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Abstract

This paper addresses truss topology optimization taking into account robustness to uncer-

tainty in the truss geometry. Specifically, the locations of nodes are supposed not to be known

precisely and the compliance in the worst case is attempted to be minimized. We solve for-

mulate a semidefinite programming problem that serves as a safe approximation of this robust

optimization problem. That is, any feasible solution of the presented semidefinite programming

problem satisfies the constraints of the robust optimization problem. Since a semidefinite pro-

gramming problem can be solved efficiently with a primal-dual interior-point method, we can

find a robust truss design efficiently with the proposed semidefinite programming approach. A

notable property of the proposed approach is that the obtained truss is guaranteed to be stable.

Numerical experiments are performed to illustrate that the optimal truss topology depends on

the magnitude of uncertainty.

Keywords

Robustness; uncertainty; structural optimization; topology optimization; robust opti-

mization; semidefinite programming.

1 Introduction

Real-world structures inevitably encounter various uncertainties stemming from manufacturing vari-

ability, aging, degradation, limitation of knowledge of environments, etc. Reality can deviate from

the design-base models and data. The concept of robustness to uncertainty is, therefore, central

in structural design. This paper addresses truss topology optimization considering robustness to

uncertainty in the geometry of a truss.

If reliable statistical property of uncertainty is available, then probabilistic reliability analysis

can be performed. In such a case, reliability-based optimization can be employed in structural

design; see, e.g., [8, 43, 44, 54]. In contrast, a possibilistic model of uncertainty might be applicable

to problems without reliable stochastic information, because it requires only bounds for the input

data to define the uncertainty and hence is often less information-intensive. In this paper we adopt

a possibilistic model, rather than probabilistic one, to represent the uncertainty in the locations

of nodes of a truss. The truss topology optimization problem, which attempts to minimize the

maximum value of the compliance, is then treated within the framework of robust optimization [7, 17]
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(also called worst-case approach, bounded-but-unknown approach, or robust design optimization in

structural optimization); see Ben-Tal et al. [5] for comprehensive exposition of robust optimization.

Many studies have been done on robust optimization of structures under the assumption that un-

certainty exists only in external loads. Early works include, among others, Ganzerli and Pantelides

[19, 19], Lombardi [36], Pantelides and Ganzerli [39]. The seminal work of Ben-Tal and Nemirovski

[6] considered the compliance minimization of a truss under uncertainty in the static external load.

Specifically, the external load is supposed to take any value in a given ellipsoid centered at the ori-

gin. Then the maximal value of compliance (called the principal compliance by some authors [14])

is minimized. Ben-Tal and Nemirovski [6] showed that this robust optimization problem can be

formulated as a semidefinite programming (SDP) problem. Under the same situation, the robust

compliance optimization of a continuum was recast by Takezawa et al. [49] as a minimization prob-

lem of the maximum eigenvalue of a standard eigenvalue problem, provided that the stiffness matrix

is nonsingular. Earlier, it was shown that the same robust optimization problem can be reformu-

lated as a minimization problem of the maximum eigenvalue of a generalized eigenvalue problem;

see Cherkaev and Cherkaev [14, 15] and Brittain et al. [10]. The latter formulation was extended to

the case where the center of the ellipsoid, that represents the uncertainty in the external load, is not

necessarily at the origin [16]. With this non-homogeneous model of uncertainty, it was shown that

the robust compliance optimization of a truss can also be recast as an SDP problem; see Calafiore

and Dabbene [11] and Ben-Tal et al. [5, section 8.2.2.2]. Another extension of the SDP formulation

for robust truss optimization is making use of some binary variables to address variation of truss

topology in the course of optimization [53]. Concerning structural performances other than compli-

ance, a nonlinear SDP approach [30] and a mixed-integer linear programming approach [29] were

proposed for robust truss optimization under load uncertainties. Here, a nonlinear SDP problem

refers to an optimization problem of the form

Minimize
x

b⊤x (1a)

subject to G(x) ⪰ O, (1b)

h(x) = 0, (1c)

where x ∈ Rn is a variable vector to be optimized, b ∈ Rn is a constant vector, G : Rn → Sn and

h : Rn → Rl are sufficiently smooth, Sn denotes the set of n × n real symmetric matrices, and

G(x) ⪰ O means that matrix G(x) is positive semidefinite. If h is linear and G is given by

G(x) = C −
m∑
i=1

xiAi

with constant matrices A1, . . . , Am, C ∈ Sn, then problem (1) reduces to an SDP problem (which

is also called a linear SDP problem by some authors to clarify the distinction from nonlinear SDP

problems). We refer the reader to Anjos and Lasserre [2] and Wolkowicz et al. [51] for fundamentals

of SDP; particularly for nonlinear SDP problems, see, e.g., [28, 33, 37, 45, 52].

Compared with uncertainty in loads, studies addressing other sources of uncertainties in robust

structural optimization have been rather limited. Concerning truss optimization, Guo et al. [21]

considered uncertainty in stiffness (or uncertainties in member cross-sectional areas) and formu-

lated a nonlinear SDP problem that provides us with a safe approximation of the robust optimal
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solution. Besides the uncertainty in member cross-sectional areas, Guo et al. [22] considered uncer-

tainty in length of each member and formulated a nonlinear SDP problem as a safe approximation

of the robust optimization problem. Also, the dynamic response under uncertain driving loads were

handled in [22]. These nonlinear SDP formulations are considered extensions of the SDP formula-

tion for computing a conservative bound for response of a structural system that possess various

uncertainties [31, 32].

Very recently increasing attention has been drawn to topology optimization of a continuum

considering geometric uncertainties. In most of those studies, probabilistic approaches are adopted

to address deviation of the geometry of the boundary of a continuum. Sigmund [46] and Wang

et al. [50] proposed a robust topology optimization method considering uniform manufacturing er-

rors. An application of such an uncertainty model is in representing errors in etching for MEMS

(micro-electro-mechanical systems). This method takes into account errors stemming from uni-

form over-etching and uniform under-etching. Then the robust optimization problem is formulated

according to the worst-case approach, where only three cases, i.e., the nominal, over-etched, and

under-etched cases, are considered. Schevenels et al. [42] extended this method to the case where

non-uniform manufacturing errors are considered in a probabilistic manner. The statistical moments

of structural response were then estimated by Monte Carlo simulations. Since Monte Carlo simula-

tion is time-consuming, the alternative methods were proposed by using stochastic perturbation [35]

and stochastic collocation [34]. Geometrical uncertainties have also been handled within the frame-

work of level-set methods for topology optimization. Chen and Chen [13] modeled the geometric

uncertainty by combing the level-set equations with a random field of normal perturbation of the

boundary. The statistical moments of structural response are then obtained by using the Karhunen–

Loève expansion and the multivariate Gauss quadrature. As non-probabilistic approaches, Jang et

al. [26] considered uniform etching uncertainties within the framework of a level-set method. Also,

Guo et al. [23] modeled non-uniform uncertainty of the boundary geometry introducing a perturba-

tion of a level-set function, where change in the structural volume due to the boundary perturbation

is supposed to be bounded. Then the worst-case optimization problem was dealt with using the

first-order approximation of structural performance, under the assumption that perturbation of the

boundary is sufficiently small.

This paper is inspired by the work of Guest and Igusa [20], in which the robust truss topology

optimization under uncertainty in the truss geometry was dealt with in a probabilistic manner.

There, the locations of nodes were supposed to be uncorrelated random variables and the expected

value of the compliance was attempted to be minimized. Under the assumption that perturbation

of node locations is sufficiently small, it was shown that the problem under consideration can

be recast in the form of the optimization problem under load uncertainties using the notion of

equivalent random forces. In contrast, the present work addresses the compliance optimization of

a truss with non-probabilistic uncertainty in the locations of nodes. Provided that node locations

can take any value in a given ellipsoid, we attempt to minimize the worst value of the compliance

of a truss. As pointed out by Guest and Igusa [20], the robust compliance optimization with

uncertain node locations is more difficult problem than that with uncertain external loads. In this

paper we formulate an SDP problem that serves as a safe approximation of the original robust

optimization problem, in the sense that the optimal solution of the SDP problem is feasible for
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the original robust optimization problem. Throughout the paper we assume small deformation and

linear elasticity. Deviation of a node location from its nominal value can however be arbitrarily

large. SDP is a class of convex optimization and the optimal solution of an SDP problem can be

computed efficiently by using a primal-dual interior-point method [2, 51]. This is considered an

advantage of the SDP approach developed in this paper over existing nonlinear SDP approaches

to robust structural optimization, because nonlinear SDP problems formulated in [21, 22, 30] are

nonconvex optimization problems and thereby quite difficult to be solved. As pointed out by Guest

and Igusa [20], uncertainties in nodal locations can possibly have significant effects in truss topology

optimization, because the optimal truss obtained by the standard compliance optimization without

taking into account uncertainties is often unstable. Indeed, we can show, under mild assumptions,

that the optimal solution of the presented SDP problem is a stable truss.

The paper is organized as follows. Section 2 reviews an SDP formulation of the standard com-

pliance optimization of a truss. We also present an explicit form of the stiffness matrix as a function

of the node locations. Section 3 presents an SDP problem which serves as a safe approximation of

the robust truss optimization under uncertainty in the locations of nodes. Section 4 explores two

important properties of the presented SDP problem: The first is zeroing, i.e., the SDP problem co-

incides with the standard compliance optimization when the magnitude of uncertainty is set to zero,

and the second is stability of the truss obtained by solving the proposed SDP problem. Section 5

performs numerical experiments. Conclusions are drawn in section 6. Section 7 collects technical

prerequisites.

A few words regarding our notation: We use Sn to denote the set of n × n real symmetric

matrices. For matricesX, Y ∈ Sn, notationX ⪰ Y means that matrixX−Y is positive semidefinite.

Particularly, notation X ⪰ O means that X is positive semidefinite. We use In to denote the n× n

identity matrix. For a block matrix, we often omit to write zero blocks. For instance, we write[
A

B C

]
=

[
A O O

O B C

]
.

The ℓp-norm (1 ≤ p ≤ ∞) of vector x ∈ Rn is defined by

∥x∥p =


( n∑
i=1

|xi|p
)1/p

if 1 ≤ p < ∞,

max{|x1|, . . . , |xn|} if p = ∞.

For matrix M ∈ Rm×n, the operator norm of M induced by the Euclidean norm is defined by

∥M∥2 = max
x̸=0

∥Mx∥2
∥x∥2

.

Note that ∥M∥2 is equal to the maximum singular value of M .

2 Fundamentals of compliance optimization

This section summarizes fundamentals of the standard compliance optimization of a truss structure,

where issues of uncertainty are not taken into account. Attention is focused on the SDP formulation

due to Ben-Tal and Nemirovski [6]. This formulation serves as a basis of our robust optimization
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approach that will be developed in section 3. Section 2.1 introduces our notation for truss topology

optimization. The stiffness matrix is expressed as a function of the node locations. This expression

is extremely useful in the latter sections for development and analysis of our robust optimization

approach. Section 2.2 recalls the SDP formulation of the conventional minimization problem of the

compliance of a truss under the volume constraint.

2.1 Explicit formulation of stiffness matrix in terms of locations of nodes

Following the conventional ground structure approach, consider a truss consisting of many candidate

members connected by nodes. Throughout the paper we assume small deformation and linear

elasticity. Let d denote the dimension of space, i.e., d = 2 for a planar truss and d = 3 for a

spatial truss. We use V and E ⊆ V × V to denote the set of nodes and the set of members of

the truss, respectively, where |V| = n and |E| = m. Note that V includes some supports. If we

adopt terminology of the graph theory, V and E correspond to the set of vertices and the set of

edges, respectively, of a given graph G = (V, E). For node v ∈ V, we denote by x(v) ∈ Rd its

location in the space. For member i ∈ E , we use ai ≥ 0 to denote its cross-sectional area and write

a = (a1, . . . , am)⊤ ∈ Rm. Given G = (V, E) and x(v) (∀v ∈ V), we attempt to optimize a.

Let p denote the number of degrees of freedom of displacements. Define q by q = dn = d|V|.
Since V includes supports, we have that p < q. Let V = {v1, v2, . . . , vn}. Define x ∈ Rq by

x =


x(v1)

...

x(vn)

 ,

which is a vector consisting of the location vectors of nodes. In section 3 and the subsequent sections

we shall suppose that x is not known precisely. We use li(x) to denote the undeformed length of

member i ∈ E and write l(x) = (l1(x), . . . , lm(x))⊤ ∈ Rm.

Since we will suppose that the locations of supports as well as the locations of free nodes

are uncertain, expression of the stiffness matrix will become rather cumbersome. For clarity of

exposition, we use the following two different coordinate systems. The first one, denoted C, is the

conventional global coordinate system of the displacements. The dimension of C is hence equal to

the number of degrees of freedom, p. In coordinate system C, we use u ∈ Rp to denote the vector

of nodal displacements. The second one, denoted Č, is the coordinate system in which all the nodes

are supposed to be free nodes. The dimension of Č is hence equal to q, i.e., the size of vector x. We

use ǔ ∈ Rq to denote the vector of nodal displacements in coordinate system Č.
Let T ∈ Rp×q denote the transformation matrix from coordinate system Č to coordinate system

C. Note that the set of nodes, V, is partitioned into three subsets, the set of pin supports, the set

of roller supports, and the set of free nodes. We use Vfix ⊆ V to denote the set of pin supports.

Without loss of generality we may suppose that Vfix = {vn̂+1, . . . , vn} and V \ Vfix = {v1, . . . , vn̂}
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Figure 1: Definitions of the two coordinate systems. (a) Coordinate system C; and (b) coordinate

system Č.

(n̂ < n). Then matrix T is of the form

T =


T (v1)

T (v2)

. . .

T (vn̂)

 . (2)

Here, T (vj) is a d× d orthogonal matrix if node vj is free, while it is a rectangular matrix with full

row rank if node vj is a roller support. Then the transformation is written as

u = T ǔ,

and its inverse is

ǔ = T⊤u. (3)

Example 2.1. Consider the truss shown in Figure 1(a). The truss lies in a plane, i.e., d = 2, and

consists of m = 2 members connected to n = 3 nodes, and hence q = 6. Node v1 is a roller support,

v2 is a free node, and v3 is a pin support, i.e., Vfix = {v3} and n̂ = 2. The number of degrees of

freedom of displacements is p = 3. Coordinate systems C and Č can be defined, for instance, as

depicted in Figure 1(a) and Figure 1(b), respectively. The transformation matrix, T ∈ R3×6, from

Č to C is given by

T =

cos θ sin θ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

 .

Thus T (v1) is a 1× 2 rectangular matrix and T (v2) is a 2× 2 orthogonal matrix. ■

In the following the stiffness matrix in the small deformation theory is formulated as an explicit

function of the locations of nodes, x. We begin with the compatibility relation in coordinate system

Č. Consider member i = (vj , vk) ∈ E , which connects node vj and node vk. We use ei to denote

the elongation of this member. Observe that the directional cosine from node vk towards node vj
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is given by x(vj) − x(vk)/li(x). Define b̌i(x) ∈ Rq as a block-partitioned vector such that the block

corresponding to node vj and vk are equal to the directional cosines of x(vj)−x(vk) and x(vk)−x(vj),

respectively, and all the other blocks are zero vectors. Namely, b̌i(x) ∈ Rq is of the form

b̌i(x) =
1

li(x)


x(vj) − x(vk)

x(vk) − x(vj)


← vj

← vk

(4)

and then the compatibility relation between ei and ǔ is given by

ei = b̌i(x)
⊤ǔ. (5)

We define the stiffness matrix respect to coordinate system C as usual. By performing coordinate

transformation (3), (5) is reduced to

ei = (T b̌i(x))
⊤u. (6)

Let si denote the axial force of member i. Since linear elasticity is assumed, the constitutive law is

given by

si =
Eai
li(x)

ei, (7)

where E is the Young modulus. From (6) and (7), the stiffness matrix of the truss, denoted

K(a;x) ∈ Sp, is written as

K(a;x) =
∑
i∈E

Eai
li(x)3

(T b̌i(x))(T b̌i(x))
⊤. (8)

Finally, we reduce b̌i(x) in (8) to a form useful in the subsequent discussions. Define Ji ∈ Sq

(i ∈ E) as

Ji =


Id −Id

−Id Id


← vj

← vk

↑ ↑
vj vk

, (9)

i.e., it is a constant block matrix such that only the blocks related to node vj and vk are nonzero

matrices. Then b̌i(x) defined by (4) can be expressed as

b̌i(x) =
1

li(x)
Jix. (10)

Substitution of (10) into (8) yields

K(a;x) =
∑
i∈E

Eai
li(x)3

(TJix)(TJix)
⊤. (11)

We will use this form in the subsequent sections.

Note that coordinate system Č is never used in the remainder of the paper. The global coordinate

system is always taken as C.
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2.2 Semidefinite programming formulation for conventional compliance opti-

mization

This section briefly recalls the conventional compliance optimization of trusses, without considering

uncertainties, and its SDP formulation in literature.

The compliance is a measure of flexibility of a structure. For given load f , member cross-sectional

areas a, and nodal coordinates x, the compliance of the truss is defined by

π(a;x) = sup{2f⊤u− u⊤K(a;x)u : u ∈ Rp}. (12)

We write x = x̃ to clarify that, in this section, x is supposed to be known without uncertainties.

In the latter sections, x̃ will be interpreted as the nominal value, or the best estimate, of x. The

minimization problem of compliance under the volume constraint is then formulated as

Minimize
a, w

w (13a)

subject to w ≥ π(a; x̃), (13b)

l(x̃)⊤a ≤ Vu, (13c)

a ≥ 0, (13d)

where Vu > 0 is a specified upper bound for the structural volume. Note that a ∈ Rm and w ∈ R
are variables to be optimized. Constraint (13b) is satisfied with equality at the optimal solution of

problem (13).

It is known that problem (13) can be recast as an SDP problem. More specifically, constraint

(13b) can be written as a linear matrix inequality in terms of a and w. This fact corresponds to a

special case of Lemma 2.2 of Ben-Tal and Nemirovski [6], where the robust compliance constraint

under load uncertainty was treated. Below we briefly restate this result for a fixed load. This SDP

formulation serves as a basis of our SDP formulation for robust optimization developed in section 3.

From definition (12) of the compliance, we can see that constraint (13b) reads

w ≥ sup{2f⊤u− u⊤Ku : u ∈ Rp},

which is equivalently rewritten as

w ≥ 2f⊤u− u⊤Ku (∀u ∈ Rp).

This inequality is written of the quadratic form[
1

−u

]⊤ [
w f⊤

f K

][
1

−u

]
≥ 0 (∀u ∈ Rp). (14)

By applying Lemma 7.5, (14) is equivalently rewritten as[
w f⊤

f K

]
⪰ O. (15)

In short, (13b) is equivalent to (15).
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As a consequence of the discussion above, the truss optimization problem in (13) can be rewritten

equivalently as

(TO) : Minimize
a, w

w (16a)

subject to

[
w f⊤

f K(a; x̃)

]
⪰ O, (16b)

l(x̃)⊤a ≤ Vu, (16c)

a ≥ 0. (16d)

In this problem, the objective function in (16a) is a linear function of w. Also, constraints (16c)

and (16d) are linear inequality constraints on a. Since x̃ is fixed, we can see from (11) that the

stiffness matrix depends linearly on a1, . . . , am. Hence, constraint (16b) is a linear matrix inequality

in terms of a and w. Therefore, problem (16) is an SDP problem.

3 Robust optimization and its safe approximation

This section explores a robust optimization method of a truss subjected to uncertainties in locations

of nodes. Section 3.1 defines the robust truss optimization problem. In section 3.2 we propose an

SDP problem that serves as a safe approximation of this robust truss optimization problem.

3.1 Robust optimization under uncertainty in nodal locations

Since structures in the real world inevitably encounter various uncertainties in geometry caused by

manufacturing errors, aging, deterioration, etc., robustness to geometrical uncertainties should be

taken into account in structural design. This section defines a possibilistic model of uncertainty

in x and formulates a robust optimization problem of a truss subjected to the uncertainty. This

problem is considered a robust counterpart of the compliance minimization problem formulated in

section 2.2.

Uncertainty in the locations of nodes, x, is modeled as follows. Let x̃ ∈ Rq denote the nominal

value, or the best estimate, of x. Suppose that x can possibly take any value in a compact convex

set as

x ∈ Xr, Xr = {x̃+Aζ : ∥ζ∥2 ≤ r}. (17)

Here, r ≥ 0 is a given constant, ζ ∈ Rl is a vector of uncertain variables that can take any value in

the closed ball with radius r, i.e.,

ζ ∈ Zr, Zr = {ζ ∈ Rl : ∥ζ∥2 ≤ r},

and A ∈ Rq×l is a constant matrix satisfying

∥A∥2 = 1. (18)

Matrix A has a block structure corresponding to nodes v1, . . . , vn as

A =


A(v1)

...

A(vn)

 , (19)

9



where A(v) ∈ Rd×l (∀v ∈ V). For instance, by putting A = Iq, we suppose that the locations of all

nodes are uncertain and that uncertainty in one node has no relation with uncertainties in the other

nodes. As another example, if the location of node vj is supposed to be known without uncertainty,

then we put A(vj) = O. Constant r ≥ 0 is called the uncertainty parameter , which expresses the

level of uncertainty in the following sense [4]:

(i) X0 = {x̃}.

(ii) r ≤ r′ implies Xr ⊆ Xr′ .

That is, (i) only the nominal case is considered at r = 0, and (ii) the range of possible scenarios of

nodal locations increases as r increases.

Recall that the conventional topology optimization problem has been formulated as (TO) in (16).

In the following we formulate a robust counterpart of (TO), when x undergoes the uncertainty in

(17). Note that, in (TO), constraints (16b) and (16c) involve x. Both constraints can be converted

to robust constraints. However, compared with the compliance constraint in (16b), the volume

constraint in (16c) is considered a soft constraint, because the structural performance is related

only to the compliance constraint. For this reason, throughout the paper we evaluate the structural

volume at the nominal member lengths and, thence, constraint (16c) is not converted to a robust

constraint. Only constraint (16b) is required to be satisfied all possible x’s. Then the robust

topology optimization problem is formulated as

(RTO) : Minimize
a, w

w (20a)

subject to

[
w f⊤

f K(a; x̃+Aζ)

]
⪰ O (∀ζ ∈ Zr), (20b)

l(x̃)⊤a ≤ Vu, (20c)

a ≥ 0. (20d)

Here, a ∈ Rm and w ∈ R are variables to be optimized.

In dealing with problem (20), a key is treatment of the stiffness matrix, K(a;x), in constraint

(20b). Recall that K(a;x) is given by (11), where x is now supposed to follow the uncertainty

model in (17), i.e., x = x̃+Aζ. Substitution of this equation into (11) yields

K(a; x̃+Aζ) =
∑
i∈E

aiκi(ζ)(bi + Ciζ)(bi + Ciζ)
⊤, (21)

where κi : Rl → R, bi ∈ Rp, and Ci ∈ Rp×l are defined by

κi(ζ) =
E

li(x̃+Aζ)3
, (22)

bi = TJix̃, (23)

Ci = TJiA. (24)

Particularly, at the nominal value, (21) is reduced to

K(a; x̃) =
∑
i∈E

aiκi(0)bib
⊤
i . (25)
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3.2 Safe approximation of robust optimization

The robust topology optimization problem (20) formulated in section 3.1 is not tractable compu-

tationally, because it has infinitely many positive-semidefinite constraints in (20b). This motivates

us to construct an optimization problem that serves as a safe approximation of problem (20) and

can be solved easily. This section formulates an SDP problem, the optimal solution of which is

guaranteed to satisfy all the constraints of the original robust optimization problem (20).

We first consider a lower bound for κi(ζ) defined by (22), when ζ is running through Zr. As

seen in (21), κi(ζ) appears in the stiffness matrix as a coefficient. The following lemma, providing

us with a lower bound, prepares our SDP formulation discussed in Theorem 3.2.

Lemma 3.1. Define κ̆i ∈ R by

κ̆i =
E

(l̃i + 2r)3
. (26)

Then

0 < κ̆i ≤ min{κi(ζ) : ζ ∈ Zr}.

Proof. Since E > 0, l̃i > 0, and r ≥ 0 by definitions, it is clear that κ̆i > 0. With reference to (22)

and (26), we see that the assertion of this lemma is obtained by showing

li(x̃+Aζ) ≤ l̃i + 2r (∀ζ ∈ Zr). (27)

Recall that the location vector of node v ∈ V is given by

x(v) = x̃(v) +A(v)ζ.

Hence, concerning the length of member i = (vj , vk) ∈ E , we obtain

li(x̃+Aζ)

= ∥(x̃(vj) +A(vj)ζ)− (x̃(vk) +A(vk)ζ)∥2
≤ ∥x̃(vj) − x̃(vk)∥2 + ∥A(vj)ζ∥2 + ∥A(vk)ζ∥2
≤ l̃i + ∥A(vj)∥2∥ζ∥2 + ∥A(vk)∥2∥ζ∥2,

where the triangularity inequality and Lemma 7.3 have been used. Furthermore, for any v ∈ V, we
have that

max{∥A(v)∥2∥ζ∥2 : ζ ∈ Zr} = ∥A(v)∥2r (28)

and

∥A(v)∥2 ≤ 1 (29)

due to assumption (18). By using (28) and (29), we obtain

∥A(vj)∥2∥ζ∥2 + ∥A(vk)∥2∥ζ∥2 ≤ (∥A(vj)∥2 + ∥A(vk)∥2)r ≤ 2r (∀ζ ∈ Zr),

and hence (27) holds.
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We construct a safe approximation of the robust optimization problem by making use of value

κ̆i in Lemma 3.1. By using bi given by (23), define Bi ∈ Rp×m (∀i ∈ E) by

Bi =
[

bi

]
,

↑
i

(30)

i.e., it is a constant block matrix such that the ith column is equal to bi and the other columns are

zero vectors. Consider the following optimization problem:

(ARTO) : Minimize
a, w, λ

w (31a)

subject to

 w f⊤

f

+
∑
i∈E

aiκ̆i

 −rB⊤i

−rBi bib
⊤
i



+


diag(λ)

−
∑
i∈E

λiCiC
⊤
i

 ⪰ O, (31b)

l(x̃)⊤a ≤ Vu, (31c)

a ≥ 0, (31d)

λ ≥ 0. (31e)

This is an SDP problem in variables a ∈ Rm, w ∈ R, and λ ∈ Rm, because constraint (31b) is a

linear matrix inequality in terms of these variables.

Problem (31) provides us with a conservative approximation of the optimal solution of problem

(20), i.e., the robust truss optimization problem. This key issue is formally proved in the following

theorem.

Theorem 3.2. (ARTO) in (31) is a safe approximation of (RTO) in (20), in the sense that if

(a, w,λ) ∈ Rm × R× Rm is feasible for (ARTO) then (a, w) is feasible for (RTO).

Proof. We shall show that (a, w) is feasible for (20b) if there exists λ ∈ Rm satisfying (31b) and

(31e).

For simple presentation, we use the following notation. Define Ω(a; ζ) ∈ Sp+1 by

Ω(a; ζ) =

[
w f⊤

f K(a; x̃+Aζ)

]
(32)

so that constraint (20b) can be written as

Ω(a; ζ) ⪰ O (∀ζ ∈ Zr). (33)

12



For each i ∈ E , define b̂i ∈ Rp+1, B̂i ∈ R(p+1)×m, and Ĉi ∈ R(p+1)×l by

b̂i =

[
0

bi

]
, (34a)

B̂i =

[
0⊤

Bi

]
, (34b)

Ĉi =

[
0⊤

Ci

]
, (34c)

where bi, Bi, and Ci have been defined by (23), (30), (24), respectively. By using these vectors and

matrices, define Ω0 ∈ Sp+1 and Ωi(ζ) ∈ Sp+1 (i ∈ E) by

Ω0 =

[
w f⊤

f O

]
, (35)

Ωi(ζ) = (b̂i + Ĉiζ)(b̂i + Ĉiζ)
⊤. (36)

With reference to (21), we see that Ω(a; ζ) in (32) can be written as

Ω(a; ζ) = Ω0 +
∑
i∈E

aiκi(ζ)Ωi(ζ). (37)

With the preparation above we derive a sufficient condition for constraint (20b), i.e., for (33).

By definition of a positive semidefinite matrix, (33) is equivalently rewritten as

ξ⊤Ω(a; ζ)ξ ≥ 0 (∀ζ ∈ Zr, ∀ξ ∈ Rp+1).

This condition is also equivalent to

min
ζ

{ξ⊤Ω(a; ζ)ξ : ζ ∈ Zr} ≥ 0 (∀ξ ∈ Rp+1). (38)

Substitution of (37) into (38) yields

min
ζ

{
ξ⊤Ω0ξ +

∑
i∈E

aiκi(ζ)ξ
⊤Ωi(ζ)ξ : ζ ∈ Zr

}
≥ 0 (∀ξ ∈ Rp+1). (39)

Condition (39) holds if

ξ⊤Ω0ξ +
∑
i∈E

aimin
ζ

{κi(ζ)ξ⊤Ωi(ζ)ξ : ζ ∈ Zr} ≥ 0 (∀ξ ∈ Rp+1) (40)

is satisfied. Thus we see that (40) is a sufficient condition for (20b).

We next deal with the minimization problems included in (40). For fixed ξ ∈ Rp+1, we obtain

min{κi(ζ)ξ⊤Ωi(ζ)ξ : ζ ∈ Zr}

≥min{κi(ζ) : ζ ∈ Zr}min{ξ⊤Ωi(ζ)ξ : ζ ∈ Zr}

≥κ̆imin{ξ⊤Ωi(ζ)ξ : ζ ∈ Zr}, (41)
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where the last inequality follows from Lemma 3.1. Substitution of (36), i.e., the definition of Ωi,

into (41) yields

κ̆imin{ξ⊤Ωi(ζ)ξ : ζ ∈ Zr}

=κ̆imin{ξ⊤(b̂i + Ĉiζ)(b̂i + Ĉiζ)
⊤ξ : ζ ∈ Zr}

=κ̆imin{ξ⊤b̂ib̂
⊤
i ξ + 2ξ⊤Ĉiζb̂iξ + ξ

⊤Ĉiζζ
⊤Ĉ⊤i ξ : ζ ∈ Zr}

≥κ̆i

(
ξ⊤b̂ib̂

⊤
i ξ + 2|b̂iξ|min{(Ĉ⊤i ξ)⊤ζ : ζ ∈ Zr}+min{ξ⊤Ĉiζζ

⊤Ĉ⊤i ξ : ζ ∈ Zr}
)

≥κ̆i(ξ
⊤b̂ib̂

⊤
i ξ − 2r|b̂⊤i ξ|∥Ĉ⊤i ξ∥2)

=κ̆i

(
ξ⊤b̂ib̂

⊤
i ξ − 2rmax

ηi∈R
{b̂⊤i ξηi : |ηi| ≤ ∥Ĉ⊤i ξ∥2}

)
. (42)

Here, the second inequality follows from Lemma 7.2 and

min{ξ⊤Ĉiζζ
⊤Ĉ⊤i ξ : ζ ∈ Zr} = min{(ζ⊤Ĉ⊤i ξ)2 : ζ ∈ Zr} = 0,

while the last equality follows from Lemma 7.1. It follows from (41) and (42) that (40) holds if

ξ⊤Ω0ξ +
∑
i∈E

aiκ̆i

(
ξ⊤b̂ib̂

⊤
i ξ − 2rmax

ηi∈R
{b̂⊤i ξηi : |ηi| ≤ ∥Ĉ⊤i ξ∥2}

)
≥ 0 (∀ξ ∈ Rp+1) (43)

is satisfied, i.e., (43) is a sufficient condition for (40). Condition (43) is equal to the condition that,

for variables ξ ∈ Rp+1 and η ∈ Rm, the implication

|ηi| ≤ ∥Ĉ⊤i ξ∥2 (∀i ∈ E) ⇒ ξ⊤Ω0ξ +
∑
i∈E

aiκ̆i(ξ
⊤b̂ib̂

⊤
i ξ − 2rηib̂

⊤
i ξ) ≥ 0 (44)

holds. Note that both sides of implication (44) are expressed as quadratic inequalities in terms of

ξ and η. Indeed, by using constant matrices Ei,i ∈ Sm (i ∈ E) defined by

Ei,i=

 1

 ← i

↑
i

, (45)

we can rewrite (44) as[
η

ξ

]⊤ [
−Ei,i

ĈiĈ
⊤
i

][
η

ξ

]
≥ 0 (∀i ∈ E)

⇒

[
η

ξ

]⊤([
Ω0

]
+
∑
i∈E

aiκ̆i

[
−rB̂⊤i

−rB̂i b̂ib̂
⊤
i

])[
η

ξ

]
≥ 0. (46)

Implication (46) clearly consists of quadratic inequalities of ξ and η. Then by applying Lemma 7.6

we see that (46) holds if there exist nonnegative real numbers λ1, . . . , λm satisfying[
Ω0

]
+
∑
i∈E

aiκ̆i

[
−rB̂⊤i

−rB̂i b̂ib̂
⊤
i

]
⪰
∑
i∈E

λi

[
−Ei,i

ĈiĈ
⊤
i

]
. (47)
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By substituting the definitions of b̂i, B̂i, and Ĉi (in (34)) and that of Ω0 (in (35)) into (47), this

sufficient condition for (46) is written as

∃λ ≥ 0 : w f⊤

f

+
∑
i∈E

aiκ̆i

 −rB⊤i

−rBi bib
⊤
i

+
∑
i∈E

λi

Ei,i

−CiC
⊤
i

 ⪰ O. (48)

We thus conclude that condition (48), which corresponds to constraints (31b) and (31e), is a

sufficient condition for constraint (20b).

Theorem 3.2 asserts that the optimal solution of (ARTO) (in (31)) is feasible for the original

robust optimization problem, (RTO) in (20). Thus (ARTO) serves as a conservative approximation

of (RTO). It is difficult to deal with (RTO) computationally, because (RTO) has infinitely many

constraints in (20b). In contrast, (ARTO) is a conventional SDP problem and it can be solved

efficiently with a primal-dual interior-point method. Since we do no resort to any approximation

for formulating the stiffness matrix with uncertain node locations, conservativeness of the obtained

solution is guaranteed for arbitrary large r, as shown in Theorem 3.2. Instead, the optimality of the

obtained solution is not guaranteed, i.e., the optimal solution of (ARTO) is not optimal for (RTO)

in general.

Remark 3.3. The size of (ARTO) in (31) is larger than the size of (TO) in (16). The number of

variables is increased from m+1 to 2m+1. The size of matrix subjected to the positive-semidefinite

constraint is increased from (p+1)× (p+1) to (p+m+1)× (p+m+1). However, all the coefficient

matrices in (31b) are sparse matrices. ■

Remark 3.4. In the proof of Theorem 3.2 we have shown that (43) is a sufficient condition for

constraint (20b). In this process, we use the fact that (40) is a sufficient condition for (39). Unlike

(39), minimization in (40) is performed for each i ∈ E . This means that, in (40), effect of uncertainty

on each member is considered independently. This overestimates the effect of uncertainty, because

the location of one node generally affects all members connected to that node. In other words,

in (40) we consider an incompatible situation such that two members connected by a node in the

nominal scenario are supposed not necessarily to be connected in the worst scenario. For this reason,

it might probably happen that the optimal solution of (ARTO) is too conservative, compared with

the optimal solution of (RTO). In section 5.3, we shall use a small numerical example to investigate

tightness of approximation of (ARTO). ■

4 Two properties of the proposed formulation

This section explores favorable properties of (ARTO), proving two theorems. The first, Theorem 4.1,

establishes that, when r = 0, (ARTO) coincides with the standard compliance optimization, i.e.,

(TO) in (16). In this sense (ARTO) can be considered a natural extension of (TO). The second,

Theorem 4.8, establishes, under fairly general conditions, that the truss obtained as the optimal

solution of (ARTO) is stable. This might be considered a significant advantage of the proposed

formulation, because the optimal solution of (TO) is often unstable and an unstable truss has no

robustness against uncertainties in external forces as well as locations of nodes.
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4.1 Nominal case

This section discusses a particular case, r = 0, which means that no uncertainty is supposed.

When r = 0, we can show that problem (31), which serves as a conservative approximation

of the robust truss optimization problem, coincides with the nominal truss optimization problem,

i.e., problem (16). More precisely, at r = 0, these two problems share the same optimal value and

the optimal truss design of one problem is also optimal for the other problem. In this sense, the

proposed formulation, (31), is considered a natural extension of the nominal optimization problem,

(16). This equivalence follows straightforwardly from Theorem 4.1 presented below.

Theorem 4.1. Suppose r = 0. If a ∈ Rm and λ ∈ Rm satisfy (31b) and (31e), then a satisfies

(16b). Conversely, if a ∈ Rm satisfies (16b), then there exists λ ∈ Rm such that a and λ satisfy

(31b) and (31e).

Proof. We begin by considering constraint (31b) at r = 0. Recall that κ̆i in (31b) is defined by

(26). With reference to definition (22) of κi, we see that κ̆i = κi(0) holds at r = 0. Therefore, when

r = 0, constraint (31b) reads

 w f⊤

f

+
∑
i∈E

aiκi(0)


bib
⊤
i

+


diag(λ)

−
∑
i∈E

λiCiC
⊤
i

 ⪰ O. (49)

Since the left-hand side of (49) is a block-diagonal matrix, (49) is equivalent to

diag(λ) ⪰ O, (50a)[
w f⊤

f

]
+
∑
i∈E

aiκi(0)

[
bib
⊤
i

]
−
∑
i∈E

λi

[
CiC

⊤
i

]
⪰ O. (50b)

Note that (50a) is equivalent to (31e). On the other hand, (16b) is rewritten as follows. Substitution

of (25) into (16b) results in [
w f⊤

f

]
+
∑
i∈E

aiκi(0)

[
bib
⊤
i

]
⪰ O. (51)

As a consequence, the assertion of this theorem is obtained by showing that (51) is satisfied if and

only if there exists λ satisfying (50b) and (31e).

Suppose that a satisfies (51). Then (50b) and (31e) are satisfied with λ = 0. This shows the

“only if” part. The converse is shown as follows. Suppose that a and λ satisfy (50b) and (31e).

Then we have that[
w f⊤

f

]
+
∑
i∈E

aiκi(0)

[
bib
⊤
i

]
⪰
∑
i∈E

λi

[
CiC

⊤
i

]
⪰ O.

This implies that a satisfies (51).
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4.2 Stability of optimal truss

This section shows that the truss obtained by solving (ARTO) (in (31)) is stable (i.e., kinematically

determinate).

Stability of the optimal truss is formally defined as follows. Let (ā, w̄, λ̄) ∈ Rm×R×Rm denote

the optimal solution of (ARTO). Define Eopt ⊆ E by

Eopt = {i ∈ E : āi > 0},

i.e., Eopt is the set of members that exists at the optimal solution. Define Vopt ⊆ V as the set of

nodes that are connected to a member belonging to Eopt. In other words, if i = (vj , vk) ∈ Eopt, then
vj , vk ∈ Vopt. Then graph Gopt = (Vopt, Eopt) corresponds to the topology of the optimal truss, ā.

We say that the optimal truss, ā, is stable if any displacement vector u = (u(v) | v ∈ V) solving

K(ā; x̃)u = 0

satisfies u(v) = 0 (∀v ∈ Vopt). Note that the stability is evaluated when the nodes exist at their

nominal locations. Stability does not mean that K(ā; x̃) has full rank, if some nodes are removed

at ā. We may consider a stiffness matrix only with the rows and columns corresponding to the

degrees of freedom of the nodes belonging to Vopt. Then stability of the optimal truss means that

this newly-defined stiffness matrix has full rank (equivalently, it is positive definite).

To establish the main result stated in Theorem 4.8, we need the following assumption, which is

unrestrictive from a practical point of view.

Assumption 4.2.

(i) Any node v ∈ Vopt is either pin-supported or free.

(ii) For any member i = (vj , vk) ∈ E, matrix A(vj) − A(vk) has full row rank, i.e., rank(A(vj) −
A(vk)) = d.

(iii) r > 0.

Remark 4.3. Assumption 4.2 (i) means that the optimal truss does not have any roller support.

This is, certainly, satisfied if the ground structure has no roller support. ■

Remark 4.4. Assumption 4.2 (ii) means that, for i = (vj , vk) ∈ E , the location of node vj can vary

independently of the location of node vk. For instance, if we choose A = Ip in (17), then this

assumption is satisfied. Note that locations of pin supports are also considered uncertain. ■

Remark 4.5. Assumption 4.2 (iii) is natural because r = 0 means that no uncertainty is considered. ■

The following two lemmas prepare for the main result stated in Theorem 4.8.

Lemma 4.6. Suppose r > 0. Let (ā, w̄, λ̄) ∈ Rm ×R×Rm denote the optimal solution of (ARTO)

in (31). Then

λ̄i > 0 (∀i ∈ Eopt).
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Proof. Since any principal submatrix of a positive semidefinite matrix is positive semidefinite, con-

straint (31b) implies  λ̄i −āiκ̆irb
⊤
i

−āiκ̆irb
⊤
i

∑
i∈E

(āiκ̆ibib
⊤
i − λ̄iCiC

⊤
i )

 ⪰ O (∀i ∈ E). (52)

Suppose, for contradiction, that there exists member î ∈ Eopt satisfying λ̄î = 0. Then (52) reads 0 −āîκ̆îrb
⊤
î

−āîκ̆îrb
⊤
î

∑
i∈E

(āiκ̆ibib
⊤
i − λ̄iCiC

⊤
i )

 ⪰ O,

which implies

āîκ̆îrbî = 0. (53)

In contrast, from the assumption of this lemma we have that āî ̸= 0 and r ̸= 0. Furthermore, for any

i ∈ E , we see that bi ̸= 0 and κ̆i ̸= 0 from their definitions in (23) and (26). Therefore, āîκ̆îrbî ̸= 0,

which contradicts (53).

Lemma 4.7. If Assumption 4.2 is satisfied, then any connected component of graph Gopt =

(Vopt, Eopt) has at least one support.

Proof. Suppose, for contradiction, that Gopt has a connected component that has no support.

If no external load is applied to this connected component, then all the members in this connected

component can be removed without changing the compliance of the total structure. This means

that an optimal solution cannot have such a connected component. Hence, in the following, we

suppose that some external forces are applied to the connected component. Note that no reaction is

applied to the connected component, because we are assuming for contradiction that the connected

component has no support. The proof proceeds by considering two cases.

(a) Suppose that the external forces applied to the connected component are not in static equilib-

rium when x = x̃. Then the forces cause rigid-body motion in a direction of the unbalanced

force. Therefore, the compliance is not bounded above. This contradicts the argument that

Gopt = (Vopt, Eopt) is feasible for (ARTO).

(b) Suppose that the external forces applied to the connected component is in static equilibrium

when x = x̃. Choose a node at which an external force is applied. We use v to denote

this node. From Assumption 4.2 (ii), the location of node v can be perturbed arbitrary with

satisfying x ∈ Xr, when the locations of the other nodes are fixed. Here, the direction of the

external force at node v is not changed. Therefore, there exists a location of v at which the

equilibrium of moments of external forces will be violated. This location of the node yields

the worst-case compliance, which is not bounded above. Such a solution is not feasible for

(ARTO), and this contradicts the assumption of this lemma.

Thus contradiction arises in each case, and hence any connected component of Gopt has at least one

support.
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We are now in position to state the main result of this section.

Theorem 4.8. If Assumption 4.2 is satisfied, then the truss obtained as the optimal solution of

(ARTO) in (31) is stable.

Proof. From (25), the stiffness matrix of the optimal solution with the nominal nodal locations, i.e.,

x = x̃ and ζ = 0, is given by ∑
i∈E

āiκi(0)bib
⊤
i .

Hence, the assertion of this theorem can be obtained by showing that any u solving∑
i∈E

āiκi(0)bib
⊤
i u = 0 (54)

satisfies u(v) = 0 (∀v ∈ Vopt).

It follows from Lemma 3.1 and constraint (31b) of (ARTO) that the stiffness matrix satisfies∑
i∈E

āiκi(0)bib
⊤
i ⪰

∑
i∈E

āiκ̆ibib
⊤
i ⪰

∑
i∈E

λ̄iCiC
⊤
i . (55)

On the other hand, (54) implies

u⊤
(∑
i∈E

āiκi(0)bib
⊤
i

)
u = 0. (56)

By using (55), we see that (56) implies

u⊤
(∑
i∈E

λ̄iCiC
⊤
i

)
u =

∑
i∈E

λ̄i(C
⊤
i u)

⊤(C⊤i u) = 0. (57)

It follows from Lemma 4.6 that (57) implies

C⊤i u = 0 (∀i ∈ Eopt). (58)

In the following we show that any u solving (58) satisfies u(v) = 0 (∀v ∈ Vopt). Choose a

connected component of Gopt arbitrarily. Lemma 4.7 asserts that this connected component has a

support. Let v denote this support. Choose member î = (v, v′) ∈ Eopt. From Assumption 4.2 (i),

node v′ is either a support or a free node. If node v′ is a support, then āî = 0 holds at the optimal

solution, and hence î ̸∈ Eopt. Therefore, node v is a free node. From (24) (see, also, (2), (9), and

(19)), matrix Cî ∈ Rp×l is of the form

Cî =

T (v′)(A(v′) −A(v))

 ← v′ , (59)

i.e., it is a block matrix such that only the block related to node v′ is a nonzero matrix. Here,

T (v′) ∈ Rd×d is an orthogonal matrix. From (59), equation C⊤
î
u = 0 in (58) is written as

T (v′)(A(v′) −A(v))u(v′) = 0. (60)
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It follows from Assumption 4.2 (ii) and the orthogonal property of T (v′) that T (v′)(A(v′)−A(v)) has

full row rank. Therefore, (60) implies

u(v′) = 0. (61)

We next choose member i′ = (v′, v′′) ∈ Eopt such that node v′′ ∈ Vopt is a free node. Then matrix

Ci′ ∈ Rp×l is of the form

Ci′ =


T (v′)(A(v′) −A(v′′))

T (v′′)(A(v′′) −A(v′))


← v′

← v′′

.

Therefore, equation C⊤i′ u = 0 in (58) is reduced to

T (v′)(A(v′) −A(v′′))u(v′) + T (v′′)(A(v′′) −A(v′))u(v′′)

= T (v′′)(A(v′′) −A(v′))u(v′′) = 0, (62)

where (61) has been used. From Assumption 4.2 (ii) we see that T (v′′)(A(v′′) − A(v′)) has full row

rank, because T (v′′) is an orthogonal matrix. Therefore, (62) implies u(v′′) = 0. By repeating this

procedure, we can show that u(w) = 0 should be satisfied at any node w contained in the connected

component.

The discussion above is valid for any connected component of Gopt. Therefore, we can conclude

that any solution of (58) satisfies u(v) = 0 (∀v ∈ Vopt).

The assumption required in Theorem 4.8 is not restrictive, as briefly discussed in Remark 4.3,

Remark 4.4, and Remark 4.5. Since it is well known that standard compliance optimization often

yields an unrealistic unstable truss design, guarantee of stability provided by the presented method

is significant from a practical point of view.

5 Numerical experiments

This section presents various numerical examples. The proposed SDP problem, (ARTO) in (31),

is solved to find robust truss designs. Section 5.1 considers some different uncertainty models

and studies difference of optimal solutions. Section 5.2 discusses a relation between the level of

uncertainty, r, and optimal topology. Section 5.3 studies a small example to estimate the tightness

of approximation of the presented formulation. Section 5.4 collects examples with larger sizes.

Computation was carried out on a 2.6GHz Intel Core i5 processor with 8GB RAM. SDP prob-

lems were solved with SeDuMi ver. 1.3 [40, 48] on MATLAB ver. 7.7. Note that SeDuMi implements

the primal-dual interior-point method for linear programming problems over symmetric cones.

All the examples consider planar trusses, i.e., d = 2. The elastic modulus is 200GPa. The upper

bound constraint on the structural volume becomes active at the optimal solution of each example.
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Figure 2: Example (I). (a) The ground structure; and (b) the nominal optimal solution (r = 0).

5.1 Example (I): Effect of difference of uncertainty models

This section studies variation in optimal solutions due to differences of uncertainty model.

Consider the ground structure shown in Figure 2(a). This truss consists of m = 38 members

connected by n = 5 × 3 = 15 nodes, and hence q = 30. The lengths of all horizontal member and

vertical members are 1m. The leftmost nodes, i.e., nodes v1, v2, and v3, are pin-supported. The

number of degrees of freedom of displacements is p = 24. A horizontal force of 10N is applied at

the rightmost node in the middle row, i.e., node v7. The specified upper bound for the structural

volume is Vu = 0.05m3.

Figure 2(b) shows the trivial optimal solution of the conventional compliance optimization with-

out considering uncertainty, i.e., r = 0. Four members with uniform cross-sectional areas are aligned

on a straight line. This solution is certainly unstable.

As for the uncertainty models of nodal locations, we consider four cases:

• Model (i): Locations of all the nodes possess uncertainty (l = q = nd = 30).

• Model (ii): Locations of nodes v2, v4, v5, v6, and v7 possess uncertainty (l = 5d = 10).

• Model (iii): Locations of nodes v4, v5, and v6 possess uncertainty (l = 3d = 6).

• Model (iv): Location of node v4 possesses uncertainty (l = 2).

Not that matrix A for model (i) is A = Iq. For models (ii), (iii), and (iv), A ∈ Rq×l is of the form

A =

[
Il

O

]
. (63)

The level of uncertainty is r = 0.05m in all these cases. With probabilistic uncertainty setting,

similar problem was solved by Guest and Igusa [20, section 3.6].

5.1.1 Solution under uncertainty in all nodes (model (i))

Figure 3(a) shows the optimal solution of (ARTO) in (31) with model (i). The width of each

member in this figure is proportional to its cross-sectional area. The computational results are

listed in Table 1. The results in the nominal case, r = 0, is also listed in the bottom row of this

table. Here, “Opt. val.” shows the optimal value, and π(ā; x̃) is the compliance when the nodes are

located at the nominal positions, x̃. Note that 1 J = 1N ·m.
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(c) (d)

Figure 3: Robust optimal solutions of example (I) with r = 0.05m. (a) Model (i); (b) model (ii);

(c) model (iii); and (d) model (iv).

As stated earlier, without considering uncertainty standard optimization yields an unstable

truss design shown in Figure 2(b). When locations of existing nodes are perturbed in the vertical

direction, this solution cannot equilibrate under the given external load. Therefore, this solution

is not feasible for our robust optimization problem; thus unrealistically unstable truss designs are

excluded by considering uncertainty in node locations. The same assertion was made by Guest and

Igusa [20] with probabilistic uncertainty setting. The robust optimal solution shown in Figure 3(a)

is stable, which agrees with Theorem 4.8.

5.1.2 Solutions under uncertainty in some nodes (models (ii)–(iv))

This section mentions the results with uncertainty models (ii), (iii), and (iv). Figure 3(b), Fig-

ure 3(c), and Figure 3(d) show the optimal solutions with models (ii), (iii), and (iv), respectively.

Table 1 reports the optimal values and the values of compliance with the nominal locations of the

nodes. In each case the computational time required by SeDuMi is less than 2 seconds. The solu-

tions obtained with models (ii) and (iii) are stable and have the same topology as the solution with

Table 1: Computational results of example (I).

Opt. val. (J) π(ā; x̃) (J)

Model (i) 0.37821 0.21630

Model (ii) 0.33787 0.20566

Model (iii) 0.31700 0.19858

Model (iv) 0.24570 0.17116

Nominal 0.16000 0.16000

22



Figure 4: Example (II). The ground structure.
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Figure 5: The variation of the optimal value, w̄, of example (II) with respect to the level of uncer-

tainty, r.

model (i).

In model (iv), the location of only one node is considered uncertain. The solution obtained with

this model is unstable, where only members around the uncertain node are braced. This agrees

with the result obtained by Guest and Igusa [20] with probabilistic uncertainty setting.

5.2 Example (II): Effect of uncertainty magnitude

This section examines how the robust optimal solution varies when the magnitude of uncertainty,

r, is changed.

Consider the initial truss shown in Figure 4. The truss consists of m = 24 members connected

by n = 9 nodes, where q = dn = 18. The lengths of all horizontal member and vertical members

are 1m. The leftmost nodes are pin-supported. The number of degrees of freedom of displacements

is p = 12. A horizontal force of 10N is applied at the rightmost node in the middle row. The upper

bound for the structural volume is Vu = 0.01m3. Locations of all the nodes are supposed to be

uncertain, where matrix A in (17) is A = Iq with l = q.

Figure 5 shows the variation of the optimal value, w̄, with respect to the level of uncertainty, r.

The trade-off relation between the worst compliance and the level of uncertainty is clearly captured

from this curve, called the robustness curve in [4]. Namely, the robustness cannot be improved
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Figure 6: The optimal topologies in Figure 5. (a) Topology 1; (b) topology 2; (c) topology 3;

(d) topology 4; and (e) topology 5.
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Figure 7: Example (III). (a) The 2-bar problem; (b) the nominal optimal solution; and (c) the

robust optimal solution.

(i.e., r cannot be larger) when the requirement of the performance becomes severer (i.e., w̄ becomes

smaller). As r is increased, the optimal topology changes in the five types shown in Figure 6.

It is observed in Figure 6 that, when r is small, thin braces are used to stabilize the two thick

members in the middle row. When r is large, the optimal topology becomes a two-bar truss. As r

becomes larger, the number of existing nodes becomes smaller. Thus the optimal topology depends

on the level of uncertainty.
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Figure 8: The variation of the compliance of example (IV) with respect to the location of the node.

5.3 Example (III): Tightness of approximation

As already mentioned, the presented method provides us with a safe approximation of the robust

optimal solution. Theoretically, in this paper we do not analyze tightness of approximation. In

other words, we do not know how far the optimal solution of (ARTO) is from the optimal solution

of (RTO). This section investigates the tightness numerically using a small example.

Consider the 2-bar truss shown in Figure 7(a). The two left nodes are pin-supported, i.e., p = 2.

The location of the right free node is supposed to be uncertain, while the locations of two supports

are supposed to be known precisely, i.e., l = 2. Matrix A is given by (63) and the level of uncertainty

is r = 0.01m. This means that the free node can exist at any points in and on a circle with radius

r as shown in Figure 7(a). A horizontal force of 100N is applied at the right free node. The upper

bound for the structural volume is Vu = 0.01m3.

The nominal optimal truss, i.e., the optimal solution of (TO) in (16), is trivially the one shown

in Figure 7(b). The member cross-sectional areas are (10000, 0)mm2 and the optimal value is 5 J.

Figure 7(c) shows the optimal solution of (ARTO) in (31). The member cross-sectional areas of this

solution are (9808.07, 135.71)mm2 and the optimal value is 5.658718 J.

In Figure 8, the dashed line corresponds to the optimal value of (ARTO), while the dotted line

shows the optimal value of (TO). We next randomly generate many sample points for the locations

of the free node. These samples are taken from the boundary of the circle with radius r as shown

in Figure 7(a). The member cross-sectional areas are fixed as the optimal solution of (ARTO) and

the compliance is computed. The solid line of Figure 8 depicts the compliance, where θ is the angle

of the location of node to the horizontal axis. The maximum value of this curve is 5.311027 J, when

we take 1000 samples uniformly on the boundary of the circle. Thus (ARTO) overestimates the

optimal value (because the optimal value of (ARTO) is 5.658718 J).

Finally, we perform the worst-case minimization using randomly generated samples. Namely,

we take 1000 samples uniformly on the boundary of the circle, and then solve the minimization

problem of the maximum compliance among these samples. The optimal solution of this problem

might be expected to be very close to the true optimal solution of (RTO) in (20). The member

cross-sectional areas of this solution are (9807.18, 136.34)mm2 and the optimal value is 5.311025 J.
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Figure 9: Example (IV). The ground structures. (a) The 5 × 5-grid ground structure; and (b) the

8× 5-grid ground structure.

It is worth noting that this optimal value is very close to the maximum value of the solid curve

in Figure 7(a). Therefore, we may probably conclude that, in this particular example, the optimal

truss design of (ARTO) is sufficiently close to the true optimal truss design of (RTO), although the

optimal value of (ARTO) overestimates the true optimal value of (RTO). This is, certainly, just one

example that yields positive result on the quality of the optimal solution of (ARTO). It is true that

the quality is not clear when (ARTO) is applied to more complex examples. However, for a larger

problem, verification using simple sampling, such as what performed above, is difficult.

5.4 More examples

This section collects numerical experiments with larger scale optimization problems.

5.4.1 Example (IV)

Consider the two ground structures shown in Figure 9, where only the nodes are depicted. Any two

nodes are connected by a member, but overlapping of members is avoided by removing the longer

member when two members overlap. The truss in Figure 9(a) has m = 418 members and p = 60

Table 2: Computational results of example (IV).

Problem r (m) Opt. val. (J) π(ā; x̃) (J) Time (s)

5× 5 Nominal 0.93389 0.93389 2.9

5× 5 0.02 1.07785 0.95640 131.9

5× 5 0.05 1.24814 1.05772 97.1

5× 5 0.10 1.56272 1.12786 86.1

8× 8 Nominal 3.49556 3.49556 10.2

8× 8 0.02 4.06993 3.54646 1285.2

8× 8 0.05 4.70739 3.96271 863.2

8× 8 0.10 5.78579 4.37983 685.8
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Figure 10: The solutions for the 5 × 5-grid problem of example (IV)．(a) r = 0; (b) r = 0.02m;

(c) r = 0.05m; and (d) r = 0.1m.

degrees of freedom of displacements. The one in Figure 9(b) has m = 919 members and p = 96

degrees of freedom of displacements. In both structures, the leftmost nodes are pin-supported. A

vertical force of 10N is applied at the bottom rightmost node. The upper bound for the structural

volume is Vu = 0.1m3. Locations of all nodes are considered uncertain, i.e., l = q. Matrix A in (17)

is A = Iq.

The nominal optimal solutions are shown in Figure 10(a) and Figure 11(a). Figures 10(b),

10(c), 10(d), 11(b), 11(c), and 11(d) show the optimal solutions of (ARTO) in (31) with r = 0.02m,

r = 0.05m, and r = 0.1m. The computational results are listed in Table 2, where “Time” means

the computational time required by SeDuMi to solve an SDP problem.

The solution of Figure 10(b) has all the members that exist in the solution of Figure 10(a). In

other words, the set of existing members in Figure 10(b) is a superset of the set of existing members

in Figure 10(a). In contrast, the set of existing members in Figure 10(d) is not a superset of that

in Figure 10(a). The number of existing nodes in Figure 10(d) is very small due to a large level of

uncertainty in the locations of nodes. The solution in Figure 11(b) has many more members than

the nominal solution in Figure 11(a). This is because the nominal optimal solution is unstable due

to the presence of collinear members and the robust optimal solution requires many thin members to

achieve stability. The truss topologies in Figure 11(c) and Figure 11(d) are much different from the
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Figure 11: The solutions for 8 × 5-grid problem of example (IV). (a) r = 0; (b) r = 0.02m;

(c) r = 0.05m; and (d) r = 0.1m.

nominal optimal solution in Figure 11(a). Also, the solutions in Figure 11(c) and Figure 11(d) have

few nodes, which avoids the effect of large uncertainty in the locations of nodes as far as possible.

5.4.2 Example (V)

Consider the three ground structures shown in Figure 12. Any two nodes are connected by a member,

but overlapping of members is avoided by removing the longer member when two members overlap.

The truss in Figure 12(a) consists of m = 140 members and has p = 36 degrees of freedom of

displacements. The one in Figure 12(b) has m = 386 members and p = 60 degrees of freedom. The

final one, shown in Figure 12(c), has m = 748 members and p = 84 degrees of freedom. The leftmost

nodes are pin-supported. A vertical force of 10N is applied at the rightmost node in the middle

Table 3: Computational results of example (V).

Problem r (m) Opt. val. (J) π(ā; x̃) (Nm) Time (s)

6× 2 Nominal 4.20500 4.20500 0.7

6× 2 0.05 7.71288 4.99626 7.1

6× 4 Nominal 1.72980 1.72980 2.1

6× 4 0.05 2.19051 1.75935 72.9

6× 6 Nominal 1.08256 1.08255 8.1

6× 6 0.05 1.28089 1.09859 370.8
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Figure 12: Example (V). The ground structures. (a) The 6 × 2-grid ground structure; (b) the

6× 4-grid ground structure; and (c) the 6× 6-grid ground structure.

row. The upper bound for the structural volume is Vu = 0.1m3. The magnitude of uncertainty is

r = 0.05m. Locations of all nodes are supposed to be uncertain, i.e., l = q, and A = Iq.

The nominal optimal solutions for these three ground structures are shown in Figure 13(a),

Figure 13(c), and Figure 13(e). The optimal solutions obtained by solving (ARTO) in (31) are

shown in Figure 13(b), Figure 13(d), and Figure 13(f). The computational results are listed in

Table 3.

In contrast to the other examples in section 5, the three nominal optimal solutions in Figure 13

are stable. The nominal optimal solution in Figure 13(c) is similar to its robust counterpart in

Figure 13(d), but a middle node in the nominal optimal solution is missing in the robust optimal

solution. Similarly, one node of the nominal optimal solution in Figure 13(e) is not used in the

robust optimal solution shown in Figure 13(f).

6 Conclusions

The concept of robustness to uncertainty is central in structural design. This paper has addressed

robust truss optimization considering geometrical uncertainties. We have formulated the SDP prob-

lem that provides us with a safe approximation of the optimal solution.

Theorem 3.2 establishes that any feasible solution of the proposed SDP problem is feasible for

the original robust optimization problem. This assertion holds for arbitrarily large magnitude of

uncertainty. Instead of this guaranteed safety, the optimal solution of the presented SDP problem

is not optimal for the original robust optimization problem in general. In the numerical experiment

in section 5.3, it has been observed that these two optimal solutions are close enough, although no
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Figure 13: The solutions of example (V). (a) The 6 × 2 nominal optimal solution; (b) the 6 × 2

robust optimal solution; (c) the 6×4 nominal optimal solution; (d) the 6×4 robust optimal solution;

(e) the 6× 6 nominal optimal solution; and (f) the 6× 6 robust optimal solution.

theoretical result is available for approximation ratio.

Two properties of the proposed SDP approximation have been explored. Theorem 4.1 shows

zeroing of our SDP formulation, i.e., when the magnitude of uncertainty is equal to zero, the SDP

problem truly coincides with the standard compliance optimization without considering uncertain-

ties. Theorem 4.8 establishes, under mild assumptions, that the optimal solution of the SDP problem

is a stable truss.

In the context of compliance optimization of trusses, guaranteed stability of the obtained solution

might be considered a fairly distinguished feature of the proposed approach.1 It is worth noting,

on the other hand, that many nodes of the initial structure can possibly disappear in the solution

1It is possible to guarantee stability of the optimal truss by considering structural performance other than the

compliance; the fundamental frequency of free vibration is an example [1, 38].
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obtained by the proposed approach, as illustrated in section 5. Roughly speaking, the truss topology

can vary in the course of optimization of the proposed approach. Stability of a truss in compliance

optimization is also guaranteed by considering uncertainty in external loads [6], if all the nodes of

the ground structure are subjected to uncertain forces. In this case, however, all the nodes in the

ground structure remain at the robust optimal solution. It is not obvious to guess the set of existing

nodes at the robust optimal solution. One remedy is making use of discrete variables representing

existence of members [53]. However, such a method, based upon mixed-integer programming, is

usually time consuming. In contrast, the method presented in this paper generates a stable truss

by solving an SDP problem.

Through the numerical experiments it has been illustrated that the optimal truss topology

depends on the magnitude of uncertainty, as well as the set of uncertain nodes. Roughly speaking,

when the nominal optimal truss is unstable and the level of uncertainty is small, the robust optimal

truss often has many thin members that are used to stabilize the nominal optimal solution. In

contrast, as the level of uncertainty is large, the number of nodes of the robust optimal solution

decreases to avoid the effect of large uncertainty in the locations. If the nominal optimal truss is

stable, then the robust optimal solution is often similar to the nominal one.

This paper was restricted to the compliance optimization of a truss. Other objective functions

can be studied to optimize other structural performance. Also, extension of the presented method to

other types of structures can be considered. Particularly, robust optimal design of micro compliant

mechanisms [26, 42, 46, 50] could probably be a promising application. Furthermore, theoretical

assessment of tightness of the proposed SDP approximation remains to be explored.

7 Technical lemmas

This section summarizes technical prerequisites that are known in literature.

We begin with three lemmas related to vector and matrix norms. These lemmas are used in

section 3.2. For p satisfying 1 ≤ p ≤ ∞, define p∗ by

1

p
+

1

p∗
= 1,

where we use the convention 1/∞ = 0. The ℓp∗-norm is the dual norm of the ℓp-norm. For any x,

y ∈ Rn, we have that

x⊤y ≤ ∥x∥p∥y∥p∗ , (64)

which is known as the Hölder inequality [24, 47]. For any x ∈ Rn, there exists y ∈ Rn satisfying

(64) with equality and ∥y∥p∗ = 1. We denote this y by ψp(x).

Lemma 7.1. Let s ≥ 0 be a constant, x ∈ Rn, and 1 ≤ p ≤ ∞. Then

max
y∈Rn

{x⊤y : ∥y∥p∗ ≤ s} = s∥x∥p.

Proof. For any x ∈ Rn and y ∈ Rn satisfying ∥y∥p∗ ≤ s, it follows from the Hölder inequality that

x⊤y ≤ ∥x∥p ∥y∥p∗
≤ s ∥x∥p .
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Here, two inequalities are satisfied with equalities at y = sψp(x), which concludes the proof.

Lemma 7.1 is used in the proof of Theorem 3.2 in section 3.2.

Lemma 7.2. Let x ∈ R, y ∈ Rn, and R ∋ r > 0. Then

max
z∈Rn

{xy⊤z : ∥z∥ ≤ r} = r|x|∥y∥.

Proof. The Cauchy–Schwarz inequality implies

xy⊤z = y⊤(xz) ≤ ∥y∥∥xz∥.

From ∥z∥ ≤ r, we obtain

∥xz∥ ≤ |x|∥z∥ ≤ |x|r.

These inequalities are satisfied with equalities at

z =

{
rψ2(y) if x ≥ 0,

−rψ2(y) if x < 0,

which concludes the proof.

Lemma 7.2 is used in the proof of Theorem 3.2 in section 3.2.

For A ∈ Rm×n, the matrix norm induced by the Euclidean vector norm is defined by

∥A∥2 = max
x̸=0

∥Ax∥2
∥x∥2

, (65)

which is equal to the largest singular value of A. From this definition we immediately obtain the

following property.

Lemma 7.3. Let A ∈ Rm×n and x ∈ Rn. Then

∥Ax∥2 ≤ ∥A∥2∥x∥2.

Lemma 7.3 is used to show Lemma 3.1 in section 3.2.

In the following we establish Lemma 7.6, which is used in section 3.2 to formulate the conservative

approximation of the robust optimization problem. Two lemmas, Lemma 7.4 and Lemma 7.5,

prepare for Lemma 7.6. Firstly, we state the following fact, which is the obvious part of the well-

known S-lemma; see, e.g., [9, 41].

Lemma 7.4. Let f0, f1, . . . , fm : Rn → R be quadratic functions. The implication

f1(x) ≥ 0, . . . , fm(x) ≥ 0 ⇒ f0(x) ≥ 0 (66)

holds if there exist t1, . . . , tm ≥ 0 satisfying

f0(x) ≥
m∑
i=1

tifi(x) (∀x ∈ Rn).
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Proof. Suppose that (66) does not hold, which means that there exists x̂ ∈ Rn satisfying

f0(x̂) < 0, f1(x̂) ≥ 0, . . . , fm(x̂) ≥ 0.

Then we obtain

f0(x̂) < 0 ≤
m∑
i=1

tifi(x̂) (∀t1, . . . , tm ≥ 0).

Thus the contraposition of Lemma 7.4 has been shown.

The following fact can be found, e.g., in Calafiore and El Ghaoui [12].

Lemma 7.5. Let Q ∈ Sn, p ∈ Rn, and r ∈ R. Then the following two conditions are equivalent:

(i)

[
1

x

]⊤ [
r p⊤

p Q

][
1

x

]
≥ 0, ∀x ∈ Rn, (67)

(ii)

[
r p⊤

p Q

]
⪰ O. (68)

Proof. It is trivial that (ii) implies (i). We show that (i) implies (ii) by contradiction. Suppose that

(ii) does not hold, which means that there exists (ξ̂, x̂) ∈ R× Rn satisfying[
ξ̂

x̂

]⊤ [
r p⊤

p Q

][
ξ̂

x̂

]
< 0. (69)

If ξ̂ ̸= 0, then (69) is reduced to [
x̂/ξ̂

1

]⊤ [
r p⊤

p Q

][
x̂/ξ̂

1

]
< 0,

which contradicts with (i). Hence, suppose ξ̂ = 0. Then (69) is reduced to

x̂⊤Qx̂ < 0 (70)

Let γ ∈ R be a parameter and choose x = γx̂ in (i) to obtain the inequality

(x̂⊤Qx̂)γ2 + 2(p⊤x̂)γ + r ≥ 0. (71)

The left-hand side of (71) is a quadratic function of γ, and (70) implies that (71) is not bounded

below. Therefore, there exists γ such that (71) becomes nonnegative, which contradicts (i).

The following fact is obtained as a straightforward corollary of Lemma 7.4 and Lemma 7.5.

Lemma 7.6. Let f0, f1, . . . , fm : Rn → R be quadratic functions defined by

fi(x) =

[
1

x

]⊤ [
ri p⊤i
pi Qi

][
1

x

]
, i = 0, 1, . . . ,m,

where Qi ∈ Sn, pi ∈ Rn, ri ∈ R (i = 0, 1, . . . ,m). Then the implication

f1(x) ≥ 0, . . . , fm(x) ≥ 0 ⇒ f0(x) ≥ 0

holds if there exist t1, . . . , tm ≥ 0 satisfying[
r0 p⊤0
p0 Q0

]
⪰

m∑
i=1

ti

[
ri p⊤i
pi Qi

]
.

Lemma 7.6 plays a key role in proving Theorem 3.2 in section 3.2.
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