
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Max-Flow Min-Cut Theorem
and Faster Algorithms

in a Circular Disk Failure Model

Yusuke KOBAYASHI and Kensuke OTSUKI

METR 2013-15 August 2013

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Max-Flow Min-Cut Theorem and Faster Algorithms

in a Circular Disk Failure Model∗

Yusuke KOBAYASHI†　　　　 kensuke OTSUKI

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
kobayashi@mist.i.u-tokyo.ac.jp

kensuke otsuki@mist.i.u-tokyo.ac.jp

August 2013

Abstract

Fault-tolerance is one of the most important facors in designing networks. Failures in networks
are sometimes caused by an event occuring in specific geographical regions such as hurricanes, earth-
quakes, bomb attacks, and Electromagnetic Pulse (EMP) attacks. In INFOCOM 2012, Neumayer
et al. introduced geographical variants of max-flow min-cut problems in a circular disk failure model,
in which each failure is represented by a disk with a predetermined size. In this paper, we solve two
open problems in this model: we give a first polynomial-time algorithm for the geographic max-
flow problem, and prove a conjecture of Neumayer et al. on a relationship between the geographic
max-flow and the geographic min-cut.

1 Introduction

Fault-tolerance is one of the most important facors in designing networks. In most studies on fault-
tolerance in networks, “connectivity” of the network is regarded as the measure of robustness (e.g. [1, 3,
4]). However, failures in networks are sometimes caused by an event occuring in specific geographical
regions such as hurricanes, earthquakes, bomb attacks, and Electromagnetic Pulse (EMP) attacks.
Recently, some models in which such localized failures are taken into consideration are proposed
in [7, 8, 9, 11, 10].

In particular, Neumayer et al. [7] considered the model in which each failure is represented by
a hole (disk) with a predetermined size (see Section 2 for details), and they gave a polynomial-time
algorithm for computing the minimum number of failures that disconnect two specified nodes s and t,
which they call the “geographic min-cut”. They also formulated the problem of finding the maximum
number of s-t paths such that no two paths can be disconnected by the same hole, which they call the
“geographic max-flow”. Similar problems are also considered in [2].

In this paper, we further develop theory and algorithms for geographic min-cut and geographic
max-flow in this model. Our contributions are described as follows.

∗This work was partially supported by JST, ERATO, Kawarabayashi Large Graph Project, Japan.
†Supported by Grant-in-Aid for Scientific Research, MEXT, Japan.

1

• We give a min-max theorem that characterizes a geographic max-flow (Theorem 1).

• We show that the geographic min-cut is at most the geographic max-flow plus one (Theorem 3),
which was conjectured by Neumayer et al.

• We give a first polynomial-time algorithm for the geographic max-flow (Theorem 4).

• We give a polynomial-time algorithm for the geographic min-cut which is simpler (and probably
faster) than known algorithms (Theorem 5).

• We implement our algorithms and confirm that they can solve large problems efficiently.

We emphasize here that the second and the third results solve two open problems raised by Neumayer
et al. [7] in INFOCOM 2012.

We also note that we can extend our results to the case when each hole is of different shapes. See
Section 6 for details.

This paper is organized as follows. First, we describe fromal problem settings in Section 2. Next,
in Section 3, we discuss min-max relations between the geographic min-cut and the geographic max-
flow, and prove the conjecture of Neumayer et al. In Section 4, we give algorithms for the geographic
max-flow and the geographic min-cut based on the min-max relation. Then, experimental results are
shown in Section 5. Finally, we give concluding remarks in Section 6.

2 Problem Settings

Let G = (V,E) be a graph drawn in the plane with a node set V , a link set E, and two distinct nodes
s, t ∈ V , where each link is drawn as a line segment. In what follows, a link is sometimes called an
edge. Let rb be a hole radius and rp(> rb) be a protection radius. A disk of radius rp whose center is
s or t is called a protective disk. Define H(rb, rp) as the set of all disks of radius rb whose centers are
not contained in protective disks of radius rp. Each element of H(rb, rp) is called a hole in this paper.

We consider a geographic variant of the min-cut problem, which is defined as follows.

Geographical Min-Cut by Circular Disasters (GMCCD)

Input: a graph G = (V,E) drawn in the plane, two distinct nodes s and t, a hole radius rb, and a
protection radius rp(> rb).

Find: a minimum cardinality set of holes in H(rb, rp) that disconnect s from t.

Let MIN-CUT denote the optimal value of this problem. A set of holes in H(rb, rp) that disconnect
s from t is called a hole cut in this paper. We can also consider a geographic variant of the max-flow
problem,

Geographical Max-Flow by Circular Disasters (GMFCD)

Input: a graph G = (V,E) drawn in the plane, two distinct nodes s and t, a hole radius rb, and a
protection radius rp(> rb).

Find: a maximum cardinality set of s-t paths such that no hole in H(rb, rp) intersects a pair of these
paths.

2

s t

Figure 1: Example of the problems

Let MAX-FLOW denote the optimal value of this problem. So far, no polynomial-time algorithm
for GMFCD was known, whereas a polynomial-time algorithm for GMCCD was given in [7].

Example 1. Consider the graph as in Fig. 1 (which is an example given in [7]). Small circles represent
holes of radius rb and two large shaded (or yellow in the color version) circles are protective disks. In
the graph, we can easily see that MAX-FLOW = 1 and MIN-CUT = 2.

3 Geographic Max-Flow Min-Cut Theorem

In this section, we investigate relations between MAX-FLOW and MIN-CUT. First we give a char-
acterization of maximum flows in Sections 3.1 and 3.2. Then, in Section 3.3, we prove MIN-CUT ≤
MAX-FLOW + 1, which is the conjecture of Neumayer et al. Note that this bound is tight by Exam-
ple 1, and it significantly improves previously known bound: MIN-CUT ≤ 2 · MAX-FLOW + 2 given
in [2].

3.1 Statement of the theorem

Let C be a closed curve in the plane that does not go through s or t. We define the winding number
w(C) of C as the number of times that C separates s and t. More precisely, let L be the line segment
connecting s and t, and fix orientations of L and C. Let w1(C) be the number of times that C crosses
L from left to right and w2(C) be the number of times that C crosses L from right to left. Then,
define w(C) := |w1(C) − w2(C)|.

We say that a closed curve C can be represented as an alternating curve of length l if it is a
concatenation of J1, L1, J2, L2, . . . , Jl, Ll in this order such that

• J1, J2, . . . , Jl are curves each contained in a face of G, and

• For each i = 1, 2, . . . , l, Li is a line segment that can be covered by a hole in H(rb, rp).

Note that Ji and Li might be a single point. For a closed curve C, let l(C) be the minimum number
l such that C can be represented as an alternating curve of length l.

By using these notations, we can give an exact min-max theorem for MAX-FLOW, whose proof is
given in the next subsection.

3

J1

J2

J3

L1

L2

L3

s t

Figure 2: Example of a closed curve C

Theorem 1. Suppose we are given a graph G = (V,E) drawn in the plane, two distinct nodes s and
t, a hole radius rb, and a protection radius rp(> rb). Then,

MAX-FLOW = min
{⌊

l(C)
w(C)

⌋
| C is a closed curve

}
.

Example 2. Consider again the graph as in Fig. 1. As shown in Fig. 2, there exists a closed curve C

such that l(C) = 3, w(C) = 2, and hence
⌊

l(C)
w(C)

⌋
= 1. This value is equal to MAX-FLOW.

3.2 Proof of Theorem 1

In this subsection, we give a proof of Theorem 1. Our proof is based on ideas in [6] (see also [5]),
which shows a min-max theorem for maximum induced disjoint s-t paths in plane graphs.

We say that two s-t paths are separated, if no hole in H(rb, rp) intersects both of these paths. For
a pair of edges e, e′ ∈ E, if there exists a hole in H(rb, rp) that intersects both edges, then we take two
points we,e′ on e and we′,e on e′ that are contained in the common hole. Define

W := {we,e′ , we′,e | e, e′ ∈ E contained in a common hole}.

Let L be the set of all line segments with both endpoints in W such that each line segment is contained
in a hole in H(rb, rp). Note that a line segment might be a single point, that is, (w,w) ∈ L for w ∈ W .
Then, two s-t paths P and P ′ are not separated if and only if there exists a line segment (w,w′) ∈ L
such that w is on P and w′ is on P ′. Theoretically, |W | is bounded by |E|2 which is a polynomial size.
Practially, we can obtain W by adding a small number of points to V , because we have to add points
to V only in some exceptional cases (see e.g. Fig. 3).

First, we show

MAX-FLOW ≤ min
{⌊

l(C)
w(C)

⌋
| C is a closed curve

}
.

Suppose we have s-t paths P1, . . . , Pk that are pairwise separated and let C be a closed curve that
is a concatenation of J1, L1, J2, L2, . . . , Jl(C), Ll(C) in this order. Since C intersects each Pi at least
w(C) times, each Pi intersects at least w(C) line segments of L1, L2, . . . , Ll(C). This means that

l(C) ≥ k · w(C). By the integrality of k, we have k ≤
⌊

l(C)
w(C)

⌋
.

4

added to W

added to W

protected

Figure 3: Construction of W

Next we show

MAX-FLOW ≥ min
{⌊

l(C)
w(C)

⌋
| C is a closed curve

}
by giving an algorithm for finding either k pairwise separated s-t paths or a closed curve C with
l(C)
w(C) < k for any k. For any s-t path P , we suppose that it is oriented from s to t. For two s-t paths
P ′ and P ′′ without crossings, let R(P ′, P ′′) denote the closed region encircled by the closed curve
P ′ · (P ′′)−1 in clockwise orientation. For two s-t paths P ′ and P ′′ without crossings, a pair (P ′, P ′′)
is clockwise separated if for any hole H in H(rb, rp), R(P ′, P ′′) − H is connected. Obviously, a pair
(P ′, P ′′) is clockwise separated if P ′ and P ′′ are separated. In what follows, we show the inequality by
the induction on k.

3.2.1 Induction step

First, we consider the case k ≥ 3 under the assumption that we have k − 1 pairwise separated s-t
paths P1, . . . , Pk−1. We may assume that these paths do not cross each other, and the first edges
of P1, . . . , Pk−1 occur in this order clockwise at s. Let Pk be an s-t path in R(Pk−1, P1) such that
(Pk−1, Pk) is clockwise separated1. In our algorithm, we start with the k paths P1, . . . , Pk−1, Pk, and
we replace one path with a new path, repeatedly. Our algorithm is described in Algorithm 1 (see
Fig. 4 for an example).

Algorithm 1 Induction step
Input: pairwise separated k − 1 s-t paths P1, . . . , Pk−1 and a path Pk defined as above
Output: pairwise separated k s-t paths or a closed curve C with l(C)

w(C) < k

1: for l = k, k + 1, . . . , k + |W | + 1 do
2: if (Pl, Pl−k+1) is clockwise separated1 then
3: return Pl−k+1, . . . , Pl−1, Pl that are separated paths
4: else
5: let Pl+1 be the s-t path in R(Pl−k+1, Pl−k+2) such that (Pl, Pl+1) is clockwise separated and

R(Pl+1, Pl−k+2) is maximized under this condition
6: end if
7: end for
8: return a closed curve C with l(C)

w(C) < k

1This condition is eqivalent to “separated” when k ≥ 3. Since we will use the same argument for the case of k = 2
later, we use the condition “clockwise separated” here.

5

s t

P4

P5

P6

s tP1

P2

P3

: hole

s tP4

P2

P3

s t

P7

P8

P6

Figure 4: Iterations in Algorithm 1 (k = 3)

6

s t

vN

vN-1

PN

PN-1

PN-2

wN-1

Figure 5: Definition of wN−1 and vN−1

If we find pairwise separeted paths Pl−k+1, . . . , Pl−1, Pl in line 3 of Algorithm 1, then we are done.
In what follows, we give a procedure for finding a closed curve C with l(C)

w(C) < k (line 8) when such
paths do not appear while l = k, k + 1, . . . , k + |W | + 1.

Let N := k + |W | + 1. By the assumption, (PN , PN−k+1) is not clockwise separated, and hence
there exists a node vN ∈ PN \ PN−k. Note that a path is regarded as a subset of the plane. Since
PN maximizes R(PN , PN−k+1), if we reroute PN so that the obtained path does not go through vN ,
then the path contains a node close to PN−1. More precisely, as in Fig. 5, we can find a pair of nodes
wN−1 ∈ W and vN−1 ∈ PN−1 ∩ W such that (wN−1, vN−1) ∈ L (i.e., wN−1 and vN−1 are covered by
a common hole in H(rb, rp)) and vN and wN−1 can be connected by a curve JN contained in a face
of G. Furthermore, we can see that vN−1 6∈ PN−k−1, because wN−1 is strictly to the right of PN−k

(when we walk from s to t along PN−k). By repeating the same argument, we can find vi, wi, and Ji

for i = N − 1, N − 2, . . . , k + 1 such that

• wi ∈ W and vi ∈ (Pi \ Pi−k) ∩ W with (wi, vi) ∈ L, and

• Ji is a curve from vi to wi−1 contained in a face of G.

By pigeonhole principle, vi = vj for some k + 1 ≤ i < j ≤ N . Let C be a closed curve obtained by
concatenating

(vi, wi), Ji+1, (vi+1, wi+1), Ji+2, . . . , (vj−1, wj−1), Jj

in this order, where (x, y) is the line segment connecting x and y. We will show that this curve C

satisfies l(C)
w(C) < k, which is equivalent to u :=

⌊
j−i
k

⌋
< w(C), because l(C) = j − i. If u = 0, then the

inequality is trivial. Otherwise, vj is strictly to the right of Pj−k. When we consider a curve from vi

on Pi to vj−k on Pj−k along C, it separates s and t at least u− 1 times, because j − k ≥ i + (u− 1)k.
Therefore, C separates s and t more than u times, that is, w(C) > u.

By the above procedure, we can find a closed curve C with l(C)
w(C) < k in line 8 of Algorithm 1.

3.2.2 Base cases

Next we deal with the base cases (k = 1, 2) of the induction. Since the case of k = 1 is trivial, we
consider the case when k = 2. We show the following claim.

Claim 2. Suppose that s and t are connected in G. We can find in polynomial time either

• a hole in H(rb, rp) that disconnects s and t, or

7

s t

P

CP

LP

Figure 6: Definition of LQ and CQ

• an s-t path P in G such that for any line segment L ∈ L, the union of P and L (which is regarded
as a subset of the plane) contains no closed curve separating s and t.

Proof. Assume that G contains no s-t path satisfying the condition in the second case. That is, for
any s-t path P , there exists a line segment L ∈ L such that P ∪ L contains a closed curve separating
s and t.

For each s-t path P , we take a line segment LP ∈ L and a closed curve CP in P ∪ LP such that
the enclosed region containing s, which we denote ins(CP), is as large as possible (see Fig. 6). Among
all s-t paths, we choose an s-t path P ∗ such that ins(CP ∗) is minimal.

Now we find a path from s to P ∗ ∩ CP ∗ . If such a path Q exists, then by concatenating Q and a
subpath of P ∗, we obtain an s-t path P ′ such that ins(CP ′) is strictly contained in ins(CP ∗), which
contradicts the minimality of ins(CP ∗). Therefore, there exists no path from s to P ∗ ∩ CP ∗ , which
means that the hole containing LP ∗ satisfies the condition in the first case.

Note that this argument also gives an algorithm. We begin with an arbitrarily s-t path P0, and
find an s-t path P ′ with smaller ins(CP ′). By repeating this procedure, we can find a hole or an s-t
path P satisfying the condition.

If we have a hole in H(rb, rp) that disconnects s and t, then we have a closed curve C with
l(C) = w(C) = 1. Otherwise, we have an s-t path P in G as in the second case of Claim 2. In this
case, define P1 = P2 = P and assume that P2 is to the left of P1. Then, since (P1, P2) is clockwise-
separated, we can apply Algorithm 1 to obtain pairwise separated two s-t paths or a closed curve C
with l(C)

w(C) < 2, which completes the proof for the case of k = 2.

3.3 Proof of the conjecture

By using Theorem 1, in this subsection we give a proof of the conjecture of Neumayer et al.

Theorem 3. Suppose we are given a graph G = (V,E) drawn in the plane, two distinct nodes s and
t, a hole radius rb, and a protection radius rp(> rb). Then,

MAX-FLOW ≤ MIN-CUT ≤ MAX-FLOW + 1.

Proof. Since MAX-FLOW ≤ MIN-CUT is obvious, we prove MIN-CUT ≤ MAX-FLOW + 1. By
Theorem 1, we can take a closed curve C such that

⌊
l(C)
w(C)

⌋
= MAX-FLOW. Hence, it suffices to find

a hole cut of size
⌊

l(C)
w(C)

⌋
+ 1 (i.e., a set of

⌊
l(C)
w(C)

⌋
+ 1 holes in H(rb, rp) that disconnect s from t).

8

Figure 7: Uncrossing procedure 1

Figure 8: Uncrossing procedure 2

If w(C) ≥ 2, then C must contain a self-crossing and we can decompose C into two closed curves
C1 and C2 by uncrossing procedures (see Figures 7 and 8). Obviously, w(C1) + w(C2) = w(C). To
evaluate the total length l(C1) + l(C2), we consider the following three cases.

1. If two curves Ji and Jj are corssing, then we can easily uncross C without increasing the length,
that is, l(C1) + l(C2) = l(C).

2. If a curve Ji and a line segment Lj are corssing, then we can uncross C by using two line segments
instead of Lj , that is, l(C1) + l(C2) ≤ l(C) + 1 (see Fig. 7).

3. Suppose that two line segments Li and Lj are corssing. Then, the hole containing Li also conatins
an endnode of Lj or the hole containing Lj also conatins an endnode of Li. Therefore, we can
uncross C by using at most three line segments instead of Li and Lj , that is, l(C1) + l(C2) ≤
l(C) + 1 (see Fig. 8).

In each case, we have l(C1) + l(C2) ≤ l(C) + 1. By repeating uncrossing procedures, we have closed
curves C1, C2, . . . , Cw(C) such that w(Ci) = 1 for each i and

∑
i l(Ci) ≤ l(C) + w(C). Since we have

min
i
{l(Ci)} ≤

⌊
1

w(C)

∑
i

l(Ci)

⌋
≤

⌊
l(C)
w(C)

⌋
+ 1,

there exists a closed curve Ci such that w(Ci) = 1 and l(Ci) ≤
⌊

l(C)
w(C)

⌋
+ 1. This shows the existence

of a hole cut of size
⌊

l(C)
w(C)

⌋
+ 1.

9

4 Algorithms

In this section, we discuss algorithmic results on the GMFCD and the GMCCD. First, by the con-
structive proof of Theorem 1 in Section 3.2, we obtain a polynomial-time algorithm for computing
MAX-FLOW.

Theorem 4. An optimal solution of the GMFCD and a closed curve C minimizing b l(C)
w(C)c can be

computed in polynomial time.

Note that this is the first polynomial-time algorithm for the GMFCD. The most time consum-
ing part is Algorithm 1 that runs in O(|W |2) time. Since we execute Algorithm 1 at most k :=
MAX-FLOW times, the total running time is O(k|W |2). In most practical cases, since k is small and
|W | = O(|V |), the running time is O(|V |2).

Next, we propose a new algorithm for the GMCCD, which is simpler (and probably faster) than
known algorithms.

Theorem 5. An optimal solution of the GMCCD can be computed in polynomial time.

Proof. By Theorem 4, we can compute s-t paths P1, . . . , Pk that are mutually separated, where k :=
MAX-FLOW. Furthermore, by Theorem 3, we can also obtain a hole cut of size k + 1 (i.e., a set of
k + 1 holes in H(rb, rp) that disconnect s from t). Since MAX-FLOW ≤ MIN-CUT, our remaining
task is to find a hole cut of size k if one exists.

Since the case of k = 1 is easy, in what follows we suppose k ≥ 2. We may assume that P1, . . . , Pk

do not cross each other, and the first edges of P1, . . . , Pk occur in this order clockwise at s. Recall that
R(Pi−1, Pi) is the closed region encircled by the closed curve Pi−1 · (Pi)−1 in clockwise orientation. For
i = 1, . . . , k, let Fi be the set of all faces of G contained in R(Pi−1, Pi), where P0 := Pk.

We observe that a hole cut of size k exists if and only if there exists a closed curve C with w(C) = 1
and l(C) = k that is represented as a concatenation of J1, L1, J2, L2, . . . , Jk, Lk in this order, where
Ji is a curve contained in a face of Fi, and Li ∈ L is a line segment connecting R(Pi−1, Pi) and
R(Pi, Pi+1). Note that Pk+1 := P1 and Fk+1 := F1. To check the existence of such a curve, we
construct a digraph D = (F , A), where

F :=
⋃
i

Fi

A := {(Fi, Fi+1) | i ∈ {1, . . . , k}, Fi ∈ Fi, Fi+1 ∈ Fi+1,

∃H ∈ H(rb, rp) inersecting Fi, Pi, and Fi+1}.

Then, finding a hole cut of size k is equivalent to finding a dicycle of length k in D.
With this observation, we can compute MIN-CUT by Algorithm 2, and it is obvious that it runs

in polynomial time.

5 Experimental Results

In this section, we describe experimental results. We implemented our algorithms for the GMFCD
and the GMCCD, and evaluated their performance by computational experiments. Our experiments
were conducted on the computer with Intel Core i7, 2.8 GHz and 8 GB of memory. All programs are
written in Java.

10

Algorithm 2 Find-MIN-CUT
Input: pairwise separated k s-t paths P1, . . . , Pk and a hole cut of size k + 1
Output: a hole cut of minimum size
1: construct the digraph D = (F , A) defined as above
2: for all F ∈ F1 do
3: by a breadth-first-search from F , try to find a dicycle of length k in D containing F
4: if such a dicycle exists then
5: return a hole cut of size k corresponding to the dicycle
6: end if
7: end for
8: return a hole cut of size k + 1

As we have seen before, our algorithm for computing MAX-FLOW consists of the induction step
(Algorithm 1) and the base cases (Claim 2). Practically, since most short s-t paths satisfy the second
condition of Claim 2, we do not need an implementation of the algorithm in Claim 2. Therefore, we
can compute MAX-FLOW by just applying Algorithm 1, repeatedly. We generated input plane graphs
with 1000 nodes randomly in a 300 × 400 rectangular and applied our algortihm to them. Then we
can solve the GMFCD in a few seconds. As an example, a computational result with 1000 nodes and
7 paths is shown in Fig. 9, where we set rb = 10 and rp = 30. Note that we regarded the nodes on the
boundary of the protective disks as the terminals to make the figure easier to see.

We also implemented Algorithm 2, and applied it to randomly generated graphs. For graphs with
1000 nodes, Algorithm 2 computes MIN-CUT in a few seconds. Fig. 10 is a computational result with
1000 nodes, where we set rb = 7 and rp = 30. In this case, we can see MIN-CUT = MAX-FLOW = 8.

: hole

s

t

Figure 9: Experimental result (MAX-FLOW)

11

: hole

t

s

Figure 10: Experimental result (MIN-CUT)

6 Concluding Remarks

In this paper, we discussed the geographical min-cut and the geographical max-flow in the model, in
which every hole is a disk of the same radius rb. We proved a min-max theorem and gave polynomial-
time algorithms for the GMFCD and the GMCCD that can be applied to large graphs.

Our results can be extended to the case with holes of different shapes. Suppose that H is a set of
convex shapes (holes) satisfying the following property.

Property: Suppose that two line segments L1 in H1 ∈ H and L2 in H2 ∈ H are corssing.
Then, H1 also conatins an endpoint of L2 or H2 also conatins an endpoint of L1. (See the
case analysis of the proof of Theorem 3.)

In Theorems 1 and 3, we can replace H(rb, rp) with any set H satisfying the above property. For
example, H can be a set of disks of different sizes or a set of axis parallel squares. In particular,
by setting H as the set of all edges (not incident to s and t), we obtain a min-max theorem for the
maximum induced disjoint s-t paths [6] as a special case of Theorem 1.

Note that we cannot extend our proofs to the case when H is a set of general connected shapes.
Actually, computing MAX-FLOW becomes NP-hard for the case with general H [2].

References

[1] C. Bettstetter and C. Hartmann: Connectivity of wireless multihop networks in a shadow fading
environment, Wireless Networks, 11 (2005), 571–579.

[2] D. Bienstock: Some generalized max-flow min-cut problems in the plane, Mathematics of Opera-
tions Research, 16 (1991), 310–333.

12

[3] Y.C. Cheng and T.G. Robertazzi: Critical connectivity phenomena in multihop radio models,
IEEE Transactions on Communications, 37 (1989), 770–777.

[4] P. Gupta and P. Kumar: Critical power for asymptotic connectivity in wireless networks, Stochas-
tic Analysis, Control, Optimization and Applications, (1998), 547–566.

[5] C. McDiarmid, B. Reed, A. Schrijver and B. Shepherd: Non-interfering network flows, in Proceed-
ings of the Third Scandinavian Workshop on Algorithm Theory (SWAT 1992), 1992, 245–257.

[6] C. McDiarmid, B. Reed, A. Schrijver and B. Shepherd: Induced circuits in planar graphs, Journal
of Combinatorial Theory, Series B, 60 (1994), 169–176.

[7] S. Neumayer, A. Efrat and E. Modiano: Geographic max-flow and min-cut under a circular disk
failure model, in Proceedings of the 31st IEEE International Conference on Computer Communi-
cations (IEEE INFOCOM 2012), 2012, 2736–2740.

[8] S. Neumayer and E. Modiano: Network reliability with geographically correlated failures, in
Proceedings of the 29th IEEE International Conference on Computer Communications (IEEE
INFOCOM 2010), 2010.

[9] S. Neumayer and E. Modiano: Network reliability under random circular cuts, in Proceedings of
the IEEE Global Telecommunications Conference (IEEE GLOBECOM 2011), 2011.

[10] A. Sen, S. Murthy and S. Banerjee: Region-based connectivity - a new paradigm for design of
fault-tolerant networks, in Proceedings of the 15th International Conference on High Performance
Switching and Routing (HPSR 2009), 2009, 94–100.

[11] A. Sen, B.H. Shen, L. Zhou and B. Hao: Fault-tolerance in sensor networks: A new evaluation
metric, in Proceedings of the 25th IEEE International Conference on Computer Communications
(IEEE INFOCOM 2006), 2006.

13

