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Abstract

This paper presents simple greedy approximation algorithms for maximizing bisubmodu-
lar functions, extending the double-greedy algorithms for submodular function maximization
due to Buchbinder, Feldman, Naor, and Schwartz (2012). Our deterministic algorithm pro-
vides an approximate solution that achieves at least one third of the optimal value, whereas
the output of our randomized algorithm achieves at least a half of the optimal value at
expectation.

We also extend the approach to provide constant factor approximation algorithms for
maximizing k-submodular functions and skew-bisubmodular functions, which are recently
introduced as generalizations of bisubmodular functions.

1 Introduction

Let V be a finite nonempty set of cardinality n and 3V denote the set of ordered pairs of disjoint
subsets of V . Two binary operations ⊔ and ⊓ on 3V are defined by

(X1, Y1) ⊔ (X2, Y2) = ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)),

(X1, Y1) ⊓ (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2).

A function f : 3V → R is called bisubmodular if it satisfies

f(X1, Y1) + f(X2, Y2) ≥ f((X1, Y1) ⊔ (X2, Y2)) + f((X1, Y1) ⊓ (X2, Y2))

for every pair of (X1, Y1) and (X2, Y2) in 3V . Examples of bisubmodular functions include
the rank functions of delta-matroids and the cut capacity functions of bidirected networks.
Combinatorial algorithms for minimizing bisubmodular functions have been developed in [4, 9].

A recent paper of Singh, Guillory, and Bilme [10] addressed the problem of maximizing
general bisubmodular functions in the contexts of sensor placement and feature selection. They
showed that a certain class of bisubmodular functions admit a constant-factor approximation
algorithm for maximization. In the present paper, we provide simple greedy approximation
algorithms for bisubmodular function maximization, extending the double-greedy algorithm for
submodular function maximization due to Buchbinder, Feldman, Naor, and Schwartz [1].
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A bisubmodular function generalizes a submodular function as follows. Let 2V denote the
family of all the subsets of V . A function g : 2V → R is called submodular if it satisfies

g(Z1) + g(Z2) ≥ g(Z1 ∪ Z2) + g(Z1 ∩ Z2)

for every pair of Z1 and Z2 in 2V . For a submodular function g, a function f : 3V → R defined
by

f(X,Y ) = g(X) + g(V \ Y )− g(V ),

is bisubmodular.
Submodular function maximization contains NP-hard optimization problems such as max

cut and set cover. It is known to be intractable in the standard oracle model. However, approxi-
mation algorithms have been studied extensively. In particular, Feige, Mirrokni, and Vondrák [3]
have developed constant factor approximation algorithms for the unconstrained maximization
of nonnegative submodular functions and shown that no approximation algorithm can achieve
the ratio better than 1/2. Buchbinder, Feldman, Naor, and Schwartz [1] provide much sim-
pler algorithms that substantially improve the approximation factor. Their deterministic and
randomized versions achieve the factors of 1/3 and 1/2, respectively.

One particularly novel idea in the algorithms of Buchbinder, Feldman, Naor, and Schwartz
[1] is to keep a pair of nested subsets instead of a single subset. In view of bisubmodular function
maximization, however, one can claim that their algorithm simply keeps a single member of 3V .
Extending their algorithm to the framework of bisubmodular functions clarifies the background
for their algorithm to work so effectively.

As the pair of nested subsets coincide at the termination of the double-greedy algorithms,
our algorithms always return a partition, i.e., a pair of disjoint subsets whose union is V . The
following lemma justifies this restriction by showing that a bisubmodular function is maximized
by a partition.

Lemma 1.1. For any bisubmodular function f : 3V → R+, there exists a partition that attains
the maximum value of f .

Proof. Suppose that a disjoint pair (S, T ) ∈ 3V attains the maximum value of f . Then it follows
from the bisubmodularity of f that

f(S, V \ S) + f(V \ T, T ) ≥ 2f(S, T ), (1)

which implies that f(S, V \ S) = f(V \ T, T ) = f(S, T ). Thus the maximum value of f is
attained by a partition of V .

Maximizing submodular functions is extensively investigated for its application to machine
learning such as viral marketing, information cascading, and sensor placement. For example,
given a set V of candidate positions, we define a function f : 2V → R so that f(X) for X ⊆ V
represents the utility obtained by placing information sources or sensors at the positions in X.
Then, f(X) often becomes a submodular function. When we have two kinds of resources in
these problems, by defining f : 3V → R so that f(X,Y ) for (X,Y ) ∈ 3V represents the utility
obtained by placing the first kind of resources at X and the second kind of resources at Y , we
often obtain a bisubmodular function [10]. By extending this idea to the setting with k types of
sensors, it is natural to think of a generalized submodular functions with k arguments. In fact,
Huber and Kolmogorov [6] discussed k-submodularity as a generalization of bisubmodularity.

Let (k + 1)V := {(X1, . . . , Xk) | Xi ⊆ V (i = 1, . . . , k), Xi ∩ Xj = ∅ (i ̸= j)}. A function
f : (k + 1)V → R is called k-submodular if

f(X1, . . . , Xk) + f(Y1, . . . , Yk) ≥ f(X1 ∩ Y1, . . . , Xk ∩ Yk)

+f(X1 ∪ Y1 \ (
∪
i̸=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
∪
i̸=k

Xi ∪ Yi)).
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For the k-submodular function maximization problem with k ≥ 2, we show that the randomized
greedy algorithm finds a solution whose value is at least 1

k of the optimal value.
As another extension of the bisubmodularity, Huber, Krokhin, and Powell [7] have intro-

duced the concept of skew-bisubmodularity. For α ∈ [0, 1], a function f : 3V → R is called
α-bisubmodular if, for any (X1, Y1) and (X2, Y2) in 3V ,

f(X1, Y2) + f(X2, Y2) ≥f((X1, Y1) ⊓ (X2, Y2))

+ αf((X1, Y1) ⊔ (X2, Y2)) + (1− α)f((X1, Y1)⊔̇(X2, Y2)),
(2)

where (X1, Y1)⊔̇(X2, Y2) = (X1 ∪X2, (Y1 ∪ Y2) \ (X1 ∪X2)). A function f : 3V → R is called
skew-bisubmodular if it is α-bisubmodular for some α ∈ [0, 1].

While it was left open in [7] to decide whether α-bisubmodular functions can be minimized
in polynomial time in the value oracle model, Huber and Krokhin [8] have announced that
the minimization problem is indeed tractable by means of the ellipsoid method (see also [5]).
Fujishige, Tanigawa, and Yoshida [5] have also provided a natural interpretation of the skew-
bisubmodularity in the context of discrete convex analysis.

We show that a randomized greedy algorithm provides an approximate solution within the

factor of 2
√
α

(1+
√
α)2

for maximizing an α-bisubmodular function. Combining this with another

simple algorithm, we obtain an approximate algorithm whose approximate ratio is at least 8
25

for any α ∈ [0, 1].
The rest of this paper is organized as follows. In Section 2, we present a greedy algorithm

for bisubmodular function maximization and show that it is a 1/3-approximation algorithm. In
Section 3, we show that a randomized version of this greedy algorithm achieves a performance
guarantee within a factor of 1/2, which is optimal. Section 4 is then devoted to k-submodular
function maximization. In Section 5, we analyze a randomized greedy algorithm for maximizing
α-bisubmodular functions, and then we present an improvement that leads to a constant-factor
approximation algorithm. The inapproximability of this problem is discussed in Section 6.

2 A greedy algorithm

In this section, we present a simple greedy algorithm for finding a partition that maximizes a
nonnegative bisubmodular function approximately and show that the output achieves at least
one third of the optimal value.

The algorithm is described in Algorithm 1. The algorithm keeps (A,B) ∈ 3V . Initially, we
set A := ∅ and B := ∅. The algorithm repeats the following iteration until A ∪ B = V . Each
iteration starts with selecting an element u ∈ V \ (A ∪ B). If f(A ∪ {u}, B) ≥ f(A,B ∪ {u}),
then add u to A. Otherwise, add u to B. Since the bisubmodularity of f implies

f(A ∪ {u}, B) + f(A,B ∪ {u}) ≥ 2f(A,B), (3)

this iteration never reduces the value of f(A,B).
We now analyze this greedy algorithm to show that its output achieves at least one third

of the maximum value of f . Let (S, T ) be an optimal solution. By Lemma 1.1 we may assume
S ∪ T = V . We put X := A ∪ S \ B and Y := B ∪ T \ A. As the algorithm updates (A,B),
we suppose (X,Y ) changes accordingly. At the termination of the algorithm, it follows from
A ∪B = V that (X,Y ) = (A,B).

We analyze how a potential Ψ, defined by Ψ := f(X,Y ) + 2f(A,B), changes in the process
of the algorithm.

Lemma 2.1. The value of Ψ never decreases in the process of the algorithm.
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Algorithm 1

Input: A non-negative bisubmodular function f : 3V → R+ on a finite set V .
1: Initialize (A,B) = (∅, ∅).
2: while ∃u ∈ V \ (A ∪B) do
3: if f(A ∪ {u}, B) ≥ f(A,B ∪ {u}) then
4: A := A ∪ {u};
5: else
6: B := B ∪ {u};
7: return (A,B).

Proof. We first suppose that u ∈ S. If f(A∪{u}, B) ≥ f(A,B∪{u}), then (A,B) will be replaced
by (A ∪ {u}, B) and (X,Y ) does not change, which imply that Ψ does not decrease in this
iteration. Otherwise, (A,B) and (X,Y ) will be replaced by (A,B∪{u}) and (X \{u}, Y ∪{u}),
respectively. By the bisubmodularity of f , we have

f(X \ {u}, Y ∪ {u}) + f(A ∪ {u}, B) ≥ f(A,B) + f(X \ {u}, Y ),

f(X \ {u}, Y ) + f(A ∪ {u}, B) ≥ f(A,B) + f(X,Y ).

Since f(A,B ∪ {u}) > f(A ∪ {u}, B), these inequalities imply

f(X \ {u}, Y ∪ {u}) + 2f(A,B ∪ {u}) > f(X,Y ) + 2f(A,B),

which means that Ψ does not decrease in this iteration.
Since S ∪ T = V , the remaining case is when u ∈ T . Notice however that the roles of S

and T , A and B, and X and Y are symmetric in the algorithm. Therefore, the same argument
implies that Ψ does not decrease in this case as well.

Theorem 2.2. The value of f(A,B) at the termination is at least 1
3f(S, T ).

Proof. We track the value of Ψ. Initially, we have (A,B) = (∅, ∅) and (X,Y ) = (S, T ), which
imply Ψ ≥ f(S, T ). By Lemma 2.1, we have Ψ ≥ f(S, T ) throughout the algorithm. At the
termination, since A ∪ B = V , we have (X,Y ) = (A,B), and hence 3f(A,B) = Ψ. Thus we
obtain 3f(A,B) ≥ f(S, T ).

3 A randomized greedy algorithm

In this section, we present a randomized version of the greedy algorithm. The algorithm is
shown in Algorithm 2, where we start with (A,B) = (∅, ∅) and iteratively add a new element u
to A or B until we get a partition (A,B) of V .

We now analyze this randomized algorithm to show that its output achieves at least a half
of the maximum value of f at expectation. Let (S, T ) be an optimal solution. By Lemma 1.1,
we may assume S ∪ T = V . We put X := A ∪ S \ B and Y := B ∪ T \ A. As the algorithm
updates (A,B), we suppose (X,Y ) changes accordingly.

The following lemma is a crucial observation for the analysis, which evaluates the expected
change ∆Φ of a potential Φ, defined by Φ = f(A,B) + f(X,Y ). Note that Φ is a random
variable.

Lemma 3.1. The expectation E[Φ] never decreases in the process of the algorithm.
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Algorithm 2

Input: A non-negative bisubmodular function f : 3V → R+ on a finite set V .
1: Initialize (A,B) = (∅, ∅).
2: while ∃u ∈ V \ (A ∪B) do
3: Let a := f(A ∪ {u}, B)− f(A,B) and b := f(A,B ∪ {u})− f(A,B).
4: if a ≤ 0 then insert u to B.
5: else if b ≤ 0 then insert u to A.
6: else add u to A with probability a

a+b and to B with probability b
a+b .

7: return (A,B).

Proof. Let u ∈ V \ (A ∪B) be the element chosen in an iteration. We now analyze the change
∆Φ of Φ in this iteration.

We first suppose that u ∈ T . In this case, u ̸∈ X and u ∈ Y . By the bisubmodularity, we
have

f(X ∪ {u}, Y \ {u}) + f(A,B ∪ {u}) ≥ f(A,B) + f(X,Y \ {u}),
f(X,Y \ {u}) + f(A,B ∪ {u}) ≥ f(A,B) + f(X,Y ),

which imply

f(X ∪ {u}, Y \ {u})− f(X,Y ) ≥ 2(f(A,B)− f(A,B ∪ {u})) = −2b. (4)

Since a+ b ≥ 0 by (3), we have the following three cases.

• If a ≥ 0 and b < 0, the algorithm changes (A,B) to (A ∪ {u}, B). Hence, by (4),
E[∆Φ] = f(A ∪ {u}, B)− f(A,B) + f(X ∪ {u}, Y \ {u})− f(X,Y ) ≥ a− 2b ≥ 0.

• If a < 0 and b ≥ 0, then the algorithm changes (A,B) to (A,B ∪ {u}). Hence, E[∆Φ] =
f(A,B ∪ {u})− f(A,B) = b ≥ 0.

• If a > 0 and b > 0, the algorithm changes (A,B) to (A∪{u}, B) with probability a
a+b and

to (A,B ∪ {u}) with probability b
a+b . Therefore, by (4), E[∆Φ] = a

a+b(f(A ∪ {u}, B) −
f(A,B)+f(X∪{u}, Y \{u})−f(X,Y ))+ b

a+b(f(A,B∪{u})−f(A,B)) ≥ a
a+b(a−2b)+ b2

a+b =
(a−b)2

a+b ≥ 0.

Thus in each of these cases, E[Φ] does not decrease.
We next consider the case that u ∈ S. A symmetric argument, however, works to prove that

E[∆Φ] ≥ 0.

Using Lemma 2.1, we obtain the following theorem, which establishes that the greedy algo-
rithm has a guaranteed approximation ratio of 1/2.

Theorem 3.2. The expectation E[f(A,B)] at the termination is at least 1
2f(S, T ).

Proof. We track the value of Φ = f(A,B) + f(X,Y ). Initially, we have (A,B) = (∅, ∅) and
(X,Y ) = (S, T ), which imply Φ ≥ f(S, T ). By Lemma 2.1, we have E[Φ] ≥ f(S, T ) throughout
the execution of the algorithm. At the termination, since A∪B = V , we have (X,Y ) = (A,B),
and hence 2E[f(A,B)] = E[Φ] ≥ f(S, T ).
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Algorithm 3

Input: A non-negative k-submodular function f : (k + 1)V → R+ on a finite set V .
1: Initialize (A1, . . . , Ak) = (∅, . . . , ∅).
2: while ∃u ∈ V \

∪k
i=1Ai do

3: Let ai := f(A1, . . . , Ai ∪ {u}, . . . , Ak)− f(A1, . . . , Ai, . . . , Ak) for 1 ≤ i ≤ k.
4: Let I+ := {i ∈ [k] | ai ≥ 0}.
5: Let a :=

∑
i∈I+ ai.

6: if a = 0 then insert u to Ai with probability 1
k .

7: else add u to Ai with probability ai
a .

8: return (A1, . . . , Ak).

4 Maximizing k-submodular functions

The interpretation of the algorithm by Buchbinder et al. [1] as a greedy algorithm in the
framework of bisubmodular functions leads to further extensions of the technique. In this section
we show that the randomized greedy algorithm can be extended to k-submodular functions
without any difficulty.

The algorithm is given in Algorithm 3, which is a straightforward adaptation of the random-
ized greedy algorithm for bisubmodular maximization. Namely, instead of making a partition
into two subsets, the algorithm constructs a partition of V into k subsets. The following is the
counterpart of Lemma 1.1.

Lemma 4.1. For any k-submodular function f : (k + 1)V → R+, there exists a partition of V
into k subsets that attains the maximum value of f .

Proof. Suppose that (S1, . . . , Sk) ∈ (k + 1)V attains the maximum value of f . By the k-
submodularity of f , we have

f(V \
∪
i ̸=1

Si, S2, . . . , Sk) + f(S1, V \
∪
i̸=2

Si, S3, . . . , Sk) ≥ 2f(S1, S2, . . . , Sk).

Thus the maximum is attained by a partition of V .

We also note that, by the k-submodularity of f , we have

f(. . . , Ai ∪ {u}, . . . , Aj , . . . ) + f(. . . , Ai, . . . , Aj ∪ {u}, . . . ) ≥ f(. . . , Ai, . . . , Aj , . . . ),

and hence ai + aj ≥ 0 holds at line 3. Therefore, if a = 0 at line 6, we have ai = 0 for all i.
The following theorem provides a performance guarantee of this algorithm.

Theorem 4.2. The randomized greedy algorithm for maximizing k-submodular functions pro-
vides an approximate solution within a factor of 1

k .

For the proof, let (S1, . . . , Sk) be an optimal solution with V =
∪k

i=1 Si and put Xi =
(Ai∪Si)\

∪
j ̸=iAj for 1 ≤ i ≤ k. As the algorithm updates (A1, . . . , Ak), we suppose (X1, . . . , Xk)

changes accordingly. We now analyze a potential Φk, defined by Φk = f(A1, . . . , Ak)+
1

k−1f(X1, . . . , Xk).

At the beginning of the algorithm, Φk = f(∅, . . . , ∅)+ 1
k−1f(S1, . . . , Sk) ≥ 1

k−1f(S1, . . . , Sk).
At the end of the algorithm, since (A1, . . . , Ak) is a partition of V , we have (X1, . . . , Xk) =
(A1, . . . , Ak), which implies E[Φk] =

k
k−1E[f(A1, . . . , Ak)]. Therefore, if the expected amount of

change ∆Φk of Φk is non-negative at each iteration, we obtain E[f(A1, . . . , Ak)] ≥ 1
kf(S1, . . . , Sk)

at the end of the algorithm. We now show that this is the case.
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Lemma 4.3. The expectation E[Φk] never decreases in the process of the algorithm.

Proof. Let u ∈ V \
∪k

i=1Ai be the element chosen in an iteration. We now analyze the change
∆Φk of Φk in this iteration.

Since {S1, . . . , Sk} is a partition of V , without loss of generality we assume u ∈ S1. As in
the case of bisubmodular functions, it follows from the k-submodularity of f that

f(X1 \ {u}, X2, . . . , Xi−1, Xi ∪ {u}, Xi+1, . . . , Xk)− f(X1, . . . , Xk)

≥ 2(f(A1, . . . , Ak)− f(A1 ∪ {u}, A2, . . . , Ak)) (5)

= −2a1

for 2 ≤ i ≤ k.
If a > 0, then (A1, . . . , Ak) and (X1, . . . , Xk) are changed to (A1, . . . , Ai ∪ {u}, . . . , Ak) and

(X1\{u}, X2, . . . , Xi−1, Xi∪{u}, Xi+1, . . . , Xk), respectively, with probability ai
a for each i ∈ I+.

Therefore, we have

E[∆Φk] ≥
∑

i∈I+\{1}

ai
a

(
ai −

2

k − 1
a1

)
+

(max{a1, 0})2

a
.

=
1

a

∑
i∈I+

a2i −
2

k − 1

∑
i∈I+\{1}

aia1

 . (6)

If {1} /∈ I+, aia1 ≤ 0 for all i ∈ I+, and hence we have E[∆Φk] ≥ 0 from (6). Otherwise, we
have

E[∆Φk] ≥
1

a

k − 2

k − 1

∑
i∈I+\{1}

a2i +
1

k − 1

∑
i∈I++\{1}

(ai − a1)
2

 ≥ 0.

from (6).
If a = 0, then (A1, . . . , Ak) and (X1, . . . , Xk) are changed to (A1, . . . , Ai ∪ {u}, . . . , Ak) and

(X1 \ {u}, X2, . . . , Xi−1, Xi ∪ {u}, Xi+1, . . . , Xk), respectively, with probability 1
k for each 1 ≤

i ≤ k. As we mentioned in the remark after the algorithm, ai = 0 holds for all 1 ≤ i ≤ k when
a = 0. Therefore by (5), f(X1 \ {u}, X2, . . . , Xi−1, Xi ∪ {u}, Xi+1, . . . , Xk)− f(X1, . . . , Xk) ≥ 0
for each 2 ≤ i ≤ k. This in turn implies E[∆Φk] ≥ 0.

5 Approximability of maximizing α-bisubmodular functions

In this section, we discuss the problem of maximizing an α-bisubmodular function. An adapta-

tion of the greedy algorithm is shown to achieve the approximation ratio of 2
√
α

(1+
√
α)2

for α ∈ [0, 1].

This ratio converges to zero as α goes to zero. In order to improve the performance for small α,
we give another simple approximation algorithm that achieves the approximation ratio of 1

3+2α
in Section 5.2. By taking the maximum of the outputs of these two algorithms, we obtain the
approximation ratio of 8

25 for any α ∈ [0, 1] (the minimum of the two ratio is achieved when
α = 1

16).
Concerning the maximum of an α-bisubmodular function, we have the following counterpart

of Lemma 1.1.

Lemma 5.1. For any α-bisubmodular function f : 3V → R+ with α ∈ [0, 1], there exists a
partition of V that attains the maximum value of f .
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Proof. Suppose that (S, T ) ∈ 3V attains the maximum value of f . By the α-bisubmodularity
of f , we have

αf(S, V \ S) + f(V \ T, T ) ≥ (1 + α)f(S, T ),

which implies that f(S, V \ S) = f(V \ T, T ) = f(S, T ). Thus the maximum value of f is
attained by a partition of V .

5.1 A randomized greedy algorithm

We now extend the randomized greedy algorithm for the bisubmodular function. Intuitively, α-
bisubmodularity is a variant of bisubmodularity directed toward the first argument by parameter
α. Following this intuition, we shall adjust the choice probability. The algorithm we discuss
here is the same as Algorithm 2 except that it adds u to A with probability αa

αa+b and to B with

probability b
αa+b (where a and b are as defined in line 3). Note that, by the α-bisubmodularity

of f , we have
αf(A ∪ {u}, B) + f(A,B ∪ {u}) ≥ (1 + α)f(A,B) (7)

for any (A,B) ∈ 3V and u ∈ V \ (A ∪B), which implies αa+ b ≥ 0.
The following theorem provides a performance analysis of this algorithm.

Theorem 5.2. For any α ∈ [0, 1], the randomized greedy algorithm for maximizing α-bisubmodular

functions provides an approximate solution within a factor of 2
√
α

(1+
√
α)2

.

The proof is done in the same manner as before. Let (S, T ) be an optimal solution with
S ∪ T = V , put X := A ∪ S \ B and Y := B ∪ T \ A. As the algorithm updates (A,B), we
suppose (X,Y ) changes accordingly. To prove this theorem, we consider a deformed potential

Φα = f(A,B) + 2
√
α

1+αf(X,Y ). At the beginning, since (A,B) = (∅, ∅) and (X,Y ) = (S, T ), we

have Φα = f(∅, ∅) + 2
√
α

1+αf(S, T ) ≥ 2
√
α

1+αf(S, T ). At the end of the algorithm, since (A,B) =

(X,Y ), we have E[Φα] =
(1+

√
α)2

1+α E[f(A,B)]. If the expected amount of change ∆Φα of Φα

is non-negative at each iteration, we obtain E[f(A,B)] ≥ 2
√
α

(1+
√
α)2

f(S, T ) at the end of the

algorithm.

Lemma 5.3. The expectation E[Φα] never decreases in the process of the algorithm.

Proof. Let u ∈ V \ (A ∪B) be the element chosen in an iteration. We now analyze the change
∆Φα of Φα in this iteration.

Suppose that u ∈ T . In this case, u ̸∈ X and u ∈ Y . By α-bisubmodularity, we have

α(f(X ∪ {u}, Y \ {u})− f(X,Y )) ≥ (1 + α)(f(A,B)− f(A,B ∪ {u})) = −(1 + α)b (8)

by extending (4). We have the following three cases.

• If a ≥ 0 and b < 0, the algorithm changes (A,B) to (A∪ {u}, B). If α = 0, we have b ≥ 0

by αa + b ≥ 0. Thus, α > 0. Then E[∆Φα] = f(A ∪ {u}, B) − f(A,B) + 2
√
α

1+α (f(X ∪
{u}, Y \ {u})− f(X,Y )) ≥ a− 2

√
α

1+α
(1+α)b

α = a− 2b√
α
≥ 0.

• If a < 0 and b ≥ 0, then the algorithm changes (A,B) to (A,B ∪ {u}). Hence, E[∆Φα] =
f(A,B ∪ {u})− f(A,B) = b ≥ 0.

• If a > 0 and b > 0, the algorithm changes (A,B) to (A ∪ {u}, B) with probability αa
αa+b

and to (A,B ∪ {u}) with probability b
αa+b . Therefore E[∆Φα] =

αa
αa+b(f(A ∪ {u}, B) −

f(A,B)+ 2
√
α

1+α (f(X∪{u}, Y \{u})−f(X,Y )))+ b
αa+b(f(A,B∪{u})−f(A,B)) ≥ αa

αa+b(a−
2
√
α

1+α · 1+α
α b) + b2

αa+b = αa2−2
√
αab+b2

αa+b = (
√
αa−b)2

αa+b ≥ 0.
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Now we turn to the case that x ∈ S. In this case, x ∈ X and x ̸∈ Y . From α-bisubmodularity,
we have

f(X \ {u}, Y ∪ {u})− f(X,Y ) ≥ (1 + α)(f(A,B)− f(A ∪ {u}, B)) = −(1 + α)a. (9)

We consider the following three cases.

• If a ≥ 0 and b < 0, then E[∆Φα] = f(A+ x,B)− f(A,B) = a ≥ 0.

• If a < 0 and b ≥ 0, then E[∆Φα] = f(A,B ∪ {u})− f(A,B) + 2
√
α

1+α (f(X \ {u}, Y ∪ {u})−
f(X,Y )) ≥ b− 2

√
α

1+α (1 + α)a = b− 2
√
α(1 + α)a ≥ 0.

• If a > 0 and b > 0, then E[∆Φα] =
b

αa+b(f(A,B ∪ {u}) − f(A,B) + 2
√
α

1+α (f(X \ {u}, Y ∪
{u}) − f(X,Y ))) + αa

αa+b(f(A ∪ {u}, B) − f(A,B)) ≥ b
αa+b(b −

2
√
α

1+α (1 + α)a) + αa2

αa+b =
b2−2

√
αab+αa2

αa+b = (
√
αa−b)2

αa+b ≥ 0.

This completes the proof.

5.2 The second algorithm

In this section, we describe another algorithm for maximizing α-bisubmodular functions, which
achieves a better approximation ratio than the randomized greedy algorithm for small α.

For an α-bisubmodular function f : 3V → R+ with α ∈ [0, 1], we define f ′ : 2V → R+

by f ′(X) = f(X, ∅) for X ∈ 2V . Since f ′(X) is a non-negative submodular function, we can
apply the randomized double greedy algorithm of [1] to obtain a 1

2 -approximate solution Z to
the maximization of f ′(X). Our second algorithm for α-bisubmodular function maximization
is rather simple: Take the better of (∅, V ) and (Z, ∅).

Theorem 5.4. The second algorithm for α-bisubmodular function maximization problem pro-
vides a 1

3+2α -approximate solution for any α ∈ [0, 1].

Proof. Let (S, T ) be an optimal solution. By the α-bisubmodularity, we have

f(S, ∅) + f(∅, V ) ≥ f(∅, ∅) + αf(∅, T ) + (1− α)f(S, T ),

f(S, ∅) + f(∅, T ) ≥ f(∅, ∅) + f(S, T ),

which imply

(1 + α)f(S, ∅) + f(∅, V ) ≥ (1 + α)f(∅, ∅) + f(S, T ) ≥ f(S, T ).

Let (A,B) be the output by the algorithm. Then,

E[f(A,B)] ≥ max

{
1

2
f(S, ∅), f(∅, V )

}
≥ 2 + 2α

3 + 2α
· 1
2
f(S, ∅) + 1

3 + 2α
f(∅, V )

=
1

3 + 2α
((1 + α)f(S, ∅) + f(∅, V )) ≥ 1

3 + 2α
f(S, T ).

Combining this with the first algorithm, we obtain an approximate solution within a factor

of max
{

2
√
α

(1+
√
α)2

, 1
3+2α

}
. The minimum of this ratio is 8

25 , which is achieved when α = 1
16 .
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6 Inapproximability of maximizing α-bisubmodular functions

In this section, we show that, for every α ∈ [0, 1], obtaining approximation ratio better than
1/2 requires an exponential number of queries. There are existing inapproximability results
for maximizing submodular functions, and our strategy is to reduce the submodular function
maximization problem to the α-bisubmodular function maximization.

We first show a simple construction of an α-bisubmodular function from a submodular
function.

Lemma 6.1. Let f : 2V → R be a submodular function. For any α ∈ [0, 1], define g : 3V → R
by g(A,B) = f(A) + αf(V \B). Then, g is an α-bisubmodular function.

Proof. Huber et al. [7] showed that h : 3V → R is α-bisubmodular if and only if (i) for any
(A,B) ∈ 3V with A ∪ B = V , h′ : 2V → R defined by h′(X) = h(A ∩X,B ∩X) for X ∈ 2V is
submodular, and (ii) for any (A,B) ∈ 3V and u ∈ V \ (A ∪B), (7) holds.

To see (i), take any (A,B) ∈ 3V with A ∪B = V . Since the first term and the second term
of g are submodular on 2A and 2B, respectively, g satisfies (i).

Next we check (ii). Take (A,B) ∈ 3V with A ∪B ̸= V and u ∈ V \ (A ∪B). Then we have

αg(A ∪ {u}, B) + g(A,B ∪ {u})− (1 + α)g(A,B)

=α
(
f(A ∪ {u}) + αf(V \B)

)
+

(
f(A) + αf(V \ (B \ {u}))

)
− (1 + α)

(
f(A) + αf(V \B)

)
=α

((
f(A ∪ {u})− f(A)

)
−

(
f(V \B)− f(V \ (B \ {u})

))
≥0,

where the inequality follows from the submodularity of f and A ⊆ V \ (B ∪ {u}). Thus, g is
α-bisubmodular.

Theorem 6.2. Let α ∈ [0, 1]. There is a polynomial-time reduction from the problem of
maximizing non-negative submodular functions to the problem of maximizing non-negative α-
bisubmodular functions preserving approximation ratio.

Proof. Consider g(A,B) = f(A) + αf(V \ B). From Lemma 6.1, g is α-bisubmodular. Let
A∗ be a maximizer of f . Note that g(A, V \ A) = f(A) + αf(V \ (V \ A)) = (1 + α)f(A).
From Lemma 5.1, there is a maximizer of g of the form (A, V \ A). Also, g(A∗, V \ A∗) =
(1 + α)f(A∗) ≥ (1 + α)f(A) = g(A, V \ A) for any A. Therefore, the pair (A∗, V \ A∗) is a
maximizer of g.

Suppose that there is a polynomial-time δ-approximation algorithm for maximizing non-
negative α-bisubmodular functions. Let (X,Y ) be the output obtained for g using the algorithm.
We can assume that Y = V \X. Then,

(1 + α)f(X) = g(X,Y ) ≥ δg(A∗, V \A∗) = δ(1 + α)f(A∗).

Thus, X is a δ-approximation to the maximum of f .

Feige et al. [3] showed that, for any ϵ > 0, any (12 + ϵ)-approximation algorithm for the
submodular function maximization requires an exponential number of queries. Hence we have
the following.

Corollary 6.3. For every α ∈ [0, 1] and ϵ > 0, any (12 + ϵ)-approximation algorithm for the
α-bisubmodular function maximization requires an exponential number of queries in the value
oracle model.
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In the explicit model, a function f : An → Q is expressed as the sum of functions of constant
arity. It is shown in [2] that, even in the explicit model, if the submodular function maximization
problem admits a 1

2 + ϵ-approximation algorithm, then NP = RP. Thus, we have the following.

Corollary 6.4. For every α ∈ [0, 1] and ϵ > 0, if the α-bisubmodular function maximization
problem admits a 1

2 + ϵ-approximation algorithm, then NP = RP.

7 Conclusion

We have shown that the double greedy algorithm of Buchbinder et al. [1] for submodular function
maximization can be recognized as a greedy algorithm in the bisubmodular setting. This leads to
a 1

2 -approximation algorithm for bisubmodular function maximization. The greedy algorithm is
further extended to k-submodular functions and α-bisubmodular functions. For α-bisubmodular
functions, the approximation ratio converges to zero as α goes to zero. With a simple trick, how-
ever, we have devised a constant factor approximation algorithm for α-bisubmodular function
maximization. An obvious open problem is to improve this approximation ratio.
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