Nk,1, · · · , Nk,n) ∈ Zn.

Proof The proof is straightforward because it can be proved in a similar way to Lemma B.1. ¤

Appendix B.1.3 Proof of Theorem 1

As we have completed the proof of Lemma B.2, we conclude the proof of Theorem 1.

Consider the following transformations of the frequency variables

ωg := (ωg,1, · · · , ωg,n), ωg,k := ωk + $k,+, $k := $k,− (k = 1, · · · , n).

Then, we have ωg ∈ Ω if and only if ω ∈ Ωc holds from Lemma B.2. This complete the proof of Theorem 1.

Appendix B.2 Proof of Corollary 1

(i)⇒(iii) We assume that the statement (i) holds. From Theorem 1, there exist 2n-variable polynomial

matrices Ψ ∈ Hnm×m[ζ, η] in (23) and Γ ∈ G satisfying the inequality (24) for all w ∈ B. This is the case if

and only if (30) holds for some ∆ ∈ Hq×q[ζ, η] such that Q∆(`) ≥ 0, ∀w ∈ B with the image representation (5).

Hence, we get the inequality

Q∆+Γ(w) = Q∆(w) + QΓ(w) ≥ 0, ∀ w ∈ BΩ.

Thus, the first part of (iii) follows.
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In addition, by integrating (30) from xk = −∞ to xk = +∞ (k = 1, · · · , n) along BΩ ∩ D∞(Rn,Cq), we

obtain ∫

Rn

QΓ+∆(`)dx =
∫

Rn

QΦ(w)dx, ∀ w ∈ BΩ ∩ D∞(Rn,Cq). (B.10)

This shows that Q∆+Γ(w) becomes a dissipation rate for BΩ with respect to the supply rate QΦ(w) from

Definition 2 (ii). This completes the proof of (i)⇒(iii).

(iii)⇒(iv) Integrating (30) from xk = −∞ to xk = +∞ (k = 1, · · · , n) along BΩ ∩D∞(Rn,Cq) yields

(B.10). Since Q∆+Γ(w) satisfies Q∆+Γ(w) ≥ 0, ∀ w ∈ BΩ, we get
∫

Rn

QΦ(w)dx =
∫

Rn

QΓ+∆(`)dx ≥ 0, ∀ w ∈ BΩ ∩ D∞(Rn,Cq).

Hence, the statement (iv) holds.

(iv)⇒(i) Since the statement (iv) is equivalent to the statement (iii) of Theorem 1, the proof follows

immediately from Proposition 1.

(ii)⇔(iii) The proof is straightforward from Proposition 1.

Appendix B.3 Proof of Proposition 3

(i)⇒(ii) Assume that the statement (i) holds. Then, there exist Ψ′ ∈ Cnq×q[ζ, η] and Γ′ ∈ G satisfying

(35). We can choose these matrices as B-canonical 2n-variable polynomial matrices from Lemma A.3. This

concludes the claim.

(ii)⇒(iii) Assume that the statement (ii) holds. Since Υ′
k(ζ, η) (k = 1, · · · , n) is B-canonical, QΥ′k

(w)

is expressed as

QΥ′k
(w) = (z

′
k)
∗Υ̃′

kz
′
k, Υ̃′

k ∈ H{
Qn

l=1(N ′
k,l+1)}q×{Qn

l=1(N ′
k,l+1)}q, z′k := ZN ′

k

(
d

dt

)
w

for Nk = (Nk,1, · · · , Nk,n), Nk,l ≤ degξl
R− 1 (l = 1, · · · , n). Then, we obtain

∫

Rn

QΦ(w)dx ≥
n∑

k=1

∫

Rn

tr
[
−Υ̃′

k

{
He

(
∂z′k
∂xk

− j$k,1z
′
k

)(
∂z′k
∂xk

− j$k,2z
′
k

)∗}]
dx

= tr

[
τkΥ̃′

k

n∑

k=1

(−τk)
∫

Rn

He
[(

∂z′k
∂xk

− j$k,1z
′
k

)(
∂z′k
∂xk

− j$k,2z
′
k

)∗]
dx

]

= tr







τ1Υ̃′
1 · · · 0

...
. . .

...

0 · · · τnΥ̃′
n







τ1D1 · · · 0
...

. . .
...

0 · · · τnDn





 ,

where Dk ∈ H{
Qn

l=1(N ′
k,l+1)}q×{Qn

l=1(N ′
k,l+1)}q (k = 1, · · · , n) is the constant matrix defined by

Dk := −
∫

Rn

He
[(

∂z′k
∂xk

− j$k,1z
′
k

)(
∂z′k
∂xk

− j$k,2z
′
k

)∗]
dx.

Since τkΥ̃′
k ≥ 0, ∀ k = 1, · · · , n holds from (34) and Lemma A.1, we have (26) for all w ∈ B satisfying (36).

This concludes the claim.

(iii)⇒(i) The proof is straightforward from Theorem 1.
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