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Abstract

In wireless sensor networks, transportation networks, or VLSI-layout, routing
is a fundamental problem and it can be modeled as finding paths with some
conditions in a given graph. Among such types of problems, finding disjoint
paths connecting given terminal pairs is called the disjoint paths problem, and it
is well-studied in the fields of theoretical computer science and graph algorithms.
In this paper, we consider a problem of finding paths that are not only disjoint
but also “far” from each other, which aims at reducing mutual interference
among paths. Our theoretical contribution is to give polynomial-time algorithms
for some cases of this problem. We also propose a solution based on the integer
programming, which can be applied to many kinds of routing problems.

1 Introduction

The disjoint paths problem is a natural mathematical model of routing problems
that appear in wireless sensor networks, transportation networks, VLSI-layout, and
so on [3, 15]. In this problem, we are given a graph and its node pairs (s1, t1), (s2, t2),
. . . , (sk, tk), and the objective is to find disjoint paths P1, P2, . . . , Pk such that Pi

connects si and ti for i = 1, 2, . . . , k. In a wireless sensor network, this problem
amounts to sending data from a sensor si to another sensor ti along the path Pi so
that each sensor (node) belongs to at most one path. See [9, 18] for related problems
motivated by wireless sensor networks. In many practical situations, it is important
to consider the case when the given graph is embedded on a two-dimensional plane.
For example, the Delaunay triangulation or other planar graphs are often used in
routing problems in ad hoc wireless networks [1, 5, 10, 19, 20]. In this paper, we
focus on the disjoint paths problem in plane graphs (i.e., graphs embedded on a
two-dimensional plane).

The disjoint paths problem is well-studied in the fields of theoretical computer
science and graph algorithms, and there are many theoretical results on several
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variants of the problem both in general graphs and in plane graphs. When k is a
part of the input of the problem, this is one of Karp’s NP-complete problems [7],
and it remains NP-complete even in plane graphs [11]. Robertson and Seymour [16]
gave a polynomial-time algorithm for the disjoint paths problem when the number
of terminals, k, is fixed. This algorithm is based on their seminal work on graph
minor project, which is spanning 23 papers and giving several deep and profound
results and techniques in discrete mathematics. If the input graph is restricted to
be planar, the running time is improved to linear time [13, 14].

Although the disjoint paths problem is one of the simplest models of routing
problems, we need state-of-the-art techniques in graph algorithms to design a
polynomial-time algorithm for the problem. Therefore, it is a challenging task
to consider the disjoint paths problem with some additional constraints. In most
practical situations of routing problems, it is natural to assume the existence of
mutual interference between two paths when they are close to each other (see
e.g. [4, 6, 12]). In this paper, we want to find paths that are not only disjoint
but also “far” from each other, which aims at reducing mutual interference among
paths. More precisely, we consider the following problem

Non-interference Paths Problem

Input: A plane graph G = (V,E) and its node pairs (s1, t1), (s2, t2), . . . , (sk, tk).

Find: Disjoint paths P1, P2, . . . , Pk such that each Pi connects si and ti and
dist(Pi, Pj) > 1 for distinct i, j ∈ {1, 2, . . . , k} (or conclude that such paths do
not exist).

Here, a plane graph G is embedded on a two-dimensional Euclidian space so that
each edge is drawn as a line segment, and we are given coordinates of each node. For
two points u, v ∈ V , dist(u, v) is defined as a standard Euclidian distance between
u and v. In this paper, we adopt the following two definitions of the distance between
two paths Pi and Pj .

(1) Regard each path Pi as a subset of the two-dimensional plane and define

dist(Pi, Pj) = min
u∈Pi,v∈Pj

dist(u, v).

(2) Regard each path Pi as a sequence of nodes in V and let V (Pi) ⊆ V be its
vertex set. Then, define

dist(Pi, Pj) = min
u∈V (Pi),v∈V (Pj)

dist(u, v).

For example, in Fig. 1, dist(Pi, Pj) = 0.8 if we adopt the definition (1) and
dist(Pi, Pj) = 1.2 if we adopt the definition (2).

Roughly speaking, the first definition models the wired communication in which
mutual interference among wires are considered, and the second one deals with the
wireless communication in which mutual interference among nodes are taken into
consideration. In order to distinguish these two cases, we denote the problem with
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Figure 1: Distance between two paths

the first (resp. second) definition of dist(Pi, Pj) by Non-interference Paths Problem
(1) (resp. Non-interference Paths Problem (2)).

When k is a part of the input, both Non-interference Paths Problem (1) and
Non-interference Paths Problem (2) are NP-hard, since the disjoint paths problem
is NP-hard even in planar graphs [11]. Therefore, in this paper we focus on the case
when k is a fixed constant. Our theoretical contributions are as follows.

Theorem 1. For fixed k, the Non-interference Paths Problem (1) can be solved in
polynomial time.

Theorem 2. Assume that the plane graph G is the Delaunay triangulation of V .
In this case, for fixed k, the Non-interference Paths Problem (2) can be solved in
polynomial time.

Proofs of these theorems are given in Section 2. We also give a solution based
on the integer programming, which is discussed in Section 3.

2 Theoretical Results

In this section, we first introduce a problem which generalizes the Non-interference
Paths Problem and give a polynomial-time algorithm for it. By using the algorithm,
we prove Theorems 1 and 2 in Sections 2.2 and 2.3, respectively.

2.1 Generalized problem

In this subsection, we introduce a variant of the Non-interference Paths Problem,
in which we are given a set of node pairs that cannot be contained in different
paths. Since the Non-interference Paths Problem will be reduced to this problem in
Sections 2.2 and 2.3, we call this problem a generalized problem.
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Generalized Non-interference Paths Problem (GNPP)

Input: A plane digraph D = (V,A) and its node pairs (s1, t1), (s2, t2), . . . , (sk, tk).
A set of node pairs N ⊆ V × V with the following property:

(*) for any (u, v) ∈ N , there exists a sequence of nodes u0, u1, . . . , ul−1, ul
such that u0 = u, ul = v, (ui, uj) ∈ N for any 0 ≤ i < j ≤ l and either
(ui, ui+1) ∈ A or (ui+1, ui) ∈ A for each 0 ≤ i ≤ l − 1.

Find: Disjoint directed paths P1, P2, . . . , Pk such that each Pi is from si to ti and for
any distinct i, j and for any u ∈ V (Pi) and v ∈ V (Pj), it holds that (u, v) ̸∈ N
(or conclude that such paths do not exist).

The Directed Disjoint Paths Problem in planar digraphs (DDPP) is a special
case of this problem, in which N = ∅ (or N = {(v, v) | v ∈ V }). In what follows,
we give a polynomial-time algorithm for the GNPP based on Schrijver’s algorithm
for the DDPP [17]. The same approach is also used for the directed induced disjoint
paths problem in planar digraphs [8].

We now give some preliminaries. A directed edge is called an arc, and the nodes
s1, . . . , sk, t1 . . . , tk are called terminals. Without loss of generality, we assume that
D is weakly connected and each terminal is incident to exactly one arc. Let F be
the set of all faces of D, and R ∈ F be the unbounded face of D. For a ∈ A, let
left(a) and right(a) be the faces of D at the left-hand side and the right-hand side
of a, respectively. The dual digraph D∗ of D is a digraph D∗ = (F , A∗) whose arc
set A∗ is defined by A∗ = {a∗ | a ∈ A}, where a∗ is an arc from left(a) to right(a).

Let (Gk, ·) be the free group generated by g1, g2, . . . , gk, and let 1 denote its
unit element. More precisely, Gk consists of all words b1 · · · bt, where t ≥ 0 and
b1, . . . , bt ∈ {g1, g−1

1 , . . . , gk, g
−1
k } such that bibi+1 ̸= gjg

−1
j and bibi+1 ̸= g−1

j gj for
i = 1, . . . , t − 1 and j = 1, . . . , k. The product x · y of two words is obtained from
the concatenation xy by deleting iteratively all gjg

−1
j and g−1

j gj . A word y is called
a segment of a word w if w = xyz for certain words x, z. A subset Γ ⊆ Gk is called
hereditary if for each word y ∈ Γ each segment of y belongs to Γ.

We say that a function ϕ : A → Gk is a flow if the following three conditions
hold.

• For i = 1, . . . , k, the arc a leaving si satisfies that ϕ(a) = gi.

• For i = 1, . . . , k, the arc a entering ti satisfies that ϕ(a) = gi.

• For each node v ∈ V \ {s1, . . . , sk, t1, . . . , tk},

ϕ(a1)
ϵ1 · ϕ(a2)ϵ2 · · · · · ϕ(al)ϵl = 1,

where a1, . . . , al are the arcs incident with v, in the clockwise order, and
ϵi = +1 if ai leaves v and ϵi = −1 if ai enters v.

Note that these conditions correspond to the flow conservation in a standard (single
commodity) network flow. We say that two functions ϕ, ψ : A→ Gk areR-homologous
if there exists a function f : F → Gk such that
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• f(R) = 1,

• f(left(a))−1 · ϕ(a) · f(right(a)) = ψ(a) for each arc a ∈ A.

It can be easily seen that if ϕ is a flow and ψ is R-homologous to ϕ, then ψ is also a
flow. A flow ψΠ corresponding to a solution Π = (P1, . . . , Pk) of the GNPP (or the
DDPP) is defined by

ψΠ(a) =

{
gi if a is an arc on Pi,

1 otherwise.

Schrijver’s algorithm for the directed disjoint paths problem is obtained from
Propositions 3 and 4 below.

Proposition 3 (Schrijver [17]). For each fixed k, we can find in polynomial time
a collection of flows ϕ1, . . . , ϕN with the property that for each solution Π of the
DDPP, ψΠ is R-homologous to at least one of ϕ1, . . . , ϕN .

Proposition 4 (Schrijver [17]). There exists a polynomial-time algorithm that, for
any flow ϕ, either finds a solution Π of the DDPP such that ψΠ is R-homologous to
ϕ or concludes that such a solution does not exist.

Proposition 3 implies the following as a corollary, because a solution of the GNPP
is also a solution of the DDPP.

Proposition 5. For each fixed k, we can find in polynomial time a collection of
flows ϕ1, . . . , ϕN with the property that for each solution Π of the GNPP, ψΠ is
R-homologous to at least one of ϕ1, . . . , ϕN .

In order to design an algorithm for the GNPP, we need the following proposition,
which corresponds to Proposition 4. A proof is given in the appendix.

Proposition 6. There exists a polynomial-time algorithm that, for any flow ϕ,
either finds a solution Π of the GNPP such that ψΠ is R-homologous to ϕ or
concludes that such a solution does not exist.

Now we are ready to give an algorithm for the GNPP.

Theorem 7. For fixed k, the Generalized Non-interference Paths Problem (GNPP)
can be solved in polynomial time.

Proof. By Proposition 5, we can find a collection of flows ϕ1, . . . , ϕN such that for
each solution Π of the GNPP, ψΠ is R-homologous to at least one of ϕ1, . . . , ϕN .
By Proposition 6, we can either find a solution Π of the GNPP such that ψΠ

is R-homologous to ϕi or conclude that such a solution does not exist, for each
i = 1, . . . , N . Thus we can solve the GNPP in polynomial time when k is a fixed
constant.
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Figure 2: Reduction to the GNPP. (Dotted lines are in E′.)

2.2 Non-interference Paths Problem (1)

In this subsection, by using Theorem 7, we give a proof of Theorem 1, which we
restate here.

Theorem. For fixed k, the Non-interference Paths Problem (1) can be solved in
polynomial time.

Proof. Suppose that we are given an instance of the Non-interference Paths Problem
(1), in which each edge is a line segment in the embedding of G. Now we construct
an instance of the GNPP that is equivalent to the original instance as follows (see
Fig. 2).

For nodes u, v ∈ V , let Luv be the line segment connecting u and v. For a
node v ∈ V and an edge e ∈ E, let Lue be the shortest line segment connecting u
and a vertex in e. Note that, if e = v1v2, then Lue is equal to Luv1 , Luv2 , or the
perpendicular line to e. Now we define the following set of line segments:

E′ = {Luv | u, v ∈ V, length of Luv is at most 1}
∪ {Lue | u ∈ V, e ∈ E, length of Lue is at most 1}.

Let V̄ ⊇ V be the set of all intersection points of two line segments (edges) in
E ∪E′. By subdividing every edge in E ∪E′ at nodes in V̄ , we obtain a plane graph
Ḡ = (V̄ , Ē ∪ Ē′), where Ē and Ē′ are obtained from E and E′, respectively.

Since paths can go through uv ∈ Ē in either direction, we replace each edge
uv ∈ Ē with two directed arcs (u, v) and (v, u). Similarly, since paths cannot go
through uv ∈ Ē′, we replace each edge uv ∈ Ē′ with one new node w and two
directed arcs (u,w) and (v, w). Let D = (V ′, A) be the obtained plane digraph.

Define a set of node pairs N ⊆ V ′ × V ′ by

N = {(u, v) | u, v ∈ V ′ on a common line segment in E′}.

Then, N satisfies the property (*). Furthermore, we can easily see that the obtained
instance of the GNPP inD is equivalent to the original instance of the Non-interference
Paths Problem (1).

Note that the number of edges in E′ is at most O(|V |3), and so we have
|V ′| = O(|V |6), which is a polynomial size of the original instance. Therefore,

6



by Theorem 7, we have a polynomial-time algorithm for the Non-interference Paths
Problem (1), which completes the proof of Theorem 1.

2.3 Non-interference Paths Problem (2)

The Delaunay triangulation of V is the dual of the Voronoi diagram for V . Formally,
it is defined as a triangulation of the two dimensional space such that no point in V
is inside the circumscribed circle of any triangle in the triangulation. The objective
of this subsection is to show Theorem 2, which we restate here.

Theorem. Assume that the plane graph G is the Delaunay triangulation of V .
In this case, for fixed k, the Non-interference Paths Problem (2) can be solved in
polynomial time.

Proof. We construct an instance of the GNPP that is equivalent to the original
instance as follows. Replace each edge uv ∈ E with two arcs (u, v) and (v, u), and
define

N = {(u, v) | u, v ∈ V, dist(u, v) ≤ 1}.

It is easy to see that the obtained instance is equivalent to the original one. Thus,
the remaining task is to show that N satisfies the property (*). Although this is one
of the basic properties of Delaunay triangulations1, we give a proof for completeness.

For each node v ∈ V , let Rv be the Voronoi region corresponding to v. Let
L be the line segment connecting u and v, where (u, v) ∈ N . Suppose that L
traverses Voronoi regions Ru0 , Ru1 , . . . , Rul

in this order when we walk from u to
v (see Fig. 3). Since the Delaunay triangulation of V is the dual of the Voronoi
diagram for V , we can see that u0 = u, ul = v, and uiui+1 ∈ E for each
0 ≤ i ≤ l − 1. Furthermore, for each i = 0, 1, . . . , l, there exists a point pi on
L such that dist(pi, ui) ≤ min{dist(pi, u), dist(pi, v)}, which implies that ui is inside
the circle C whose diameter is L (see Fig. 3). Therefore, dist(ui, uj) ≤ dist(u, v) ≤ 1
for any 0 ≤ i < j ≤ l, and hence (ui, uj) ∈ N by the definition of N . By the above
arguments, N satisfies the property (*).

Therefore, by Theorem 7, we have a polynomial-time algorithm for the
Non-interference Paths Problem (2).

3 Solution via Integer Programming

In the previous section, we discussed theoretical results on the GNPP and the
Non-interference Paths Problem. Although the proposed algorithms run in polynomial
time, they are too complicated to implement and unlikely to be fast in practice.
In this section, we propose two Integer Programming (IP) formulations of the
Non-interference Paths Problem to solve the problem in practical time. Since our
IP formulations can be applied to both Non-interference Paths Problem (1) and
Non-interference Paths Problem (2), we do not distinguish them in most part of this
section.

1For example, a similar property is used to show that the Delaunay triangulation is a geometric
spanner (see [2]).
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Figure 3: Definition of u0, u1, . . . , ul and C

3.1 Formulation with Integer Programming

We gave a polynomial-time algorithm for the Non-interference Paths Problem in the
previous section, but there are some issues remained:

• Our algorithm is too complicated to implement and time-consuming.

• We want “better” solutions in some sense if there are more than one feasible
solutions.

• Given an infeasible instance of the Non-interference Paths Problem, we want
to find paths that connect as many (si, ti)-pairs as possible.

• We want a unified approach dealing with variants of the Non-interference
Paths Problem, which might have different objective functions, additional
constraints, and different definitions of “interference”.

We now propose two IP formulations to clear them up. Suppose we are given a
plane graph G = (V,E) and its node pairs (s1, t1), (s2, t2), . . . , (sk, tk) as an input
of the Non-interference Paths Problem. Although G is undirected, to formulate the
problem, we fix a direction of each edge arbitrarily. Then, we can define the head,
the tail, the forward direction, and the backward direction of each edge e ∈ E. First,
we introduce new parameters that are easily computed from the input:

• He,v ∈ {−1, 0, 1} (e ∈ E, v ∈ V ) : +1/−1 if the head/tail of edge e is v and 0
otherwise.

• Ie,e′ ∈ {0, 1} (e, e′ ∈ E) : 1 if edges e and e′ interfere and 0 otherwise.
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Here, we say that two edges e and e′ interfere if dist(e, e′) ≤ 1, i.e. we cannot select
two paths P and P ′ such that P and P ′ contain e and e′, respectively.

Let [k] = {1, 2, . . . , k}. In our IP formulations, an si-ti path is regarded as a flow
from si to ti, and we use the following variables:

(A1) Fi,e ∈ {−1, 0, 1} (i ∈ [k], e ∈ E) : +1/−1 if the flow indexed by i goes
through edge e in the forward/backward direction and 0 otherwise.

(A2) F̄i,e ∈ {0, 1} (i ∈ [k], e ∈ E) : absolute value of Fi,e.

Furthermore, we introduce the following variable for ease of reading:

(A3) Bi,v :=
∑

e∈E Fi,eHe,v (i ∈ [k], v ∈ V ).

In the study of network flows, this value is called a boundary at v of the flow indexed
by i.

Our first formulation aims at finding a solution with the shortest total length,
which is described as follows.

IP formulation (I) of Non-interference Paths Problem

Input: a plane graph G = (V,E) with terminal pairs (s1, t1), . . . , (sk, tk),
He,v (e ∈ E, v ∈ V ), and Ie,e′ (e, e

′ ∈ E).

Minimize:
∑

i∈[k], e∈E F̄i,e

Subject to:

(C1) Fi,e ≤ F̄i,e and − Fi,e ≤ F̄i,e (∀i ∈ [k], ∀e ∈ E)

(C2) Bi,v = 0 (∀i ∈ [k], ∀v ∈ V \ {si, ti})
(C3) Bi,si = −1 and Bi,ti = 1 (∀i ∈ [k])

(C4) −1 ≤ Fi,e + Fi′,e′ ≤ 1 and − 1 ≤ Fi,e − Fi′,e′ ≤ 1

(∀i, i′ ∈ [k] with i ̸= i′, ∀e, e′ ∈ E with Ie,e′ = 1)

and (A1)–(A3).

Since we minimize
∑

i,e F̄i,e, Constraint (C1) guarantees that F̄i,e coincides with
the absolute value of Fi,e. Constraints (C2) and (C3) mean that Fi,e (e ∈ E)
represents a flow from si to ti. Constraint (C4) guarantees that there is no interference
among flows i.e. paths connecting terminal pairs. This formulation gives us the
shortest feasible solution, which seems to be reasonable in practical applications.

In our second IP formulation, we want to find a maximum number of paths that
connect given terminal pairs. Note that this formulation can also be applied to the
case where all terminal pairs cannot be connected by non-interference paths.
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IP formulation (II) of Non-interference Paths Problem

Input: a plane graph G = (V,E) with terminal pairs (s1, t1), . . . , (sk, tk),
He,v (e ∈ E, v ∈ V ), and Ie,e′ (e, e

′ ∈ E).

Maximize:
∑

i∈[k]Bi,ti

Subject to: (A1), (A3), (C2), (C4), and

Bi,ti ∈ {0, 1} (∀i ∈ [k]).

Note that in this formulation, even optimal solutions might contain unnecessary
cycles. In such a case, we can easily derive a solution of the original problem by the
breadth-first-search.

The proposed IP formulations of the Non-interference Paths Problem have similar
constraints but have distinct objective functions. In practical situations, we can
easily modify our formulations to represent the actual objective. We also emphasize
here that our IP formulations can represent any interference among edges, which
will be useful to deal with practical problems.

3.2 Simulations

We evaluate the performance of our IP formulations (I) and (II) of the Non-interference
Paths Problem by computational experiments. For experiments, we randomly generated
a plane graph with 270 nodes in a 20 × 20 square area, and chose k (2 ≤ k ≤ 8)
terminal pairs randomly. Two edges e and e′ interfere if dist(e, e′) ≤ 1 in the sense
of the definition (1), that is, we consider the Non-interference Paths Problem (1).
We solve IP instances with mathematical programming solvers IBM ILOG CPLEX
12.5 and NUOPT 15.1.02. Our experiments were conducted on the computer with
Intel Xeon 3.20 GHz (4 cores) and 16GB of memory.

For both IP formulations, the running time is heavily depending on the arrangement
of the terminals. Roughly, we can solve instances with four or less terminal pairs
quickly (less than ten minutes), and we require a few hours to solve instances of six
terminals. We remark here that in most cases we can find a good feasible solution
quickly, and it takes a long time to show the optimality of the solution. In Fig. 4,
we show a solution of a case of k = 7 obtained by using the IP formulation (I).
An instance shown in Fig. 5 has eight terminal pairs, but we cannot connect all
the terminal pairs by non-interference paths. By using a modification of the IP
formulation (II), we found six non-interference paths connecting terminals, where
stars and squares represent terminal pairs that were not connected by non-interference
paths.

4 Conclusions

In this paper, we introduced the Non-interference Paths Problem as a natural
extension of the disjoint paths problem. We gave polynomial time algorithms for

2Product of Mathematical Systems Inc. (http://www.msi.co.jp/english/)
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Figure 4: Experimental result by IP formulation (I)
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Figure 5: Experimental result by IP formulation (II)
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some cases of this problem, which are theoretically interesting but far from practical
use. It is open whether Theorem 2 can be extended to the case when G is a general
plane graph.

We also solved the Non-interference Paths Problem by using IP formulations,
and evaluated the performance of this approach. With this approach, we can deal
with many kinds of objective functions and constraints, and we can solve small
instances efficiently. If we need to solve larger instances, heuristic methods should
be adopted instead of the IP formulations.
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A Proof of Proposition 6

In order to show Proposition 4, Schrijver [17] introduced a new problem called
cohomology feasibility problem (CFP), and gave a polynomial-time algorithm for it.
He showed that Proposition 4 can be derived from the polynomial-time algorithm
for the CFP. In the appendix, we describe the CFP and show that Proposition 6
can also be obtained from the polynomial-time algorithm for the CFP. We note that
almost the same argument is used in [8].

Let D = (V,A) be a weakly connected digraph, which may have parallel arcs,
and let r ∈ V . Two functions ϕ, ψ : A → Gk are called r-cohomologous if there
exists a function f : V → Gk such that
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• f(r) = 1,

• ψ(a) = f(u)−1 · ϕ(a) · f(v) for each arc a = (u, v) ∈ A.

Schrijver introduced the following problem called cohomology feasibility problem
(CFP), and showed that it can be solved in polynomial time.

Cohomology Feasibility Problem (CFP)

Input: A weakly connected digraph D = (V,A), a node r ∈ V , a function
ϕ : A→ Gk, a hereditary subset Γ(a) ⊆ Gk for each arc a ∈ A.

Find: A function ψ : A→ Gk such that ψ is r-cohomologous to ϕ and ψ(a) ∈ Γ(a)
for each arc a ∈ A (or conclude that such a function does not exist).

Theorem 8 (Schrijver [17]). The CFP can be solved in polynomial time of |A|, σ,
and k, where σ = max{|Γ(a)| | a ∈ A}.

We now show Proposition 6 by using this theorem.
Let D∗ = (F , A∗) be the dual digraph of D. Let A1 be the set of all chords in

all faces of D∗. More precisely, we consider all nonadjacent node pairs F, F ′ ∈ F
which are on the boundary of a face of D∗, and define A1 as the set of all arcs aF,F ′

from F to F ′.
For each (u, v) ∈ N , we take a sequence u0, u1, . . . , ul ∈ V as in the property (*),

and we consider the digraph D∗
(u,v) := D∗−{(u0, u1), (u1, u2), . . . , (ul−1, ul)}. Then,

l+1 faces of D∗ each containing ui make up a new face w(u,v) of D
∗
(u,v). Let A(u,v) be

the set of all chords in w(u,v) which are not in A∗∪A1, and let A2 =
∪

(u,v)∈N A(u,v).

We construct a new digraph D+ = (F , A+), where A+ = A∗ ∪A1 ∪A2.
We define ϕ+ : A+ → Gk as follows:

• ϕ+(a∗) = ϕ(a) for each arc a ∈ A.

• For each aF,F ′ ∈ A1 ∪ A2, let π = ((a∗1)
ϵ1 , (a∗2)

ϵ2 , . . . , (a∗l )
ϵl) be the dipath

traveling clockwise from F to F ′ on the boundary of the face of D∗ or D∗
(s,t),

where ϵi ∈ {+1,−1}. Then ϕ+(aF,F ′) = ϕ(a1)
ϵ1 · ϕ(a2)ϵ2 · · · · · ϕ(al)ϵl .

We say that ϕ+ is the extended function of ϕ.
For each arc a′ ∈ A+, we define Γ+(a′) ⊆ Gk as follows:

• Γ+(a′) = {1, g1, . . . , gk} for a′ ∈ A∗,

• Γ+(a′) = {1, g1, g−1
1 , . . . , gk, g

−1
k } for a′ ∈ A1, and

• Γ+(a′) = {1, gti , g
−t
i | i = 1, . . . , k, t = 1, . . . , n} for a′ ∈ A2.

Then finding a solution Π of the GNPP in D such that ψΠ is R-homologous to ϕ
corresponds to solving the CFP in D+ with respect to ϕ+ and Γ+. We now show
this fact.

Suppose that ψΠ : A → Gk corresponds to a solution Π of the GNPP which is
R-homologous to ϕ. Then we can see that its extended function ψ+

Π : A+ → Gk is
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R-cohomologous to ϕ+. Since no pair of dipaths in Π have common arcs or common
nodes, we have ψ+

Π(a
′) ∈ Γ+(a′) for any a′ ∈ A∗ ∪ A1. Furthermore, for a sequence

u0, u1, . . . , ul corresponding to a pair (u, v) ∈ N , at most one dipath in Π can go
through nodes in {u0, u1, . . . , ul}, which shows that ψ+

Π(a
′) ∈ Γ+(a′) for any a′ ∈ A2.

Hence, ψ+
Π is a solution of the CFP.

Conversely, suppose that ψ+ : A+ → Gk is a solution of the CFP. Define
ψ : A → Gk by ψ(a) = ψ+(a∗) for each a ∈ A. Then we can see that ψ is
R-homologous to ϕ and ψ+ is the extended function of ψ. For each i = 1, . . . , k,
define Pi = {a ∈ A | ψ(a) = gi}. Since ψ is a flow and ψ+(a′) ∈ Γ+(a′) for any
a′ ∈ A∗, Pi consists of a dipath from si to ti and some dicycles. Hence, we may
assume that Pi is a dipath from si to ti, and P1, . . . , Pk are arc-disjoint by the
definition of Pi. We now show that Π = (P1, . . . , Pk) is node-disjoint and (u, v) ̸∈ N
if u and v are contained in different dipaths.

Assume that two dipaths Pi and Pj have a common node v for some distinct
i, j. Then there exist arcs a1 and a2 of D such that both a1 and a2 are incident
to v, ψ(a1) ∈ {gi, g−1

i }, and ψ(a2) ∈ {gj , g−1
j }. Let π be the dipath in D∗ whose

first and last arcs are a∗1 and a∗2, respectively, along the boundary of the face of
D∗ corresponding to v. We may assume that we have chosen a1 and a2 such that
π is as short as possible. Then g±1

i and g±1
j are segments of ψ+(aF,F ′) for an arc

aF,F ′ ∈ A1, where π is the dipath from F to F ′, which contradicts the assumption
that ψ+ is a solution of the CFP. Hence, no pair of Π have common nodes.

Assume that Pi has a node u, Pj has a node v, and (u, v) ∈ N for some distinct
i, j. Let u0, u1, . . . , ul be the sequence corresponding to (u, v). By choosing (u, v) so
that the length of this sequence is minimum, we may assume that u1, . . . , ul−1 are
not contained in P1, . . . , Pk.

We now take two arcs a1 and a2 of D such that a1 is incident to u, a2 is incident
to v, ψ(a1) ∈ {gi, g−1

i }, and ψ(a2) ∈ {gj , g−1
j }. Let π be the dipath in D∗ whose first

and last arcs are a∗1 and a∗2, respectively, along the boundary of the face of D∗
(s,t).

We may assume that we have chosen a1 and a2 such that π is as short as possible.
Then g±1

i and g±1
j are segments of ψ+(aF,F ′) for an arc aF,F ′ ∈ A2, where π is the

dipath from F to F ′, which contradicts the assumption that ψ+ is a solution of the
CFP.

By the above arguments and Theorem 8, we can find a solution Π of the GNPP
such that ψΠ is R-homologous to ϕ in polynomial time by solving the CFP.
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